| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2018 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include "net_driver.h" |
| #include <linux/filter.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <net/gre.h> |
| #include "efx_common.h" |
| #include "efx_channels.h" |
| #include "efx.h" |
| #include "mcdi.h" |
| #include "selftest.h" |
| #include "rx_common.h" |
| #include "tx_common.h" |
| #include "nic.h" |
| #include "mcdi_port_common.h" |
| #include "io.h" |
| #include "mcdi_pcol.h" |
| #include "ef100_rep.h" |
| |
| static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
| NETIF_MSG_LINK | NETIF_MSG_IFDOWN | |
| NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | |
| NETIF_MSG_TX_ERR | NETIF_MSG_HW); |
| module_param(debug, uint, 0); |
| MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); |
| |
| /* This is the time (in jiffies) between invocations of the hardware |
| * monitor. |
| */ |
| static unsigned int efx_monitor_interval = 1 * HZ; |
| |
| /* How often and how many times to poll for a reset while waiting for a |
| * BIST that another function started to complete. |
| */ |
| #define BIST_WAIT_DELAY_MS 100 |
| #define BIST_WAIT_DELAY_COUNT 100 |
| |
| /* Default stats update time */ |
| #define STATS_PERIOD_MS_DEFAULT 1000 |
| |
| static const unsigned int efx_reset_type_max = RESET_TYPE_MAX; |
| static const char *const efx_reset_type_names[] = { |
| [RESET_TYPE_INVISIBLE] = "INVISIBLE", |
| [RESET_TYPE_ALL] = "ALL", |
| [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", |
| [RESET_TYPE_WORLD] = "WORLD", |
| [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", |
| [RESET_TYPE_DATAPATH] = "DATAPATH", |
| [RESET_TYPE_MC_BIST] = "MC_BIST", |
| [RESET_TYPE_DISABLE] = "DISABLE", |
| [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", |
| [RESET_TYPE_INT_ERROR] = "INT_ERROR", |
| [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", |
| [RESET_TYPE_TX_SKIP] = "TX_SKIP", |
| [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", |
| [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", |
| }; |
| |
| #define RESET_TYPE(type) \ |
| STRING_TABLE_LOOKUP(type, efx_reset_type) |
| |
| /* Loopback mode names (see LOOPBACK_MODE()) */ |
| const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; |
| const char *const efx_loopback_mode_names[] = { |
| [LOOPBACK_NONE] = "NONE", |
| [LOOPBACK_DATA] = "DATAPATH", |
| [LOOPBACK_GMAC] = "GMAC", |
| [LOOPBACK_XGMII] = "XGMII", |
| [LOOPBACK_XGXS] = "XGXS", |
| [LOOPBACK_XAUI] = "XAUI", |
| [LOOPBACK_GMII] = "GMII", |
| [LOOPBACK_SGMII] = "SGMII", |
| [LOOPBACK_XGBR] = "XGBR", |
| [LOOPBACK_XFI] = "XFI", |
| [LOOPBACK_XAUI_FAR] = "XAUI_FAR", |
| [LOOPBACK_GMII_FAR] = "GMII_FAR", |
| [LOOPBACK_SGMII_FAR] = "SGMII_FAR", |
| [LOOPBACK_XFI_FAR] = "XFI_FAR", |
| [LOOPBACK_GPHY] = "GPHY", |
| [LOOPBACK_PHYXS] = "PHYXS", |
| [LOOPBACK_PCS] = "PCS", |
| [LOOPBACK_PMAPMD] = "PMA/PMD", |
| [LOOPBACK_XPORT] = "XPORT", |
| [LOOPBACK_XGMII_WS] = "XGMII_WS", |
| [LOOPBACK_XAUI_WS] = "XAUI_WS", |
| [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", |
| [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", |
| [LOOPBACK_GMII_WS] = "GMII_WS", |
| [LOOPBACK_XFI_WS] = "XFI_WS", |
| [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", |
| [LOOPBACK_PHYXS_WS] = "PHYXS_WS", |
| }; |
| |
| /* Reset workqueue. If any NIC has a hardware failure then a reset will be |
| * queued onto this work queue. This is not a per-nic work queue, because |
| * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. |
| */ |
| static struct workqueue_struct *reset_workqueue; |
| |
| int efx_create_reset_workqueue(void) |
| { |
| reset_workqueue = create_singlethread_workqueue("sfc_reset"); |
| if (!reset_workqueue) { |
| printk(KERN_ERR "Failed to create reset workqueue\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void efx_queue_reset_work(struct efx_nic *efx) |
| { |
| queue_work(reset_workqueue, &efx->reset_work); |
| } |
| |
| void efx_flush_reset_workqueue(struct efx_nic *efx) |
| { |
| cancel_work_sync(&efx->reset_work); |
| } |
| |
| void efx_destroy_reset_workqueue(void) |
| { |
| if (reset_workqueue) { |
| destroy_workqueue(reset_workqueue); |
| reset_workqueue = NULL; |
| } |
| } |
| |
| /* We assume that efx->type->reconfigure_mac will always try to sync RX |
| * filters and therefore needs to read-lock the filter table against freeing |
| */ |
| void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only) |
| { |
| if (efx->type->reconfigure_mac) { |
| down_read(&efx->filter_sem); |
| efx->type->reconfigure_mac(efx, mtu_only); |
| up_read(&efx->filter_sem); |
| } |
| } |
| |
| /* Asynchronous work item for changing MAC promiscuity and multicast |
| * hash. Avoid a drain/rx_ingress enable by reconfiguring the current |
| * MAC directly. |
| */ |
| static void efx_mac_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); |
| |
| mutex_lock(&efx->mac_lock); |
| if (efx->port_enabled) |
| efx_mac_reconfigure(efx, false); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| int efx_set_mac_address(struct net_device *net_dev, void *data) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| struct sockaddr *addr = data; |
