| // SPDX-License-Identifier: GPL-2.0 |
| /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ |
| * sungem.c: Sun GEM ethernet driver. |
| * |
| * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) |
| * |
| * Support for Apple GMAC and assorted PHYs, WOL, Power Management |
| * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) |
| * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. |
| * |
| * NAPI and NETPOLL support |
| * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioport.h> |
| #include <linux/in.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/crc32.h> |
| #include <linux/random.h> |
| #include <linux/workqueue.h> |
| #include <linux/if_vlan.h> |
| #include <linux/bitops.h> |
| #include <linux/mm.h> |
| #include <linux/gfp.h> |
| #include <linux/of.h> |
| |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| #include <linux/uaccess.h> |
| #include <asm/irq.h> |
| |
| #ifdef CONFIG_SPARC |
| #include <asm/idprom.h> |
| #include <asm/prom.h> |
| #endif |
| |
| #ifdef CONFIG_PPC_PMAC |
| #include <asm/machdep.h> |
| #include <asm/pmac_feature.h> |
| #endif |
| |
| #include <linux/sungem_phy.h> |
| #include "sungem.h" |
| |
| #define STRIP_FCS |
| |
| #define DEFAULT_MSG (NETIF_MSG_DRV | \ |
| NETIF_MSG_PROBE | \ |
| NETIF_MSG_LINK) |
| |
| #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ |
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ |
| SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ |
| SUPPORTED_Pause | SUPPORTED_Autoneg) |
| |
| #define DRV_NAME "sungem" |
| #define DRV_VERSION "1.0" |
| #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" |
| |
| static char version[] = |
| DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; |
| |
| MODULE_AUTHOR(DRV_AUTHOR); |
| MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| |
| #define GEM_MODULE_NAME "gem" |
| |
| static const struct pci_device_id gem_pci_tbl[] = { |
| { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| |
| /* These models only differ from the original GEM in |
| * that their tx/rx fifos are of a different size and |
| * they only support 10/100 speeds. -DaveM |
| * |
| * Apple's GMAC does support gigabit on machines with |
| * the BCM54xx PHYs. -BenH |
| */ |
| { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| {0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, gem_pci_tbl); |
| |
| static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) |
| { |
| u32 cmd; |
| int limit = 10000; |
| |
| cmd = (1 << 30); |
| cmd |= (2 << 28); |
| cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; |
| cmd |= (reg << 18) & MIF_FRAME_REGAD; |
| cmd |= (MIF_FRAME_TAMSB); |
| writel(cmd, gp->regs + MIF_FRAME); |
| |
| while (--limit) { |
| cmd = readl(gp->regs + MIF_FRAME); |
| if (cmd & MIF_FRAME_TALSB) |
| break; |
| |
| udelay(10); |
| } |
| |
| if (!limit) |
| cmd = 0xffff; |
| |
| return cmd & MIF_FRAME_DATA; |
| } |
| |
| static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) |
| { |
| struct gem *gp = netdev_priv(dev); |
| return __sungem_phy_read(gp, mii_id, reg); |
| } |
| |
| static inline u16 sungem_phy_read(struct gem *gp, int reg) |
| { |
| return __sungem_phy_read(gp, gp->mii_phy_addr, reg); |
| } |
| |
| static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) |
| { |
| u32 cmd; |
| int limit = 10000; |
| |
| cmd = (1 << 30); |
| cmd |= (1 << 28); |
| cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; |
| cmd |= (reg << 18) & MIF_FRAME_REGAD; |
| cmd |= (MIF_FRAME_TAMSB); |
| cmd |= (val & MIF_FRAME_DATA); |
| writel(cmd, gp->regs + MIF_FRAME); |
| |
| while (limit--) { |
| cmd = readl(gp->regs + MIF_FRAME); |
| if (cmd & MIF_FRAME_TALSB) |
| break; |
| |
| udelay(10); |
| } |
| } |
| |
| static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) |
| { |
| struct gem *gp = netdev_priv(dev); |
| __sungem_phy_write(gp, mii_id, reg, val & 0xffff); |
| } |
| |
| static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) |
| { |
| __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); |
| } |
| |
| static inline void gem_enable_ints(struct gem *gp) |
| { |
| /* Enable all interrupts but TXDONE */ |
| writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); |
| } |
| |
| static inline void gem_disable_ints(struct gem *gp) |
| { |
| /* Disable all interrupts, including TXDONE */ |
| writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); |
| (void)readl(gp->regs + GREG_IMASK); /* write posting */ |
| } |
| |
| static void gem_get_cell(struct gem *gp) |
| { |
| BUG_ON(gp->cell_enabled < 0); |
| gp->cell_enabled++; |
| #ifdef CONFIG_PPC_PMAC |
| if (gp->cell_enabled == 1) { |
| mb(); |
| pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); |
| udelay(10); |
| } |
| #endif /* CONFIG_PPC_PMAC */ |
| } |
| |
| /* Turn off the chip's clock */ |
| static void gem_put_cell(struct gem *gp) |
| { |
| BUG_ON(gp->cell_enabled <= 0); |
| gp->cell_enabled--; |
| #ifdef CONFIG_PPC_PMAC |
| if (gp->cell_enabled == 0) { |
| mb(); |
| pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); |
| udelay(10); |
| } |
| #endif /* CONFIG_PPC_PMAC */ |
| } |
| |
| static inline void gem_netif_stop(struct gem *gp) |
| { |
| netif_trans_update(gp->dev); /* prevent tx timeout */ |
| napi_disable(&gp->napi); |
