blob: f8777b7663d35d5011c52ea5c9ed30ba9dc11313 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* rtase is the Linux device driver released for Realtek Automotive Switch
* controllers with PCI-Express interface.
*
* Copyright(c) 2024 Realtek Semiconductor Corp.
*
* Below is a simplified block diagram of the chip and its relevant interfaces.
*
* *************************
* * *
* * CPU network device *
* * *
* * +-------------+ *
* * | PCIE Host | *
* ***********++************
* ||
* PCIE
* ||
* ********************++**********************
* * | PCIE Endpoint | *
* * +---------------+ *
* * | GMAC | *
* * +--++--+ Realtek *
* * || RTL90xx Series *
* * || *
* * +-------------++----------------+ *
* * | | MAC | | *
* * | +-----+ | *
* * | | *
* * | Ethernet Switch Core | *
* * | | *
* * | +-----+ +-----+ | *
* * | | MAC |...........| MAC | | *
* * +---+-----+-----------+-----+---+ *
* * | PHY |...........| PHY | *
* * +--++-+ +--++-+ *
* *************||****************||***********
*
* The block of the Realtek RTL90xx series is our entire chip architecture,
* the GMAC is connected to the switch core, and there is no PHY in between.
* In addition, this driver is mainly used to control GMAC, but does not
* control the switch core, so it is not the same as DSA. Linux only plays
* the role of a normal leaf node in this model.
*/
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/prefetch.h>
#include <linux/rtnetlink.h>
#include <linux/tcp.h>
#include <asm/irq.h>
#include <net/ip6_checksum.h>
#include <net/netdev_queues.h>
#include <net/page_pool/helpers.h>
#include <net/pkt_cls.h>
#include "rtase.h"
#define RTK_OPTS1_DEBUG_VALUE 0x0BADBEEF
#define RTK_MAGIC_NUMBER 0x0BADBADBADBADBAD
static const struct pci_device_id rtase_pci_tbl[] = {
{PCI_VDEVICE(REALTEK, 0x906A)},
{}
};
MODULE_DEVICE_TABLE(pci, rtase_pci_tbl);
MODULE_AUTHOR("Realtek ARD Software Team");
MODULE_DESCRIPTION("Network Driver for the PCIe interface of Realtek Automotive Ethernet Switch");
MODULE_LICENSE("Dual BSD/GPL");
struct rtase_counters {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underrun;
} __packed;
static void rtase_w8(const struct rtase_private *tp, u16 reg, u8 val8)
{
writeb(val8, tp->mmio_addr + reg);
}
static void rtase_w16(const struct rtase_private *tp, u16 reg, u16 val16)
{
writew(val16, tp->mmio_addr + reg);
}
static void rtase_w32(const struct rtase_private *tp, u16 reg, u32 val32)
{
writel(val32, tp->mmio_addr + reg);
}
static u8 rtase_r8(const struct rtase_private *tp, u16 reg)
{
return readb(tp->mmio_addr + reg);
}
static u16 rtase_r16(const struct rtase_private *tp, u16 reg)
{
return readw(tp->mmio_addr + reg);
}
static u32 rtase_r32(const struct rtase_private *tp, u16 reg)
{
return readl(tp->mmio_addr + reg);
}
static void rtase_free_desc(struct rtase_private *tp)
{
struct pci_dev *pdev = tp->pdev;
u32 i;
for (i = 0; i < tp->func_tx_queue_num; i++) {
if (!tp->tx_ring[i].desc)
continue;
dma_free_coherent(&pdev->dev, RTASE_TX_RING_DESC_SIZE,
tp->tx_ring[i].desc,
tp->tx_ring[i].phy_addr);
tp->tx_ring[i].desc = NULL;
}
for (i = 0; i < tp->func_rx_queue_num; i++) {
if (!tp->rx_ring[i].desc)
continue;
dma_free_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE,
tp->rx_ring[i].desc,
tp->rx_ring[i].phy_addr);
tp->rx_ring[i].desc = NULL;
}
}
static int rtase_alloc_desc(struct rtase_private *tp)
{
struct pci_dev *pdev = tp->pdev;
u32 i;
/* rx and tx descriptors needs 256 bytes alignment.
* dma_alloc_coherent provides more.
*/
for (i = 0; i < tp->func_tx_queue_num; i++) {
tp->tx_ring[i].desc =
dma_alloc_coherent(&pdev->dev,
RTASE_TX_RING_DESC_SIZE,
&tp->tx_ring[i].phy_addr,
GFP_KERNEL);
if (!tp->tx_ring[i].desc)
goto err_out;
}
for (i = 0; i < tp->func_rx_queue_num; i++) {
tp->rx_ring[i].desc =
dma_alloc_coherent(&pdev->dev,
RTASE_RX_RING_DESC_SIZE,
&tp->rx_ring[i].phy_addr,
GFP_KERNEL);
if (!tp->rx_ring[i].desc)
goto err_out;
}
return 0;
err_out:
rtase_free_desc(tp);
return -ENOMEM;
}
static void rtase_unmap_tx_skb(struct pci_dev *pdev, u32 len,
struct rtase_tx_desc *desc)
{
dma_unmap_single(&pdev->dev, le64_to_cpu(desc->addr), len,
DMA_TO_DEVICE);
desc->opts1 = cpu_to_le32(RTK_OPTS1_DEBUG_VALUE);
desc->opts2 = 0x00;
desc->addr = cpu_to_le64(RTK_MAGIC_NUMBER);
}
static void rtase_tx_clear_range(struct rtase_ring *ring, u32 start, u32 n)
{
struct rtase_tx_desc *desc_base = ring->desc;
struct rtase_private *tp = ring->ivec->tp;
u32 i;
for (i = 0; i < n; i++) {
u32 entry = (start + i) % RTASE_NUM_DESC;
struct rtase_tx_desc *desc = desc_base + entry;
u32 len = ring->mis.len[entry];
struct sk_buff *skb;
if (len == 0)
continue;
rtase_unmap_tx_skb(tp->pdev, len, desc);
ring->mis.len[entry] = 0;
skb = ring->skbuff[entry];
if (!skb)
continue;
tp->stats.tx_dropped++;
dev_kfree_skb_any(skb);
ring->skbuff[entry] = NULL;
}
}
static void rtase_tx_clear(struct rtase_private *tp)
{
struct rtase_ring *ring;
u16 i;
for (i = 0; i < tp->func_tx_queue_num; i++) {
ring = &tp->tx_ring[i];
rtase_tx_clear_range(ring, ring->dirty_idx, RTASE_NUM_DESC);
ring->cur_idx = 0;
ring->dirty_idx = 0;
}
}
static void rtase_mark_to_asic(union rtase_rx_desc *desc, u32 rx_buf_sz)
{
u32 eor = le32_to_cpu(desc->desc_cmd.opts1) & RTASE_RING_END;
desc->desc_status.opts2 = 0;
/* force memory writes to complete before releasing descriptor */
dma_wmb();
WRITE_ONCE(desc->desc_cmd.opts1,
cpu_to_le32(RTASE_DESC_OWN | eor | rx_buf_sz));
}
static u32 rtase_tx_avail(struct rtase_ring *ring)
{
return READ_ONCE(ring->dirty_idx) + RTASE_NUM_DESC -
READ_ONCE(ring->cur_idx);
}
static int tx_handler(struct rtase_ring *ring, int budget)
{
const struct rtase_private *tp = ring->ivec->tp;
struct net_device *dev = tp->dev;
u32 dirty_tx, tx_left;
u32 bytes_compl = 0;
u32 pkts_compl = 0;
int workdone = 0;
dirty_tx = ring->dirty_idx;
tx_left = READ_ONCE(ring->cur_idx) - dirty_tx;
while (tx_left > 0) {
u32 entry = dirty_tx % RTASE_NUM_DESC;
