| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2012-2013 Solarflare Communications Inc. |
| */ |
| |
| #include "net_driver.h" |
| #include "rx_common.h" |
| #include "tx_common.h" |
| #include "ef10_regs.h" |
| #include "io.h" |
| #include "mcdi.h" |
| #include "mcdi_pcol.h" |
| #include "mcdi_port.h" |
| #include "mcdi_port_common.h" |
| #include "mcdi_functions.h" |
| #include "nic.h" |
| #include "mcdi_filters.h" |
| #include "workarounds.h" |
| #include "selftest.h" |
| #include "ef10_sriov.h" |
| #include <linux/in.h> |
| #include <linux/jhash.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| #include <net/udp_tunnel.h> |
| |
| /* Hardware control for EF10 architecture including 'Huntington'. */ |
| |
| #define EFX_EF10_DRVGEN_EV 7 |
| enum { |
| EFX_EF10_TEST = 1, |
| EFX_EF10_REFILL, |
| }; |
| |
| /* VLAN list entry */ |
| struct efx_ef10_vlan { |
| struct list_head list; |
| u16 vid; |
| }; |
| |
| static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading); |
| static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels; |
| |
| static int efx_ef10_get_warm_boot_count(struct efx_nic *efx) |
| { |
| efx_dword_t reg; |
| |
| efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS); |
| return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? |
| EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; |
| } |
| |
| /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for |
| * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O |
| * bar; PFs use BAR 0/1 for memory. |
| */ |
| static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx) |
| { |
| switch (efx->pci_dev->device) { |
| case 0x0b03: /* SFC9250 PF */ |
| return 0; |
| default: |
| return 2; |
| } |
| } |
| |
| /* All VFs use BAR 0/1 for memory */ |
| static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx) |
| { |
| return 0; |
| } |
| |
| static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx) |
| { |
| int bar; |
| |
| bar = efx->type->mem_bar(efx); |
| return resource_size(&efx->pci_dev->resource[bar]); |
| } |
| |
| static bool efx_ef10_is_vf(struct efx_nic *efx) |
| { |
| return efx->type->is_vf; |
| } |
| |
| #ifdef CONFIG_SFC_SRIOV |
| static int efx_ef10_get_vf_index(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| size_t outlen; |
| int rc; |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, |
| sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < sizeof(outbuf)) |
| return -EIO; |
| |
| nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF); |
| return 0; |
| } |
| #endif |
| |
| static int efx_ef10_init_datapath_caps(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| size_t outlen; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) { |
| netif_err(efx, drv, efx->net_dev, |
| "unable to read datapath firmware capabilities\n"); |
| return -EIO; |
| } |
| |
| nic_data->datapath_caps = |
| MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); |
| |
| if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) { |
| nic_data->datapath_caps2 = MCDI_DWORD(outbuf, |
| GET_CAPABILITIES_V2_OUT_FLAGS2); |
| nic_data->piobuf_size = MCDI_WORD(outbuf, |
| GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF); |
| } else { |
| nic_data->datapath_caps2 = 0; |
| nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE; |
| } |
| |
| /* record the DPCPU firmware IDs to determine VEB vswitching support. |
| */ |
| nic_data->rx_dpcpu_fw_id = |
| MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); |
| nic_data->tx_dpcpu_fw_id = |
| MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); |
| |
| if (!(nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) { |
| netif_err(efx, probe, efx->net_dev, |
| "current firmware does not support an RX prefix\n"); |
| return -ENODEV; |
| } |
| |
| if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) { |
| u8 vi_window_mode = MCDI_BYTE(outbuf, |
| GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); |
| |
| rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); |
| if (rc) |
| return rc; |
| } else { |
| /* keep default VI stride */ |
| netif_dbg(efx, probe, efx->net_dev, |
| "firmware did not report VI window mode, assuming vi_stride = %u\n", |
| efx->vi_stride); |
| } |
| |
| if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { |
| efx->num_mac_stats = MCDI_WORD(outbuf, |
| GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); |
| netif_dbg(efx, probe, efx->net_dev, |
| "firmware reports num_mac_stats = %u\n", |
| efx->num_mac_stats); |
| } else { |
| /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */ |
| netif_dbg(efx, probe, efx->net_dev, |
| "firmware did not report num_mac_stats, assuming %u\n", |
| efx->num_mac_stats); |
| } |
| |
| return 0; |
| } |
| |
| static void efx_ef10_read_licensed_features(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| size_t outlen; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP, |
| MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN)) |
| return; |
| |
| nic_data->licensed_features = MCDI_QWORD(outbuf, |
| LICENSING_V3_OUT_LICENSED_FEATURES); |
| } |
| |
| static int efx_ef10_get_sysclk_freq(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN); |
| int rc; |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0, |
| outbuf, sizeof(outbuf), NULL); |
| if (rc) |
| return rc; |
| rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ); |
| return rc > 0 ? rc : -ERANGE; |
| } |
| |
| static int efx_ef10_get_timer_workarounds(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| unsigned int implemented; |
| unsigned int enabled; |
| int rc; |
| |
| nic_data->workaround_35388 = false; |
| nic_data->workaround_61265 = false; |
| |
| rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); |
| |
| if (rc == -ENOSYS) { |
| /* Firmware without GET_WORKAROUNDS - not a problem. */ |
| rc = 0; |
| } else if (rc == 0) { |
| /* Bug61265 workaround is always enabled if implemented. */ |
| if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265) |
| nic_data->workaround_61265 = true; |
| |
| if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { |
| nic_data->workaround_35388 = true; |
| } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { |
| /* Workaround is implemented but not enabled. |
| * Try to enable it. |
| */ |
| rc = efx_mcdi_set_workaround(efx, |
| MC_CMD_WORKAROUND_BUG35388, |
| true, NULL); |
| if (rc == 0) |
| nic_data->workaround_35388 = true; |
| /* If we failed to set the workaround just carry on. */ |
| rc = 0; |
| } |
| } |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "workaround for bug 35388 is %sabled\n", |
| nic_data->workaround_35388 ? "en" : "dis"); |
| netif_dbg(efx, probe, efx->net_dev, |
| "workaround for bug 61265 is %sabled\n", |
| nic_data->workaround_61265 ? "en" : "dis"); |
| |
| return rc; |
| } |
| |
| static void efx_ef10_process_timer_config(struct efx_nic *efx, |
| const efx_dword_t *data) |
| { |
| unsigned int max_count; |
| |
| if (EFX_EF10_WORKAROUND_61265(efx)) { |
| efx->timer_quantum_ns = MCDI_DWORD(data, |
| GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS); |
| efx->timer_max_ns = MCDI_DWORD(data, |
| GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS); |
| } else if (EFX_EF10_WORKAROUND_35388(efx)) { |
| efx->timer_quantum_ns = MCDI_DWORD(data, |
| GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT); |
| max_count = MCDI_DWORD(data, |
| GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT); |
| efx->timer_max_ns = max_count * efx->timer_quantum_ns; |
| } else { |
| efx->timer_quantum_ns = MCDI_DWORD(data, |
| GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT); |
| max_count = MCDI_DWORD(data, |
| GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT); |
| efx->timer_max_ns = max_count * efx->timer_quantum_ns; |
| } |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "got timer properties from MC: quantum %u ns; max %u ns\n", |
| efx->timer_quantum_ns, efx->timer_max_ns); |
| } |
| |
| static int efx_ef10_get_timer_config(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN); |
| int rc; |
| |
| rc = efx_ef10_get_timer_workarounds(efx); |
| if (rc) |
| return rc; |
| |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0, |
| outbuf, sizeof(outbuf), NULL); |
| |
| if (rc == 0) { |
| efx_ef10_process_timer_config(efx, outbuf); |
| } else if (rc == -ENOSYS || rc == -EPERM) { |
| /* Not available - fall back to Huntington defaults. */ |
| unsigned int quantum; |
| |
| rc = efx_ef10_get_sysclk_freq(efx); |
| if (rc < 0) |
| return rc; |
| |
| quantum = 1536000 / rc; /* 1536 cycles */ |
| efx->timer_quantum_ns = quantum; |
| efx->timer_max_ns = efx->type->timer_period_max * quantum; |
| rc = 0; |
| } else { |
| efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, |
| MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN, |
| NULL, 0, rc); |
| } |
| |
| return rc; |
| } |
| |
| static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) |
| return -EIO; |
| |
| ether_addr_copy(mac_address, |
| MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); |
| return 0; |
| } |
| |
| static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX); |
| size_t outlen; |
| int num_addrs, rc; |
| |
| MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, |
| EVB_PORT_ID_ASSIGNED); |
| rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf, |
| sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); |
| |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) |
| return -EIO; |
| |
| num_addrs = MCDI_DWORD(outbuf, |
| VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT); |
| |
| WARN_ON(num_addrs != 1); |
| |
| ether_addr_copy(mac_address, |
| MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR)); |
| |
| return 0; |
| } |
| |
| static ssize_t link_control_flag_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct efx_nic *efx = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", |
| ((efx->mcdi->fn_flags) & |
| (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) |
| ? 1 : 0); |
| } |
| |
| static ssize_t primary_flag_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct efx_nic *efx = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", |
| ((efx->mcdi->fn_flags) & |
| (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) |
| ? 1 : 0); |
| } |
| |
| static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| struct efx_ef10_vlan *vlan; |
| |
| WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); |
| |
| list_for_each_entry(vlan, &nic_data->vlan_list, list) { |
| if (vlan->vid == vid) |
| return vlan; |
| } |
| |
| return NULL; |
| } |
| |
| static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| struct efx_ef10_vlan *vlan; |
| int rc; |
| |
| mutex_lock(&nic_data->vlan_lock); |
| |
| vlan = efx_ef10_find_vlan(efx, vid); |
| if (vlan) { |
| /* We add VID 0 on init. 8021q adds it on module init |
| * for all interfaces with VLAN filtring feature. |
| */ |
| if (vid == 0) |
| goto done_unlock; |
| netif_warn(efx, drv, efx->net_dev, |
| "VLAN %u already added\n", vid); |
| rc = -EALREADY; |
| goto fail_exist; |
| } |
| |
| rc = -ENOMEM; |
| vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); |
| if (!vlan) |
| goto fail_alloc; |
| |
| vlan->vid = vid; |
| |
| list_add_tail(&vlan->list, &nic_data->vlan_list); |
| |
| if (efx->filter_state) { |
| mutex_lock(&efx->mac_lock); |
| down_write(&efx->filter_sem); |
| rc = efx_mcdi_filter_add_vlan(efx, vlan->vid); |
| up_write(&efx->filter_sem); |
| mutex_unlock(&efx->mac_lock); |
| if (rc) |
| goto fail_filter_add_vlan; |
| } |
| |
| done_unlock: |
| mutex_unlock(&nic_data->vlan_lock); |
| return 0; |
| |
| fail_filter_add_vlan: |
| list_del(&vlan->list); |
| kfree(vlan); |
| fail_alloc: |
| fail_exist: |
| mutex_unlock(&nic_data->vlan_lock); |
| return rc; |
| } |
| |
| static void efx_ef10_del_vlan_internal(struct efx_nic *efx, |
| struct efx_ef10_vlan *vlan) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); |
| |
| if (efx->filter_state) { |
| down_write(&efx->filter_sem); |
| efx_mcdi_filter_del_vlan(efx, vlan->vid); |
| up_write(&efx->filter_sem); |
| } |
| |
| list_del(&vlan->list); |
| kfree(vlan); |
| } |
| |
| static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| struct efx_ef10_vlan *vlan; |
| int rc = 0; |
| |
| /* 8021q removes VID 0 on module unload for all interfaces |
| * with VLAN filtering feature. We need to keep it to receive |
| * untagged traffic. |
| */ |
| if (vid == 0) |
| return 0; |
| |
| mutex_lock(&nic_data->vlan_lock); |
| |
| vlan = efx_ef10_find_vlan(efx, vid); |
| if (!vlan) { |
| netif_err(efx, drv, efx->net_dev, |
| "VLAN %u to be deleted not found\n", vid); |
| rc = -ENOENT; |
| } else { |
| efx_ef10_del_vlan_internal(efx, vlan); |
| } |
| |
| mutex_unlock(&nic_data->vlan_lock); |
| |
| return rc; |
| } |
| |
| static void efx_ef10_cleanup_vlans(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| struct efx_ef10_vlan *vlan, *next_vlan; |
| |
| mutex_lock(&nic_data->vlan_lock); |
| list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list) |
| efx_ef10_del_vlan_internal(efx, vlan); |
| mutex_unlock(&nic_data->vlan_lock); |
| } |
| |
| static DEVICE_ATTR_RO(link_control_flag); |
| static DEVICE_ATTR_RO(primary_flag); |
| |
| static int efx_ef10_probe(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data; |
| int i, rc; |
| |
| nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); |
| if (!nic_data) |
| return -ENOMEM; |
| efx->nic_data = nic_data; |
| |
| /* we assume later that we can copy from this buffer in dwords */ |
| BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); |
| |
| rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, |
| 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL); |
| if (rc) |
| goto fail1; |
| |
| /* Get the MC's warm boot count. In case it's rebooting right |
| * now, be prepared to retry. |
| */ |
| i = 0; |
| for (;;) { |
| rc = efx_ef10_get_warm_boot_count(efx); |
| if (rc >= 0) |
| break; |
| if (++i == 5) |
| goto fail2; |
| ssleep(1); |
| } |
| nic_data->warm_boot_count = rc; |
| |
| /* In case we're recovering from a crash (kexec), we want to |
| * cancel any outstanding request by the previous user of this |
| * function. We send a special message using the least |
| * significant bits of the 'high' (doorbell) register. |
| */ |
| _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD); |
| |
| rc = efx_mcdi_init(efx); |
| if (rc) |
| goto fail2; |
| |
| mutex_init(&nic_data->udp_tunnels_lock); |
| for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) |
| nic_data->udp_tunnels[i].type = |
| TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID; |
| |
| /* Reset (most) configuration for this function */ |
| rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); |
| if (rc) |
| goto fail3; |
| |
| /* Enable event logging */ |
| rc = efx_mcdi_log_ctrl(efx, true, false, 0); |
| if (rc) |
| goto fail3; |
| |
| rc = device_create_file(&efx->pci_dev->dev, |
| &dev_attr_link_control_flag); |
| if (rc) |
| goto fail3; |
| |
| rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag); |
| if (rc) |
| goto fail4; |
| |
| rc = efx_get_pf_index(efx, &nic_data->pf_index); |
| if (rc) |
| goto fail5; |
| |
| rc = efx_ef10_init_datapath_caps(efx); |
| if (rc < 0) |
| goto fail5; |
| |
| efx_ef10_read_licensed_features(efx); |
| |
| /* We can have one VI for each vi_stride-byte region. |
| * However, until we use TX option descriptors we need up to four |
| * TX queues per channel for different checksumming combinations. |
| */ |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) |
| efx->tx_queues_per_channel = 4; |
| else |
| efx->tx_queues_per_channel = 2; |
| efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride; |
| if (!efx->max_vis) { |
| netif_err(efx, drv, efx->net_dev, "error determining max VIs\n"); |
| rc = -EIO; |
| goto fail5; |
| } |
| efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS, |
| efx->max_vis / efx->tx_queues_per_channel); |
| efx->max_tx_channels = efx->max_channels; |
| if (WARN_ON(efx->max_channels == 0)) { |
| rc = -EIO; |
| goto fail5; |
| } |
| |
| efx->rx_packet_len_offset = |
| ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE; |
| |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN)) |
| efx->net_dev->hw_features |= NETIF_F_RXFCS; |
| |
| rc = efx_mcdi_port_get_number(efx); |
| if (rc < 0) |
| goto fail5; |
| efx->port_num = rc; |
| |
| rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr); |
| if (rc) |
| goto fail5; |
| |
| rc = efx_ef10_get_timer_config(efx); |
| if (rc < 0) |
| goto fail5; |
| |
| rc = efx_mcdi_mon_probe(efx); |
| if (rc && rc != -EPERM) |
| goto fail5; |
| |
| efx_ptp_defer_probe_with_channel(efx); |
| |
| #ifdef CONFIG_SFC_SRIOV |
| if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) { |
| struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; |
| struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); |
| |
| efx_pf->type->get_mac_address(efx_pf, nic_data->port_id); |
| } else |
| #endif |
| ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr); |
| |