| u8 *new_addr = addr->sa_data; |
| u8 old_addr[6]; |
| int rc; |
| |
| if (!is_valid_ether_addr(new_addr)) { |
| netif_err(efx, drv, efx->net_dev, |
| "invalid ethernet MAC address requested: %pM\n", |
| new_addr); |
| return -EADDRNOTAVAIL; |
| } |
| |
| /* save old address */ |
| ether_addr_copy(old_addr, net_dev->dev_addr); |
| eth_hw_addr_set(net_dev, new_addr); |
| if (efx->type->set_mac_address) { |
| rc = efx->type->set_mac_address(efx); |
| if (rc) { |
| eth_hw_addr_set(net_dev, old_addr); |
| return rc; |
| } |
| } |
| |
| /* Reconfigure the MAC */ |
| mutex_lock(&efx->mac_lock); |
| efx_mac_reconfigure(efx, false); |
| mutex_unlock(&efx->mac_lock); |
| |
| return 0; |
| } |
| |
| /* Context: netif_addr_lock held, BHs disabled. */ |
| void efx_set_rx_mode(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| |
| if (efx->port_enabled) |
| queue_work(efx->workqueue, &efx->mac_work); |
| /* Otherwise efx_start_port() will do this */ |
| } |
| |
| int efx_set_features(struct net_device *net_dev, netdev_features_t data) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| int rc; |
| |
| /* If disabling RX n-tuple filtering, clear existing filters */ |
| if (net_dev->features & ~data & NETIF_F_NTUPLE) { |
| rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); |
| if (rc) |
| return rc; |
| } |
| |
| /* If Rx VLAN filter is changed, update filters via mac_reconfigure. |
| * If rx-fcs is changed, mac_reconfigure updates that too. |
| */ |
| if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | |
| NETIF_F_RXFCS)) { |
| /* efx_set_rx_mode() will schedule MAC work to update filters |
| * when a new features are finally set in net_dev. |
| */ |
| efx_set_rx_mode(net_dev); |
| } |
| |
| return 0; |
| } |
| |
| /* This ensures that the kernel is kept informed (via |
| * netif_carrier_on/off) of the link status, and also maintains the |
| * link status's stop on the port's TX queue. |
| */ |
| void efx_link_status_changed(struct efx_nic *efx) |
| { |
| struct efx_link_state *link_state = &efx->link_state; |
| |
| /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| * that no events are triggered between unregister_netdev() and the |
| * driver unloading. A more general condition is that NETDEV_CHANGE |
| * can only be generated between NETDEV_UP and NETDEV_DOWN |
| */ |
| if (!netif_running(efx->net_dev)) |
| return; |
| |
| if (link_state->up != netif_carrier_ok(efx->net_dev)) { |
| efx->n_link_state_changes++; |
| |
| if (link_state->up) |
| netif_carrier_on(efx->net_dev); |
| else |
| netif_carrier_off(efx->net_dev); |
| } |
| |
| /* Status message for kernel log */ |
| if (link_state->up) |
| netif_info(efx, link, efx->net_dev, |
| "link up at %uMbps %s-duplex (MTU %d)\n", |
| link_state->speed, link_state->fd ? "full" : "half", |
| efx->net_dev->mtu); |
| else |
| netif_info(efx, link, efx->net_dev, "link down\n"); |
| } |
| |
| unsigned int efx_xdp_max_mtu(struct efx_nic *efx) |
| { |
| /* The maximum MTU that we can fit in a single page, allowing for |
| * framing, overhead and XDP headroom + tailroom. |
| */ |
| int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) + |
| efx->rx_prefix_size + efx->type->rx_buffer_padding + |
| efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM; |
| |
| return PAGE_SIZE - overhead; |
| } |
| |
| /* Context: process, rtnl_lock() held. */ |
| int efx_change_mtu(struct net_device *net_dev, int new_mtu) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| int rc; |
| |
| rc = efx_check_disabled(efx); |
| if (rc) |
| return rc; |
| |
| if (rtnl_dereference(efx->xdp_prog) && |
| new_mtu > efx_xdp_max_mtu(efx)) { |
| netif_err(efx, drv, efx->net_dev, |
| "Requested MTU of %d too big for XDP (max: %d)\n", |
| new_mtu, efx_xdp_max_mtu(efx)); |
| return -EINVAL; |
| } |
| |
| netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); |
| |
| efx_device_detach_sync(efx); |
| efx_stop_all(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| WRITE_ONCE(net_dev->mtu, new_mtu); |
| efx_mac_reconfigure(efx, true); |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| efx_device_attach_if_not_resetting(efx); |
| return 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Hardware monitor |
| * |
| **************************************************************************/ |
| |
| /* Run periodically off the general workqueue */ |
| static void efx_monitor(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, |
| monitor_work.work); |
| |
| netif_vdbg(efx, timer, efx->net_dev, |
| "hardware monitor executing on CPU %d\n", |
| raw_smp_processor_id()); |
| BUG_ON(efx->type->monitor == NULL); |
| |
| /* If the mac_lock is already held then it is likely a port |
| * reconfiguration is already in place, which will likely do |
| * most of the work of monitor() anyway. |
| */ |
| if (mutex_trylock(&efx->mac_lock)) { |
| if (efx->port_enabled && efx->type->monitor) |
| efx->type->monitor(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| efx_start_monitor(efx); |
| } |
| |
| void efx_start_monitor(struct efx_nic *efx) |
| { |
| if (efx->type->monitor) |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| } |