struct rtase_tx_desc *desc = ring->desc +
sizeof(struct rtase_tx_desc) * entry;
u32 status;
status = le32_to_cpu(desc->opts1);
if (status & RTASE_DESC_OWN)
break;
rtase_unmap_tx_skb(tp->pdev, ring->mis.len[entry], desc);
ring->mis.len[entry] = 0;
if (ring->skbuff[entry]) {
pkts_compl++;
bytes_compl += ring->skbuff[entry]->len;
napi_consume_skb(ring->skbuff[entry], budget);
ring->skbuff[entry] = NULL;
}
dirty_tx++;
tx_left--;
workdone++;
if (workdone == RTASE_TX_BUDGET_DEFAULT)
break;
}
if (ring->dirty_idx != dirty_tx) {
dev_sw_netstats_tx_add(dev, pkts_compl, bytes_compl);
WRITE_ONCE(ring->dirty_idx, dirty_tx);
netif_subqueue_completed_wake(dev, ring->index, pkts_compl,
bytes_compl,
rtase_tx_avail(ring),
RTASE_TX_START_THRS);
if (ring->cur_idx != dirty_tx)
rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index));
}
return 0;
}
static void rtase_tx_desc_init(struct rtase_private *tp, u16 idx)
{
struct rtase_ring *ring = &tp->tx_ring[idx];
struct rtase_tx_desc *desc;
u32 i;
memset(ring->desc, 0x0, RTASE_TX_RING_DESC_SIZE);
memset(ring->skbuff, 0x0, sizeof(ring->skbuff));
ring->cur_idx = 0;
ring->dirty_idx = 0;
ring->index = idx;
ring->alloc_fail = 0;
for (i = 0; i < RTASE_NUM_DESC; i++) {
ring->mis.len[i] = 0;
if ((RTASE_NUM_DESC - 1) == i) {
desc = ring->desc + sizeof(struct rtase_tx_desc) * i;
desc->opts1 = cpu_to_le32(RTASE_RING_END);
}
}
ring->ring_handler = tx_handler;
if (idx < 4) {
ring->ivec = &tp->int_vector[idx];
list_add_tail(&ring->ring_entry,
&tp->int_vector[idx].ring_list);
} else {
ring->ivec = &tp->int_vector[0];
list_add_tail(&ring->ring_entry, &tp->int_vector[0].ring_list);
}
}
static void rtase_map_to_asic(union rtase_rx_desc *desc, dma_addr_t mapping,
u32 rx_buf_sz)
{
desc->desc_cmd.addr = cpu_to_le64(mapping);
rtase_mark_to_asic(desc, rx_buf_sz);
}
static void rtase_make_unusable_by_asic(union rtase_rx_desc *desc)
{
desc->desc_cmd.addr = cpu_to_le64(RTK_MAGIC_NUMBER);
desc->desc_cmd.opts1 &= ~cpu_to_le32(RTASE_DESC_OWN | RSVD_MASK);
}
static int rtase_alloc_rx_data_buf(struct rtase_ring *ring,
void **p_data_buf,
union rtase_rx_desc *desc,
dma_addr_t *rx_phy_addr)
{
struct rtase_int_vector *ivec = ring->ivec;
const struct rtase_private *tp = ivec->tp;
dma_addr_t mapping;
struct page *page;
page = page_pool_dev_alloc_pages(tp->page_pool);
if (!page) {
ring->alloc_fail++;
goto err_out;
}
*p_data_buf = page_address(page);
mapping = page_pool_get_dma_addr(page);
*rx_phy_addr = mapping;
rtase_map_to_asic(desc, mapping, tp->rx_buf_sz);
return 0;
err_out:
rtase_make_unusable_by_asic(desc);
return -ENOMEM;
}
static u32 rtase_rx_ring_fill(struct rtase_ring *ring, u32 ring_start,
u32 ring_end)
{
union rtase_rx_desc *desc_base = ring->desc;
u32 cur;
for (cur = ring_start; ring_end - cur > 0; cur++) {
u32 i = cur % RTASE_NUM_DESC;
union rtase_rx_desc *desc = desc_base + i;
int ret;
if (ring->data_buf[i])
continue;
ret = rtase_alloc_rx_data_buf(ring, &ring->data_buf[i], desc,
&ring->mis.data_phy_addr[i]);
if (ret)
break;
}
return cur - ring_start;
}
static void rtase_mark_as_last_descriptor(union rtase_rx_desc *desc)
{
desc->desc_cmd.opts1 |= cpu_to_le32(RTASE_RING_END);
}
static void rtase_rx_ring_clear(struct page_pool *page_pool,
struct rtase_ring *ring)
{
union rtase_rx_desc *desc;
struct page *page;
u32 i;
for (i = 0; i < RTASE_NUM_DESC; i++) {
desc = ring->desc + sizeof(union rtase_rx_desc) * i;
page = virt_to_head_page(ring->data_buf[i]);
if (ring->data_buf[i])
page_pool_put_full_page(page_pool, page, true);
rtase_make_unusable_by_asic(desc);
}
}
static int rtase_fragmented_frame(u32 status)
{
return (status & (RTASE_RX_FIRST_FRAG | RTASE_RX_LAST_FRAG)) !=
(RTASE_RX_FIRST_FRAG | RTASE_RX_LAST_FRAG);
}
static void rtase_rx_csum(const struct rtase_private *tp, struct sk_buff *skb,
const union rtase_rx_desc *desc)
{
u32 opts2 = le32_to_cpu(desc->desc_status.opts2);
/* rx csum offload */
if (((opts2 & RTASE_RX_V4F) && !(opts2 & RTASE_RX_IPF)) ||
(opts2 & RTASE_RX_V6F)) {
if (((opts2 & RTASE_RX_TCPT) && !(opts2 & RTASE_RX_TCPF)) ||
((opts2 & RTASE_RX_UDPT) && !(opts2 & RTASE_RX_UDPF)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
} else {
skb->ip_summed = CHECKSUM_NONE;
}
}
static void rtase_rx_vlan_skb(union rtase_rx_desc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->desc_status.opts2);
if (!(opts2 & RTASE_RX_VLAN_TAG))
return;
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
swab16(opts2 & RTASE_VLAN_TAG_MASK));
}
static void rtase_rx_skb(const struct rtase_ring *ring, struct sk_buff *skb)
{
struct rtase_int_vector *ivec = ring->ivec;
napi_gro_receive(&ivec->napi, skb);
}
static int rx_handler(struct rtase_ring *ring, int budget)
{
union rtase_rx_desc *desc_base = ring->desc;
u32 pkt_size, cur_rx, delta, entry, status;
struct rtase_private *tp = ring->ivec->tp;
struct net_device *dev = tp->dev;
union rtase_rx_desc *desc;
struct sk_buff *skb;
int workdone = 0;
cur_rx = ring->cur_idx;
entry = cur_rx % RTASE_NUM_DESC;
desc = &desc_base[entry];
while (workdone < budget) {
status = le32_to_cpu(desc->desc_status.opts1);
if (status & RTASE_DESC_OWN)
break;
/* This barrier is needed to keep us from reading
* any other fields out of the rx descriptor until
* we know the status of RTASE_DESC_OWN
*/
dma_rmb();
if (unlikely(status & RTASE_RX_RES)) {
if (net_ratelimit())
netdev_warn(dev, "Rx ERROR. status = %08x\n",
status);
tp->stats.rx_errors++;
if (status & (RTASE_RX_RWT | RTASE_RX_RUNT))
tp->stats.rx_length_errors++;
if (status & RTASE_RX_CRC)
tp->stats.rx_crc_errors++;
if (dev->features & NETIF_F_RXALL)
goto process_pkt;
rtase_mark_to_asic(desc, tp->rx_buf_sz);
goto skip_process_pkt;
}
process_pkt:
pkt_size = status & RTASE_RX_PKT_SIZE_MASK;
if (likely(!(dev->features & NETIF_F_RXFCS)))
pkt_size -= ETH_FCS_LEN;
/* The driver does not support incoming fragmented frames.
* They are seen as a symptom of over-mtu sized frames.