| INIT_LIST_HEAD(&nic_data->vlan_list); |
| mutex_init(&nic_data->vlan_lock); |
| |
| /* Add unspecified VID to support VLAN filtering being disabled */ |
| rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC); |
| if (rc) |
| goto fail_add_vid_unspec; |
| |
| /* If VLAN filtering is enabled, we need VID 0 to get untagged |
| * traffic. It is added automatically if 8021q module is loaded, |
| * but we can't rely on it since module may be not loaded. |
| */ |
| rc = efx_ef10_add_vlan(efx, 0); |
| if (rc) |
| goto fail_add_vid_0; |
| |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) && |
| efx->mcdi->fn_flags & |
| (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) |
| efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels; |
| |
| return 0; |
| |
| fail_add_vid_0: |
| efx_ef10_cleanup_vlans(efx); |
| fail_add_vid_unspec: |
| mutex_destroy(&nic_data->vlan_lock); |
| efx_ptp_remove(efx); |
| efx_mcdi_mon_remove(efx); |
| fail5: |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); |
| fail4: |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); |
| fail3: |
| efx_mcdi_detach(efx); |
| |
| mutex_lock(&nic_data->udp_tunnels_lock); |
| memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); |
| (void)efx_ef10_set_udp_tnl_ports(efx, true); |
| mutex_unlock(&nic_data->udp_tunnels_lock); |
| mutex_destroy(&nic_data->udp_tunnels_lock); |
| |
| efx_mcdi_fini(efx); |
| fail2: |
| efx_nic_free_buffer(efx, &nic_data->mcdi_buf); |
| fail1: |
| kfree(nic_data); |
| efx->nic_data = NULL; |
| return rc; |
| } |
| |
| #ifdef EFX_USE_PIO |
| |
| static void efx_ef10_free_piobufs(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN); |
| unsigned int i; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0); |
| |
| for (i = 0; i < nic_data->n_piobufs; i++) { |
| MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE, |
| nic_data->piobuf_handle[i]); |
| rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| WARN_ON(rc); |
| } |
| |
| nic_data->n_piobufs = 0; |
| } |
| |
| static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN); |
| unsigned int i; |
| size_t outlen; |
| int rc = 0; |
| |
| BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0); |
| |
| for (i = 0; i < n; i++) { |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) { |
| /* Don't display the MC error if we didn't have space |
| * for a VF. |
| */ |
| if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC)) |
| efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF, |
| 0, outbuf, outlen, rc); |
| break; |
| } |
| if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { |
| rc = -EIO; |
| break; |
| } |
| nic_data->piobuf_handle[i] = |
| MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); |
| netif_dbg(efx, probe, efx->net_dev, |
| "allocated PIO buffer %u handle %x\n", i, |
| nic_data->piobuf_handle[i]); |
| } |
| |
| nic_data->n_piobufs = i; |
| if (rc) |
| efx_ef10_free_piobufs(efx); |
| return rc; |
| } |
| |
| static int efx_ef10_link_piobufs(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN); |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| unsigned int offset, index; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0); |
| BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0); |
| |
| /* Link a buffer to each VI in the write-combining mapping */ |
| for (index = 0; index < nic_data->n_piobufs; ++index) { |
| MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, |
| nic_data->piobuf_handle[index]); |
| MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, |
| nic_data->pio_write_vi_base + index); |
| rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, |
| inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, |
| NULL, 0, NULL); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to link VI %u to PIO buffer %u (%d)\n", |
| nic_data->pio_write_vi_base + index, index, |
| rc); |
| goto fail; |
| } |
| netif_dbg(efx, probe, efx->net_dev, |
| "linked VI %u to PIO buffer %u\n", |
| nic_data->pio_write_vi_base + index, index); |
| } |
| |
| /* Link a buffer to each TX queue */ |
| efx_for_each_channel(channel, efx) { |
| /* Extra channels, even those with TXQs (PTP), do not require |
| * PIO resources. |
| */ |
| if (!channel->type->want_pio || |
| channel->channel >= efx->xdp_channel_offset) |
| continue; |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| /* We assign the PIO buffers to queues in |
| * reverse order to allow for the following |
| * special case. |
| */ |
| offset = ((efx->tx_channel_offset + efx->n_tx_channels - |
| tx_queue->channel->channel - 1) * |
| efx_piobuf_size); |
| index = offset / nic_data->piobuf_size; |
| offset = offset % nic_data->piobuf_size; |
| |
| /* When the host page size is 4K, the first |
| * host page in the WC mapping may be within |
| * the same VI page as the last TX queue. We |
| * can only link one buffer to each VI. |
| */ |
| if (tx_queue->queue == nic_data->pio_write_vi_base) { |
| BUG_ON(index != 0); |
| rc = 0; |
| } else { |
| MCDI_SET_DWORD(inbuf, |
| LINK_PIOBUF_IN_PIOBUF_HANDLE, |
| nic_data->piobuf_handle[index]); |
| MCDI_SET_DWORD(inbuf, |
| LINK_PIOBUF_IN_TXQ_INSTANCE, |
| tx_queue->queue); |
| rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, |
| inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, |
| NULL, 0, NULL); |
| } |
| |
| if (rc) { |
| /* This is non-fatal; the TX path just |
| * won't use PIO for this queue |
| */ |
| netif_err(efx, drv, efx->net_dev, |
| "failed to link VI %u to PIO buffer %u (%d)\n", |
| tx_queue->queue, index, rc); |
| tx_queue->piobuf = NULL; |
| } else { |
| tx_queue->piobuf = |
| nic_data->pio_write_base + |
| index * efx->vi_stride + offset; |
| tx_queue->piobuf_offset = offset; |
| netif_dbg(efx, probe, efx->net_dev, |
| "linked VI %u to PIO buffer %u offset %x addr %p\n", |
| tx_queue->queue, index, |
| tx_queue->piobuf_offset, |
| tx_queue->piobuf); |
| } |
| } |
| } |
| |
| return 0; |
| |
| fail: |
| /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same |
| * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter. |
| */ |
| BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN); |
| while (index--) { |
| MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE, |
| nic_data->pio_write_vi_base + index); |
| efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF, |
| inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN, |
| NULL, 0, NULL); |
| } |
| return rc; |
| } |
| |
| static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| |
| /* All our existing PIO buffers went away */ |
| efx_for_each_channel(channel, efx) |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| tx_queue->piobuf = NULL; |
| } |
| |
| #else /* !EFX_USE_PIO */ |
| |
| static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) |
| { |
| return n == 0 ? 0 : -ENOBUFS; |
| } |
| |
| static int efx_ef10_link_piobufs(struct efx_nic *efx) |
| { |
| return 0; |
| } |
| |
| static void efx_ef10_free_piobufs(struct efx_nic *efx) |
| { |
| } |
| |
| static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) |
| { |
| } |
| |
| #endif /* EFX_USE_PIO */ |
| |
| static void efx_ef10_remove(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| #ifdef CONFIG_SFC_SRIOV |
| struct efx_ef10_nic_data *nic_data_pf; |
| struct pci_dev *pci_dev_pf; |
| struct efx_nic *efx_pf; |
| struct ef10_vf *vf; |
| |
| if (efx->pci_dev->is_virtfn) { |
| pci_dev_pf = efx->pci_dev->physfn; |
| if (pci_dev_pf) { |
| efx_pf = pci_get_drvdata(pci_dev_pf); |
| nic_data_pf = efx_pf->nic_data; |
| vf = nic_data_pf->vf + nic_data->vf_index; |
| vf->efx = NULL; |
| } else |
| netif_info(efx, drv, efx->net_dev, |
| "Could not get the PF id from VF\n"); |
| } |
| #endif |
| |
| efx_ef10_cleanup_vlans(efx); |
| mutex_destroy(&nic_data->vlan_lock); |
| |
| efx_ptp_remove(efx); |
| |
| efx_mcdi_mon_remove(efx); |
| |
| efx_mcdi_rx_free_indir_table(efx); |
| |
| if (nic_data->wc_membase) |
| iounmap(nic_data->wc_membase); |
| |
| rc = efx_mcdi_free_vis(efx); |
| WARN_ON(rc != 0); |
| |
| if (!nic_data->must_restore_piobufs) |
| efx_ef10_free_piobufs(efx); |
| |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); |
| |
| efx_mcdi_detach(efx); |
| |
| memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); |
| mutex_lock(&nic_data->udp_tunnels_lock); |
| (void)efx_ef10_set_udp_tnl_ports(efx, true); |
| mutex_unlock(&nic_data->udp_tunnels_lock); |
| |
| mutex_destroy(&nic_data->udp_tunnels_lock); |
| |
| efx_mcdi_fini(efx); |
| efx_nic_free_buffer(efx, &nic_data->mcdi_buf); |
| kfree(nic_data); |
| } |
| |
| static int efx_ef10_probe_pf(struct efx_nic *efx) |
| { |
| return efx_ef10_probe(efx); |
| } |
| |
| int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id, |
| u32 *port_flags, u32 *vadaptor_flags, |
| unsigned int *vlan_tags) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) { |
| MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID, |
| port_id); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| |
| if (outlen < sizeof(outbuf)) { |
| rc = -EIO; |
| return rc; |
| } |
| } |
| |
| if (port_flags) |
| *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS); |
| if (vadaptor_flags) |
| *vadaptor_flags = |
| MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS); |
| if (vlan_tags) |
| *vlan_tags = |
| MCDI_DWORD(outbuf, |
| VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS); |
| |
| return 0; |
| } |
| |
| int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN); |
| |
| MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); |
| return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN); |
| |
| MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); |
| return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| int efx_ef10_vport_add_mac(struct efx_nic *efx, |
| unsigned int port_id, const u8 *mac) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN); |
| |
| MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id); |
| ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac); |
| |
| return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf, |
| sizeof(inbuf), NULL, 0, NULL); |
| } |
| |
| int efx_ef10_vport_del_mac(struct efx_nic *efx, |
| unsigned int port_id, const u8 *mac) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN); |
| |
| MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id); |
| ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac); |
| |
| return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf, |
| sizeof(inbuf), NULL, 0, NULL); |
| } |
| |
| #ifdef CONFIG_SFC_SRIOV |
| static int efx_ef10_probe_vf(struct efx_nic *efx) |
| { |
| int rc; |
| struct pci_dev *pci_dev_pf; |
| |
| /* If the parent PF has no VF data structure, it doesn't know about this |
| * VF so fail probe. The VF needs to be re-created. This can happen |
| * if the PF driver was unloaded while any VF was assigned to a guest |
| * (using Xen, only). |
| */ |
| pci_dev_pf = efx->pci_dev->physfn; |
| if (pci_dev_pf) { |
| struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); |
| struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data; |
| |
| if (!nic_data_pf->vf) { |
| netif_info(efx, drv, efx->net_dev, |
| "The VF cannot link to its parent PF; " |
| "please destroy and re-create the VF\n"); |
| return -EBUSY; |
| } |
| } |
| |
| rc = efx_ef10_probe(efx); |
| if (rc) |
| return rc; |
| |
| rc = efx_ef10_get_vf_index(efx); |
| if (rc) |
| goto fail; |
| |
| if (efx->pci_dev->is_virtfn) { |
| if (efx->pci_dev->physfn) { |
| struct efx_nic *efx_pf = |
| pci_get_drvdata(efx->pci_dev->physfn); |
| struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data; |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| nic_data_p->vf[nic_data->vf_index].efx = efx; |
| nic_data_p->vf[nic_data->vf_index].pci_dev = |
| efx->pci_dev; |
| } else |
| netif_info(efx, drv, efx->net_dev, |
| "Could not get the PF id from VF\n"); |
| } |
| |
| return 0; |
| |
| fail: |
| efx_ef10_remove(efx); |
| return rc; |
| } |
| #else |
| static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused))) |
| { |
| return 0; |
| } |
| #endif |
| |
| static int efx_ef10_alloc_vis(struct efx_nic *efx, |
| unsigned int min_vis, unsigned int max_vis) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base, |
| &nic_data->n_allocated_vis); |
| } |
| |
| /* Note that the failure path of this function does not free |
| * resources, as this will be done by efx_ef10_remove(). |
| */ |
| static int efx_ef10_dimension_resources(struct efx_nic *efx) |
| { |
| unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel, |
| efx_separate_tx_channels ? 2 : 1); |
| unsigned int channel_vis, pio_write_vi_base, max_vis; |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| unsigned int uc_mem_map_size, wc_mem_map_size; |
| void __iomem *membase; |
| int rc; |
| |
| channel_vis = max(efx->n_channels, |
| ((efx->n_tx_channels + efx->n_extra_tx_channels) * |
| efx->tx_queues_per_channel) + |
| efx->n_xdp_channels * efx->xdp_tx_per_channel); |
| if (efx->max_vis && efx->max_vis < channel_vis) { |
| netif_dbg(efx, drv, efx->net_dev, |
| "Reducing channel VIs from %u to %u\n", |
| channel_vis, efx->max_vis); |
| channel_vis = efx->max_vis; |
| } |
| |
| #ifdef EFX_USE_PIO |
| /* Try to allocate PIO buffers if wanted and if the full |
| * number of PIO buffers would be sufficient to allocate one |
| * copy-buffer per TX channel. Failure is non-fatal, as there |
| * are only a small number of PIO buffers shared between all |
| * functions of the controller. |
| */ |
| if (efx_piobuf_size != 0 && |
| nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >= |
| efx->n_tx_channels) { |
| unsigned int n_piobufs = |
| DIV_ROUND_UP(efx->n_tx_channels, |
| nic_data->piobuf_size / efx_piobuf_size); |
| |
| rc = efx_ef10_alloc_piobufs(efx, n_piobufs); |
| if (rc == -ENOSPC) |
| netif_dbg(efx, probe, efx->net_dev, |
| "out of PIO buffers; cannot allocate more\n"); |
| else if (rc == -EPERM) |
| netif_dbg(efx, probe, efx->net_dev, |
| "not permitted to allocate PIO buffers\n"); |
| else if (rc) |
| netif_err(efx, probe, efx->net_dev, |
| "failed to allocate PIO buffers (%d)\n", rc); |
| else |
| netif_dbg(efx, probe, efx->net_dev, |
| "allocated %u PIO buffers\n", n_piobufs); |
| } |
| #else |
| nic_data->n_piobufs = 0; |
| #endif |
| |
| /* PIO buffers should be mapped with write-combining enabled, |
| * and we want to make single UC and WC mappings rather than |
| * several of each (in fact that's the only option if host |
| * page size is >4K). So we may allocate some extra VIs just |
| * for writing PIO buffers through. |
| * |
| * The UC mapping contains (channel_vis - 1) complete VIs and the |
| * first 4K of the next VI. Then the WC mapping begins with |
| * the remainder of this last VI. |
| */ |
| uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride + |
| ER_DZ_TX_PIOBUF); |
| if (nic_data->n_piobufs) { |
| /* pio_write_vi_base rounds down to give the number of complete |
| * VIs inside the UC mapping. |
| */ |
| pio_write_vi_base = uc_mem_map_size / efx->vi_stride; |
| wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base + |
| nic_data->n_piobufs) * |
| efx->vi_stride) - |
| uc_mem_map_size); |
| max_vis = pio_write_vi_base + nic_data->n_piobufs; |
| } else { |
| pio_write_vi_base = 0; |
| wc_mem_map_size = 0; |
| max_vis = channel_vis; |
| } |
| |
| /* In case the last attached driver failed to free VIs, do it now */ |
| rc = efx_mcdi_free_vis(efx); |
| if (rc != 0) |
| return rc; |
| |
| rc = efx_ef10_alloc_vis(efx, min_vis, max_vis); |
| if (rc != 0) |
| return rc; |
| |
| if (nic_data->n_allocated_vis < channel_vis) { |
| netif_info(efx, drv, efx->net_dev, |
| "Could not allocate enough VIs to satisfy RSS" |
| " requirements. Performance may not be optimal.\n"); |
| /* We didn't get the VIs to populate our channels. |
| * We could keep what we got but then we'd have more |
| * interrupts than we need. |
| * Instead calculate new max_channels and restart |
| */ |
| efx->max_channels = nic_data->n_allocated_vis; |
| efx->max_tx_channels = |
| nic_data->n_allocated_vis / efx->tx_queues_per_channel; |
| |
| efx_mcdi_free_vis(efx); |
| return -EAGAIN; |
| } |
| |
| /* If we didn't get enough VIs to map all the PIO buffers, free the |
| * PIO buffers |
| */ |
| if (nic_data->n_piobufs && |
| nic_data->n_allocated_vis < |
| pio_write_vi_base + nic_data->n_piobufs) { |
| netif_dbg(efx, probe, efx->net_dev, |
| "%u VIs are not sufficient to map %u PIO buffers\n", |
| nic_data->n_allocated_vis, nic_data->n_piobufs); |
| efx_ef10_free_piobufs(efx); |
| } |
| |
| /* Shrink the original UC mapping of the memory BAR */ |
| membase = ioremap(efx->membase_phys, uc_mem_map_size); |
| if (!membase) { |
| netif_err(efx, probe, efx->net_dev, |
| "could not shrink memory BAR to %x\n", |
| uc_mem_map_size); |
| return -ENOMEM; |
| } |
| iounmap(efx->membase); |
| efx->membase = membase; |
| |
| /* Set up the WC mapping if needed */ |
| if (wc_mem_map_size) { |
| nic_data->wc_membase = ioremap_wc(efx->membase_phys + |
| uc_mem_map_size, |
| wc_mem_map_size); |
| if (!nic_data->wc_membase) { |