| |
| /************************************************************************** |
| * |
| * Event queue processing |
| * |
| *************************************************************************/ |
| |
| /* Channels are shutdown and reinitialised whilst the NIC is running |
| * to propagate configuration changes (mtu, checksum offload), or |
| * to clear hardware error conditions |
| */ |
| static void efx_start_datapath(struct efx_nic *efx) |
| { |
| netdev_features_t old_features = efx->net_dev->features; |
| bool old_rx_scatter = efx->rx_scatter; |
| size_t rx_buf_len; |
| |
| /* Calculate the rx buffer allocation parameters required to |
| * support the current MTU, including padding for header |
| * alignment and overruns. |
| */ |
| efx->rx_dma_len = (efx->rx_prefix_size + |
| EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| efx->type->rx_buffer_padding); |
| rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM + |
| efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM); |
| |
| if (rx_buf_len <= PAGE_SIZE) { |
| efx->rx_scatter = efx->type->always_rx_scatter; |
| efx->rx_buffer_order = 0; |
| } else if (efx->type->can_rx_scatter) { |
| BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); |
| BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + |
| 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, |
| EFX_RX_BUF_ALIGNMENT) > |
| PAGE_SIZE); |
| efx->rx_scatter = true; |
| efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; |
| efx->rx_buffer_order = 0; |
| } else { |
| efx->rx_scatter = false; |
| efx->rx_buffer_order = get_order(rx_buf_len); |
| } |
| |
| efx_rx_config_page_split(efx); |
| if (efx->rx_buffer_order) |
| netif_dbg(efx, drv, efx->net_dev, |
| "RX buf len=%u; page order=%u batch=%u\n", |
| efx->rx_dma_len, efx->rx_buffer_order, |
| efx->rx_pages_per_batch); |
| else |
| netif_dbg(efx, drv, efx->net_dev, |
| "RX buf len=%u step=%u bpp=%u; page batch=%u\n", |
| efx->rx_dma_len, efx->rx_page_buf_step, |
| efx->rx_bufs_per_page, efx->rx_pages_per_batch); |
| |
| /* Restore previously fixed features in hw_features and remove |
| * features which are fixed now |
| */ |
| efx->net_dev->hw_features |= efx->net_dev->features; |
| efx->net_dev->hw_features &= ~efx->fixed_features; |
| efx->net_dev->features |= efx->fixed_features; |
| if (efx->net_dev->features != old_features) |
| netdev_features_change(efx->net_dev); |
| |
| /* RX filters may also have scatter-enabled flags */ |
| if ((efx->rx_scatter != old_rx_scatter) && |
| efx->type->filter_update_rx_scatter) |
| efx->type->filter_update_rx_scatter(efx); |
| |
| /* We must keep at least one descriptor in a TX ring empty. |
| * We could avoid this when the queue size does not exactly |
| * match the hardware ring size, but it's not that important. |
| * Therefore we stop the queue when one more skb might fill |
| * the ring completely. We wake it when half way back to |
| * empty. |
| */ |
| efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); |
| efx->txq_wake_thresh = efx->txq_stop_thresh / 2; |
| |
| /* Initialise the channels */ |
| efx_start_channels(efx); |
| |
| efx_ptp_start_datapath(efx); |
| |
| if (netif_device_present(efx->net_dev)) |
| netif_tx_wake_all_queues(efx->net_dev); |
| } |
| |
| static void efx_stop_datapath(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| BUG_ON(efx->port_enabled); |
| |
| efx_ptp_stop_datapath(efx); |
| |
| efx_stop_channels(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * Port handling |
| * |
| **************************************************************************/ |
| |
| /* Equivalent to efx_link_set_advertising with all-zeroes, except does not |
| * force the Autoneg bit on. |
| */ |
| void efx_link_clear_advertising(struct efx_nic *efx) |
| { |
| bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); |
| efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); |
| } |
| |
| void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) |
| { |
| efx->wanted_fc = wanted_fc; |
| if (efx->link_advertising[0]) { |
| if (wanted_fc & EFX_FC_RX) |
| efx->link_advertising[0] |= (ADVERTISED_Pause | |
| ADVERTISED_Asym_Pause); |
| else |
| efx->link_advertising[0] &= ~(ADVERTISED_Pause | |
| ADVERTISED_Asym_Pause); |
| if (wanted_fc & EFX_FC_TX) |
| efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; |
| } |
| } |
| |
| static void efx_start_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, ifup, efx->net_dev, "start port\n"); |
| BUG_ON(efx->port_enabled); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = true; |
| |
| /* Ensure MAC ingress/egress is enabled */ |
| efx_mac_reconfigure(efx, false); |
| |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| /* Cancel work for MAC reconfiguration, periodic hardware monitoring |
| * and the async self-test, wait for them to finish and prevent them |
| * being scheduled again. This doesn't cover online resets, which |
| * should only be cancelled when removing the device. |
| */ |
| static void efx_stop_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = false; |
| mutex_unlock(&efx->mac_lock); |
| |
| /* Serialise against efx_set_multicast_list() */ |