*/
if (unlikely(rtase_fragmented_frame(status))) {
tp->stats.rx_dropped++;
tp->stats.rx_length_errors++;
rtase_mark_to_asic(desc, tp->rx_buf_sz);
goto skip_process_pkt;
}
dma_sync_single_for_cpu(&tp->pdev->dev,
ring->mis.data_phy_addr[entry],
tp->rx_buf_sz, DMA_FROM_DEVICE);
skb = build_skb(ring->data_buf[entry], PAGE_SIZE);
if (!skb) {
tp->stats.rx_dropped++;
rtase_mark_to_asic(desc, tp->rx_buf_sz);
goto skip_process_pkt;
}
ring->data_buf[entry] = NULL;
if (dev->features & NETIF_F_RXCSUM)
rtase_rx_csum(tp, skb, desc);
skb_put(skb, pkt_size);
skb_mark_for_recycle(skb);
skb->protocol = eth_type_trans(skb, dev);
if (skb->pkt_type == PACKET_MULTICAST)
tp->stats.multicast++;
rtase_rx_vlan_skb(desc, skb);
rtase_rx_skb(ring, skb);
dev_sw_netstats_rx_add(dev, pkt_size);
skip_process_pkt:
workdone++;
cur_rx++;
entry = cur_rx % RTASE_NUM_DESC;
desc = ring->desc + sizeof(union rtase_rx_desc) * entry;
}
ring->cur_idx = cur_rx;
delta = rtase_rx_ring_fill(ring, ring->dirty_idx, ring->cur_idx);
ring->dirty_idx += delta;
return workdone;
}
static void rtase_rx_desc_init(struct rtase_private *tp, u16 idx)
{
struct rtase_ring *ring = &tp->rx_ring[idx];
u16 i;
memset(ring->desc, 0x0, RTASE_RX_RING_DESC_SIZE);
memset(ring->data_buf, 0x0, sizeof(ring->data_buf));
ring->cur_idx = 0;
ring->dirty_idx = 0;
ring->index = idx;
ring->alloc_fail = 0;
for (i = 0; i < RTASE_NUM_DESC; i++)
ring->mis.data_phy_addr[i] = 0;
ring->ring_handler = rx_handler;
ring->ivec = &tp->int_vector[idx];
list_add_tail(&ring->ring_entry, &tp->int_vector[idx].ring_list);
}
static void rtase_rx_clear(struct rtase_private *tp)
{
u32 i;
for (i = 0; i < tp->func_rx_queue_num; i++)
rtase_rx_ring_clear(tp->page_pool, &tp->rx_ring[i]);
page_pool_destroy(tp->page_pool);
tp->page_pool = NULL;
}
static int rtase_init_ring(const struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
struct page_pool_params pp_params = { 0 };
struct page_pool *page_pool;
u32 num;
u16 i;
pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
pp_params.order = 0;
pp_params.pool_size = RTASE_NUM_DESC * tp->func_rx_queue_num;
pp_params.nid = dev_to_node(&tp->pdev->dev);
pp_params.dev = &tp->pdev->dev;
pp_params.dma_dir = DMA_FROM_DEVICE;
pp_params.max_len = PAGE_SIZE;
pp_params.offset = 0;
page_pool = page_pool_create(&pp_params);
if (IS_ERR(page_pool)) {
netdev_err(tp->dev, "failed to create page pool\n");
return -ENOMEM;
}
tp->page_pool = page_pool;
for (i = 0; i < tp->func_tx_queue_num; i++)
rtase_tx_desc_init(tp, i);
for (i = 0; i < tp->func_rx_queue_num; i++) {
rtase_rx_desc_init(tp, i);
num = rtase_rx_ring_fill(&tp->rx_ring[i], 0, RTASE_NUM_DESC);
if (num != RTASE_NUM_DESC)
goto err_out;
rtase_mark_as_last_descriptor(tp->rx_ring[i].desc +
sizeof(union rtase_rx_desc) *
(RTASE_NUM_DESC - 1));
}
return 0;
err_out:
rtase_rx_clear(tp);
return -ENOMEM;
}
static void rtase_interrupt_mitigation(const struct rtase_private *tp)
{
u32 i;
for (i = 0; i < tp->func_tx_queue_num; i++)
rtase_w16(tp, RTASE_INT_MITI_TX + i * 2, tp->tx_int_mit);
for (i = 0; i < tp->func_rx_queue_num; i++)
rtase_w16(tp, RTASE_INT_MITI_RX + i * 2, tp->rx_int_mit);
}
static void rtase_tally_counter_addr_fill(const struct rtase_private *tp)
{
rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
rtase_w32(tp, RTASE_DTCCR0, lower_32_bits(tp->tally_paddr));
}
static void rtase_tally_counter_clear(const struct rtase_private *tp)
{
u32 cmd = lower_32_bits(tp->tally_paddr);
rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
rtase_w32(tp, RTASE_DTCCR0, cmd | RTASE_COUNTER_RESET);
}
static void rtase_desc_addr_fill(const struct rtase_private *tp)
{
const struct rtase_ring *ring;
u16 i, cmd, val;
int err;
for (i = 0; i < tp->func_tx_queue_num; i++) {
ring = &tp->tx_ring[i];
rtase_w32(tp, RTASE_TX_DESC_ADDR0,
lower_32_bits(ring->phy_addr));
rtase_w32(tp, RTASE_TX_DESC_ADDR4,
upper_32_bits(ring->phy_addr));
cmd = i | RTASE_TX_DESC_CMD_WE | RTASE_TX_DESC_CMD_CS;
rtase_w16(tp, RTASE_TX_DESC_COMMAND, cmd);
err = read_poll_timeout(rtase_r16, val,
!(val & RTASE_TX_DESC_CMD_CS), 10,
1000, false, tp,
RTASE_TX_DESC_COMMAND);
if (err == -ETIMEDOUT)
netdev_err(tp->dev,
"error occurred in fill tx descriptor\n");
}
for (i = 0; i < tp->func_rx_queue_num; i++) {
ring = &tp->rx_ring[i];
if (i == 0) {
rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR0,
lower_32_bits(ring->phy_addr));
rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR4,
upper_32_bits(ring->phy_addr));
} else {
rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR0 + ((i - 1) * 8)),
lower_32_bits(ring->phy_addr));
rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR4 + ((i - 1) * 8)),
upper_32_bits(ring->phy_addr));
}
}
}
static void rtase_hw_set_features(const struct net_device *dev,
netdev_features_t features)
{
const struct rtase_private *tp = netdev_priv(dev);
u16 rx_config, val;
rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
if (features & NETIF_F_RXALL)
rx_config |= (RTASE_ACCEPT_ERR | RTASE_ACCEPT_RUNT);
else
rx_config &= ~(RTASE_ACCEPT_ERR | RTASE_ACCEPT_RUNT);
rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
val = rtase_r16(tp, RTASE_CPLUS_CMD);
if (features & NETIF_F_RXCSUM)
rtase_w16(tp, RTASE_CPLUS_CMD, val | RTASE_RX_CHKSUM);
else
rtase_w16(tp, RTASE_CPLUS_CMD, val & ~RTASE_RX_CHKSUM);
rx_config = rtase_r16(tp, RTASE_RX_CONFIG_1);
if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
rx_config |= (RTASE_INNER_VLAN_DETAG_EN |
RTASE_OUTER_VLAN_DETAG_EN);
else
rx_config &= ~(RTASE_INNER_VLAN_DETAG_EN |
RTASE_OUTER_VLAN_DETAG_EN);
rtase_w16(tp, RTASE_RX_CONFIG_1, rx_config);
}
static void rtase_hw_set_rx_packet_filter(struct net_device *dev)
{
u32 mc_filter[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
struct rtase_private *tp = netdev_priv(dev);
u16 rx_mode;
rx_mode = rtase_r16(tp, RTASE_RX_CONFIG_0) & ~RTASE_ACCEPT_MASK;
rx_mode |= RTASE_ACCEPT_BROADCAST | RTASE_ACCEPT_MYPHYS;
if (dev->flags & IFF_PROMISC) {
rx_mode |= RTASE_ACCEPT_MULTICAST | RTASE_ACCEPT_ALLPHYS;
} else if (dev->flags & IFF_ALLMULTI) {
rx_mode |= RTASE_ACCEPT_MULTICAST;
} else {
struct netdev_hw_addr *hw_addr;
mc_filter[0] = 0;
mc_filter[1] = 0;
netdev_for_each_mc_addr(hw_addr, dev) {
u32 bit_nr = eth_hw_addr_crc(hw_addr);
u32 idx = u32_get_bits(bit_nr, BIT(31));
u32 bit = u32_get_bits(bit_nr,
RTASE_MULTICAST_FILTER_MASK);
mc_filter[idx] |= BIT(bit);
rx_mode |= RTASE_ACCEPT_MULTICAST;
}
}
if (dev->features & NETIF_F_RXALL)
rx_mode |= RTASE_ACCEPT_ERR | RTASE_ACCEPT_RUNT;
rtase_w32(tp, RTASE_MAR0, swab32(mc_filter[1]));
rtase_w32(tp, RTASE_MAR1, swab32(mc_filter[0]));
rtase_w16(tp, RTASE_RX_CONFIG_0, rx_mode);
}
static void rtase_irq_dis_and_clear(const struct rtase_private *tp)
{
