| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2018 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "nic_common.h" |
| #include "tx_common.h" |
| #include <net/gso.h> |
| |
| static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue) |
| { |
| return DIV_ROUND_UP(tx_queue->ptr_mask + 1, |
| PAGE_SIZE >> EFX_TX_CB_ORDER); |
| } |
| |
| int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned int entries; |
| int rc; |
| |
| /* Create the smallest power-of-two aligned ring */ |
| entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); |
| EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); |
| tx_queue->ptr_mask = entries - 1; |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "creating TX queue %d size %#x mask %#x\n", |
| tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); |
| |
| /* Allocate software ring */ |
| tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), |
| GFP_KERNEL); |
| if (!tx_queue->buffer) |
| return -ENOMEM; |
| |
| tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue), |
| sizeof(tx_queue->cb_page[0]), GFP_KERNEL); |
| if (!tx_queue->cb_page) { |
| rc = -ENOMEM; |
| goto fail1; |
| } |
| |
| /* Allocate hardware ring, determine TXQ type */ |
| rc = efx_nic_probe_tx(tx_queue); |
| if (rc) |
| goto fail2; |
| |
| tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue; |
| return 0; |
| |
| fail2: |
| kfree(tx_queue->cb_page); |
| tx_queue->cb_page = NULL; |
| fail1: |
| kfree(tx_queue->buffer); |
| tx_queue->buffer = NULL; |
| return rc; |
| } |
| |
| void efx_init_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| |
| netif_dbg(efx, drv, efx->net_dev, |
| "initialising TX queue %d\n", tx_queue->queue); |
| |
| tx_queue->insert_count = 0; |
| tx_queue->notify_count = 0; |
| tx_queue->write_count = 0; |
| tx_queue->packet_write_count = 0; |
| tx_queue->old_write_count = 0; |
| tx_queue->read_count = 0; |
| tx_queue->old_read_count = 0; |
| tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; |
| tx_queue->xmit_pending = false; |
| tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) && |
| tx_queue->channel == efx_ptp_channel(efx)); |
| tx_queue->completed_timestamp_major = 0; |
| tx_queue->completed_timestamp_minor = 0; |
| |
| tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel); |
| tx_queue->tso_version = 0; |
| |
| /* Set up TX descriptor ring */ |
| efx_nic_init_tx(tx_queue); |
| |
| tx_queue->initialised = true; |
| } |
| |
| void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_tx_buffer *buffer; |
| |
| netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, |
| "shutting down TX queue %d\n", tx_queue->queue); |
| |
| tx_queue->initialised = false; |
| |
| if (!tx_queue->buffer) |
| return; |
| |
| /* Free any buffers left in the ring */ |
| while (tx_queue->read_count != tx_queue->write_count) { |
| unsigned int pkts_compl = 0, bytes_compl = 0; |
| unsigned int efv_pkts_compl = 0; |
| |
| buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; |
| efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl, |
| &efv_pkts_compl); |
| |
| ++tx_queue->read_count; |
| } |
| tx_queue->xmit_pending = false; |
| netdev_tx_reset_queue(tx_queue->core_txq); |
| } |
| |
| void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| int i; |
| |
| if (!tx_queue->buffer) |
| return; |
| |
| netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, |
| "destroying TX queue %d\n", tx_queue->queue); |
| efx_nic_remove_tx(tx_queue); |
| |
| if (tx_queue->cb_page) { |
| for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++) |
| efx_nic_free_buffer(tx_queue->efx, |
| &tx_queue->cb_page[i]); |
| kfree(tx_queue->cb_page); |
| tx_queue->cb_page = NULL; |
| } |
| |
| kfree(tx_queue->buffer); |
| tx_queue->buffer = NULL; |
| tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL; |
| } |
| |
| void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, |
| struct efx_tx_buffer *buffer, |
| unsigned int *pkts_compl, |
| unsigned int *bytes_compl, |
| unsigned int *efv_pkts_compl) |
| { |
| if (buffer->unmap_len) { |
| struct device *dma_dev = &tx_queue->efx->pci_dev->dev; |
| dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; |
| |
| if (buffer->flags & EFX_TX_BUF_MAP_SINGLE) |
| dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, |
| DMA_TO_DEVICE); |
| buffer->unmap_len = 0; |
| } |
| |
| if (buffer->flags & EFX_TX_BUF_SKB) { |
| struct sk_buff *skb = (struct sk_buff *)buffer->skb; |
| |