| netif_addr_lock_bh(efx->net_dev); |
| netif_addr_unlock_bh(efx->net_dev); |
| |
| cancel_delayed_work_sync(&efx->monitor_work); |
| efx_selftest_async_cancel(efx); |
| cancel_work_sync(&efx->mac_work); |
| } |
| |
| /* If the interface is supposed to be running but is not, start |
| * the hardware and software data path, regular activity for the port |
| * (MAC statistics, link polling, etc.) and schedule the port to be |
| * reconfigured. Interrupts must already be enabled. This function |
| * is safe to call multiple times, so long as the NIC is not disabled. |
| * Requires the RTNL lock. |
| */ |
| void efx_start_all(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| BUG_ON(efx->state == STATE_DISABLED); |
| |
| /* Check that it is appropriate to restart the interface. All |
| * of these flags are safe to read under just the rtnl lock |
| */ |
| if (efx->port_enabled || !netif_running(efx->net_dev) || |
| efx->reset_pending) |
| return; |
| |
| efx_start_port(efx); |
| efx_start_datapath(efx); |
| |
| /* Start the hardware monitor if there is one */ |
| efx_start_monitor(efx); |
| |
| efx_selftest_async_start(efx); |
| |
| /* Link state detection is normally event-driven; we have |
| * to poll now because we could have missed a change |
| */ |
| mutex_lock(&efx->mac_lock); |
| if (efx_mcdi_phy_poll(efx)) |
| efx_link_status_changed(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| if (efx->type->start_stats) { |
| efx->type->start_stats(efx); |
| efx->type->pull_stats(efx); |
| spin_lock_bh(&efx->stats_lock); |
| efx->type->update_stats(efx, NULL, NULL); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| } |
| |
| /* Quiesce the hardware and software data path, and regular activity |
| * for the port without bringing the link down. Safe to call multiple |
| * times with the NIC in almost any state, but interrupts should be |
| * enabled. Requires the RTNL lock. |
| */ |
| void efx_stop_all(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* port_enabled can be read safely under the rtnl lock */ |
| if (!efx->port_enabled) |
| return; |
| |
| if (efx->type->update_stats) { |
| /* update stats before we go down so we can accurately count |
| * rx_nodesc_drops |
| */ |
| efx->type->pull_stats(efx); |
| spin_lock_bh(&efx->stats_lock); |
| efx->type->update_stats(efx, NULL, NULL); |
| spin_unlock_bh(&efx->stats_lock); |
| efx->type->stop_stats(efx); |
| } |
| |
| efx_stop_port(efx); |
| |
| /* Stop the kernel transmit interface. This is only valid if |
| * the device is stopped or detached; otherwise the watchdog |
| * may fire immediately. |
| */ |
| WARN_ON(netif_running(efx->net_dev) && |
| netif_device_present(efx->net_dev)); |
| netif_tx_disable(efx->net_dev); |
| |
| efx_stop_datapath(efx); |
| } |
| |
| /* Context: process, rcu_read_lock or RTNL held, non-blocking. */ |
| void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| |
| spin_lock_bh(&efx->stats_lock); |
| efx_nic_update_stats_atomic(efx, NULL, stats); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| /* Push loopback/power/transmit disable settings to the PHY, and reconfigure |
| * the MAC appropriately. All other PHY configuration changes are pushed |
| * through phy_op->set_settings(), and pushed asynchronously to the MAC |
| * through efx_monitor(). |
| * |
| * Callers must hold the mac_lock |
| */ |
| int __efx_reconfigure_port(struct efx_nic *efx) |
| { |
| enum efx_phy_mode phy_mode; |
| int rc = 0; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| /* Disable PHY transmit in mac level loopbacks */ |
| phy_mode = efx->phy_mode; |
| if (LOOPBACK_INTERNAL(efx)) |
| efx->phy_mode |= PHY_MODE_TX_DISABLED; |
| else |
| efx->phy_mode &= ~PHY_MODE_TX_DISABLED; |
| |
| if (efx->type->reconfigure_port) |
| rc = efx->type->reconfigure_port(efx); |
| |
| if (rc) |
| efx->phy_mode = phy_mode; |
| |
| return rc; |
| } |
| |
| /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| * disabled. |
| */ |
| int efx_reconfigure_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| rc = __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| return rc; |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset and suspend |
| * |
| **************************************************************************/ |
| |
| static void efx_wait_for_bist_end(struct efx_nic *efx) |
| { |
| int i; |
| |
| for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { |
| if (efx_mcdi_poll_reboot(efx)) |
| goto out; |
| msleep(BIST_WAIT_DELAY_MS); |
| } |
| |
| netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); |
| out: |
| /* Either way unset the BIST flag. If we found no reboot we probably |
| * won't recover, but we should try. |
| */ |
| efx->mc_bist_for_other_fn = false; |
| } |
| |
| /* Try recovery mechanisms. |
| * For now only EEH is supported. |
| * Returns 0 if the recovery mechanisms are unsuccessful. |
| * Returns a non-zero value otherwise. |
| */ |
| int efx_try_recovery(struct efx_nic *efx) |
| { |
| #ifdef CONFIG_EEH |
| /* A PCI error can occur and not be seen by EEH because nothing |
| * happens on the PCI bus. In this case the driver may fail and |
| * schedule a 'recover or reset', leading to this recovery handler. |