const struct rtase_int_vector *ivec = &tp->int_vector[0];
u32 val1;
u16 val2;
u8 i;
rtase_w32(tp, ivec->imr_addr, 0);
val1 = rtase_r32(tp, ivec->isr_addr);
rtase_w32(tp, ivec->isr_addr, val1);
for (i = 1; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
rtase_w16(tp, ivec->imr_addr, 0);
val2 = rtase_r16(tp, ivec->isr_addr);
rtase_w16(tp, ivec->isr_addr, val2);
}
}
static void rtase_poll_timeout(const struct rtase_private *tp, u32 cond,
u32 sleep_us, u64 timeout_us, u16 reg)
{
int err;
u8 val;
err = read_poll_timeout(rtase_r8, val, val & cond, sleep_us,
timeout_us, false, tp, reg);
if (err == -ETIMEDOUT)
netdev_err(tp->dev, "poll reg 0x00%x timeout\n", reg);
}
static void rtase_nic_reset(const struct net_device *dev)
{
const struct rtase_private *tp = netdev_priv(dev);
u16 rx_config;
u8 val;
rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config & ~RTASE_ACCEPT_MASK);
val = rtase_r8(tp, RTASE_MISC);
rtase_w8(tp, RTASE_MISC, val | RTASE_RX_DV_GATE_EN);
val = rtase_r8(tp, RTASE_CHIP_CMD);
rtase_w8(tp, RTASE_CHIP_CMD, val | RTASE_STOP_REQ);
mdelay(2);
rtase_poll_timeout(tp, RTASE_STOP_REQ_DONE, 100, 150000,
RTASE_CHIP_CMD);
rtase_poll_timeout(tp, RTASE_TX_FIFO_EMPTY, 100, 100000,
RTASE_FIFOR);
rtase_poll_timeout(tp, RTASE_RX_FIFO_EMPTY, 100, 100000,
RTASE_FIFOR);
val = rtase_r8(tp, RTASE_CHIP_CMD);
rtase_w8(tp, RTASE_CHIP_CMD, val & ~(RTASE_TE | RTASE_RE));
val = rtase_r8(tp, RTASE_CHIP_CMD);
rtase_w8(tp, RTASE_CHIP_CMD, val & ~RTASE_STOP_REQ);
rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
}
static void rtase_hw_reset(const struct net_device *dev)
{
const struct rtase_private *tp = netdev_priv(dev);
rtase_irq_dis_and_clear(tp);
rtase_nic_reset(dev);
}
static void rtase_set_rx_queue(const struct rtase_private *tp)
{
u16 reg_data;
reg_data = rtase_r16(tp, RTASE_FCR);
switch (tp->func_rx_queue_num) {
case 1:
u16p_replace_bits(&reg_data, 0x1, RTASE_FCR_RXQ_MASK);
break;
case 2:
u16p_replace_bits(&reg_data, 0x2, RTASE_FCR_RXQ_MASK);
break;
case 4:
u16p_replace_bits(&reg_data, 0x3, RTASE_FCR_RXQ_MASK);
break;
}
rtase_w16(tp, RTASE_FCR, reg_data);
}
static void rtase_set_tx_queue(const struct rtase_private *tp)
{
u16 reg_data;
reg_data = rtase_r16(tp, RTASE_TX_CONFIG_1);
switch (tp->tx_queue_ctrl) {
case 1:
u16p_replace_bits(&reg_data, 0x0, RTASE_TC_MODE_MASK);
break;
case 2:
u16p_replace_bits(&reg_data, 0x1, RTASE_TC_MODE_MASK);
break;
case 3:
case 4:
u16p_replace_bits(&reg_data, 0x2, RTASE_TC_MODE_MASK);
break;
default:
u16p_replace_bits(&reg_data, 0x3, RTASE_TC_MODE_MASK);
break;
}
rtase_w16(tp, RTASE_TX_CONFIG_1, reg_data);
}
static void rtase_hw_config(struct net_device *dev)
{
const struct rtase_private *tp = netdev_priv(dev);
u32 reg_data32;
u16 reg_data16;
rtase_hw_reset(dev);
/* set rx dma burst */
reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_0);
reg_data16 &= ~(RTASE_RX_SINGLE_TAG | RTASE_RX_SINGLE_FETCH);
u16p_replace_bits(&reg_data16, RTASE_RX_DMA_BURST_256,
RTASE_RX_MX_DMA_MASK);
rtase_w16(tp, RTASE_RX_CONFIG_0, reg_data16);
/* new rx descritpor */
reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_1);
reg_data16 |= RTASE_RX_NEW_DESC_FORMAT_EN | RTASE_PCIE_NEW_FLOW;
u16p_replace_bits(&reg_data16, 0xF, RTASE_RX_MAX_FETCH_DESC_MASK);
rtase_w16(tp, RTASE_RX_CONFIG_1, reg_data16);
rtase_set_rx_queue(tp);
rtase_interrupt_mitigation(tp);
/* set tx dma burst size and interframe gap time */
reg_data32 = rtase_r32(tp, RTASE_TX_CONFIG_0);
u32p_replace_bits(&reg_data32, RTASE_TX_DMA_BURST_UNLIMITED,
RTASE_TX_DMA_MASK);
u32p_replace_bits(&reg_data32, RTASE_INTERFRAMEGAP,
RTASE_TX_INTER_FRAME_GAP_MASK);
rtase_w32(tp, RTASE_TX_CONFIG_0, reg_data32);
/* new tx descriptor */
reg_data16 = rtase_r16(tp, RTASE_TFUN_CTRL);
rtase_w16(tp, RTASE_TFUN_CTRL, reg_data16 |
RTASE_TX_NEW_DESC_FORMAT_EN);
/* tx fetch desc number */
rtase_w8(tp, RTASE_TDFNR, 0x10);
/* tag num select */
reg_data16 = rtase_r16(tp, RTASE_MTPS);
u16p_replace_bits(&reg_data16, 0x4, RTASE_TAG_NUM_SEL_MASK);
rtase_w16(tp, RTASE_MTPS, reg_data16);
rtase_set_tx_queue(tp);
rtase_w16(tp, RTASE_TOKSEL, 0x5555);
rtase_tally_counter_addr_fill(tp);
rtase_desc_addr_fill(tp);
rtase_hw_set_features(dev, dev->features);
/* enable flow control */
reg_data16 = rtase_r16(tp, RTASE_CPLUS_CMD);
reg_data16 |= (RTASE_FORCE_TXFLOW_EN | RTASE_FORCE_RXFLOW_EN);
rtase_w16(tp, RTASE_CPLUS_CMD, reg_data16);
/* set near fifo threshold - rx missed issue. */
rtase_w16(tp, RTASE_RFIFONFULL, 0x190);
rtase_w16(tp, RTASE_RMS, tp->rx_buf_sz);
rtase_hw_set_rx_packet_filter(dev);
}
static void rtase_nic_enable(const struct net_device *dev)
{
const struct rtase_private *tp = netdev_priv(dev);
u16 rcr = rtase_r16(tp, RTASE_RX_CONFIG_1);
u8 val;
rtase_w16(tp, RTASE_RX_CONFIG_1, rcr & ~RTASE_PCIE_RELOAD_EN);
rtase_w16(tp, RTASE_RX_CONFIG_1, rcr | RTASE_PCIE_RELOAD_EN);
val = rtase_r8(tp, RTASE_CHIP_CMD);
rtase_w8(tp, RTASE_CHIP_CMD, val | RTASE_TE | RTASE_RE);
val = rtase_r8(tp, RTASE_MISC);
rtase_w8(tp, RTASE_MISC, val & ~RTASE_RX_DV_GATE_EN);
}
static void rtase_enable_hw_interrupt(const struct rtase_private *tp)
{
const struct rtase_int_vector *ivec = &tp->int_vector[0];
u32 i;
rtase_w32(tp, ivec->imr_addr, ivec->imr);
for (i = 1; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
rtase_w16(tp, ivec->imr_addr, ivec->imr);
}
}
static void rtase_hw_start(const struct net_device *dev)
{
const struct rtase_private *tp = netdev_priv(dev);
rtase_nic_enable(dev);
rtase_enable_hw_interrupt(tp);
}
/* the interrupt handler does RXQ0 and TXQ0, TXQ4~7 interrutp status
*/
static irqreturn_t rtase_interrupt(int irq, void *dev_instance)
{
const struct rtase_private *tp;
struct rtase_int_vector *ivec;
u32 status;
ivec = dev_instance;
tp = ivec->tp;
status = rtase_r32(tp, ivec->isr_addr);
rtase_w32(tp, ivec->imr_addr, 0x0);
rtase_w32(tp, ivec->isr_addr, status & ~RTASE_FOVW);
if (napi_schedule_prep(&ivec->napi))
__napi_schedule(&ivec->napi);
return IRQ_HANDLED;
}
/* the interrupt handler does RXQ1&TXQ1 or RXQ2&TXQ2 or RXQ3&TXQ3 interrupt
* status according to interrupt vector
*/
static irqreturn_t rtase_q_interrupt(int irq, void *dev_instance)
{
const struct rtase_private *tp;
struct rtase_int_vector *ivec;
u16 status;
ivec = dev_instance;
tp = ivec->tp;
status = rtase_r16(tp, ivec->isr_addr);
rtase_w16(tp, ivec->imr_addr, 0x0);
rtase_w16(tp, ivec->isr_addr, status);
if (napi_schedule_prep(&ivec->napi))
__napi_schedule(&ivec->napi);
return IRQ_HANDLED;
}
static int rtase_poll(struct napi_struct *napi, int budget)
{
const struct rtase_int_vector *ivec;
const struct rtase_private *tp;
struct rtase_ring *ring;
int total_workdone = 0;
ivec = container_of(napi, struct rtase_int_vector, napi);
tp = ivec->tp;