| if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) { |
| EFX_WARN_ON_PARANOID(!efv_pkts_compl); |
| (*efv_pkts_compl)++; |
| } else { |
| EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl); |
| (*pkts_compl)++; |
| (*bytes_compl) += skb->len; |
| } |
| |
| if (tx_queue->timestamping && |
| (tx_queue->completed_timestamp_major || |
| tx_queue->completed_timestamp_minor)) { |
| struct skb_shared_hwtstamps hwtstamp; |
| |
| hwtstamp.hwtstamp = |
| efx_ptp_nic_to_kernel_time(tx_queue); |
| skb_tstamp_tx(skb, &hwtstamp); |
| |
| tx_queue->completed_timestamp_major = 0; |
| tx_queue->completed_timestamp_minor = 0; |
| } |
| dev_consume_skb_any((struct sk_buff *)buffer->skb); |
| netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, |
| "TX queue %d transmission id %x complete\n", |
| tx_queue->queue, tx_queue->read_count); |
| } else if (buffer->flags & EFX_TX_BUF_XDP) { |
| xdp_return_frame_rx_napi(buffer->xdpf); |
| } |
| |
| buffer->len = 0; |
| buffer->flags = 0; |
| } |
| |
| /* Remove packets from the TX queue |
| * |
| * This removes packets from the TX queue, up to and including the |
| * specified index. |
| */ |
| static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, |
| unsigned int index, |
| unsigned int *pkts_compl, |
| unsigned int *bytes_compl, |
| unsigned int *efv_pkts_compl) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned int stop_index, read_ptr; |
| |
| stop_index = (index + 1) & tx_queue->ptr_mask; |
| read_ptr = tx_queue->read_count & tx_queue->ptr_mask; |
| |
| while (read_ptr != stop_index) { |
| struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; |
| |
| if (!efx_tx_buffer_in_use(buffer)) { |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX queue %d spurious TX completion id %d\n", |
| tx_queue->queue, read_ptr); |
| efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); |
| return; |
| } |
| |
| efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl, |
| efv_pkts_compl); |
| |
| ++tx_queue->read_count; |
| read_ptr = tx_queue->read_count & tx_queue->ptr_mask; |
| } |
| } |
| |
| void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue) |
| { |
| if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { |
| tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); |
| if (tx_queue->read_count == tx_queue->old_write_count) { |
| /* Ensure that read_count is flushed. */ |
| smp_mb(); |
| tx_queue->empty_read_count = |
| tx_queue->read_count | EFX_EMPTY_COUNT_VALID; |
| } |
| } |
| } |
| |
| int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) |
| { |
| unsigned int fill_level, pkts_compl = 0, bytes_compl = 0; |
| unsigned int efv_pkts_compl = 0; |
| struct efx_nic *efx = tx_queue->efx; |
| |
| EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask); |
| |
| efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl, |
| &efv_pkts_compl); |
| tx_queue->pkts_compl += pkts_compl; |
| tx_queue->bytes_compl += bytes_compl; |
| |
| if (pkts_compl + efv_pkts_compl > 1) |
| ++tx_queue->merge_events; |
| |
| /* See if we need to restart the netif queue. This memory |
| * barrier ensures that we write read_count (inside |
| * efx_dequeue_buffers()) before reading the queue status. |
| */ |
| smp_mb(); |
| if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && |
| likely(efx->port_enabled) && |
| likely(netif_device_present(efx->net_dev))) { |
| fill_level = efx_channel_tx_fill_level(tx_queue->channel); |
| if (fill_level <= efx->txq_wake_thresh) |
| netif_tx_wake_queue(tx_queue->core_txq); |
| } |
| |
| efx_xmit_done_check_empty(tx_queue); |
| |
| return pkts_compl + efv_pkts_compl; |
| } |
| |
| /* Remove buffers put into a tx_queue for the current packet. |
| * None of the buffers must have an skb attached. |
| */ |
| void efx_enqueue_unwind(struct efx_tx_queue *tx_queue, |
| unsigned int insert_count) |
| { |
| unsigned int efv_pkts_compl = 0; |
| struct efx_tx_buffer *buffer; |
| unsigned int bytes_compl = 0; |
| unsigned int pkts_compl = 0; |
| |
| /* Work backwards until we hit the original insert pointer value */ |
| while (tx_queue->insert_count != insert_count) { |
| --tx_queue->insert_count; |
| buffer = __efx_tx_queue_get_insert_buffer(tx_queue); |
| efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl, |
| &efv_pkts_compl); |
| } |
| } |
| |
| struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue, |
| dma_addr_t dma_addr, size_t len) |
| { |
| const struct efx_nic_type *nic_type = tx_queue->efx->type; |