| * Manually call the eeh failure check function. |
| */ |
| struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); |
| if (eeh_dev_check_failure(eehdev)) { |
| /* The EEH mechanisms will handle the error and reset the |
| * device if necessary. |
| */ |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| /* Tears down the entire software state and most of the hardware state |
| * before reset. |
| */ |
| void efx_reset_down(struct efx_nic *efx, enum reset_type method) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (method == RESET_TYPE_MCDI_TIMEOUT) |
| efx->type->prepare_flr(efx); |
| |
| efx_stop_all(efx); |
| efx_disable_interrupts(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| down_write(&efx->filter_sem); |
| mutex_lock(&efx->net_dev->ethtool->rss_lock); |
| efx->type->fini(efx); |
| } |
| |
| /* Context: netif_tx_lock held, BHs disabled. */ |
| void efx_watchdog(struct net_device *net_dev, unsigned int txqueue) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX stuck with port_enabled=%d: resetting channels\n", |
| efx->port_enabled); |
| |
| efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); |
| } |
| |
| /* This function will always ensure that the locks acquired in |
| * efx_reset_down() are released. A failure return code indicates |
| * that we were unable to reinitialise the hardware, and the |
| * driver should be disabled. If ok is false, then the rx and tx |
| * engines are not restarted, pending a RESET_DISABLE. |
| */ |
| int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (method == RESET_TYPE_MCDI_TIMEOUT) |
| efx->type->finish_flr(efx); |
| |
| /* Ensure that SRAM is initialised even if we're disabling the device */ |
| rc = efx->type->init(efx); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); |
| goto fail; |
| } |
| |
| if (!ok) |
| goto fail; |
| |
| if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && |
| method != RESET_TYPE_DATAPATH) { |
| rc = efx_mcdi_port_reconfigure(efx); |
| if (rc && rc != -EPERM) |
| netif_err(efx, drv, efx->net_dev, |
| "could not restore PHY settings\n"); |
| } |
| |
| rc = efx_enable_interrupts(efx); |
| if (rc) |
| goto fail; |
| |
| #ifdef CONFIG_SFC_SRIOV |
| rc = efx->type->vswitching_restore(efx); |
| if (rc) /* not fatal; the PF will still work fine */ |
| netif_warn(efx, probe, efx->net_dev, |
| "failed to restore vswitching rc=%d;" |
| " VFs may not function\n", rc); |
| #endif |
| |
| if (efx->type->rx_restore_rss_contexts) |
| efx->type->rx_restore_rss_contexts(efx); |
| mutex_unlock(&efx->net_dev->ethtool->rss_lock); |
| efx->type->filter_table_restore(efx); |
| up_write(&efx->filter_sem); |
| |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| |
| if (efx->type->udp_tnl_push_ports) |
| efx->type->udp_tnl_push_ports(efx); |
| |
| return 0; |
| |
| fail: |
| efx->port_initialized = false; |
| |
| mutex_unlock(&efx->net_dev->ethtool->rss_lock); |
| up_write(&efx->filter_sem); |
| mutex_unlock(&efx->mac_lock); |
| |
| return rc; |
| } |
| |
| /* Reset the NIC using the specified method. Note that the reset may |
| * fail, in which case the card will be left in an unusable state. |
| * |
| * Caller must hold the rtnl_lock. |
| */ |
| int efx_reset(struct efx_nic *efx, enum reset_type method) |
| { |
| int rc, rc2 = 0; |
| bool disabled; |
| |
| netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", |
| RESET_TYPE(method)); |
| |
| efx_device_detach_sync(efx); |
| /* efx_reset_down() grabs locks that prevent recovery on EF100. |
| * EF100 reset is handled in the efx_nic_type callback below. |
| */ |
| if (efx_nic_rev(efx) != EFX_REV_EF100) |
| efx_reset_down(efx, method); |
| |
| rc = efx->type->reset(efx, method); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); |
| goto out; |
| } |
| |
| /* Clear flags for the scopes we covered. We assume the NIC and |
| * driver are now quiescent so that there is no race here. |
| */ |
| if (method < RESET_TYPE_MAX_METHOD) |
| efx->reset_pending &= -(1 << (method + 1)); |
| else /* it doesn't fit into the well-ordered scope hierarchy */ |
| __clear_bit(method, &efx->reset_pending); |
| |
| /* Reinitialise bus-mastering, which may have been turned off before |
| * the reset was scheduled. This is still appropriate, even in the |
| * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| * can respond to requests. |
| */ |
| pci_set_master(efx->pci_dev); |
| |
| out: |
| /* Leave device stopped if necessary */ |
| disabled = rc || |
| method == RESET_TYPE_DISABLE || |
| method == RESET_TYPE_RECOVER_OR_DISABLE; |
| if (efx_nic_rev(efx) != EFX_REV_EF100) |
| rc2 = efx_reset_up(efx, method, !disabled); |
| if (rc2) { |
| disabled = true; |
| if (!rc) |
| rc = rc2; |
| } |
| |
| if (disabled) { |
| dev_close(efx->net_dev); |
| netif_err(efx, drv, efx->net_dev, "has been disabled\n"); |
| efx->state = STATE_DISABLED; |
| } else { |
| netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); |
| efx_device_attach_if_not_resetting(efx); |
| } |
| return rc; |
| } |
| |
| /* The worker thread exists so that code that cannot sleep can |
| * schedule a reset for later. |
| */ |