list_for_each_entry(ring, &ivec->ring_list, ring_entry)
total_workdone += ring->ring_handler(ring, budget);
if (total_workdone >= budget)
return budget;
if (napi_complete_done(napi, total_workdone)) {
if (!ivec->index)
rtase_w32(tp, ivec->imr_addr, ivec->imr);
else
rtase_w16(tp, ivec->imr_addr, ivec->imr);
}
return total_workdone;
}
static int rtase_open(struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
const struct pci_dev *pdev = tp->pdev;
struct rtase_int_vector *ivec;
u16 i = 0, j;
int ret;
ivec = &tp->int_vector[0];
tp->rx_buf_sz = RTASE_RX_BUF_SIZE;
ret = rtase_alloc_desc(tp);
if (ret)
return ret;
ret = rtase_init_ring(dev);
if (ret)
goto err_free_all_allocated_mem;
rtase_hw_config(dev);
if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED) {
ret = request_irq(ivec->irq, rtase_interrupt, 0,
dev->name, ivec);
if (ret)
goto err_free_all_allocated_irq;
/* request other interrupts to handle multiqueue */
for (i = 1; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
snprintf(ivec->name, sizeof(ivec->name), "%s_int%i",
tp->dev->name, i);
ret = request_irq(ivec->irq, rtase_q_interrupt, 0,
ivec->name, ivec);
if (ret)
goto err_free_all_allocated_irq;
}
} else {
ret = request_irq(pdev->irq, rtase_interrupt, 0, dev->name,
ivec);
if (ret)
goto err_free_all_allocated_mem;
}
rtase_hw_start(dev);
for (i = 0; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
napi_enable(&ivec->napi);
}
netif_carrier_on(dev);
netif_wake_queue(dev);
return 0;
err_free_all_allocated_irq:
for (j = 0; j < i; j++)
free_irq(tp->int_vector[j].irq, &tp->int_vector[j]);
err_free_all_allocated_mem:
rtase_free_desc(tp);
return ret;
}
static void rtase_down(struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
struct rtase_int_vector *ivec;
struct rtase_ring *ring, *tmp;
u32 i;
for (i = 0; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
napi_disable(&ivec->napi);
list_for_each_entry_safe(ring, tmp, &ivec->ring_list,
ring_entry)
list_del(&ring->ring_entry);
}
netif_tx_disable(dev);
netif_carrier_off(dev);
rtase_hw_reset(dev);
rtase_tx_clear(tp);
rtase_rx_clear(tp);
}
static int rtase_close(struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
const struct pci_dev *pdev = tp->pdev;
u32 i;
rtase_down(dev);
if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED) {
for (i = 0; i < tp->int_nums; i++)
free_irq(tp->int_vector[i].irq, &tp->int_vector[i]);
} else {
free_irq(pdev->irq, &tp->int_vector[0]);
}
rtase_free_desc(tp);
return 0;
}
static u32 rtase_tx_vlan_tag(const struct rtase_private *tp,
const struct sk_buff *skb)
{
return (skb_vlan_tag_present(skb)) ?
(RTASE_TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb))) : 0x00;
}
static u32 rtase_tx_csum(struct sk_buff *skb, const struct net_device *dev)
{
u32 csum_cmd = 0;
u8 ip_protocol;
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
csum_cmd = RTASE_TX_IPCS_C;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
csum_cmd = RTASE_TX_IPV6F_C;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
csum_cmd |= RTASE_TX_TCPCS_C;
else if (ip_protocol == IPPROTO_UDP)
csum_cmd |= RTASE_TX_UDPCS_C;
csum_cmd |= u32_encode_bits(skb_transport_offset(skb),
RTASE_TCPHO_MASK);
return csum_cmd;
}
static int rtase_xmit_frags(struct rtase_ring *ring, struct sk_buff *skb,
u32 opts1, u32 opts2)
{
const struct skb_shared_info *info = skb_shinfo(skb);
const struct rtase_private *tp = ring->ivec->tp;
const u8 nr_frags = info->nr_frags;
struct rtase_tx_desc *txd = NULL;
u32 cur_frag, entry;
entry = ring->cur_idx;
for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
const skb_frag_t *frag = &info->frags[cur_frag];
dma_addr_t mapping;
u32 status, len;
void *addr;
entry = (entry + 1) % RTASE_NUM_DESC;
txd = ring->desc + sizeof(struct rtase_tx_desc) * entry;
len = skb_frag_size(frag);
addr = skb_frag_address(frag);
mapping = dma_map_single(&tp->pdev->dev, addr, len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) {
if (unlikely(net_ratelimit()))
netdev_err(tp->dev,
"Failed to map TX fragments DMA!\n");
goto err_out;
}
if (((entry + 1) % RTASE_NUM_DESC) == 0)
status = (opts1 | len | RTASE_RING_END);
else
status = opts1 | len;
if (cur_frag == (nr_frags - 1)) {
ring->skbuff[entry] = skb;
status |= RTASE_TX_LAST_FRAG;
}
ring->mis.len[entry] = len;
txd->addr = cpu_to_le64(mapping);
txd->opts2 = cpu_to_le32(opts2);
/* make sure the operating fields have been updated */
dma_wmb();
txd->opts1 = cpu_to_le32(status);
}
return cur_frag;
err_out:
rtase_tx_clear_range(ring, ring->cur_idx + 1, cur_frag);
return -EIO;
}
static netdev_tx_t rtase_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
struct rtase_private *tp = netdev_priv(dev);
u32 q_idx, entry, len, opts1, opts2;
struct netdev_queue *tx_queue;
bool stop_queue, door_bell;
u32 mss = shinfo->gso_size;
struct rtase_tx_desc *txd;
struct rtase_ring *ring;
dma_addr_t mapping;
int frags;
/* multiqueues */
q_idx = skb_get_queue_mapping(skb);
ring = &tp->tx_ring[q_idx];
tx_queue = netdev_get_tx_queue(dev, q_idx);
if (unlikely(!rtase_tx_avail(ring))) {
if (net_ratelimit())
netdev_err(dev,
"BUG! Tx Ring full when queue awake!\n");
netif_stop_queue(dev);
return NETDEV_TX_BUSY;
}
entry = ring->cur_idx % RTASE_NUM_DESC;
txd = ring->desc + sizeof(struct rtase_tx_desc) * entry;
opts1 = RTASE_DESC_OWN;
opts2 = rtase_tx_vlan_tag(tp, skb);
/* tcp segmentation offload (or tcp large send) */
if (mss) {
if (shinfo->gso_type & SKB_GSO_TCPV4) {
opts1 |= RTASE_GIANT_SEND_V4;
} else if (shinfo->gso_type & SKB_GSO_TCPV6) {
if (skb_cow_head(skb, 0))
goto err_dma_0;
tcp_v6_gso_csum_prep(skb);
opts1 |= RTASE_GIANT_SEND_V6;
} else {
WARN_ON_ONCE(1);
}
opts1 |= u32_encode_bits(skb_transport_offset(skb),
RTASE_TCPHO_MASK);
opts2 |= u32_encode_bits(mss, RTASE_MSS_MASK);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
opts2 |= rtase_tx_csum(skb, dev);
}
frags = rtase_xmit_frags(ring, skb, opts1, opts2);
if (unlikely(frags < 0))
goto err_dma_0;
if (frags) {
len = skb_headlen(skb);
opts1 |= RTASE_TX_FIRST_FRAG;
} else {
len = skb->len;
ring->skbuff[entry] = skb;
opts1 |= RTASE_TX_FIRST_FRAG | RTASE_TX_LAST_FRAG;
}
if (((entry + 1) % RTASE_NUM_DESC) == 0)
opts1 |= (len | RTASE_RING_END);
else
opts1 |= len;
mapping = dma_map_single(&tp->pdev->dev, skb->data, len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) {
if (unlikely(net_ratelimit()))
netdev_err(dev, "Failed to map TX DMA!\n");
goto err_dma_1;
}
ring->mis.len[entry] = len;
txd->addr = cpu_to_le64(mapping);
txd->opts2 = cpu_to_le32(opts2);
txd->opts1 = cpu_to_le32(opts1 & ~RTASE_DESC_OWN);
/* make sure the operating fields have been updated */
dma_wmb();
door_bell = __netdev_tx_sent_queue(tx_queue, skb->len,
netdev_xmit_more());
txd->opts1 = cpu_to_le32(opts1);