| netif_err(efx, probe, efx->net_dev, |
| "could not allocate WC mapping of size %x\n", |
| wc_mem_map_size); |
| return -ENOMEM; |
| } |
| nic_data->pio_write_vi_base = pio_write_vi_base; |
| nic_data->pio_write_base = |
| nic_data->wc_membase + |
| (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF - |
| uc_mem_map_size); |
| |
| rc = efx_ef10_link_piobufs(efx); |
| if (rc) |
| efx_ef10_free_piobufs(efx); |
| } |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n", |
| &efx->membase_phys, efx->membase, uc_mem_map_size, |
| nic_data->wc_membase, wc_mem_map_size); |
| |
| return 0; |
| } |
| |
| static void efx_ef10_fini_nic(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| spin_lock_bh(&efx->stats_lock); |
| kfree(nic_data->mc_stats); |
| nic_data->mc_stats = NULL; |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| static int efx_ef10_init_nic(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| struct net_device *net_dev = efx->net_dev; |
| netdev_features_t tun_feats, tso_feats; |
| int rc; |
| |
| if (nic_data->must_check_datapath_caps) { |
| rc = efx_ef10_init_datapath_caps(efx); |
| if (rc) |
| return rc; |
| nic_data->must_check_datapath_caps = false; |
| } |
| |
| if (efx->must_realloc_vis) { |
| /* We cannot let the number of VIs change now */ |
| rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis, |
| nic_data->n_allocated_vis); |
| if (rc) |
| return rc; |
| efx->must_realloc_vis = false; |
| } |
| |
| nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64), |
| GFP_KERNEL); |
| if (!nic_data->mc_stats) |
| return -ENOMEM; |
| |
| if (nic_data->must_restore_piobufs && nic_data->n_piobufs) { |
| rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs); |
| if (rc == 0) { |
| rc = efx_ef10_link_piobufs(efx); |
| if (rc) |
| efx_ef10_free_piobufs(efx); |
| } |
| |
| /* Log an error on failure, but this is non-fatal. |
| * Permission errors are less important - we've presumably |
| * had the PIO buffer licence removed. |
| */ |
| if (rc == -EPERM) |
| netif_dbg(efx, drv, efx->net_dev, |
| "not permitted to restore PIO buffers\n"); |
| else if (rc) |
| netif_err(efx, drv, efx->net_dev, |
| "failed to restore PIO buffers (%d)\n", rc); |
| nic_data->must_restore_piobufs = false; |
| } |
| |
| /* encap features might change during reset if fw variant changed */ |
| if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx)) |
| net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
| else |
| net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); |
| |
| tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM; |
| tso_feats = NETIF_F_TSO | NETIF_F_TSO6; |
| |
| if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) { |
| /* If this is first nic_init, or if it is a reset and a new fw |
| * variant has added new features, enable them by default. |
| * If the features are not new, maintain their current value. |
| */ |
| if (!(net_dev->hw_features & tun_feats)) |
| net_dev->features |= tun_feats; |
| net_dev->hw_enc_features |= tun_feats | tso_feats; |
| net_dev->hw_features |= tun_feats; |
| } else { |
| net_dev->hw_enc_features &= ~(tun_feats | tso_feats); |
| net_dev->hw_features &= ~tun_feats; |
| net_dev->features &= ~tun_feats; |
| } |
| |
| /* don't fail init if RSS setup doesn't work */ |
| rc = efx->type->rx_push_rss_config(efx, false, |
| efx->rss_context.rx_indir_table, NULL); |
| |
| return 0; |
| } |
| |
| static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| #ifdef CONFIG_SFC_SRIOV |
| unsigned int i; |
| #endif |
| |
| /* All our allocations have been reset */ |
| efx->must_realloc_vis = true; |
| efx_mcdi_filter_table_reset_mc_allocations(efx); |
| nic_data->must_restore_piobufs = true; |
| efx_ef10_forget_old_piobufs(efx); |
| efx->rss_context.priv.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; |
| |
| /* Driver-created vswitches and vports must be re-created */ |
| nic_data->must_probe_vswitching = true; |
| efx->vport_id = EVB_PORT_ID_ASSIGNED; |
| #ifdef CONFIG_SFC_SRIOV |
| if (nic_data->vf) |
| for (i = 0; i < efx->vf_count; i++) |
| nic_data->vf[i].vport_id = 0; |
| #endif |
| } |
| |
| static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason) |
| { |
| if (reason == RESET_TYPE_MC_FAILURE) |
| return RESET_TYPE_DATAPATH; |
| |
| return efx_mcdi_map_reset_reason(reason); |
| } |
| |
| static int efx_ef10_map_reset_flags(u32 *flags) |
| { |
| enum { |
| EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) << |
| ETH_RESET_SHARED_SHIFT), |
| EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER | |
| ETH_RESET_OFFLOAD | ETH_RESET_MAC | |
| ETH_RESET_PHY | ETH_RESET_MGMT) << |
| ETH_RESET_SHARED_SHIFT) |
| }; |
| |
| /* We assume for now that our PCI function is permitted to |
| * reset everything. |
| */ |
| |
| if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) { |
| *flags &= ~EF10_RESET_MC; |
| return RESET_TYPE_WORLD; |
| } |
| |
| if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) { |
| *flags &= ~EF10_RESET_PORT; |
| return RESET_TYPE_ALL; |
| } |
| |
| /* no invisible reset implemented */ |
| |
| return -EINVAL; |
| } |
| |
| static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type) |
| { |
| int rc = efx_mcdi_reset(efx, reset_type); |
| |
| /* Unprivileged functions return -EPERM, but need to return success |
| * here so that the datapath is brought back up. |
| */ |
| if (reset_type == RESET_TYPE_WORLD && rc == -EPERM) |
| rc = 0; |
| |
| /* If it was a port reset, trigger reallocation of MC resources. |
| * Note that on an MC reset nothing needs to be done now because we'll |
| * detect the MC reset later and handle it then. |
| * For an FLR, we never get an MC reset event, but the MC has reset all |
| * resources assigned to us, so we have to trigger reallocation now. |
| */ |
| if ((reset_type == RESET_TYPE_ALL || |
| reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc) |
| efx_ef10_table_reset_mc_allocations(efx); |
| return rc; |
| } |
| |
| #define EF10_DMA_STAT(ext_name, mcdi_name) \ |
| [EF10_STAT_ ## ext_name] = \ |
| { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } |
| #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \ |
| [EF10_STAT_ ## int_name] = \ |
| { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name } |
| #define EF10_OTHER_STAT(ext_name) \ |
| [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 } |
| |
| static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = { |
| EF10_DMA_STAT(port_tx_bytes, TX_BYTES), |
| EF10_DMA_STAT(port_tx_packets, TX_PKTS), |
| EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), |
| EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS), |
| EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), |
| EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), |
| EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), |
| EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), |
| EF10_DMA_STAT(port_tx_64, TX_64_PKTS), |
| EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), |
| EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), |
| EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), |
| EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), |
| EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), |
| EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), |
| EF10_DMA_STAT(port_rx_bytes, RX_BYTES), |
| EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES), |
| EF10_OTHER_STAT(port_rx_good_bytes), |
| EF10_OTHER_STAT(port_rx_bad_bytes), |
| EF10_DMA_STAT(port_rx_packets, RX_PKTS), |
| EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS), |
| EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), |
| EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), |
| EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS), |
| EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), |
| EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), |
| EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), |
| EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), |
| EF10_DMA_STAT(port_rx_64, RX_64_PKTS), |
| EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), |
| EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), |
| EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), |
| EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), |
| EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), |
| EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), |
| EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), |
| EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), |
| EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), |
| EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), |
| EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), |
| EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), |
| EFX_GENERIC_SW_STAT(rx_nodesc_trunc), |
| EFX_GENERIC_SW_STAT(rx_noskb_drops), |
| EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW), |
| EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW), |
| EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL), |
| EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL), |
| EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB), |
| EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB), |
| EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING), |
| EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS), |
| EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS), |
| EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS), |
| EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS), |
| EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS), |
| EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS), |
| EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES), |
| EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS), |
| EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES), |
| EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS), |
| EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES), |
| EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS), |
| EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES), |
| EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW), |
| EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS), |
| EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES), |
| EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS), |
| EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES), |
| EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS), |
| EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES), |
| EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS), |
| EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES), |
| EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW), |
| EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS), |
| EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS), |
| EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0), |
| EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1), |
| EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2), |
| EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3), |
| EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK), |
| EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS), |
| EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL), |
| EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL), |
| EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL), |
| EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL), |
| EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL), |
| EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL), |
| EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL), |
| EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK), |
| EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK), |
| EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK), |
| EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS), |
| EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK), |
| EF10_DMA_STAT(ctpio_poison, CTPIO_POISON), |
| EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE), |
| }; |
| |
| #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \ |
| (1ULL << EF10_STAT_port_tx_packets) | \ |
| (1ULL << EF10_STAT_port_tx_pause) | \ |
| (1ULL << EF10_STAT_port_tx_unicast) | \ |
| (1ULL << EF10_STAT_port_tx_multicast) | \ |
| (1ULL << EF10_STAT_port_tx_broadcast) | \ |
| (1ULL << EF10_STAT_port_rx_bytes) | \ |
| (1ULL << \ |
| EF10_STAT_port_rx_bytes_minus_good_bytes) | \ |
| (1ULL << EF10_STAT_port_rx_good_bytes) | \ |
| (1ULL << EF10_STAT_port_rx_bad_bytes) | \ |
| (1ULL << EF10_STAT_port_rx_packets) | \ |
| (1ULL << EF10_STAT_port_rx_good) | \ |
| (1ULL << EF10_STAT_port_rx_bad) | \ |
| (1ULL << EF10_STAT_port_rx_pause) | \ |
| (1ULL << EF10_STAT_port_rx_control) | \ |
| (1ULL << EF10_STAT_port_rx_unicast) | \ |
| (1ULL << EF10_STAT_port_rx_multicast) | \ |
| (1ULL << EF10_STAT_port_rx_broadcast) | \ |
| (1ULL << EF10_STAT_port_rx_lt64) | \ |
| (1ULL << EF10_STAT_port_rx_64) | \ |
| (1ULL << EF10_STAT_port_rx_65_to_127) | \ |
| (1ULL << EF10_STAT_port_rx_128_to_255) | \ |
| (1ULL << EF10_STAT_port_rx_256_to_511) | \ |
| (1ULL << EF10_STAT_port_rx_512_to_1023) |\ |
| (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\ |
| (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\ |
| (1ULL << EF10_STAT_port_rx_gtjumbo) | \ |
| (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\ |
| (1ULL << EF10_STAT_port_rx_overflow) | \ |
| (1ULL << EF10_STAT_port_rx_nodesc_drops) |\ |
| (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \ |
| (1ULL << GENERIC_STAT_rx_noskb_drops)) |
| |
| /* On 7000 series NICs, these statistics are only provided by the 10G MAC. |
| * For a 10G/40G switchable port we do not expose these because they might |
| * not include all the packets they should. |
| * On 8000 series NICs these statistics are always provided. |
| */ |
| #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \ |
| (1ULL << EF10_STAT_port_tx_lt64) | \ |
| (1ULL << EF10_STAT_port_tx_64) | \ |
| (1ULL << EF10_STAT_port_tx_65_to_127) |\ |
| (1ULL << EF10_STAT_port_tx_128_to_255) |\ |
| (1ULL << EF10_STAT_port_tx_256_to_511) |\ |
| (1ULL << EF10_STAT_port_tx_512_to_1023) |\ |
| (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\ |
| (1ULL << EF10_STAT_port_tx_15xx_to_jumbo)) |
| |
| /* These statistics are only provided by the 40G MAC. For a 10G/40G |
| * switchable port we do expose these because the errors will otherwise |
| * be silent. |
| */ |
| #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\ |
| (1ULL << EF10_STAT_port_rx_length_error)) |
| |
| /* These statistics are only provided if the firmware supports the |
| * capability PM_AND_RXDP_COUNTERS. |
| */ |
| #define HUNT_PM_AND_RXDP_STAT_MASK ( \ |
| (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \ |
| (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \ |
| (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \ |
| (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \ |
| (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \ |
| (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \ |
| (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \ |
| (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \ |
| (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \ |
| (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \ |
| (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \ |
| (1ULL << EF10_STAT_port_rx_dp_hlb_wait)) |
| |
| /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2, |
| * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in |
| * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. |
| * These bits are in the second u64 of the raw mask. |
| */ |
| #define EF10_FEC_STAT_MASK ( \ |
| (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \ |
| (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \ |
| (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \ |
| (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \ |
| (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \ |
| (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64))) |
| |
| /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3, |
| * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in |
| * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. |
| * These bits are in the second u64 of the raw mask. |
| */ |
| #define EF10_CTPIO_STAT_MASK ( \ |
| (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_success - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_poison - 64)) | \ |
| (1ULL << (EF10_STAT_ctpio_erase - 64))) |
| |
| static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx) |
| { |
| u64 raw_mask = HUNT_COMMON_STAT_MASK; |
| u32 port_caps = efx_mcdi_phy_get_caps(efx); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| if (!(efx->mcdi->fn_flags & |
| 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) |
| return 0; |
| |
| if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) { |
| raw_mask |= HUNT_40G_EXTRA_STAT_MASK; |
| /* 8000 series have everything even at 40G */ |