| static void efx_reset_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); |
| unsigned long pending; |
| enum reset_type method; |
| |
| pending = READ_ONCE(efx->reset_pending); |
| method = fls(pending) - 1; |
| |
| if (method == RESET_TYPE_MC_BIST) |
| efx_wait_for_bist_end(efx); |
| |
| if ((method == RESET_TYPE_RECOVER_OR_DISABLE || |
| method == RESET_TYPE_RECOVER_OR_ALL) && |
| efx_try_recovery(efx)) |
| return; |
| |
| if (!pending) |
| return; |
| |
| rtnl_lock(); |
| |
| /* We checked the state in efx_schedule_reset() but it may |
| * have changed by now. Now that we have the RTNL lock, |
| * it cannot change again. |
| */ |
| if (efx_net_active(efx->state)) |
| (void)efx_reset(efx, method); |
| |
| rtnl_unlock(); |
| } |
| |
| void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) |
| { |
| enum reset_type method; |
| |
| if (efx_recovering(efx->state)) { |
| netif_dbg(efx, drv, efx->net_dev, |
| "recovering: skip scheduling %s reset\n", |
| RESET_TYPE(type)); |
| return; |
| } |
| |
| switch (type) { |
| case RESET_TYPE_INVISIBLE: |
| case RESET_TYPE_ALL: |
| case RESET_TYPE_RECOVER_OR_ALL: |
| case RESET_TYPE_WORLD: |
| case RESET_TYPE_DISABLE: |
| case RESET_TYPE_RECOVER_OR_DISABLE: |
| case RESET_TYPE_DATAPATH: |
| case RESET_TYPE_MC_BIST: |
| case RESET_TYPE_MCDI_TIMEOUT: |
| method = type; |
| netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", |
| RESET_TYPE(method)); |
| break; |
| default: |
| method = efx->type->map_reset_reason(type); |
| netif_dbg(efx, drv, efx->net_dev, |
| "scheduling %s reset for %s\n", |
| RESET_TYPE(method), RESET_TYPE(type)); |
| break; |
| } |
| |
| set_bit(method, &efx->reset_pending); |
| smp_mb(); /* ensure we change reset_pending before checking state */ |
| |
| /* If we're not READY then just leave the flags set as the cue |
| * to abort probing or reschedule the reset later. |
| */ |
| if (!efx_net_active(READ_ONCE(efx->state))) |
| return; |
| |
| /* efx_process_channel() will no longer read events once a |
| * reset is scheduled. So switch back to poll'd MCDI completions. |
| */ |
| efx_mcdi_mode_poll(efx); |
| |
| efx_queue_reset_work(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * Dummy NIC operations |
| * |
| * Can be used for some unimplemented operations |
| * Needed so all function pointers are valid and do not have to be tested |
| * before use |
| * |
| **************************************************************************/ |
| int efx_port_dummy_op_int(struct efx_nic *efx) |
| { |
| return 0; |
| } |
| void efx_port_dummy_op_void(struct efx_nic *efx) {} |
| |
| /************************************************************************** |
| * |
| * Data housekeeping |
| * |
| **************************************************************************/ |
| |
| /* This zeroes out and then fills in the invariants in a struct |
| * efx_nic (including all sub-structures). |
| */ |
| int efx_init_struct(struct efx_nic *efx, struct pci_dev *pci_dev) |
| { |
| int rc = -ENOMEM; |
| |
| /* Initialise common structures */ |
| INIT_LIST_HEAD(&efx->node); |
| INIT_LIST_HEAD(&efx->secondary_list); |
| spin_lock_init(&efx->biu_lock); |
| #ifdef CONFIG_SFC_MTD |
| INIT_LIST_HEAD(&efx->mtd_list); |
| #endif |
| INIT_WORK(&efx->reset_work, efx_reset_work); |
| INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); |
| efx_selftest_async_init(efx); |
| efx->pci_dev = pci_dev; |
| efx->msg_enable = debug; |
| efx->state = STATE_UNINIT; |
| strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| |
| efx->rx_prefix_size = efx->type->rx_prefix_size; |
| efx->rx_ip_align = |
| NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; |
| efx->rx_packet_hash_offset = |
| efx->type->rx_hash_offset - efx->type->rx_prefix_size; |
| efx->rx_packet_ts_offset = |
| efx->type->rx_ts_offset - efx->type->rx_prefix_size; |
| efx->rss_context.priv.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; |
| efx->vport_id = EVB_PORT_ID_ASSIGNED; |
| spin_lock_init(&efx->stats_lock); |
| efx->vi_stride = EFX_DEFAULT_VI_STRIDE; |
| efx->num_mac_stats = MC_CMD_MAC_NSTATS; |
| BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); |
| mutex_init(&efx->mac_lock); |
| init_rwsem(&efx->filter_sem); |
| #ifdef CONFIG_RFS_ACCEL |
| mutex_init(&efx->rps_mutex); |
| spin_lock_init(&efx->rps_hash_lock); |
| /* Failure to allocate is not fatal, but may degrade ARFS performance */ |
| efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, |
| sizeof(*efx->rps_hash_table), GFP_KERNEL); |
| #endif |
| spin_lock_init(&efx->vf_reps_lock); |
| INIT_LIST_HEAD(&efx->vf_reps); |
| INIT_WORK(&efx->mac_work, efx_mac_work); |
| init_waitqueue_head(&efx->flush_wq); |
| |
| efx->tx_queues_per_channel = 1; |
| efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE; |
| efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; |
| |
| efx->mem_bar = UINT_MAX; |
| |
| rc = efx_init_channels(efx); |
| if (rc) |
| goto fail; |
| |
| /* Would be good to use the net_dev name, but we're too early */ |
| snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", |
| pci_name(pci_dev)); |
| efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); |
| if (!efx->workqueue) { |