skb_tx_timestamp(skb);
/* tx needs to see descriptor changes before updated cur_idx */
smp_wmb();
WRITE_ONCE(ring->cur_idx, ring->cur_idx + frags + 1);
stop_queue = !netif_subqueue_maybe_stop(dev, ring->index,
rtase_tx_avail(ring),
RTASE_TX_STOP_THRS,
RTASE_TX_START_THRS);
if (door_bell || stop_queue)
rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index));
return NETDEV_TX_OK;
err_dma_1:
ring->skbuff[entry] = NULL;
rtase_tx_clear_range(ring, ring->cur_idx + 1, frags);
err_dma_0:
tp->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static void rtase_set_rx_mode(struct net_device *dev)
{
rtase_hw_set_rx_packet_filter(dev);
}
static void rtase_enable_eem_write(const struct rtase_private *tp)
{
u8 val;
val = rtase_r8(tp, RTASE_EEM);
rtase_w8(tp, RTASE_EEM, val | RTASE_EEM_UNLOCK);
}
static void rtase_disable_eem_write(const struct rtase_private *tp)
{
u8 val;
val = rtase_r8(tp, RTASE_EEM);
rtase_w8(tp, RTASE_EEM, val & ~RTASE_EEM_UNLOCK);
}
static void rtase_rar_set(const struct rtase_private *tp, const u8 *addr)
{
u32 rar_low, rar_high;
rar_low = (u32)addr[0] | ((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24);
rar_high = (u32)addr[4] | ((u32)addr[5] << 8);
rtase_enable_eem_write(tp);
rtase_w32(tp, RTASE_MAC0, rar_low);
rtase_w32(tp, RTASE_MAC4, rar_high);
rtase_disable_eem_write(tp);
rtase_w16(tp, RTASE_LBK_CTRL, RTASE_LBK_ATLD | RTASE_LBK_CLR);
}
static int rtase_set_mac_address(struct net_device *dev, void *p)
{
struct rtase_private *tp = netdev_priv(dev);
int ret;
ret = eth_mac_addr(dev, p);
if (ret)
return ret;
rtase_rar_set(tp, dev->dev_addr);
return 0;
}
static int rtase_change_mtu(struct net_device *dev, int new_mtu)
{
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
static void rtase_wait_for_quiescence(const struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
struct rtase_int_vector *ivec;
u32 i;
for (i = 0; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
synchronize_irq(ivec->irq);
/* wait for any pending NAPI task to complete */
napi_disable(&ivec->napi);
}
rtase_irq_dis_and_clear(tp);
for (i = 0; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
napi_enable(&ivec->napi);
}
}
static void rtase_sw_reset(struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
int ret;
netif_stop_queue(dev);
netif_carrier_off(dev);
rtase_hw_reset(dev);
/* let's wait a bit while any (async) irq lands on */
rtase_wait_for_quiescence(dev);
rtase_tx_clear(tp);
rtase_rx_clear(tp);
ret = rtase_init_ring(dev);
if (ret) {
netdev_err(dev, "unable to init ring\n");
rtase_free_desc(tp);
return;
}
rtase_hw_config(dev);
/* always link, so start to transmit & receive */
rtase_hw_start(dev);
netif_carrier_on(dev);
netif_wake_queue(dev);
}
static void rtase_dump_tally_counter(const struct rtase_private *tp)
{
dma_addr_t paddr = tp->tally_paddr;
u32 cmd = lower_32_bits(paddr);
u32 val;
int err;
rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(paddr));
rtase_w32(tp, RTASE_DTCCR0, cmd);
rtase_w32(tp, RTASE_DTCCR0, cmd | RTASE_COUNTER_DUMP);
err = read_poll_timeout(rtase_r32, val, !(val & RTASE_COUNTER_DUMP),
10, 250, false, tp, RTASE_DTCCR0);
if (err == -ETIMEDOUT)
netdev_err(tp->dev, "error occurred in dump tally counter\n");
}
static void rtase_dump_state(const struct net_device *dev)
{
const struct rtase_private *tp = netdev_priv(dev);
int max_reg_size = RTASE_PCI_REGS_SIZE;
const struct rtase_counters *counters;
const struct rtase_ring *ring;
u32 dword_rd;
int n = 0;
ring = &tp->tx_ring[0];
netdev_err(dev, "Tx descriptor info:\n");
netdev_err(dev, "Tx curIdx = 0x%x\n", ring->cur_idx);
netdev_err(dev, "Tx dirtyIdx = 0x%x\n", ring->dirty_idx);
netdev_err(dev, "Tx phyAddr = %pad\n", &ring->phy_addr);
ring = &tp->rx_ring[0];
netdev_err(dev, "Rx descriptor info:\n");
netdev_err(dev, "Rx curIdx = 0x%x\n", ring->cur_idx);
netdev_err(dev, "Rx dirtyIdx = 0x%x\n", ring->dirty_idx);
netdev_err(dev, "Rx phyAddr = %pad\n", &ring->phy_addr);
netdev_err(dev, "Device Registers:\n");
netdev_err(dev, "Chip Command = 0x%02x\n",
rtase_r8(tp, RTASE_CHIP_CMD));
netdev_err(dev, "IMR = %08x\n", rtase_r32(tp, RTASE_IMR0));
netdev_err(dev, "ISR = %08x\n", rtase_r32(tp, RTASE_ISR0));
netdev_err(dev, "Boot Ctrl Reg(0xE004) = %04x\n",
rtase_r16(tp, RTASE_BOOT_CTL));
netdev_err(dev, "EPHY ISR(0xE014) = %04x\n",
rtase_r16(tp, RTASE_EPHY_ISR));
netdev_err(dev, "EPHY IMR(0xE016) = %04x\n",
rtase_r16(tp, RTASE_EPHY_IMR));
netdev_err(dev, "CLKSW SET REG(0xE018) = %04x\n",
rtase_r16(tp, RTASE_CLKSW_SET));
netdev_err(dev, "Dump PCI Registers:\n");
while (n < max_reg_size) {
if ((n % RTASE_DWORD_MOD) == 0)
netdev_err(tp->dev, "0x%03x:\n", n);
pci_read_config_dword(tp->pdev, n, &dword_rd);
netdev_err(tp->dev, "%08x\n", dword_rd);
n += 4;
}
netdev_err(dev, "Dump tally counter:\n");
counters = tp->tally_vaddr;
rtase_dump_tally_counter(tp);
netdev_err(dev, "tx_packets %lld\n",
le64_to_cpu(counters->tx_packets));
netdev_err(dev, "rx_packets %lld\n",
le64_to_cpu(counters->rx_packets));
netdev_err(dev, "tx_errors %lld\n",
le64_to_cpu(counters->tx_errors));
netdev_err(dev, "rx_errors %d\n",
le32_to_cpu(counters->rx_errors));
netdev_err(dev, "rx_missed %d\n",
le16_to_cpu(counters->rx_missed));
netdev_err(dev, "align_errors %d\n",
le16_to_cpu(counters->align_errors));
netdev_err(dev, "tx_one_collision %d\n",
le32_to_cpu(counters->tx_one_collision));
netdev_err(dev, "tx_multi_collision %d\n",
le32_to_cpu(counters->tx_multi_collision));
netdev_err(dev, "rx_unicast %lld\n",
le64_to_cpu(counters->rx_unicast));
netdev_err(dev, "rx_broadcast %lld\n",
le64_to_cpu(counters->rx_broadcast));
netdev_err(dev, "rx_multicast %d\n",
le32_to_cpu(counters->rx_multicast));
netdev_err(dev, "tx_aborted %d\n",
le16_to_cpu(counters->tx_aborted));
netdev_err(dev, "tx_underrun %d\n",
le16_to_cpu(counters->tx_underrun));
}
static void rtase_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
rtase_dump_state(dev);
rtase_sw_reset(dev);
}
static void rtase_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
const struct rtase_private *tp = netdev_priv(dev);
const struct rtase_counters *counters;
counters = tp->tally_vaddr;
dev_fetch_sw_netstats(stats, dev->tstats);
/* fetch additional counter values missing in stats collected by driver
* from tally counter
*/
rtase_dump_tally_counter(tp);
stats->rx_errors = tp->stats.rx_errors;
stats->tx_errors = le64_to_cpu(counters->tx_errors);
stats->rx_dropped = tp->stats.rx_dropped;
stats->tx_dropped = tp->stats.tx_dropped;
stats->multicast = tp->stats.multicast;
stats->rx_length_errors = tp->stats.rx_length_errors;
}
static netdev_features_t rtase_fix_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t features_fix = features;