| if (nic_data->datapath_caps2 & |
| (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN)) |
| raw_mask |= HUNT_10G_ONLY_STAT_MASK; |
| } else { |
| raw_mask |= HUNT_10G_ONLY_STAT_MASK; |
| } |
| |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN)) |
| raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK; |
| |
| return raw_mask; |
| } |
| |
| static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u64 raw_mask[2]; |
| |
| raw_mask[0] = efx_ef10_raw_stat_mask(efx); |
| |
| /* Only show vadaptor stats when EVB capability is present */ |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) { |
| raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1); |
| raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1; |
| } else { |
| raw_mask[1] = 0; |
| } |
| /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */ |
| if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2) |
| raw_mask[1] |= EF10_FEC_STAT_MASK; |
| |
| /* CTPIO stats appear in V3. Only show them on devices that actually |
| * support CTPIO. Although this driver doesn't use CTPIO others might, |
| * and we may be reporting the stats for the underlying port. |
| */ |
| if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 && |
| (nic_data->datapath_caps2 & |
| (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN))) |
| raw_mask[1] |= EF10_CTPIO_STAT_MASK; |
| |
| #if BITS_PER_LONG == 64 |
| BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2); |
| mask[0] = raw_mask[0]; |
| mask[1] = raw_mask[1]; |
| #else |
| BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3); |
| mask[0] = raw_mask[0] & 0xffffffff; |
| mask[1] = raw_mask[0] >> 32; |
| mask[2] = raw_mask[1] & 0xffffffff; |
| #endif |
| } |
| |
| static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names) |
| { |
| DECLARE_BITMAP(mask, EF10_STAT_COUNT); |
| |
| efx_ef10_get_stat_mask(efx, mask); |
| return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, |
| mask, names); |
| } |
| |
| static void efx_ef10_get_fec_stats(struct efx_nic *efx, |
| struct ethtool_fec_stats *fec_stats) |
| { |
| DECLARE_BITMAP(mask, EF10_STAT_COUNT); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u64 *stats = nic_data->stats; |
| |
| efx_ef10_get_stat_mask(efx, mask); |
| if (test_bit(EF10_STAT_fec_corrected_errors, mask)) |
| fec_stats->corrected_blocks.total = |
| stats[EF10_STAT_fec_corrected_errors]; |
| if (test_bit(EF10_STAT_fec_uncorrected_errors, mask)) |
| fec_stats->uncorrectable_blocks.total = |
| stats[EF10_STAT_fec_uncorrected_errors]; |
| } |
| |
| static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| DECLARE_BITMAP(mask, EF10_STAT_COUNT); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u64 *stats = nic_data->stats; |
| size_t stats_count = 0, index; |
| |
| efx_ef10_get_stat_mask(efx, mask); |
| |
| if (full_stats) { |
| for_each_set_bit(index, mask, EF10_STAT_COUNT) { |
| if (efx_ef10_stat_desc[index].name) { |
| *full_stats++ = stats[index]; |
| ++stats_count; |
| } |
| } |
| } |
| |
| if (!core_stats) |
| return stats_count; |
| |
| if (nic_data->datapath_caps & |
| 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) { |
| /* Use vadaptor stats. */ |
| core_stats->rx_packets = stats[EF10_STAT_rx_unicast] + |
| stats[EF10_STAT_rx_multicast] + |
| stats[EF10_STAT_rx_broadcast]; |
| core_stats->tx_packets = stats[EF10_STAT_tx_unicast] + |
| stats[EF10_STAT_tx_multicast] + |
| stats[EF10_STAT_tx_broadcast]; |
| core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] + |
| stats[EF10_STAT_rx_multicast_bytes] + |
| stats[EF10_STAT_rx_broadcast_bytes]; |
| core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] + |
| stats[EF10_STAT_tx_multicast_bytes] + |
| stats[EF10_STAT_tx_broadcast_bytes]; |
| core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] + |
| stats[GENERIC_STAT_rx_noskb_drops]; |
| core_stats->multicast = stats[EF10_STAT_rx_multicast]; |
| core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad]; |
| core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow]; |
| core_stats->rx_errors = core_stats->rx_crc_errors; |
| core_stats->tx_errors = stats[EF10_STAT_tx_bad]; |
| } else { |
| /* Use port stats. */ |
| core_stats->rx_packets = stats[EF10_STAT_port_rx_packets]; |
| core_stats->tx_packets = stats[EF10_STAT_port_tx_packets]; |
| core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes]; |
| core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes]; |
| core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] + |
| stats[GENERIC_STAT_rx_nodesc_trunc] + |
| stats[GENERIC_STAT_rx_noskb_drops]; |
| core_stats->multicast = stats[EF10_STAT_port_rx_multicast]; |
| core_stats->rx_length_errors = |
| stats[EF10_STAT_port_rx_gtjumbo] + |
| stats[EF10_STAT_port_rx_length_error]; |
| core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad]; |
| core_stats->rx_frame_errors = |
| stats[EF10_STAT_port_rx_align_error]; |
| core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow]; |
| core_stats->rx_errors = (core_stats->rx_length_errors + |
| core_stats->rx_crc_errors + |
| core_stats->rx_frame_errors); |
| } |
| |
| return stats_count; |
| } |
| |
| static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| DECLARE_BITMAP(mask, EF10_STAT_COUNT); |
| u64 *stats = nic_data->stats; |
| |
| efx_ef10_get_stat_mask(efx, mask); |
| |
| /* If NIC was fini'd (probably resetting), then we can't read |
| * updated stats right now. |
| */ |
| if (nic_data->mc_stats) { |
| efx_nic_copy_stats(efx, nic_data->mc_stats); |
| efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, |
| mask, stats, nic_data->mc_stats, false); |
| } |
| |
| /* Update derived statistics */ |
| efx_nic_fix_nodesc_drop_stat(efx, |
| &stats[EF10_STAT_port_rx_nodesc_drops]); |
| /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC. |
| * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES. |
| * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES. |
| * Here we calculate port_rx_good_bytes. |
| */ |
| stats[EF10_STAT_port_rx_good_bytes] = |
| stats[EF10_STAT_port_rx_bytes] - |
| stats[EF10_STAT_port_rx_bytes_minus_good_bytes]; |
| |
| /* The asynchronous reads used to calculate RX_BAD_BYTES in |
| * MC Firmware are done such that we should not see an increase in |
| * RX_BAD_BYTES when a good packet has arrived. Unfortunately this |
| * does mean that the stat can decrease at times. Here we do not |
| * update the stat unless it has increased or has gone to zero |
| * (In the case of the NIC rebooting). |
| * Please see Bug 33781 for a discussion of why things work this way. |
| */ |
| efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes], |
| stats[EF10_STAT_port_rx_bytes_minus_good_bytes]); |
| efx_update_sw_stats(efx, stats); |
| |
| return efx_ef10_update_stats_common(efx, full_stats, core_stats); |
| } |
| |
| static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx) |
| __must_hold(&efx->stats_lock) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| DECLARE_BITMAP(mask, EF10_STAT_COUNT); |
| __le64 generation_start, generation_end; |
| u64 *stats = nic_data->stats; |
| u32 dma_len = efx->num_mac_stats * sizeof(u64); |
| struct efx_buffer stats_buf; |
| __le64 *dma_stats; |
| int rc; |
| |
| spin_unlock_bh(&efx->stats_lock); |
| |
| efx_ef10_get_stat_mask(efx, mask); |
| |
| rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL); |
| if (rc) { |
| spin_lock_bh(&efx->stats_lock); |
| return rc; |
| } |
| |
| dma_stats = stats_buf.addr; |
| dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID; |
| |
| MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr); |
| MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD, |
| MAC_STATS_IN_DMA, 1); |
| MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); |
| MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); |
| |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| spin_lock_bh(&efx->stats_lock); |
| if (rc) { |
| /* Expect ENOENT if DMA queues have not been set up */ |
| if (rc != -ENOENT || atomic_read(&efx->active_queues)) |
| efx_mcdi_display_error(efx, MC_CMD_MAC_STATS, |
| sizeof(inbuf), NULL, 0, rc); |
| goto out; |
| } |
| |
| generation_end = dma_stats[efx->num_mac_stats - 1]; |
| if (generation_end == EFX_MC_STATS_GENERATION_INVALID) { |
| WARN_ON_ONCE(1); |
| goto out; |
| } |
| rmb(); |
| efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, |
| stats, stats_buf.addr, false); |
| rmb(); |
| generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; |
| if (generation_end != generation_start) { |
| rc = -EAGAIN; |
| goto out; |
| } |
| |
| efx_update_sw_stats(efx, stats); |
| out: |
| /* releasing a DMA coherent buffer with BH disabled can panic */ |
| spin_unlock_bh(&efx->stats_lock); |
| efx_nic_free_buffer(efx, &stats_buf); |
| spin_lock_bh(&efx->stats_lock); |
| return rc; |
| } |
| |
| static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| if (efx_ef10_try_update_nic_stats_vf(efx)) |
| return 0; |
| |
| return efx_ef10_update_stats_common(efx, full_stats, core_stats); |
| } |
| |
| static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| /* In atomic context, cannot update HW stats. Just update the |
| * software stats and return so the caller can continue. |
| */ |
| efx_update_sw_stats(efx, nic_data->stats); |
| return efx_ef10_update_stats_common(efx, full_stats, core_stats); |
| } |
| |
| static void efx_ef10_push_irq_moderation(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int mode, usecs; |
| efx_dword_t timer_cmd; |
| |
| if (channel->irq_moderation_us) { |
| mode = 3; |
| usecs = channel->irq_moderation_us; |
| } else { |
| mode = 0; |
| usecs = 0; |
| } |
| |
| if (EFX_EF10_WORKAROUND_61265(efx)) { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN); |
| unsigned int ns = usecs * 1000; |
| |
| MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE, |
| channel->channel); |
| MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns); |
| MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns); |
| MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode); |
| |
| efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR, |
| inbuf, sizeof(inbuf), 0, NULL, 0); |
| } else if (EFX_EF10_WORKAROUND_35388(efx)) { |
| unsigned int ticks = efx_usecs_to_ticks(efx, usecs); |
| |
| EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS, |
| EFE_DD_EVQ_IND_TIMER_FLAGS, |
| ERF_DD_EVQ_IND_TIMER_MODE, mode, |
| ERF_DD_EVQ_IND_TIMER_VAL, ticks); |
| efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT, |
| channel->channel); |
| } else { |
| unsigned int ticks = efx_usecs_to_ticks(efx, usecs); |
| |
| EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode, |
| ERF_DZ_TC_TIMER_VAL, ticks, |
| ERF_FZ_TC_TMR_REL_VAL, ticks); |
| efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR, |
| channel->channel); |
| } |
| } |
| |
| static void efx_ef10_get_wol_vf(struct efx_nic *efx, |
| struct ethtool_wolinfo *wol) {} |
| |
| static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) |
| { |
| wol->supported = 0; |
| wol->wolopts = 0; |
| memset(&wol->sopass, 0, sizeof(wol->sopass)); |
| } |
| |
| static int efx_ef10_set_wol(struct efx_nic *efx, u32 type) |
| { |
| if (type != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static void efx_ef10_mcdi_request(struct efx_nic *efx, |
| const efx_dword_t *hdr, size_t hdr_len, |
| const efx_dword_t *sdu, size_t sdu_len) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u8 *pdu = nic_data->mcdi_buf.addr; |
| |
| memcpy(pdu, hdr, hdr_len); |
| memcpy(pdu + hdr_len, sdu, sdu_len); |
| wmb(); |
| |
| /* The hardware provides 'low' and 'high' (doorbell) registers |
| * for passing the 64-bit address of an MCDI request to |
| * firmware. However the dwords are swapped by firmware. The |
| * least significant bits of the doorbell are then 0 for all |
| * MCDI requests due to alignment. |
| */ |
| _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32), |
| ER_DZ_MC_DB_LWRD); |
| _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr), |
| ER_DZ_MC_DB_HWRD); |
| } |
| |
| static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr; |
| |
| rmb(); |
| return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); |
| } |
| |
| static void |
| efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, |
| size_t offset, size_t outlen) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| const u8 *pdu = nic_data->mcdi_buf.addr; |
| |
| memcpy(outbuf, pdu + offset, outlen); |
| } |
| |
| static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| /* All our allocations have been reset */ |
| efx_ef10_table_reset_mc_allocations(efx); |
| |
| /* The datapath firmware might have been changed */ |
| nic_data->must_check_datapath_caps = true; |
| |
| /* MAC statistics have been cleared on the NIC; clear the local |
| * statistic that we update with efx_update_diff_stat(). |
| */ |
| nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0; |
| } |
| |
| static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| rc = efx_ef10_get_warm_boot_count(efx); |
| if (rc < 0) { |
| /* The firmware is presumably in the process of |
| * rebooting. However, we are supposed to report each |
| * reboot just once, so we must only do that once we |
| * can read and store the updated warm boot count. |
| */ |
| return 0; |
| } |
| |
| if (rc == nic_data->warm_boot_count) |
| return 0; |
| |
| nic_data->warm_boot_count = rc; |
| efx_ef10_mcdi_reboot_detected(efx); |
| |
| return -EIO; |
| } |
| |
| /* Handle an MSI interrupt |
| * |
| * Handle an MSI hardware interrupt. This routine schedules event |
| * queue processing. No interrupt acknowledgement cycle is necessary. |
| * Also, we never need to check that the interrupt is for us, since |
| * MSI interrupts cannot be shared. |
| */ |
| static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id) |
| { |
| struct efx_msi_context *context = dev_id; |
| struct efx_nic *efx = context->efx; |
| |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); |
| |
| if (likely(READ_ONCE(efx->irq_soft_enabled))) { |
| /* Note test interrupts */ |
| if (context->index == efx->irq_level) |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| |
| /* Schedule processing of the channel */ |
| efx_schedule_channel_irq(efx->channel[context->index]); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); |
| struct efx_channel *channel; |
| efx_dword_t reg; |
| u32 queues; |
| |
| /* Read the ISR which also ACKs the interrupts */ |
| efx_readd(efx, ®, ER_DZ_BIU_INT_ISR); |
| queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG); |
| |
| if (queues == 0) |
| return IRQ_NONE; |
| |
| if (likely(soft_enabled)) { |
| /* Note test interrupts */ |
| if (queues & (1U << efx->irq_level)) |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| |
| efx_for_each_channel(channel, efx) { |
| if (queues & 1) |
| efx_schedule_channel_irq(channel); |
| queues >>= 1; |
| } |
| } |
| |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int efx_ef10_irq_test_generate(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); |
| |
| if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true, |
| NULL) == 0) |
| return -ENOTSUPP; |
| |
| BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); |
| |
| MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); |
| return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT, |
| inbuf, sizeof(inbuf), NULL, 0, NULL); |
| } |
| |
| static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue) |
| { |
| /* low two bits of label are what we want for type */ |
| BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3); |
| tx_queue->type = tx_queue->label & 3; |
| return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd, |
| (tx_queue->ptr_mask + 1) * |
| sizeof(efx_qword_t), |
| GFP_KERNEL); |
| } |
| |
| /* This writes to the TX_DESC_WPTR and also pushes data */ |
| static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, |
| const efx_qword_t *txd) |
| { |
| unsigned int write_ptr; |
| efx_oword_t reg; |
| |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr); |
| reg.qword[0] = *txd; |
| efx_writeo_page(tx_queue->efx, ®, |
| ER_DZ_TX_DESC_UPD, tx_queue->queue); |
| } |
| |
| /* Add Firmware-Assisted TSO v2 option descriptors to a queue. |
| */ |
| int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb, |
| bool *data_mapped) |
| { |
| struct efx_tx_buffer *buffer; |
| u16 inner_ipv4_id = 0; |
| u16 outer_ipv4_id = 0; |
| struct tcphdr *tcp; |
| struct iphdr *ip; |
| u16 ip_tot_len; |
| u32 seqnum; |
| u32 mss; |
| |
| EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2); |
| |
| mss = skb_shinfo(skb)->gso_size; |
| |
| if (unlikely(mss < 4)) { |
| WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss); |
| return -EINVAL; |
| } |
| |
| if (skb->encapsulation) { |
| if (!tx_queue->tso_encap) |
| return -EINVAL; |
| ip = ip_hdr(skb); |
| if (ip->version == 4) |
| outer_ipv4_id = ntohs(ip->id); |
| |
| ip = inner_ip_hdr(skb); |
| tcp = inner_tcp_hdr(skb); |
| } else { |
| ip = ip_hdr(skb); |
| tcp = tcp_hdr(skb); |
| } |
| |