| rc = -ENOMEM; |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| efx_fini_struct(efx); |
| return rc; |
| } |
| |
| void efx_fini_struct(struct efx_nic *efx) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| kfree(efx->rps_hash_table); |
| #endif |
| |
| efx_fini_channels(efx); |
| |
| kfree(efx->vpd_sn); |
| |
| if (efx->workqueue) { |
| destroy_workqueue(efx->workqueue); |
| efx->workqueue = NULL; |
| } |
| } |
| |
| /* This configures the PCI device to enable I/O and DMA. */ |
| int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask, |
| unsigned int mem_map_size) |
| { |
| struct pci_dev *pci_dev = efx->pci_dev; |
| int rc; |
| |
| efx->mem_bar = UINT_MAX; |
| pci_dbg(pci_dev, "initialising I/O bar=%d\n", bar); |
| |
| rc = pci_enable_device(pci_dev); |
| if (rc) { |
| pci_err(pci_dev, "failed to enable PCI device\n"); |
| goto fail1; |
| } |
| |
| pci_set_master(pci_dev); |
| |
| rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); |
| if (rc) { |
| pci_err(efx->pci_dev, "could not find a suitable DMA mask\n"); |
| goto fail2; |
| } |
| pci_dbg(efx->pci_dev, "using DMA mask %llx\n", (unsigned long long)dma_mask); |
| |
| efx->membase_phys = pci_resource_start(efx->pci_dev, bar); |
| if (!efx->membase_phys) { |
| pci_err(efx->pci_dev, |
| "ERROR: No BAR%d mapping from the BIOS. Try pci=realloc on the kernel command line\n", |
| bar); |
| rc = -ENODEV; |
| goto fail3; |
| } |
| |
| rc = pci_request_region(pci_dev, bar, "sfc"); |
| if (rc) { |
| pci_err(efx->pci_dev, |
| "request for memory BAR[%d] failed\n", bar); |
| rc = -EIO; |
| goto fail3; |
| } |
| efx->mem_bar = bar; |
| efx->membase = ioremap(efx->membase_phys, mem_map_size); |
| if (!efx->membase) { |
| pci_err(efx->pci_dev, |
| "could not map memory BAR[%d] at %llx+%x\n", bar, |
| (unsigned long long)efx->membase_phys, mem_map_size); |
| rc = -ENOMEM; |
| goto fail4; |
| } |
| pci_dbg(efx->pci_dev, |
| "memory BAR[%d] at %llx+%x (virtual %p)\n", bar, |
| (unsigned long long)efx->membase_phys, mem_map_size, |
| efx->membase); |
| |
| return 0; |
| |
| fail4: |
| pci_release_region(efx->pci_dev, bar); |
| fail3: |
| efx->membase_phys = 0; |
| fail2: |
| pci_disable_device(efx->pci_dev); |
| fail1: |
| return rc; |
| } |
| |
| void efx_fini_io(struct efx_nic *efx) |
| { |
| pci_dbg(efx->pci_dev, "shutting down I/O\n"); |
| |
| if (efx->membase) { |
| iounmap(efx->membase); |
| efx->membase = NULL; |
| } |
| |
| if (efx->membase_phys) { |
| pci_release_region(efx->pci_dev, efx->mem_bar); |
| efx->membase_phys = 0; |
| efx->mem_bar = UINT_MAX; |
| } |
| |
| /* Don't disable bus-mastering if VFs are assigned */ |
| if (!pci_vfs_assigned(efx->pci_dev)) |
| pci_disable_device(efx->pci_dev); |
| } |
| |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| static ssize_t mcdi_logging_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct efx_nic *efx = dev_get_drvdata(dev); |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| return sysfs_emit(buf, "%d\n", mcdi->logging_enabled); |
| } |
| |
| static ssize_t mcdi_logging_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct efx_nic *efx = dev_get_drvdata(dev); |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| bool enable = count > 0 && *buf != '0'; |
| |
| mcdi->logging_enabled = enable; |
| return count; |
| } |
| |
| static DEVICE_ATTR_RW(mcdi_logging); |
| |
| void efx_init_mcdi_logging(struct efx_nic *efx) |
| { |
| int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); |
| |
| if (rc) { |
| netif_warn(efx, drv, efx->net_dev, |
| "failed to init net dev attributes\n"); |
| } |
| } |
| |
| void efx_fini_mcdi_logging(struct efx_nic *efx) |
| { |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); |
| } |
| #endif |
| |
| /* A PCI error affecting this device was detected. |
| * At this point MMIO and DMA may be disabled. |
| * Stop the software path and request a slot reset. |
| */ |
| static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| struct efx_nic *efx = pci_get_drvdata(pdev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| rtnl_lock(); |
| |
| if (efx->state != STATE_DISABLED) { |
| efx->state = efx_recover(efx->state); |
| efx->reset_pending = 0; |
| |
| efx_device_detach_sync(efx); |
| |
| if (efx_net_active(efx->state)) { |
| efx_stop_all(efx); |
| efx_disable_interrupts(efx); |
| } |
| |
| status = PCI_ERS_RESULT_NEED_RESET; |
| } else { |
| /* If the interface is disabled we don't want to do anything |
| * with it. |
| */ |
| status = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| rtnl_unlock(); |
| |
| pci_disable_device(pdev); |
| |
| return status; |
| } |
| |
| /* Fake a successful reset, which will be performed later in efx_io_resume. */ |
| static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(pdev); |
| pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| |
| if (pci_enable_device(pdev)) { |
| netif_err(efx, hw, efx->net_dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| status = PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| return status; |
| } |
| |
| /* Perform the actual reset and resume I/O operations. */ |
| static void efx_io_resume(struct pci_dev *pdev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(pdev); |