/* not support TSO for jumbo frames */
if (dev->mtu > ETH_DATA_LEN)
features_fix &= ~NETIF_F_ALL_TSO;
return features_fix;
}
static int rtase_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t features_set = features;
features_set &= NETIF_F_RXALL | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_RX;
if (features_set ^ dev->features)
rtase_hw_set_features(dev, features_set);
return 0;
}
static const struct net_device_ops rtase_netdev_ops = {
.ndo_open = rtase_open,
.ndo_stop = rtase_close,
.ndo_start_xmit = rtase_start_xmit,
.ndo_set_rx_mode = rtase_set_rx_mode,
.ndo_set_mac_address = rtase_set_mac_address,
.ndo_change_mtu = rtase_change_mtu,
.ndo_tx_timeout = rtase_tx_timeout,
.ndo_get_stats64 = rtase_get_stats64,
.ndo_fix_features = rtase_fix_features,
.ndo_set_features = rtase_set_features,
};
static void rtase_get_mac_address(struct net_device *dev)
{
struct rtase_private *tp = netdev_priv(dev);
u8 mac_addr[ETH_ALEN] __aligned(2) = {};
u32 i;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = rtase_r8(tp, RTASE_MAC0 + i);
if (!is_valid_ether_addr(mac_addr)) {
eth_hw_addr_random(dev);
netdev_warn(dev, "Random ether addr %pM\n", dev->dev_addr);
} else {
eth_hw_addr_set(dev, mac_addr);
ether_addr_copy(dev->perm_addr, dev->dev_addr);
}
rtase_rar_set(tp, dev->dev_addr);
}
static int rtase_get_settings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
u32 supported = SUPPORTED_MII | SUPPORTED_Pause | SUPPORTED_Asym_Pause;
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
cmd->base.speed = SPEED_5000;
cmd->base.duplex = DUPLEX_FULL;
cmd->base.port = PORT_MII;
cmd->base.autoneg = AUTONEG_DISABLE;
return 0;
}
static void rtase_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *pause)
{
const struct rtase_private *tp = netdev_priv(dev);
u16 value = rtase_r16(tp, RTASE_CPLUS_CMD);
pause->autoneg = AUTONEG_DISABLE;
pause->tx_pause = !!(value & RTASE_FORCE_TXFLOW_EN);
pause->rx_pause = !!(value & RTASE_FORCE_RXFLOW_EN);
}
static int rtase_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *pause)
{
const struct rtase_private *tp = netdev_priv(dev);
u16 value = rtase_r16(tp, RTASE_CPLUS_CMD);
if (pause->autoneg)
return -EOPNOTSUPP;
value &= ~(RTASE_FORCE_TXFLOW_EN | RTASE_FORCE_RXFLOW_EN);
if (pause->tx_pause)
value |= RTASE_FORCE_TXFLOW_EN;
if (pause->rx_pause)
value |= RTASE_FORCE_RXFLOW_EN;
rtase_w16(tp, RTASE_CPLUS_CMD, value);
return 0;
}
static void rtase_get_eth_mac_stats(struct net_device *dev,
struct ethtool_eth_mac_stats *stats)
{
struct rtase_private *tp = netdev_priv(dev);
const struct rtase_counters *counters;
counters = tp->tally_vaddr;
rtase_dump_tally_counter(tp);
stats->FramesTransmittedOK = le64_to_cpu(counters->tx_packets);
stats->FramesReceivedOK = le64_to_cpu(counters->rx_packets);
stats->FramesLostDueToIntMACXmitError =
le64_to_cpu(counters->tx_errors);
stats->BroadcastFramesReceivedOK = le64_to_cpu(counters->rx_broadcast);
}
static const struct ethtool_ops rtase_ethtool_ops = {
.get_link = ethtool_op_get_link,
.get_link_ksettings = rtase_get_settings,
.get_pauseparam = rtase_get_pauseparam,
.set_pauseparam = rtase_set_pauseparam,
.get_eth_mac_stats = rtase_get_eth_mac_stats,
.get_ts_info = ethtool_op_get_ts_info,
};
static void rtase_init_netdev_ops(struct net_device *dev)
{
dev->netdev_ops = &rtase_netdev_ops;
dev->ethtool_ops = &rtase_ethtool_ops;
}
static void rtase_reset_interrupt(struct pci_dev *pdev,
const struct rtase_private *tp)
{
if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED)
pci_disable_msix(pdev);
else
pci_disable_msi(pdev);
}
static int rtase_alloc_msix(struct pci_dev *pdev, struct rtase_private *tp)
{
int ret, irq;
u16 i;
memset(tp->msix_entry, 0x0, RTASE_NUM_MSIX *
sizeof(struct msix_entry));
for (i = 0; i < RTASE_NUM_MSIX; i++)
tp->msix_entry[i].entry = i;
ret = pci_enable_msix_exact(pdev, tp->msix_entry, tp->int_nums);
if (ret)
return ret;
for (i = 0; i < tp->int_nums; i++) {
irq = pci_irq_vector(pdev, i);
if (!irq) {
pci_disable_msix(pdev);
return irq;
}
tp->int_vector[i].irq = irq;
}
return 0;
}
static int rtase_alloc_interrupt(struct pci_dev *pdev,
struct rtase_private *tp)
{
int ret;
ret = rtase_alloc_msix(pdev, tp);
if (ret) {
ret = pci_enable_msi(pdev);
if (ret) {
dev_err(&pdev->dev,
"unable to alloc interrupt.(MSI)\n");
return ret;
}
tp->sw_flag |= RTASE_SWF_MSI_ENABLED;
} else {
tp->sw_flag |= RTASE_SWF_MSIX_ENABLED;
}
return 0;
}
static void rtase_init_hardware(const struct rtase_private *tp)
{
u16 i;
for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++)
rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4, 0);
}
static void rtase_init_int_vector(struct rtase_private *tp)
{
u16 i;
/* interrupt vector 0 */
tp->int_vector[0].tp = tp;
tp->int_vector[0].index = 0;
tp->int_vector[0].imr_addr = RTASE_IMR0;
tp->int_vector[0].isr_addr = RTASE_ISR0;
tp->int_vector[0].imr = RTASE_ROK | RTASE_RDU | RTASE_TOK |
RTASE_TOK4 | RTASE_TOK5 | RTASE_TOK6 |
RTASE_TOK7;
tp->int_vector[0].poll = rtase_poll;
memset(tp->int_vector[0].name, 0x0, sizeof(tp->int_vector[0].name));
INIT_LIST_HEAD(&tp->int_vector[0].ring_list);
netif_napi_add(tp->dev, &tp->int_vector[0].napi,
tp->int_vector[0].poll);
/* interrupt vector 1 ~ 3 */
for (i = 1; i < tp->int_nums; i++) {
tp->int_vector[i].tp = tp;
tp->int_vector[i].index = i;
tp->int_vector[i].imr_addr = RTASE_IMR1 + (i - 1) * 4;
tp->int_vector[i].isr_addr = RTASE_ISR1 + (i - 1) * 4;
tp->int_vector[i].imr = RTASE_Q_ROK | RTASE_Q_RDU |
RTASE_Q_TOK;
tp->int_vector[i].poll = rtase_poll;
memset(tp->int_vector[i].name, 0x0,
sizeof(tp->int_vector[0].name));
INIT_LIST_HEAD(&tp->int_vector[i].ring_list);
netif_napi_add(tp->dev, &tp->int_vector[i].napi,
tp->int_vector[i].poll);
}
}
static u16 rtase_calc_time_mitigation(u32 time_us)
{
u8 msb, time_count, time_unit;
u16 int_miti;
time_us = min_t(int, time_us, RTASE_MITI_MAX_TIME);
msb = fls(time_us);
if (msb >= RTASE_MITI_COUNT_BIT_NUM) {
time_unit = msb - RTASE_MITI_COUNT_BIT_NUM;
time_count = time_us >> (msb - RTASE_MITI_COUNT_BIT_NUM);
} else {
time_unit = 0;
time_count = time_us;
}
int_miti = u16_encode_bits(time_count, RTASE_MITI_TIME_COUNT_MASK) |
u16_encode_bits(time_unit, RTASE_MITI_TIME_UNIT_MASK);
return int_miti;
}
static u16 rtase_calc_packet_num_mitigation(u16 pkt_num)
{
u8 msb, pkt_num_count, pkt_num_unit;
u16 int_miti;
pkt_num = min_t(int, pkt_num, RTASE_MITI_MAX_PKT_NUM);
if (pkt_num > 60) {
pkt_num_unit = RTASE_MITI_MAX_PKT_NUM_IDX;
pkt_num_count = pkt_num / RTASE_MITI_MAX_PKT_NUM_UNIT;
} else {
msb = fls(pkt_num);
if (msb >= RTASE_MITI_COUNT_BIT_NUM) {
pkt_num_unit = msb - RTASE_MITI_COUNT_BIT_NUM;
pkt_num_count = pkt_num >> (msb -
RTASE_MITI_COUNT_BIT_NUM);
} else {
pkt_num_unit = 0;