| struct efx_tx_buffer *buffer; |
| unsigned int dma_len; |
| |
| /* Map the fragment taking account of NIC-dependent DMA limits. */ |
| do { |
| buffer = efx_tx_queue_get_insert_buffer(tx_queue); |
| |
| if (nic_type->tx_limit_len) |
| dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); |
| else |
| dma_len = len; |
| |
| buffer->len = dma_len; |
| buffer->dma_addr = dma_addr; |
| buffer->flags = EFX_TX_BUF_CONT; |
| len -= dma_len; |
| dma_addr += dma_len; |
| ++tx_queue->insert_count; |
| } while (len); |
| |
| return buffer; |
| } |
| |
| int efx_tx_tso_header_length(struct sk_buff *skb) |
| { |
| size_t header_len; |
| |
| if (skb->encapsulation) |
| header_len = skb_inner_transport_offset(skb) + |
| (inner_tcp_hdr(skb)->doff << 2u); |
| else |
| header_len = skb_transport_offset(skb) + |
| (tcp_hdr(skb)->doff << 2u); |
| return header_len; |
| } |
| |
| /* Map all data from an SKB for DMA and create descriptors on the queue. */ |
| int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb, |
| unsigned int segment_count) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| struct device *dma_dev = &efx->pci_dev->dev; |
| unsigned int frag_index, nr_frags; |
| dma_addr_t dma_addr, unmap_addr; |
| unsigned short dma_flags; |
| size_t len, unmap_len; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| frag_index = 0; |
| |
| /* Map header data. */ |
| len = skb_headlen(skb); |
| dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); |
| dma_flags = EFX_TX_BUF_MAP_SINGLE; |
| unmap_len = len; |
| unmap_addr = dma_addr; |
| |
| if (unlikely(dma_mapping_error(dma_dev, dma_addr))) |
| return -EIO; |
| |
| if (segment_count) { |
| /* For TSO we need to put the header in to a separate |
| * descriptor. Map this separately if necessary. |
| */ |
| size_t header_len = efx_tx_tso_header_length(skb); |
| |
| if (header_len != len) { |
| tx_queue->tso_long_headers++; |
| efx_tx_map_chunk(tx_queue, dma_addr, header_len); |
| len -= header_len; |
| dma_addr += header_len; |
| } |
| } |
| |
| /* Add descriptors for each fragment. */ |
| do { |
| struct efx_tx_buffer *buffer; |
| skb_frag_t *fragment; |
| |
| buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); |
| |
| /* The final descriptor for a fragment is responsible for |
| * unmapping the whole fragment. |
| */ |
| buffer->flags = EFX_TX_BUF_CONT | dma_flags; |
| buffer->unmap_len = unmap_len; |
| buffer->dma_offset = buffer->dma_addr - unmap_addr; |
| |
| if (frag_index >= nr_frags) { |
| /* Store SKB details with the final buffer for |
| * the completion. |
| */ |
| buffer->skb = skb; |
| buffer->flags = EFX_TX_BUF_SKB | dma_flags; |
| return 0; |
| } |
| |
| /* Move on to the next fragment. */ |
| fragment = &skb_shinfo(skb)->frags[frag_index++]; |
| len = skb_frag_size(fragment); |
| dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len, |
| DMA_TO_DEVICE); |
| dma_flags = 0; |
| unmap_len = len; |
| unmap_addr = dma_addr; |
| |
| if (unlikely(dma_mapping_error(dma_dev, dma_addr))) |
| return -EIO; |
| } while (1); |
| } |
| |
| unsigned int efx_tx_max_skb_descs(struct efx_nic *efx) |
| { |
| /* Header and payload descriptor for each output segment, plus |
| * one for every input fragment boundary within a segment |
| */ |
| unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; |
| |
| /* Possibly one more per segment for option descriptors */ |
| if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) |
| max_descs += EFX_TSO_MAX_SEGS; |
| |
| /* Possibly more for PCIe page boundaries within input fragments */ |
| if (PAGE_SIZE > EFX_PAGE_SIZE) |
| max_descs += max_t(unsigned int, MAX_SKB_FRAGS, |
| DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE, |
| EFX_PAGE_SIZE)); |
| |
| return max_descs; |
| } |
| |
| /* |
| * Fallback to software TSO. |
| * |
| * This is used if we are unable to send a GSO packet through hardware TSO. |
| * This should only ever happen due to per-queue restrictions - unsupported |
| * packets should first be filtered by the feature flags. |
| * |
| * Returns 0 on success, error code otherwise. |
| */ |
| int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb) |
| { |
| struct sk_buff *segments, *next; |
| |
| segments = skb_gso_segment(skb, 0); |
| if (IS_ERR(segments)) |
| return PTR_ERR(segments); |
| |
| dev_consume_skb_any(skb); |
| |
| skb_list_walk_safe(segments, skb, next) { |
| skb_mark_not_on_list(skb); |
| efx_enqueue_skb(tx_queue, skb); |
| } |
| |
| return 0; |
| } |