| /* 8000-series EF10 hardware requires that IP Total Length be |
| * greater than or equal to the value it will have in each segment |
| * (which is at most mss + 208 + TCP header length), but also less |
| * than (0x10000 - inner_network_header). Otherwise the TCP |
| * checksum calculation will be broken for encapsulated packets. |
| * We fill in ip->tot_len with 0xff30, which should satisfy the |
| * first requirement unless the MSS is ridiculously large (which |
| * should be impossible as the driver max MTU is 9216); it is |
| * guaranteed to satisfy the second as we only attempt TSO if |
| * inner_network_header <= 208. |
| */ |
| ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN; |
| EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN + |
| (tcp->doff << 2u) > ip_tot_len); |
| |
| if (ip->version == 4) { |
| ip->tot_len = htons(ip_tot_len); |
| ip->check = 0; |
| inner_ipv4_id = ntohs(ip->id); |
| } else { |
| ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len); |
| } |
| |
| seqnum = ntohl(tcp->seq); |
| |
| buffer = efx_tx_queue_get_insert_buffer(tx_queue); |
| |
| buffer->flags = EFX_TX_BUF_OPTION; |
| buffer->len = 0; |
| buffer->unmap_len = 0; |
| EFX_POPULATE_QWORD_5(buffer->option, |
| ESF_DZ_TX_DESC_IS_OPT, 1, |
| ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, |
| ESF_DZ_TX_TSO_OPTION_TYPE, |
| ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, |
| ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id, |
| ESF_DZ_TX_TSO_TCP_SEQNO, seqnum |
| ); |
| ++tx_queue->insert_count; |
| |
| buffer = efx_tx_queue_get_insert_buffer(tx_queue); |
| |
| buffer->flags = EFX_TX_BUF_OPTION; |
| buffer->len = 0; |
| buffer->unmap_len = 0; |
| EFX_POPULATE_QWORD_5(buffer->option, |
| ESF_DZ_TX_DESC_IS_OPT, 1, |
| ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, |
| ESF_DZ_TX_TSO_OPTION_TYPE, |
| ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, |
| ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id, |
| ESF_DZ_TX_TSO_TCP_MSS, mss |
| ); |
| ++tx_queue->insert_count; |
| |
| return 0; |
| } |
| |
| static u32 efx_ef10_tso_versions(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u32 tso_versions = 0; |
| |
| if (nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) |
| tso_versions |= BIT(1); |
| if (nic_data->datapath_caps2 & |
| (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) |
| tso_versions |= BIT(2); |
| return tso_versions; |
| } |
| |
| static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue) |
| { |
| bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM; |
| bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM; |
| struct efx_channel *channel = tx_queue->channel; |
| struct efx_nic *efx = tx_queue->efx; |
| struct efx_ef10_nic_data *nic_data; |
| efx_qword_t *txd; |
| int rc; |
| |
| nic_data = efx->nic_data; |
| |
| /* Only attempt to enable TX timestamping if we have the license for it, |
| * otherwise TXQ init will fail |
| */ |
| if (!(nic_data->licensed_features & |
| (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) { |
| tx_queue->timestamping = false; |
| /* Disable sync events on this channel. */ |
| if (efx->type->ptp_set_ts_sync_events) |
| efx->type->ptp_set_ts_sync_events(efx, false, false); |
| } |
| |
| /* TSOv2 is a limited resource that can only be configured on a limited |
| * number of queues. TSO without checksum offload is not really a thing, |
| * so we only enable it for those queues. |
| * TSOv2 cannot be used with Hardware timestamping, and is never needed |
| * for XDP tx. |
| */ |
| if (efx_has_cap(efx, TX_TSO_V2)) { |
| if ((csum_offload || inner_csum) && |
| !tx_queue->timestamping && !tx_queue->xdp_tx) { |
| tx_queue->tso_version = 2; |
| netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n", |
| channel->channel); |
| } |
| } else if (efx_has_cap(efx, TX_TSO)) { |
| tx_queue->tso_version = 1; |
| } |
| |
| rc = efx_mcdi_tx_init(tx_queue); |
| if (rc) |
| goto fail; |
| |
| /* A previous user of this TX queue might have set us up the |
| * bomb by writing a descriptor to the TX push collector but |
| * not the doorbell. (Each collector belongs to a port, not a |
| * queue or function, so cannot easily be reset.) We must |
| * attempt to push a no-op descriptor in its place. |
| */ |
| tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION; |
| tx_queue->insert_count = 1; |
| txd = efx_tx_desc(tx_queue, 0); |
| EFX_POPULATE_QWORD_7(*txd, |
| ESF_DZ_TX_DESC_IS_OPT, true, |
| ESF_DZ_TX_OPTION_TYPE, |
| ESE_DZ_TX_OPTION_DESC_CRC_CSUM, |
| ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload, |
| ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2, |
| ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum, |
| ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2, |
| ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping); |
| tx_queue->write_count = 1; |
| |
| if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP)) |
| tx_queue->tso_encap = true; |
| |
| wmb(); |
| efx_ef10_push_tx_desc(tx_queue, txd); |
| |
| return; |
| |
| fail: |
| netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n", |
| tx_queue->queue); |
| } |
| |
| /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| { |
| unsigned int write_ptr; |
| efx_dword_t reg; |
| |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr); |
| efx_writed_page(tx_queue->efx, ®, |
| ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue); |
| } |
| |
| #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff |
| |
| static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue, |
| dma_addr_t dma_addr, unsigned int len) |
| { |
| if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) { |
| /* If we need to break across multiple descriptors we should |
| * stop at a page boundary. This assumes the length limit is |
| * greater than the page size. |
| */ |
| dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN; |
| |
| BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE); |
| len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr; |
| } |
| |
| return len; |
| } |
| |
| static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue) |
| { |
| unsigned int old_write_count = tx_queue->write_count; |
| struct efx_tx_buffer *buffer; |
| unsigned int write_ptr; |
| efx_qword_t *txd; |
| |
| tx_queue->xmit_pending = false; |
| if (unlikely(tx_queue->write_count == tx_queue->insert_count)) |
| return; |
| |
| do { |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| buffer = &tx_queue->buffer[write_ptr]; |
| txd = efx_tx_desc(tx_queue, write_ptr); |
| ++tx_queue->write_count; |
| |
| /* Create TX descriptor ring entry */ |
| if (buffer->flags & EFX_TX_BUF_OPTION) { |
| *txd = buffer->option; |
| if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1) |
| /* PIO descriptor */ |
| tx_queue->packet_write_count = tx_queue->write_count; |
| } else { |
| tx_queue->packet_write_count = tx_queue->write_count; |
| BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); |
| EFX_POPULATE_QWORD_3( |
| *txd, |
| ESF_DZ_TX_KER_CONT, |
| buffer->flags & EFX_TX_BUF_CONT, |
| ESF_DZ_TX_KER_BYTE_CNT, buffer->len, |
| ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr); |
| } |
| } while (tx_queue->write_count != tx_queue->insert_count); |
| |
| wmb(); /* Ensure descriptors are written before they are fetched */ |
| |
| if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { |
| txd = efx_tx_desc(tx_queue, |
| old_write_count & tx_queue->ptr_mask); |
| efx_ef10_push_tx_desc(tx_queue, txd); |
| ++tx_queue->pushes; |
| } else { |
| efx_ef10_notify_tx_desc(tx_queue); |
| } |
| } |
| |
| static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| unsigned int enabled, implemented; |
| bool want_workaround_26807; |
| int rc; |
| |
| rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); |
| if (rc == -ENOSYS) { |
| /* GET_WORKAROUNDS was implemented before this workaround, |
| * thus it must be unavailable in this firmware. |
| */ |
| nic_data->workaround_26807 = false; |
| return 0; |
| } |
| if (rc) |
| return rc; |
| want_workaround_26807 = |
| implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807; |
| nic_data->workaround_26807 = |
| !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807); |
| |
| if (want_workaround_26807 && !nic_data->workaround_26807) { |
| unsigned int flags; |
| |
| rc = efx_mcdi_set_workaround(efx, |
| MC_CMD_WORKAROUND_BUG26807, |
| true, &flags); |
| if (!rc) { |
| if (flags & |
| 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) { |
| netif_info(efx, drv, efx->net_dev, |
| "other functions on NIC have been reset\n"); |
| |
| /* With MCFW v4.6.x and earlier, the |
| * boot count will have incremented, |
| * so re-read the warm_boot_count |
| * value now to ensure this function |
| * doesn't think it has changed next |
| * time it checks. |
| */ |
| rc = efx_ef10_get_warm_boot_count(efx); |
| if (rc >= 0) { |
| nic_data->warm_boot_count = rc; |
| rc = 0; |
| } |
| } |
| nic_data->workaround_26807 = true; |
| } else if (rc == -EPERM) { |
| rc = 0; |
| } |
| } |
| return rc; |
| } |
| |
| static int efx_ef10_filter_table_probe(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| int rc = efx_ef10_probe_multicast_chaining(efx); |
| struct efx_mcdi_filter_vlan *vlan; |
| |
| if (rc) |
| return rc; |
| down_write(&efx->filter_sem); |
| rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807); |
| |
| if (rc) |
| goto out_unlock; |
| |
| list_for_each_entry(vlan, &nic_data->vlan_list, list) { |
| rc = efx_mcdi_filter_add_vlan(efx, vlan->vid); |
| if (rc) |
| goto fail_add_vlan; |
| } |
| goto out_unlock; |
| |
| fail_add_vlan: |
| efx_mcdi_filter_table_remove(efx); |
| out_unlock: |
| up_write(&efx->filter_sem); |
| return rc; |
| } |
| |
| static void efx_ef10_filter_table_remove(struct efx_nic *efx) |
| { |
| down_write(&efx->filter_sem); |
| efx_mcdi_filter_table_remove(efx); |
| up_write(&efx->filter_sem); |
| } |
| |
| /* This creates an entry in the RX descriptor queue */ |
| static inline void |
| efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) |
| { |
| struct efx_rx_buffer *rx_buf; |
| efx_qword_t *rxd; |
| |
| rxd = efx_rx_desc(rx_queue, index); |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| EFX_POPULATE_QWORD_2(*rxd, |
| ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len, |
| ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); |
| } |
| |
| static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int write_count; |
| efx_dword_t reg; |
| |
| /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */ |
| write_count = rx_queue->added_count & ~7; |
| if (rx_queue->notified_count == write_count) |
| return; |
| |
| do |
| efx_ef10_build_rx_desc( |
| rx_queue, |
| rx_queue->notified_count & rx_queue->ptr_mask); |
| while (++rx_queue->notified_count != write_count); |
| |
| wmb(); |
| EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR, |
| write_count & rx_queue->ptr_mask); |
| efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD, |
| efx_rx_queue_index(rx_queue)); |
| } |
| |
| static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete; |
| |
| static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); |
| efx_qword_t event; |
| |
| EFX_POPULATE_QWORD_2(event, |
| ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, |
| ESF_DZ_EV_DATA, EFX_EF10_REFILL); |
| |
| MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); |
| |
| /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has |
| * already swapped the data to little-endian order. |
| */ |
| memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], |
| sizeof(efx_qword_t)); |
| |
| efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT, |
| inbuf, sizeof(inbuf), 0, |
| efx_ef10_rx_defer_refill_complete, 0); |
| } |
| |
| static void |
| efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, |
| int rc, efx_dword_t *outbuf, |
| size_t outlen_actual) |
| { |
| /* nothing to do */ |
| } |
| |
| static int efx_ef10_ev_init(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_ef10_nic_data *nic_data; |
| bool use_v2, cut_thru; |
| |
| nic_data = efx->nic_data; |
| use_v2 = nic_data->datapath_caps2 & |
| 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN; |
| cut_thru = !(nic_data->datapath_caps & |
| 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN); |
| return efx_mcdi_ev_init(channel, cut_thru, use_v2); |
| } |
| |
| static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, |
| unsigned int rx_queue_label) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| |
| netif_info(efx, hw, efx->net_dev, |
| "rx event arrived on queue %d labeled as queue %u\n", |
| efx_rx_queue_index(rx_queue), rx_queue_label); |
| |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| } |
| |
| static void |
| efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, |
| unsigned int actual, unsigned int expected) |
| { |
| unsigned int dropped = (actual - expected) & rx_queue->ptr_mask; |
| struct efx_nic *efx = rx_queue->efx; |
| |
| netif_info(efx, hw, efx->net_dev, |
| "dropped %d events (index=%d expected=%d)\n", |
| dropped, actual, expected); |
| |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| } |
| |
| /* partially received RX was aborted. clean up. */ |
| static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue) |
| { |
| unsigned int rx_desc_ptr; |
| |
| netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev, |
| "scattered RX aborted (dropping %u buffers)\n", |
| rx_queue->scatter_n); |
| |
| rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask; |
| |
| efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n, |
| 0, EFX_RX_PKT_DISCARD); |
| |
| rx_queue->removed_count += rx_queue->scatter_n; |
| rx_queue->scatter_n = 0; |
| rx_queue->scatter_len = 0; |
| ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc; |
| } |
| |
| static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel, |
| unsigned int n_packets, |
| unsigned int rx_encap_hdr, |
| unsigned int rx_l3_class, |
| unsigned int rx_l4_class, |
| const efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| bool handled = false; |
| |
| if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) { |
| if (!(efx->net_dev->features & NETIF_F_RXALL)) { |
| if (!efx->loopback_selftest) |
| channel->n_rx_eth_crc_err += n_packets; |
| return EFX_RX_PKT_DISCARD; |
| } |
| handled = true; |
| } |
| if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) { |
| if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP4 && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP6 && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) |
| netdev_WARN(efx->net_dev, |
| "invalid class for RX_IPCKSUM_ERR: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| if (!efx->loopback_selftest) |
| *(rx_encap_hdr ? |
| &channel->n_rx_outer_ip_hdr_chksum_err : |
| &channel->n_rx_ip_hdr_chksum_err) += n_packets; |
| return 0; |
| } |
| if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { |
| if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && |
| ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP6) || |
| (rx_l4_class != ESE_FZ_L4_CLASS_TCP && |
| rx_l4_class != ESE_FZ_L4_CLASS_UDP)))) |
| netdev_WARN(efx->net_dev, |
| "invalid class for RX_TCPUDP_CKSUM_ERR: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| if (!efx->loopback_selftest) |
| *(rx_encap_hdr ? |
| &channel->n_rx_outer_tcp_udp_chksum_err : |
| &channel->n_rx_tcp_udp_chksum_err) += n_packets; |
| return 0; |
| } |
| if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) { |
| if (unlikely(!rx_encap_hdr)) |
| netdev_WARN(efx->net_dev, |
| "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP6 && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) |
| netdev_WARN(efx->net_dev, |
| "invalid class for RX_IP_INNER_CHKSUM_ERR: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| if (!efx->loopback_selftest) |
| channel->n_rx_inner_ip_hdr_chksum_err += n_packets; |
| return 0; |
| } |
| if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) { |
| if (unlikely(!rx_encap_hdr)) |
| netdev_WARN(efx->net_dev, |
| "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && |
| rx_l3_class != ESE_DZ_L3_CLASS_IP6) || |
| (rx_l4_class != ESE_FZ_L4_CLASS_TCP && |
| rx_l4_class != ESE_FZ_L4_CLASS_UDP))) |
| netdev_WARN(efx->net_dev, |
| "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| if (!efx->loopback_selftest) |
| channel->n_rx_inner_tcp_udp_chksum_err += n_packets; |
| return 0; |
| } |
| |
| WARN_ON(!handled); /* No error bits were recognised */ |
| return 0; |
| } |
| |
| static int efx_ef10_handle_rx_event(struct efx_channel *channel, |
| const efx_qword_t *event) |
| { |
| unsigned int rx_bytes, next_ptr_lbits, rx_queue_label; |
| unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr; |
| unsigned int n_descs, n_packets, i; |
| struct efx_nic *efx = channel->efx; |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| struct efx_rx_queue *rx_queue; |
| efx_qword_t errors; |
| bool rx_cont; |
| u16 flags = 0; |
| |
| if (unlikely(READ_ONCE(efx->reset_pending))) |
| return 0; |
| |
| /* Basic packet information */ |
| rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES); |
| next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS); |
| rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL); |
| rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS); |
| rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS); |
| rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT); |
| rx_encap_hdr = |
| nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ? |
| EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) : |
| ESE_EZ_ENCAP_HDR_NONE; |
| |
| if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT)) |
| netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| |
| rx_queue = efx_channel_get_rx_queue(channel); |
| |
| if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue))) |
| efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label); |
| |
| n_descs = ((next_ptr_lbits - rx_queue->removed_count) & |
| ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); |
| |
| if (n_descs != rx_queue->scatter_n + 1) { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| /* detect rx abort */ |
| if (unlikely(n_descs == rx_queue->scatter_n)) { |
| if (rx_queue->scatter_n == 0 || rx_bytes != 0) |
| netdev_WARN(efx->net_dev, |
| "invalid RX abort: scatter_n=%u event=" |
| EFX_QWORD_FMT "\n", |
| rx_queue->scatter_n, |
| EFX_QWORD_VAL(*event)); |
| efx_ef10_handle_rx_abort(rx_queue); |
| return 0; |
| } |
| |
| /* Check that RX completion merging is valid, i.e. |
| * the current firmware supports it and this is a |
| * non-scattered packet. |
| */ |
| if (!(nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) || |
| rx_queue->scatter_n != 0 || rx_cont) { |
| efx_ef10_handle_rx_bad_lbits( |
| rx_queue, next_ptr_lbits, |
| (rx_queue->removed_count + |
| rx_queue->scatter_n + 1) & |
| ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); |
| return 0; |
| } |
| |
| /* Merged completion for multiple non-scattered packets */ |
| rx_queue->scatter_n = 1; |
| rx_queue->scatter_len = 0; |
| n_packets = n_descs; |
| ++channel->n_rx_merge_events; |
| channel->n_rx_merge_packets += n_packets; |
| flags |= EFX_RX_PKT_PREFIX_LEN; |
| } else { |
| ++rx_queue->scatter_n; |
| rx_queue->scatter_len += rx_bytes; |
| if (rx_cont) |
| return 0; |
| n_packets = 1; |
| } |
| |
| EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1, |
| ESF_DZ_RX_IPCKSUM_ERR, 1, |
| ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1, |
| ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1, |
| ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1); |
| EFX_AND_QWORD(errors, *event, errors); |
| if (unlikely(!EFX_QWORD_IS_ZERO(errors))) { |
| flags |= efx_ef10_handle_rx_event_errors(channel, n_packets, |
| rx_encap_hdr, |
| rx_l3_class, rx_l4_class, |
| event); |
| } else { |
| bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP || |
| rx_l4_class == ESE_FZ_L4_CLASS_UDP; |
| |
| switch (rx_encap_hdr) { |
| case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */ |
| flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */ |
| if (tcpudp) |
| flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */ |
| break; |
| case ESE_EZ_ENCAP_HDR_GRE: |
| case ESE_EZ_ENCAP_HDR_NONE: |
| if (tcpudp) |
| flags |= EFX_RX_PKT_CSUMMED; |
| break; |
| default: |
| netdev_WARN(efx->net_dev, |
| "unknown encapsulation type: event=" |
| EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*event)); |
| } |
| } |
| |
| if (rx_l4_class == ESE_FZ_L4_CLASS_TCP) |
| flags |= EFX_RX_PKT_TCP; |
| |
| channel->irq_mod_score += 2 * n_packets; |
| |
| /* Handle received packet(s) */ |
| for (i = 0; i < n_packets; i++) { |
| efx_rx_packet(rx_queue, |
| rx_queue->removed_count & rx_queue->ptr_mask, |
| rx_queue->scatter_n, rx_queue->scatter_len, |
| flags); |
| rx_queue->removed_count += rx_queue->scatter_n; |
| } |
| |
| rx_queue->scatter_n = 0; |
| rx_queue->scatter_len = 0; |
| |
| return n_packets; |
| } |
| |
| static u32 efx_ef10_extract_event_ts(efx_qword_t *event) |
| { |
| u32 tstamp; |
| |
| tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI); |
| tstamp <<= 16; |
| tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO); |
| |
| return tstamp; |
| } |
| |
| static int |
| efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_tx_queue *tx_queue; |
| unsigned int tx_ev_desc_ptr; |
| unsigned int tx_ev_q_label; |
| unsigned int tx_ev_type; |
| int work_done; |
| u64 ts_part; |
| |
| if (unlikely(READ_ONCE(efx->reset_pending))) |
| return 0; |
| |
| if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT))) |
| return 0; |
| |
| /* Get the transmit queue */ |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL); |
| tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL); |
| |
| if (!tx_queue->timestamping) { |
| /* Transmit completion */ |
| tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX); |
| return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask); |
| } |
| |
| /* Transmit timestamps are only available for 8XXX series. They result |
| * in up to three events per packet. These occur in order, and are: |
| * - the normal completion event (may be omitted) |
| * - the low part of the timestamp |
| * - the high part of the timestamp |
| * |
| * It's possible for multiple completion events to appear before the |
| * corresponding timestamps. So we can for example get: |
| * COMP N |
| * COMP N+1 |
| * TS_LO N |
| * TS_HI N |
| * TS_LO N+1 |
| * TS_HI N+1 |
| * |
| * In addition it's also possible for the adjacent completions to be |
| * merged, so we may not see COMP N above. As such, the completion |
| * events are not very useful here. |
| * |
| * Each part of the timestamp is itself split across two 16 bit |
| * fields in the event. |
| */ |
| tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1); |
| work_done = 0; |
| |
| switch (tx_ev_type) { |
| case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION: |
| /* Ignore this event - see above. */ |
| break; |
| |
| case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO: |
| ts_part = efx_ef10_extract_event_ts(event); |
| tx_queue->completed_timestamp_minor = ts_part; |
| break; |
| |
| case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI: |
| ts_part = efx_ef10_extract_event_ts(event); |
| tx_queue->completed_timestamp_major = ts_part; |
| |
| efx_xmit_done_single(tx_queue); |
| work_done = 1; |
| break; |
| |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "channel %d unknown tx event type %d (data " |
| EFX_QWORD_FMT ")\n", |
| channel->channel, tx_ev_type, |
| EFX_QWORD_VAL(*event)); |
| break; |
| } |
| |
| return work_done; |
| } |
| |
| static void |
| efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| int subcode; |
| |
| subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE); |
| |
| switch (subcode) { |
| case ESE_DZ_DRV_TIMER_EV: |
| case ESE_DZ_DRV_WAKE_UP_EV: |
| break; |
| case ESE_DZ_DRV_START_UP_EV: |
| /* event queue init complete. ok. */ |
| break; |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "channel %d unknown driver event type %d" |
| " (data " EFX_QWORD_FMT ")\n", |
| channel->channel, subcode, |
| EFX_QWORD_VAL(*event)); |
| |
| } |
| } |
| |
| static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel, |
| efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| u32 subcode; |
| |
| subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0); |
| |
| switch (subcode) { |
| case EFX_EF10_TEST: |
| channel->event_test_cpu = raw_smp_processor_id(); |
| break; |
| case EFX_EF10_REFILL: |
| /* The queue must be empty, so we won't receive any rx |
| * events, so efx_process_channel() won't refill the |
| * queue. Refill it here |
| */ |
| efx_fast_push_rx_descriptors(&channel->rx_queue, true); |
| break; |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "channel %d unknown driver event type %u" |
| " (data " EFX_QWORD_FMT ")\n", |
| channel->channel, (unsigned) subcode, |
| EFX_QWORD_VAL(*event)); |
| } |
| } |
| |
| #define EFX_NAPI_MAX_TX 512 |
| |
| static int efx_ef10_ev_process(struct efx_channel *channel, int quota) |
| { |
| struct efx_nic *efx = channel->efx; |
| efx_qword_t event, *p_event; |
| unsigned int read_ptr; |
| int spent_tx = 0; |
| int spent = 0; |
| int ev_code; |
| |
| if (quota <= 0) |
| return spent; |
| |
| read_ptr = channel->eventq_read_ptr; |
| |
| for (;;) { |
| p_event = efx_event(channel, read_ptr); |
| event = *p_event; |
| |
| if (!efx_event_present(&event)) |
| break; |
| |
| EFX_SET_QWORD(*p_event); |
| |
| ++read_ptr; |
| |
| ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE); |
| |
| netif_vdbg(efx, drv, efx->net_dev, |
| "processing event on %d " EFX_QWORD_FMT "\n", |
| channel->channel, EFX_QWORD_VAL(event)); |
| |
| switch (ev_code) { |
| case ESE_DZ_EV_CODE_MCDI_EV: |
| efx_mcdi_process_event(channel, &event); |
| break; |
| case ESE_DZ_EV_CODE_RX_EV: |
| spent += efx_ef10_handle_rx_event(channel, &event); |
| if (spent >= quota) { |
| /* XXX can we split a merged event to |
| * avoid going over-quota? |
| */ |
| spent = quota; |
| goto out; |
| } |
| break; |
| case ESE_DZ_EV_CODE_TX_EV: |
| spent_tx += efx_ef10_handle_tx_event(channel, &event); |
| if (spent_tx >= EFX_NAPI_MAX_TX) { |
| spent = quota; |
| goto out; |
| } |
| break; |
| case ESE_DZ_EV_CODE_DRIVER_EV: |
| efx_ef10_handle_driver_event(channel, &event); |
| if (++spent == quota) |
| goto out; |
| break; |
| case EFX_EF10_DRVGEN_EV: |
| efx_ef10_handle_driver_generated_event(channel, &event); |
| break; |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "channel %d unknown event type %d" |
| " (data " EFX_QWORD_FMT ")\n", |
| channel->channel, ev_code, |
| EFX_QWORD_VAL(event)); |
| } |
| } |
| |
| out: |
| channel->eventq_read_ptr = read_ptr; |
| return spent; |
| } |
| |
| static void efx_ef10_ev_read_ack(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| efx_dword_t rptr; |
| |
| if (EFX_EF10_WORKAROUND_35388(efx)) { |
| BUILD_BUG_ON(EFX_MIN_EVQ_SIZE < |
| (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); |
| BUILD_BUG_ON(EFX_MAX_EVQ_SIZE > |
| (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); |
| |
| EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, |
| EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, |
| ERF_DD_EVQ_IND_RPTR, |
| (channel->eventq_read_ptr & |
| channel->eventq_mask) >> |
| ERF_DD_EVQ_IND_RPTR_WIDTH); |
| efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, |
| channel->channel); |
| EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, |
| EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, |
| ERF_DD_EVQ_IND_RPTR, |
| channel->eventq_read_ptr & |
| ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); |
| efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, |
| channel->channel); |
| } else { |
| EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR, |
| channel->eventq_read_ptr & |
| channel->eventq_mask); |
| efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel); |
| } |
| } |
| |
| static void efx_ef10_ev_test_generate(struct efx_channel *channel) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); |
| struct efx_nic *efx = channel->efx; |
| efx_qword_t event; |
| int rc; |
| |
| EFX_POPULATE_QWORD_2(event, |
| ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, |
| ESF_DZ_EV_DATA, EFX_EF10_TEST); |
| |
| MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); |
| |
| /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has |
| * already swapped the data to little-endian order. |
| */ |
| memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], |
| sizeof(efx_qword_t)); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| if (rc != 0) |
| goto fail; |
| |
| return; |
| |
| fail: |
| WARN_ON(true); |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| } |
| |
| static void efx_ef10_prepare_flr(struct efx_nic *efx) |
| { |
| atomic_set(&efx->active_queues, 0); |
| } |
| |
| static int efx_ef10_vport_set_mac_address(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u8 mac_old[ETH_ALEN]; |
| int rc, rc2; |
| |
| /* Only reconfigure a PF-created vport */ |
| if (is_zero_ether_addr(nic_data->vport_mac)) |
| return 0; |
| |
| efx_device_detach_sync(efx); |
| efx_net_stop(efx->net_dev); |
| efx_ef10_filter_table_remove(efx); |
| |
| rc = efx_ef10_vadaptor_free(efx, efx->vport_id); |
| if (rc) |
| goto restore_filters; |
| |
| ether_addr_copy(mac_old, nic_data->vport_mac); |
| rc = efx_ef10_vport_del_mac(efx, efx->vport_id, |
| nic_data->vport_mac); |
| if (rc) |
| goto restore_vadaptor; |
| |
| rc = efx_ef10_vport_add_mac(efx, efx->vport_id, |
| efx->net_dev->dev_addr); |
| if (!rc) { |
| ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr); |
| } else { |
| rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old); |
| if (rc2) { |
| /* Failed to add original MAC, so clear vport_mac */ |
| eth_zero_addr(nic_data->vport_mac); |
| goto reset_nic; |
| } |
| } |
| |
| restore_vadaptor: |
| rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id); |
| if (rc2) |
| goto reset_nic; |
| restore_filters: |
| rc2 = efx_ef10_filter_table_probe(efx); |
| if (rc2) |
| goto reset_nic; |
| |
| rc2 = efx_net_open(efx->net_dev); |
| if (rc2) |
| goto reset_nic; |
| |
| efx_device_attach_if_not_resetting(efx); |
| |
| return rc; |
| |
| reset_nic: |
| netif_err(efx, drv, efx->net_dev, |
| "Failed to restore when changing MAC address - scheduling reset\n"); |
| efx_schedule_reset(efx, RESET_TYPE_DATAPATH); |
| |
| return rc ? rc : rc2; |
| } |
| |
| static int efx_ef10_set_mac_address(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN); |
| bool was_enabled = efx->port_enabled; |
| int rc; |
| |
| #ifdef CONFIG_SFC_SRIOV |
| /* If this function is a VF and we have access to the parent PF, |
| * then use the PF control path to attempt to change the VF MAC address. |
| */ |
| if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) { |
| struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn); |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| u8 mac[ETH_ALEN]; |
| |
| /* net_dev->dev_addr can be zeroed by efx_net_stop in |
| * efx_ef10_sriov_set_vf_mac, so pass in a copy. |
| */ |
| ether_addr_copy(mac, efx->net_dev->dev_addr); |
| |
| rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac); |
| if (!rc) |
| return 0; |
| |
| netif_dbg(efx, drv, efx->net_dev, |
| "Updating VF mac via PF failed (%d), setting directly\n", |
| rc); |
| } |
| #endif |
| |
| efx_device_detach_sync(efx); |
| efx_net_stop(efx->net_dev); |
| |
| mutex_lock(&efx->mac_lock); |
| efx_ef10_filter_table_remove(efx); |
| |
| ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR), |
| efx->net_dev->dev_addr); |
| MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID, |
| efx->vport_id); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf, |
| sizeof(inbuf), NULL, 0, NULL); |
| |
| efx_ef10_filter_table_probe(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| if (was_enabled) |
| efx_net_open(efx->net_dev); |
| efx_device_attach_if_not_resetting(efx); |
| |
| if (rc == -EPERM) { |
| netif_err(efx, drv, efx->net_dev, |
| "Cannot change MAC address; use sfboot to enable" |
| " mac-spoofing on this interface\n"); |
| } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) { |
| /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC |
| * fall-back to the method of changing the MAC address on the |
| * vport. This only applies to PFs because such versions of |
| * MCFW do not support VFs. |
| */ |
| rc = efx_ef10_vport_set_mac_address(efx); |
| } else if (rc) { |
| efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC, |
| sizeof(inbuf), NULL, 0, rc); |
| } |
| |
| return rc; |
| } |
| |
| static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only) |
| { |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| efx_mcdi_filter_sync_rx_mode(efx); |
| |
| if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) |
| return efx_mcdi_set_mtu(efx); |
| return efx_mcdi_set_mac(efx); |
| } |
| |
| static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN); |
| |
| MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type); |
| return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| /* MC BISTs follow a different poll mechanism to phy BISTs. |
| * The BIST is done in the poll handler on the MC, and the MCDI command |
| * will block until the BIST is done. |
| */ |
| static int efx_ef10_poll_bist(struct efx_nic *efx) |
| { |
| int rc; |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN); |
| size_t outlen; |
| u32 result; |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc != 0) |
| return rc; |
| |
| if (outlen < MC_CMD_POLL_BIST_OUT_LEN) |
| return -EIO; |
| |
| result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT); |
| switch (result) { |
| case MC_CMD_POLL_BIST_PASSED: |
| netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n"); |
| return 0; |
| case MC_CMD_POLL_BIST_TIMEOUT: |
| netif_err(efx, hw, efx->net_dev, "BIST timed out\n"); |
| return -EIO; |
| case MC_CMD_POLL_BIST_FAILED: |
| netif_err(efx, hw, efx->net_dev, "BIST failed.\n"); |