pkt_num_count = pkt_num;
}
}
int_miti = u16_encode_bits(pkt_num_count,
RTASE_MITI_PKT_NUM_COUNT_MASK) |
u16_encode_bits(pkt_num_unit,
RTASE_MITI_PKT_NUM_UNIT_MASK);
return int_miti;
}
static void rtase_init_software_variable(struct pci_dev *pdev,
struct rtase_private *tp)
{
u16 int_miti;
tp->tx_queue_ctrl = RTASE_TXQ_CTRL;
tp->func_tx_queue_num = RTASE_FUNC_TXQ_NUM;
tp->func_rx_queue_num = RTASE_FUNC_RXQ_NUM;
tp->int_nums = RTASE_INTERRUPT_NUM;
int_miti = rtase_calc_time_mitigation(RTASE_MITI_DEFAULT_TIME) |
rtase_calc_packet_num_mitigation(RTASE_MITI_DEFAULT_PKT_NUM);
tp->tx_int_mit = int_miti;
tp->rx_int_mit = int_miti;
tp->sw_flag = 0;
rtase_init_int_vector(tp);
/* MTU range: 60 - hw-specific max */
tp->dev->min_mtu = ETH_ZLEN;
tp->dev->max_mtu = RTASE_MAX_JUMBO_SIZE;
}
static bool rtase_check_mac_version_valid(struct rtase_private *tp)
{
u32 hw_ver = rtase_r32(tp, RTASE_TX_CONFIG_0) & RTASE_HW_VER_MASK;
bool known_ver = false;
switch (hw_ver) {
case 0x00800000:
case 0x04000000:
case 0x04800000:
known_ver = true;
break;
}
return known_ver;
}
static int rtase_init_board(struct pci_dev *pdev, struct net_device **dev_out,
void __iomem **ioaddr_out)
{
struct net_device *dev;
void __iomem *ioaddr;
int ret = -ENOMEM;
/* dev zeroed in alloc_etherdev */
dev = alloc_etherdev_mq(sizeof(struct rtase_private),
RTASE_FUNC_TXQ_NUM);
if (!dev)
goto err_out;
SET_NETDEV_DEV(dev, &pdev->dev);
ret = pci_enable_device(pdev);
if (ret < 0)
goto err_out_free_dev;
/* make sure PCI base addr 1 is MMIO */
if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
ret = -ENODEV;
goto err_out_disable;
}
/* check for weird/broken PCI region reporting */
if (pci_resource_len(pdev, 2) < RTASE_REGS_SIZE) {
ret = -ENODEV;
goto err_out_disable;
}
ret = pci_request_regions(pdev, KBUILD_MODNAME);
if (ret < 0)
goto err_out_disable;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(&pdev->dev, "no usable dma addressing method\n");
goto err_out_free_res;
}
pci_set_master(pdev);
/* ioremap MMIO region */
ioaddr = ioremap(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
if (!ioaddr) {
ret = -EIO;
goto err_out_free_res;
}
*ioaddr_out = ioaddr;
*dev_out = dev;
return ret;
err_out_free_res:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
err_out_free_dev:
free_netdev(dev);
err_out:
*ioaddr_out = NULL;
*dev_out = NULL;
return ret;
}
static void rtase_release_board(struct pci_dev *pdev, struct net_device *dev,
void __iomem *ioaddr)
{
const struct rtase_private *tp = netdev_priv(dev);
rtase_rar_set(tp, tp->dev->perm_addr);
iounmap(ioaddr);
if (tp->sw_flag & RTASE_SWF_MSIX_ENABLED)
pci_disable_msix(pdev);
else
pci_disable_msi(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(dev);
}
static int rtase_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev = NULL;
struct rtase_int_vector *ivec;
void __iomem *ioaddr = NULL;
struct rtase_private *tp;
int ret, i;
if (!pdev->is_physfn && pdev->is_virtfn) {
dev_err(&pdev->dev,
"This module does not support a virtual function.");
return -EINVAL;
}
dev_dbg(&pdev->dev, "Automotive Switch Ethernet driver loaded\n");
ret = rtase_init_board(pdev, &dev, &ioaddr);
if (ret != 0)
return ret;
tp = netdev_priv(dev);
tp->mmio_addr = ioaddr;
tp->dev = dev;
tp->pdev = pdev;
/* identify chip attached to board */
if (!rtase_check_mac_version_valid(tp))
return dev_err_probe(&pdev->dev, -ENODEV,
"unknown chip version, contact rtase maintainers (see MAINTAINERS file)\n");
rtase_init_software_variable(pdev, tp);
rtase_init_hardware(tp);
ret = rtase_alloc_interrupt(pdev, tp);
if (ret < 0) {
dev_err(&pdev->dev, "unable to alloc MSIX/MSI\n");
goto err_out_1;
}
rtase_init_netdev_ops(dev);
dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS;
dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_IP_CSUM | NETIF_F_HIGHDMA |
NETIF_F_RXCSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_IPV6_CSUM |
NETIF_F_TSO6;
dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
NETIF_F_TSO | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_RXALL | NETIF_F_RXFCS |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
netif_set_tso_max_size(dev, RTASE_LSO_64K);
netif_set_tso_max_segs(dev, RTASE_NIC_MAX_PHYS_BUF_COUNT_LSO2);
rtase_get_mac_address(dev);
tp->tally_vaddr = dma_alloc_coherent(&pdev->dev,
sizeof(*tp->tally_vaddr),
&tp->tally_paddr,
GFP_KERNEL);
if (!tp->tally_vaddr) {
ret = -ENOMEM;
goto err_out;
}
rtase_tally_counter_clear(tp);
pci_set_drvdata(pdev, dev);
netif_carrier_off(dev);
ret = register_netdev(dev);
if (ret != 0)
goto err_out;
netdev_dbg(dev, "%pM, IRQ %d\n", dev->dev_addr, dev->irq);
return 0;
err_out:
if (tp->tally_vaddr) {
dma_free_coherent(&pdev->dev,
sizeof(*tp->tally_vaddr),
tp->tally_vaddr,
tp->tally_paddr);
tp->tally_vaddr = NULL;
}
err_out_1:
for (i = 0; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
netif_napi_del(&ivec->napi);
}
rtase_release_board(pdev, dev, ioaddr);
return ret;
}
static void rtase_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtase_private *tp = netdev_priv(dev);
struct rtase_int_vector *ivec;
u32 i;
unregister_netdev(dev);
for (i = 0; i < tp->int_nums; i++) {
ivec = &tp->int_vector[i];
netif_napi_del(&ivec->napi);
}
rtase_reset_interrupt(pdev, tp);
if (tp->tally_vaddr) {
dma_free_coherent(&pdev->dev,
sizeof(*tp->tally_vaddr),
tp->tally_vaddr,
tp->tally_paddr);
tp->tally_vaddr = NULL;
}
rtase_release_board(pdev, dev, tp->mmio_addr);
pci_set_drvdata(pdev, NULL);
}
static void rtase_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
const struct rtase_private *tp;
tp = netdev_priv(dev);
if (netif_running(dev))
rtase_close(dev);
rtase_reset_interrupt(pdev, tp);
}
static int rtase_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
if (netif_running(dev)) {
netif_device_detach(dev);
rtase_hw_reset(dev);
}
return 0;
}
static int rtase_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtase_private *tp = netdev_priv(dev);
int ret;
/* restore last modified mac address */
rtase_rar_set(tp, dev->dev_addr);
if (!netif_running(dev))
goto out;
rtase_wait_for_quiescence(dev);
rtase_tx_clear(tp);
rtase_rx_clear(tp);
ret = rtase_init_ring(dev);
if (ret) {
netdev_err(dev, "unable to init ring\n");
rtase_free_desc(tp);
return -ENOMEM;
}
rtase_hw_config(dev);
/* always link, so start to transmit & receive */
rtase_hw_start(dev);
netif_device_attach(dev);
out:
return 0;
}
static const struct dev_pm_ops rtase_pm_ops = {
SYSTEM_SLEEP_PM_OPS(rtase_suspend, rtase_resume)
};
static struct pci_driver rtase_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = rtase_pci_tbl,
.probe = rtase_init_one,
.remove = rtase_remove_one,
.shutdown = rtase_shutdown,
.driver.pm = pm_ptr(&rtase_pm_ops),
};
module_pci_driver(rtase_pci_driver);