| int rc; |
| |
| rtnl_lock(); |
| |
| if (efx->state == STATE_DISABLED) |
| goto out; |
| |
| rc = efx_reset(efx, RESET_TYPE_ALL); |
| if (rc) { |
| netif_err(efx, hw, efx->net_dev, |
| "efx_reset failed after PCI error (%d)\n", rc); |
| } else { |
| efx->state = efx_recovered(efx->state); |
| netif_dbg(efx, hw, efx->net_dev, |
| "Done resetting and resuming IO after PCI error.\n"); |
| } |
| |
| out: |
| rtnl_unlock(); |
| } |
| |
| /* For simplicity and reliability, we always require a slot reset and try to |
| * reset the hardware when a pci error affecting the device is detected. |
| * We leave both the link_reset and mmio_enabled callback unimplemented: |
| * with our request for slot reset the mmio_enabled callback will never be |
| * called, and the link_reset callback is not used by AER or EEH mechanisms. |
| */ |
| const struct pci_error_handlers efx_err_handlers = { |
| .error_detected = efx_io_error_detected, |
| .slot_reset = efx_io_slot_reset, |
| .resume = efx_io_resume, |
| }; |
| |
| /* Determine whether the NIC will be able to handle TX offloads for a given |
| * encapsulated packet. |
| */ |
| static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| struct gre_base_hdr *greh; |
| __be16 dst_port; |
| u8 ipproto; |
| |
| /* Does the NIC support encap offloads? |
| * If not, we should never get here, because we shouldn't have |
| * advertised encap offload feature flags in the first place. |
| */ |
| if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port)) |
| return false; |
| |
| /* Determine encapsulation protocol in use */ |
| switch (skb->protocol) { |
| case htons(ETH_P_IP): |
| ipproto = ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| /* If there are extension headers, this will cause us to |
| * think we can't offload something that we maybe could have. |
| */ |
| ipproto = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| /* Not IP, so can't offload it */ |
| return false; |
| } |
| switch (ipproto) { |
| case IPPROTO_GRE: |
| /* We support NVGRE but not IP over GRE or random gretaps. |
| * Specifically, the NIC will accept GRE as encapsulated if |
| * the inner protocol is Ethernet, but only handle it |
| * correctly if the GRE header is 8 bytes long. Moreover, |
| * it will not update the Checksum or Sequence Number fields |
| * if they are present. (The Routing Present flag, |
| * GRE_ROUTING, cannot be set else the header would be more |
| * than 8 bytes long; so we don't have to worry about it.) |
| */ |
| if (skb->inner_protocol_type != ENCAP_TYPE_ETHER) |
| return false; |
| if (ntohs(skb->inner_protocol) != ETH_P_TEB) |
| return false; |
| if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8) |
| return false; |
| greh = (struct gre_base_hdr *)skb_transport_header(skb); |
| return !(greh->flags & (GRE_CSUM | GRE_SEQ)); |
| case IPPROTO_UDP: |
| /* If the port is registered for a UDP tunnel, we assume the |
| * packet is for that tunnel, and the NIC will handle it as |
| * such. If not, the NIC won't know what to do with it. |
| */ |
| dst_port = udp_hdr(skb)->dest; |
| return efx->type->udp_tnl_has_port(efx, dst_port); |
| default: |
| return false; |
| } |
| } |
| |
| netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct efx_nic *efx = efx_netdev_priv(dev); |
| |
| if (skb->encapsulation) { |
| if (features & NETIF_F_GSO_MASK) |
| /* Hardware can only do TSO with at most 208 bytes |
| * of headers. |
| */ |
| if (skb_inner_transport_offset(skb) > |
| EFX_TSO2_MAX_HDRLEN) |
| features &= ~(NETIF_F_GSO_MASK); |
| if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK)) |
| if (!efx_can_encap_offloads(efx, skb)) |
| features &= ~(NETIF_F_GSO_MASK | |
| NETIF_F_CSUM_MASK); |
| } |
| return features; |
| } |
| |
| int efx_get_phys_port_id(struct net_device *net_dev, |
| struct netdev_phys_item_id *ppid) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| |
| if (efx->type->get_phys_port_id) |
| return efx->type->get_phys_port_id(efx, ppid); |
| else |
| return -EOPNOTSUPP; |
| } |
| |
| int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len) |
| { |
| struct efx_nic *efx = efx_netdev_priv(net_dev); |
| |
| if (snprintf(name, len, "p%u", efx->port_num) >= len) |
| return -EINVAL; |
| return 0; |
| } |
| |
| void efx_detach_reps(struct efx_nic *efx) |
| { |
| struct net_device *rep_dev; |
| struct efx_rep *efv; |
| |
| ASSERT_RTNL(); |
| netif_dbg(efx, drv, efx->net_dev, "Detaching VF representors\n"); |
| list_for_each_entry(efv, &efx->vf_reps, list) { |
| rep_dev = efv->net_dev; |
| if (!rep_dev) |
| continue; |
| netif_carrier_off(rep_dev); |
| /* See efx_device_detach_sync() */ |
| netif_tx_lock_bh(rep_dev); |
| netif_tx_stop_all_queues(rep_dev); |
| netif_tx_unlock_bh(rep_dev); |
| } |
| } |
| |
| void efx_attach_reps(struct efx_nic *efx) |
| { |
| struct net_device *rep_dev; |
| struct efx_rep *efv; |
| |
| ASSERT_RTNL(); |
| netif_dbg(efx, drv, efx->net_dev, "Attaching VF representors\n"); |
| list_for_each_entry(efv, &efx->vf_reps, list) { |
| rep_dev = efv->net_dev; |
| if (!rep_dev) |
| continue; |
| netif_tx_wake_all_queues(rep_dev); |
| netif_carrier_on(rep_dev); |
| } |
| } |