| return -EIO; |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "BIST returned unknown result %u", result); |
| return -EIO; |
| } |
| } |
| |
| static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type) |
| { |
| int rc; |
| |
| netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type); |
| |
| rc = efx_ef10_start_bist(efx, bist_type); |
| if (rc != 0) |
| return rc; |
| |
| return efx_ef10_poll_bist(efx); |
| } |
| |
| static int |
| efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) |
| { |
| int rc, rc2; |
| |
| efx_reset_down(efx, RESET_TYPE_WORLD); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST, |
| NULL, 0, NULL, 0, NULL); |
| if (rc != 0) |
| goto out; |
| |
| tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1; |
| tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1; |
| |
| rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD); |
| |
| out: |
| if (rc == -EPERM) |
| rc = 0; |
| rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0); |
| return rc ? rc : rc2; |
| } |
| |
| #ifdef CONFIG_SFC_MTD |
| |
| struct efx_ef10_nvram_type_info { |
| u16 type, type_mask; |
| u8 port; |
| const char *name; |
| }; |
| |
| static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = { |
| { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" }, |
| { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" }, |
| { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" }, |
| { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" }, |
| { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" }, |
| { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" }, |
| { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" }, |
| { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" }, |
| { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" }, |
| { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" }, |
| { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" }, |
| { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" }, |
| { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" }, |
| { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" }, |
| { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" }, |
| { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" }, |
| { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" }, |
| { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" }, |
| }; |
| #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types) |
| |
| static int efx_ef10_mtd_probe_partition(struct efx_nic *efx, |
| struct efx_mcdi_mtd_partition *part, |
| unsigned int type, |
| unsigned long *found) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX); |
| const struct efx_ef10_nvram_type_info *info; |
| size_t size, erase_size, outlen; |
| int type_idx = 0; |
| bool protected; |
| int rc; |
| |
| for (type_idx = 0; ; type_idx++) { |
| if (type_idx == EF10_NVRAM_PARTITION_COUNT) |
| return -ENODEV; |
| info = efx_ef10_nvram_types + type_idx; |
| if ((type & ~info->type_mask) == info->type) |
| break; |
| } |
| if (info->port != efx_port_num(efx)) |
| return -ENODEV; |
| |
| rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); |
| if (rc) |
| return rc; |
| if (protected && |
| (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS && |
| type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS)) |
| /* Hide protected partitions that don't provide defaults. */ |
| return -ENODEV; |
| |
| if (protected) |
| /* Protected partitions are read only. */ |
| erase_size = 0; |
| |
| /* If we've already exposed a partition of this type, hide this |
| * duplicate. All operations on MTDs are keyed by the type anyway, |
| * so we can't act on the duplicate. |
| */ |
| if (__test_and_set_bit(type_idx, found)) |
| return -EEXIST; |
| |
| part->nvram_type = type; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) |
| return -EIO; |
| if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) & |
| (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) |
| part->fw_subtype = MCDI_DWORD(outbuf, |
| NVRAM_METADATA_OUT_SUBTYPE); |
| |
| part->common.dev_type_name = "EF10 NVRAM manager"; |
| part->common.type_name = info->name; |
| |
| part->common.mtd.type = MTD_NORFLASH; |
| part->common.mtd.flags = MTD_CAP_NORFLASH; |
| part->common.mtd.size = size; |
| part->common.mtd.erasesize = erase_size; |
| /* sfc_status is read-only */ |
| if (!erase_size) |
| part->common.mtd.flags |= MTD_NO_ERASE; |
| |
| return 0; |
| } |
| |
| static int efx_ef10_mtd_probe(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX); |
| DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 }; |
| struct efx_mcdi_mtd_partition *parts; |
| size_t outlen, n_parts_total, i, n_parts; |
| unsigned int type; |
| int rc; |
| |
| ASSERT_RTNL(); |
| |
| BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) |
| return -EIO; |
| |
| n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); |
| if (n_parts_total > |
| MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID)) |
| return -EIO; |
| |
| parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL); |
| if (!parts) |
| return -ENOMEM; |
| |
| n_parts = 0; |
| for (i = 0; i < n_parts_total; i++) { |
| type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID, |
| i); |
| rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type, |
| found); |
| if (rc == -EEXIST || rc == -ENODEV) |
| continue; |
| if (rc) |
| goto fail; |
| n_parts++; |
| } |
| |
| if (!n_parts) { |
| kfree(parts); |
| return 0; |
| } |
| |
| rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); |
| fail: |
| if (rc) |
| kfree(parts); |
| return rc; |
| } |
| |
| #endif /* CONFIG_SFC_MTD */ |
| |
| static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time) |
| { |
| _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD); |
| } |
| |
| static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx, |
| u32 host_time) {} |
| |
| static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel, |
| bool temp) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN); |
| int rc; |
| |
| if (channel->sync_events_state == SYNC_EVENTS_REQUESTED || |
| channel->sync_events_state == SYNC_EVENTS_VALID || |
| (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED)) |
| return 0; |
| channel->sync_events_state = SYNC_EVENTS_REQUESTED; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE, |
| channel->channel); |
| |
| rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, |
| inbuf, sizeof(inbuf), NULL, 0, NULL); |
| |
| if (rc != 0) |
| channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : |
| SYNC_EVENTS_DISABLED; |
| |
| return rc; |
| } |
| |
| static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel, |
| bool temp) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN); |
| int rc; |
| |
| if (channel->sync_events_state == SYNC_EVENTS_DISABLED || |
| (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT)) |
| return 0; |
| if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) { |
| channel->sync_events_state = SYNC_EVENTS_DISABLED; |
| return 0; |
| } |
| channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : |
| SYNC_EVENTS_DISABLED; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE); |
| MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); |
| MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL, |
| MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE); |
| MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE, |
| channel->channel); |
| |
| rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, |
| inbuf, sizeof(inbuf), NULL, 0, NULL); |
| |
| return rc; |
| } |
| |
| static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, |
| bool temp) |
| { |
| int (*set)(struct efx_channel *channel, bool temp); |
| struct efx_channel *channel; |
| |
| set = en ? |
| efx_ef10_rx_enable_timestamping : |
| efx_ef10_rx_disable_timestamping; |
| |
| channel = efx_ptp_channel(efx); |
| if (channel) { |
| int rc = set(channel, temp); |
| if (en && rc != 0) { |
| efx_ef10_ptp_set_ts_sync_events(efx, false, temp); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx, |
| struct kernel_hwtstamp_config *init) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx, |
| struct kernel_hwtstamp_config *init) |
| { |
| int rc; |
| |
| switch (init->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| efx_ef10_ptp_set_ts_sync_events(efx, false, false); |
| /* if TX timestamping is still requested then leave PTP on */ |
| return efx_ptp_change_mode(efx, |
| init->tx_type != HWTSTAMP_TX_OFF, 0); |
| case HWTSTAMP_FILTER_ALL: |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_NTP_ALL: |
| init->rx_filter = HWTSTAMP_FILTER_ALL; |
| rc = efx_ptp_change_mode(efx, true, 0); |
| if (!rc) |
| rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false); |
| if (rc) |
| efx_ptp_change_mode(efx, false, 0); |
| return rc; |
| default: |
| return -ERANGE; |
| } |
| } |
| |
| static int efx_ef10_get_phys_port_id(struct efx_nic *efx, |
| struct netdev_phys_item_id *ppid) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| if (!is_valid_ether_addr(nic_data->port_id)) |
| return -EOPNOTSUPP; |
| |
| ppid->id_len = ETH_ALEN; |
| memcpy(ppid->id, nic_data->port_id, ppid->id_len); |
| |
| return 0; |
| } |
| |
| static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid) |
| { |
| if (proto != htons(ETH_P_8021Q)) |
| return -EINVAL; |
| |
| return efx_ef10_add_vlan(efx, vid); |
| } |
| |
| static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid) |
| { |
| if (proto != htons(ETH_P_8021Q)) |
| return -EINVAL; |
| |
| return efx_ef10_del_vlan(efx, vid); |
| } |
| |
| /* We rely on the MCDI wiping out our TX rings if it made any changes to the |
| * ports table, ensuring that any TSO descriptors that were made on a now- |
| * removed tunnel port will be blown away and won't break things when we try |
| * to transmit them using the new ports table. |
| */ |
| static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN); |
| bool will_reset = false; |
| size_t num_entries = 0; |
| size_t inlen, outlen; |
| size_t i; |
| int rc; |
| efx_dword_t flags_and_num_entries; |
| |
| WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock)); |
| |
| nic_data->udp_tunnels_dirty = false; |
| |
| if (!(nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) { |
| efx_device_attach_if_not_resetting(efx); |
| return 0; |
| } |
| |
| BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) > |
| MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); |
| |
| for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) { |
| if (nic_data->udp_tunnels[i].type != |
| TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) { |
| efx_dword_t entry; |
| |
| EFX_POPULATE_DWORD_2(entry, |
| TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT, |
| ntohs(nic_data->udp_tunnels[i].port), |
| TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL, |
| nic_data->udp_tunnels[i].type); |
| *_MCDI_ARRAY_DWORD(inbuf, |
| SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES, |
| num_entries++) = entry; |
| } |
| } |
| |
| BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST - |
| MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 != |
| EFX_WORD_1_LBN); |
| BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 != |
| EFX_WORD_1_WIDTH); |
| EFX_POPULATE_DWORD_2(flags_and_num_entries, |
| MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING, |
| !!unloading, |
| EFX_WORD_1, num_entries); |
| *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) = |
| flags_and_num_entries; |
| |
| inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries); |
| |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS, |
| inbuf, inlen, outbuf, sizeof(outbuf), &outlen); |
| if (rc == -EIO) { |
| /* Most likely the MC rebooted due to another function also |
| * setting its tunnel port list. Mark the tunnel port list as |
| * dirty, so it will be pushed upon coming up from the reboot. |
| */ |
| nic_data->udp_tunnels_dirty = true; |
| return 0; |
| } |
| |
| if (rc) { |
| /* expected not available on unprivileged functions */ |
| if (rc != -EPERM) |
| netif_warn(efx, drv, efx->net_dev, |
| "Unable to set UDP tunnel ports; rc=%d.\n", rc); |
| } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) & |
| (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) { |
| netif_info(efx, drv, efx->net_dev, |
| "Rebooting MC due to UDP tunnel port list change\n"); |
| will_reset = true; |
| if (unloading) |
| /* Delay for the MC reset to complete. This will make |
| * unloading other functions a bit smoother. This is a |
| * race, but the other unload will work whichever way |
| * it goes, this just avoids an unnecessary error |
| * message. |
| */ |
| msleep(100); |
| } |
| if (!will_reset && !unloading) { |
| /* The caller will have detached, relying on the MC reset to |
| * trigger a re-attach. Since there won't be an MC reset, we |
| * have to do the attach ourselves. |
| */ |
| efx_device_attach_if_not_resetting(efx); |
| } |
| |
| return rc; |
| } |
| |
| static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| int rc = 0; |
| |
| mutex_lock(&nic_data->udp_tunnels_lock); |
| if (nic_data->udp_tunnels_dirty) { |
| /* Make sure all TX are stopped while we modify the table, else |
| * we might race against an efx_features_check(). |
| */ |
| efx_device_detach_sync(efx); |
| rc = efx_ef10_set_udp_tnl_ports(efx, false); |
| } |
| mutex_unlock(&nic_data->udp_tunnels_lock); |
| return rc; |
| } |
| |
| static int efx_ef10_udp_tnl_set_port(struct net_device *dev, |
| unsigned int table, unsigned int entry, |
| struct udp_tunnel_info *ti) |
| { |
| struct efx_nic *efx = efx_netdev_priv(dev); |
| struct efx_ef10_nic_data *nic_data; |
| int efx_tunnel_type, rc; |
| |
| if (ti->type == UDP_TUNNEL_TYPE_VXLAN) |
| efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; |
| else |
| efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; |
| |
| nic_data = efx->nic_data; |
| if (!(nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) |
| return -EOPNOTSUPP; |
| |
| mutex_lock(&nic_data->udp_tunnels_lock); |
| /* Make sure all TX are stopped while we add to the table, else we |
| * might race against an efx_features_check(). |
| */ |
| efx_device_detach_sync(efx); |
| nic_data->udp_tunnels[entry].type = efx_tunnel_type; |
| nic_data->udp_tunnels[entry].port = ti->port; |
| rc = efx_ef10_set_udp_tnl_ports(efx, false); |
| mutex_unlock(&nic_data->udp_tunnels_lock); |
| |
| return rc; |
| } |
| |
| /* Called under the TX lock with the TX queue running, hence no-one can be |
| * in the middle of updating the UDP tunnels table. However, they could |
| * have tried and failed the MCDI, in which case they'll have set the dirty |
| * flag before dropping their locks. |
| */ |
| static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| size_t i; |
| |
| if (!(nic_data->datapath_caps & |
| (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) |
| return false; |
| |
| if (nic_data->udp_tunnels_dirty) |
| /* SW table may not match HW state, so just assume we can't |
| * use any UDP tunnel offloads. |
| */ |
| return false; |
| |
| for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) |
| if (nic_data->udp_tunnels[i].type != |
| TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID && |
| nic_data->udp_tunnels[i].port == port) |
| return true; |
| |
| return false; |
| } |
| |
| static int efx_ef10_udp_tnl_unset_port(struct net_device *dev, |
| unsigned int table, unsigned int entry, |
| struct udp_tunnel_info *ti) |
| { |
| struct efx_nic *efx = efx_netdev_priv(dev); |
| struct efx_ef10_nic_data *nic_data; |
| int rc; |
| |
| nic_data = efx->nic_data; |
| |
| mutex_lock(&nic_data->udp_tunnels_lock); |
| /* Make sure all TX are stopped while we remove from the table, else we |
| * might race against an efx_features_check(). |
| */ |
| efx_device_detach_sync(efx); |
| nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID; |
| nic_data->udp_tunnels[entry].port = 0; |
| rc = efx_ef10_set_udp_tnl_ports(efx, false); |
| mutex_unlock(&nic_data->udp_tunnels_lock); |
| |
| return rc; |
| } |
| |
| static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = { |
| .set_port = efx_ef10_udp_tnl_set_port, |
| .unset_port = efx_ef10_udp_tnl_unset_port, |
| .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP, |
| .tables = { |
| { |
| .n_entries = 16, |
| .tunnel_types = UDP_TUNNEL_TYPE_VXLAN | |
| UDP_TUNNEL_TYPE_GENEVE, |
| }, |
| }, |
| }; |
| |
| /* EF10 may have multiple datapath firmware variants within a |
| * single version. Report which variants are running. |
| */ |
| static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf, |
| size_t len) |
| { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| return scnprintf(buf, len, " rx%x tx%x", |
| nic_data->rx_dpcpu_fw_id, |
| nic_data->tx_dpcpu_fw_id); |
| } |
| |
| static unsigned int ef10_check_caps(const struct efx_nic *efx, |
| u8 flag, |
| u32 offset) |
| { |
| const struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| switch (offset) { |
| case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST): |
| return nic_data->datapath_caps & BIT_ULL(flag); |
| case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST): |
| return nic_data->datapath_caps2 & BIT_ULL(flag); |
| default: |
| return 0; |
| } |
| } |
| |
| static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx) |
| { |
| unsigned int ret = EFX_RECYCLE_RING_SIZE_10G; |
| |
| /* There is no difference between PFs and VFs. The side is based on |
| * the maximum link speed of a given NIC. |
| */ |
| switch (efx->pci_dev->device & 0xfff) { |
| case 0x0903: /* Farmingdale can do up to 10G */ |
| break; |
| case 0x0923: /* Greenport can do up to 40G */ |
| case 0x0a03: /* Medford can do up to 40G */ |
| ret *= 4; |
| break; |
| default: /* Medford2 can do up to 100G */ |
| ret *= 10; |
| } |
| |
| if (IS_ENABLED(CONFIG_PPC64)) |
| ret *= 4; |
| |
| return ret; |
| } |
| |
| #define EF10_OFFLOAD_FEATURES \ |
| (NETIF_F_IP_CSUM | \ |
| NETIF_F_HW_VLAN_CTAG_FILTER | \ |
| NETIF_F_IPV6_CSUM | \ |
| NETIF_F_RXHASH | \ |
| NETIF_F_NTUPLE | \ |
| NETIF_F_SG | \ |
| NETIF_F_RXCSUM | \ |
| NETIF_F_RXALL) |
| |
| const struct efx_nic_type efx_hunt_a0_vf_nic_type = { |
| .is_vf = true, |
| .mem_bar = efx_ef10_vf_mem_bar, |
| .mem_map_size = efx_ef10_mem_map_size, |
| .probe = efx_ef10_probe_vf, |
| .remove = efx_ef10_remove, |
| .dimension_resources = efx_ef10_dimension_resources, |
| .init = efx_ef10_init_nic, |
| .fini = efx_ef10_fini_nic, |
| .map_reset_reason = efx_ef10_map_reset_reason, |
| .map_reset_flags = efx_ef10_map_reset_flags, |
| .reset = efx_ef10_reset, |
| .probe_port = efx_mcdi_port_probe, |
| .remove_port = efx_mcdi_port_remove, |
| .fini_dmaq = efx_fini_dmaq, |
| .prepare_flr = efx_ef10_prepare_flr, |
| .finish_flr = efx_port_dummy_op_void, |
| .describe_stats = efx_ef10_describe_stats, |
| .update_stats = efx_ef10_update_stats_vf, |
| .update_stats_atomic = efx_ef10_update_stats_atomic_vf, |
| .start_stats = efx_port_dummy_op_void, |
| .pull_stats = efx_port_dummy_op_void, |
| .stop_stats = efx_port_dummy_op_void, |
| .push_irq_moderation = efx_ef10_push_irq_moderation, |
| .reconfigure_mac = efx_ef10_mac_reconfigure, |
| .check_mac_fault = efx_mcdi_mac_check_fault, |
| .reconfigure_port = efx_mcdi_port_reconfigure, |
| .get_wol = efx_ef10_get_wol_vf, |
| .set_wol = efx_ef10_set_wol_vf, |
| .resume_wol = efx_port_dummy_op_void, |
| .mcdi_request = efx_ef10_mcdi_request, |
| .mcdi_poll_response = efx_ef10_mcdi_poll_response, |
| .mcdi_read_response = efx_ef10_mcdi_read_response, |
| .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, |
| .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, |
| .irq_enable_master = efx_port_dummy_op_void, |
| .irq_test_generate = efx_ef10_irq_test_generate, |
| .irq_disable_non_ev = efx_port_dummy_op_void, |
| .irq_handle_msi = efx_ef10_msi_interrupt, |
| .irq_handle_legacy = efx_ef10_legacy_interrupt, |
| .tx_probe = efx_ef10_tx_probe, |
| .tx_init = efx_ef10_tx_init, |
| .tx_remove = efx_mcdi_tx_remove, |
| .tx_write = efx_ef10_tx_write, |
| .tx_limit_len = efx_ef10_tx_limit_len, |
| .tx_enqueue = __efx_enqueue_skb, |
| .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config, |
| .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, |
| .rx_probe = efx_mcdi_rx_probe, |
| .rx_init = efx_mcdi_rx_init, |
| .rx_remove = efx_mcdi_rx_remove, |
| .rx_write = efx_ef10_rx_write, |
| .rx_defer_refill = efx_ef10_rx_defer_refill, |
| .rx_packet = __efx_rx_packet, |
| .ev_probe = efx_mcdi_ev_probe, |
| .ev_init = efx_ef10_ev_init, |
| .ev_fini = efx_mcdi_ev_fini, |
| .ev_remove = efx_mcdi_ev_remove, |
| .ev_process = efx_ef10_ev_process, |
| .ev_read_ack = efx_ef10_ev_read_ack, |
| .ev_test_generate = efx_ef10_ev_test_generate, |
| .filter_table_probe = efx_ef10_filter_table_probe, |
| .filter_table_restore = efx_mcdi_filter_table_restore, |
| .filter_table_remove = efx_ef10_filter_table_remove, |
| .filter_update_rx_scatter = efx_mcdi_update_rx_scatter, |
| .filter_insert = efx_mcdi_filter_insert, |
| .filter_remove_safe = efx_mcdi_filter_remove_safe, |
| .filter_get_safe = efx_mcdi_filter_get_safe, |
| .filter_clear_rx = efx_mcdi_filter_clear_rx, |
| .filter_count_rx_used = efx_mcdi_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, |
| #ifdef CONFIG_RFS_ACCEL |
| .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, |
| #endif |
| #ifdef CONFIG_SFC_MTD |
| .mtd_probe = efx_port_dummy_op_int, |
| #endif |
| .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf, |
| .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf, |
| .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, |
| .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, |
| #ifdef CONFIG_SFC_SRIOV |
| .vswitching_probe = efx_ef10_vswitching_probe_vf, |
| .vswitching_restore = efx_ef10_vswitching_restore_vf, |
| .vswitching_remove = efx_ef10_vswitching_remove_vf, |
| #endif |
| .get_mac_address = efx_ef10_get_mac_address_vf, |
| .set_mac_address = efx_ef10_set_mac_address, |
| |
| .get_phys_port_id = efx_ef10_get_phys_port_id, |
| .revision = EFX_REV_HUNT_A0, |
| .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, |
| .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, |
| .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, |
| .can_rx_scatter = true, |
| .always_rx_scatter = true, |
| .min_interrupt_mode = EFX_INT_MODE_MSIX, |
| .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, |
| .offload_features = EF10_OFFLOAD_FEATURES, |
| .mcdi_max_ver = 2, |
| .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, |
| .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | |
| 1 << HWTSTAMP_FILTER_ALL, |
| .rx_hash_key_size = 40, |
| .check_caps = ef10_check_caps, |
| .print_additional_fwver = efx_ef10_print_additional_fwver, |
| .sensor_event = efx_mcdi_sensor_event, |
| .rx_recycle_ring_size = efx_ef10_recycle_ring_size, |
| }; |
| |
| const struct efx_nic_type efx_hunt_a0_nic_type = { |
| .is_vf = false, |
| .mem_bar = efx_ef10_pf_mem_bar, |
| .mem_map_size = efx_ef10_mem_map_size, |
| .probe = efx_ef10_probe_pf, |
| .remove = efx_ef10_remove, |
| .dimension_resources = efx_ef10_dimension_resources, |
| .init = efx_ef10_init_nic, |
| .fini = efx_ef10_fini_nic, |
| .map_reset_reason = efx_ef10_map_reset_reason, |
| .map_reset_flags = efx_ef10_map_reset_flags, |
| .reset = efx_ef10_reset, |
| .probe_port = efx_mcdi_port_probe, |
| .remove_port = efx_mcdi_port_remove, |
| .fini_dmaq = efx_fini_dmaq, |
| .prepare_flr = efx_ef10_prepare_flr, |
| .finish_flr = efx_port_dummy_op_void, |
| .describe_stats = efx_ef10_describe_stats, |
| .update_stats = efx_ef10_update_stats_pf, |
| .start_stats = efx_mcdi_mac_start_stats, |
| .pull_stats = efx_mcdi_mac_pull_stats, |
| .stop_stats = efx_mcdi_mac_stop_stats, |
| .push_irq_moderation = efx_ef10_push_irq_moderation, |
| .reconfigure_mac = efx_ef10_mac_reconfigure, |
| .check_mac_fault = efx_mcdi_mac_check_fault, |
| .reconfigure_port = efx_mcdi_port_reconfigure, |
| .get_wol = efx_ef10_get_wol, |
| .set_wol = efx_ef10_set_wol, |
| .resume_wol = efx_port_dummy_op_void, |
| .get_fec_stats = efx_ef10_get_fec_stats, |
| .test_chip = efx_ef10_test_chip, |
| .test_nvram = efx_mcdi_nvram_test_all, |
| .mcdi_request = efx_ef10_mcdi_request, |
| .mcdi_poll_response = efx_ef10_mcdi_poll_response, |
| .mcdi_read_response = efx_ef10_mcdi_read_response, |
| .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, |
| .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, |
| .irq_enable_master = efx_port_dummy_op_void, |
| .irq_test_generate = efx_ef10_irq_test_generate, |
| .irq_disable_non_ev = efx_port_dummy_op_void, |
| .irq_handle_msi = efx_ef10_msi_interrupt, |
| .irq_handle_legacy = efx_ef10_legacy_interrupt, |
| .tx_probe = efx_ef10_tx_probe, |
| .tx_init = efx_ef10_tx_init, |
| .tx_remove = efx_mcdi_tx_remove, |
| .tx_write = efx_ef10_tx_write, |
| .tx_limit_len = efx_ef10_tx_limit_len, |
| .tx_enqueue = __efx_enqueue_skb, |
| .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, |
| .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, |
| .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, |
| .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, |
| .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, |
| .rx_probe = efx_mcdi_rx_probe, |
| .rx_init = efx_mcdi_rx_init, |
| .rx_remove = efx_mcdi_rx_remove, |
| .rx_write = efx_ef10_rx_write, |
| .rx_defer_refill = efx_ef10_rx_defer_refill, |
| .rx_packet = __efx_rx_packet, |
| .ev_probe = efx_mcdi_ev_probe, |
| .ev_init = efx_ef10_ev_init, |
| .ev_fini = efx_mcdi_ev_fini, |
| .ev_remove = efx_mcdi_ev_remove, |
| .ev_process = efx_ef10_ev_process, |
| .ev_read_ack = efx_ef10_ev_read_ack, |
| .ev_test_generate = efx_ef10_ev_test_generate, |
| .filter_table_probe = efx_ef10_filter_table_probe, |
| .filter_table_restore = efx_mcdi_filter_table_restore, |
| .filter_table_remove = efx_ef10_filter_table_remove, |
| .filter_update_rx_scatter = efx_mcdi_update_rx_scatter, |
| .filter_insert = efx_mcdi_filter_insert, |
| .filter_remove_safe = efx_mcdi_filter_remove_safe, |
| .filter_get_safe = efx_mcdi_filter_get_safe, |
| .filter_clear_rx = efx_mcdi_filter_clear_rx, |
| .filter_count_rx_used = efx_mcdi_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, |
| #ifdef CONFIG_RFS_ACCEL |
| .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, |
| #endif |
| #ifdef CONFIG_SFC_MTD |
| .mtd_probe = efx_ef10_mtd_probe, |
| .mtd_rename = efx_mcdi_mtd_rename, |
| .mtd_read = efx_mcdi_mtd_read, |
| .mtd_erase = efx_mcdi_mtd_erase, |
| .mtd_write = efx_mcdi_mtd_write, |
| .mtd_sync = efx_mcdi_mtd_sync, |
| #endif |
| .ptp_write_host_time = efx_ef10_ptp_write_host_time, |
| .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, |
| .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, |
| .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, |
| .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, |
| .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports, |
| .udp_tnl_has_port = efx_ef10_udp_tnl_has_port, |
| #ifdef CONFIG_SFC_SRIOV |
| .sriov_configure = efx_ef10_sriov_configure, |
| .sriov_init = efx_ef10_sriov_init, |
| .sriov_fini = efx_ef10_sriov_fini, |
| .sriov_wanted = efx_ef10_sriov_wanted, |
| .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac, |
| .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan, |
| .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk, |
| .sriov_get_vf_config = efx_ef10_sriov_get_vf_config, |
| .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state, |
| .vswitching_probe = efx_ef10_vswitching_probe_pf, |
| .vswitching_restore = efx_ef10_vswitching_restore_pf, |
| .vswitching_remove = efx_ef10_vswitching_remove_pf, |
| #endif |
| .get_mac_address = efx_ef10_get_mac_address_pf, |
| .set_mac_address = efx_ef10_set_mac_address, |
| .tso_versions = efx_ef10_tso_versions, |
| |
| .get_phys_port_id = efx_ef10_get_phys_port_id, |
| .revision = EFX_REV_HUNT_A0, |
| .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, |
| .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, |
| .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, |
| .can_rx_scatter = true, |
| .always_rx_scatter = true, |
| .option_descriptors = true, |
| .min_interrupt_mode = EFX_INT_MODE_LEGACY, |
| .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, |
| .offload_features = EF10_OFFLOAD_FEATURES, |
| .mcdi_max_ver = 2, |
| .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, |
| .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | |
| 1 << HWTSTAMP_FILTER_ALL, |
| .rx_hash_key_size = 40, |
| .check_caps = ef10_check_caps, |
| .print_additional_fwver = efx_ef10_print_additional_fwver, |
| .sensor_event = efx_mcdi_sensor_event, |
| .rx_recycle_ring_size = efx_ef10_recycle_ring_size, |
| }; |
| |
| const struct efx_nic_type efx_x4_nic_type = { |
| .is_vf = false, |
| .mem_bar = efx_ef10_pf_mem_bar, |
| .mem_map_size = efx_ef10_mem_map_size, |
| .probe = efx_ef10_probe_pf, |
| .remove = efx_ef10_remove, |
| .dimension_resources = efx_ef10_dimension_resources, |
| .init = efx_ef10_init_nic, |
| .fini = efx_ef10_fini_nic, |
| .map_reset_reason = efx_ef10_map_reset_reason, |
| .map_reset_flags = efx_ef10_map_reset_flags, |
| .reset = efx_ef10_reset, |
| .probe_port = efx_mcdi_port_probe, |
| .remove_port = efx_mcdi_port_remove, |
| .fini_dmaq = efx_fini_dmaq, |
| .prepare_flr = efx_ef10_prepare_flr, |
| .finish_flr = efx_port_dummy_op_void, |
| .describe_stats = efx_ef10_describe_stats, |
| .update_stats = efx_ef10_update_stats_pf, |
| .start_stats = efx_mcdi_mac_start_stats, |
| .pull_stats = efx_mcdi_mac_pull_stats, |
| .stop_stats = efx_mcdi_mac_stop_stats, |
| .push_irq_moderation = efx_ef10_push_irq_moderation, |
| .reconfigure_mac = efx_ef10_mac_reconfigure, |
| .check_mac_fault = efx_mcdi_mac_check_fault, |
| .reconfigure_port = efx_mcdi_port_reconfigure, |
| .get_wol = efx_ef10_get_wol, |
| .set_wol = efx_ef10_set_wol, |
| .resume_wol = efx_port_dummy_op_void, |
| .get_fec_stats = efx_ef10_get_fec_stats, |
| .test_chip = efx_ef10_test_chip, |
| .test_nvram = efx_mcdi_nvram_test_all, |
| .mcdi_request = efx_ef10_mcdi_request, |
| .mcdi_poll_response = efx_ef10_mcdi_poll_response, |
| .mcdi_read_response = efx_ef10_mcdi_read_response, |
| .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, |
| .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, |
| .irq_enable_master = efx_port_dummy_op_void, |
| .irq_test_generate = efx_ef10_irq_test_generate, |
| .irq_disable_non_ev = efx_port_dummy_op_void, |
| .irq_handle_msi = efx_ef10_msi_interrupt, |
| .tx_probe = efx_ef10_tx_probe, |
| .tx_init = efx_ef10_tx_init, |
| .tx_write = efx_ef10_tx_write, |
| .tx_limit_len = efx_ef10_tx_limit_len, |
| .tx_enqueue = __efx_enqueue_skb, |
| .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, |
| .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, |
| .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, |
| .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, |
| .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, |
| .rx_probe = efx_mcdi_rx_probe, |
| .rx_init = efx_mcdi_rx_init, |
| .rx_remove = efx_mcdi_rx_remove, |
| .rx_write = efx_ef10_rx_write, |
| .rx_defer_refill = efx_ef10_rx_defer_refill, |
| .rx_packet = __efx_rx_packet, |
| .ev_probe = efx_mcdi_ev_probe, |
| .ev_init = efx_ef10_ev_init, |
| .ev_fini = efx_mcdi_ev_fini, |
| .ev_remove = efx_mcdi_ev_remove, |
| .ev_process = efx_ef10_ev_process, |
| .ev_read_ack = efx_ef10_ev_read_ack, |
| .ev_test_generate = efx_ef10_ev_test_generate, |
| .filter_table_probe = efx_ef10_filter_table_probe, |
| .filter_table_restore = efx_mcdi_filter_table_restore, |
| .filter_table_remove = efx_ef10_filter_table_remove, |
| .filter_insert = efx_mcdi_filter_insert, |
| .filter_remove_safe = efx_mcdi_filter_remove_safe, |
| .filter_get_safe = efx_mcdi_filter_get_safe, |
| .filter_clear_rx = efx_mcdi_filter_clear_rx, |
| .filter_count_rx_used = efx_mcdi_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, |
| #ifdef CONFIG_RFS_ACCEL |
| .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, |
| #endif |
| #ifdef CONFIG_SFC_MTD |
| .mtd_probe = efx_ef10_mtd_probe, |
| .mtd_rename = efx_mcdi_mtd_rename, |
| .mtd_read = efx_mcdi_mtd_read, |
| .mtd_erase = efx_mcdi_mtd_erase, |
| .mtd_write = efx_mcdi_mtd_write, |
| .mtd_sync = efx_mcdi_mtd_sync, |
| #endif |
| .ptp_write_host_time = efx_ef10_ptp_write_host_time, |
| .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, |
| .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, |
| .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, |
| .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, |
| .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports, |
| .udp_tnl_has_port = efx_ef10_udp_tnl_has_port, |
| #ifdef CONFIG_SFC_SRIOV |
| /* currently set to the VF versions of these functions |
| * because SRIOV will be reimplemented later. |
| */ |
| .vswitching_probe = efx_ef10_vswitching_probe_vf, |
| .vswitching_restore = efx_ef10_vswitching_restore_vf, |
| .vswitching_remove = efx_ef10_vswitching_remove_vf, |
| #endif |
| .get_mac_address = efx_ef10_get_mac_address_pf, |
| .set_mac_address = efx_ef10_set_mac_address, |
| .tso_versions = efx_ef10_tso_versions, |
| |
| .get_phys_port_id = efx_ef10_get_phys_port_id, |
| .revision = EFX_REV_X4, |
| .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, |
| .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, |
| .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, |
| .can_rx_scatter = true, |
| .always_rx_scatter = true, |
| .option_descriptors = true, |
| .min_interrupt_mode = EFX_INT_MODE_MSIX, |
| .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, |
| .offload_features = EF10_OFFLOAD_FEATURES, |
| .mcdi_max_ver = 2, |
| .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, |
| .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | |
| 1 << HWTSTAMP_FILTER_ALL, |
| .check_caps = ef10_check_caps, |
| .print_additional_fwver = efx_ef10_print_additional_fwver, |
| .sensor_event = efx_mcdi_sensor_event, |
| .rx_recycle_ring_size = efx_ef10_recycle_ring_size, |
| }; |
| |