| netif_tx_disable(gp->dev); |
| } |
| |
| static inline void gem_netif_start(struct gem *gp) |
| { |
| /* NOTE: unconditional netif_wake_queue is only |
| * appropriate so long as all callers are assured to |
| * have free tx slots. |
| */ |
| netif_wake_queue(gp->dev); |
| napi_enable(&gp->napi); |
| } |
| |
| static void gem_schedule_reset(struct gem *gp) |
| { |
| gp->reset_task_pending = 1; |
| schedule_work(&gp->reset_task); |
| } |
| |
| static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) |
| { |
| if (netif_msg_intr(gp)) |
| printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); |
| } |
| |
| static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| u32 pcs_istat = readl(gp->regs + PCS_ISTAT); |
| u32 pcs_miistat; |
| |
| if (netif_msg_intr(gp)) |
| printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", |
| gp->dev->name, pcs_istat); |
| |
| if (!(pcs_istat & PCS_ISTAT_LSC)) { |
| netdev_err(dev, "PCS irq but no link status change???\n"); |
| return 0; |
| } |
| |
| /* The link status bit latches on zero, so you must |
| * read it twice in such a case to see a transition |
| * to the link being up. |
| */ |
| pcs_miistat = readl(gp->regs + PCS_MIISTAT); |
| if (!(pcs_miistat & PCS_MIISTAT_LS)) |
| pcs_miistat |= |
| (readl(gp->regs + PCS_MIISTAT) & |
| PCS_MIISTAT_LS); |
| |
| if (pcs_miistat & PCS_MIISTAT_ANC) { |
| /* The remote-fault indication is only valid |
| * when autoneg has completed. |
| */ |
| if (pcs_miistat & PCS_MIISTAT_RF) |
| netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); |
| else |
| netdev_info(dev, "PCS AutoNEG complete\n"); |
| } |
| |
| if (pcs_miistat & PCS_MIISTAT_LS) { |
| netdev_info(dev, "PCS link is now up\n"); |
| netif_carrier_on(gp->dev); |
| } else { |
| netdev_info(dev, "PCS link is now down\n"); |
| netif_carrier_off(gp->dev); |
| /* If this happens and the link timer is not running, |
| * reset so we re-negotiate. |
| */ |
| if (!timer_pending(&gp->link_timer)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); |
| |
| if (netif_msg_intr(gp)) |
| printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", |
| gp->dev->name, txmac_stat); |
| |
| /* Defer timer expiration is quite normal, |
| * don't even log the event. |
| */ |
| if ((txmac_stat & MAC_TXSTAT_DTE) && |
| !(txmac_stat & ~MAC_TXSTAT_DTE)) |
| return 0; |
| |
| if (txmac_stat & MAC_TXSTAT_URUN) { |
| netdev_err(dev, "TX MAC xmit underrun\n"); |
| dev->stats.tx_fifo_errors++; |
| } |
| |
| if (txmac_stat & MAC_TXSTAT_MPE) { |
| netdev_err(dev, "TX MAC max packet size error\n"); |
| dev->stats.tx_errors++; |
| } |
| |
| /* The rest are all cases of one of the 16-bit TX |
| * counters expiring. |
| */ |
| if (txmac_stat & MAC_TXSTAT_NCE) |
| dev->stats.collisions += 0x10000; |
| |
| if (txmac_stat & MAC_TXSTAT_ECE) { |
| dev->stats.tx_aborted_errors += 0x10000; |
| dev->stats.collisions += 0x10000; |
| } |
| |
| if (txmac_stat & MAC_TXSTAT_LCE) { |
| dev->stats.tx_aborted_errors += 0x10000; |
| dev->stats.collisions += 0x10000; |
| } |
| |
| /* We do not keep track of MAC_TXSTAT_FCE and |
| * MAC_TXSTAT_PCE events. |
| */ |
| return 0; |
| } |
| |
| /* When we get a RX fifo overflow, the RX unit in GEM is probably hung |
| * so we do the following. |
| * |
| * If any part of the reset goes wrong, we return 1 and that causes the |
| * whole chip to be reset. |
| */ |
| static int gem_rxmac_reset(struct gem *gp) |
| { |
| struct net_device *dev = gp->dev; |
| int limit, i; |
| u64 desc_dma; |
| u32 val; |
| |
| /* First, reset & disable MAC RX. */ |
| writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); |
| for (limit = 0; limit < 5000; limit++) { |
| if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) |
| break; |
| udelay(10); |
| } |
| if (limit == 5000) { |
| netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); |
| return 1; |
| } |
| |
| writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, |
| gp->regs + MAC_RXCFG); |
| for (limit = 0; limit < 5000; limit++) { |
| if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) |
| break; |
| udelay(10); |
| } |
| if (limit == 5000) { |
| netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); |
| return 1; |
| } |
| |
| /* Second, disable RX DMA. */ |
| writel(0, gp->regs + RXDMA_CFG); |
| for (limit = 0; limit < 5000; limit++) { |
| if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) |
| break; |
| udelay(10); |
| } |
| if (limit == 5000) { |
| netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); |
| return 1; |
| } |
| |
| mdelay(5); |
| |
| /* Execute RX reset command. */ |
| writel(gp->swrst_base | GREG_SWRST_RXRST, |
| gp->regs + GREG_SWRST); |
| for (limit = 0; limit < 5000; limit++) { |
| if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) |
| break; |
| udelay(10); |
| } |
| if (limit == 5000) { |
| netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); |
| return 1; |
| } |
| |
| /* Refresh the RX ring. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct gem_rxd *rxd = &gp->init_block->rxd[i]; |
| |
| if (gp->rx_skbs[i] == NULL) { |
| netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); |
| return 1; |
| } |
| |
| rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); |
| } |
| gp->rx_new = gp->rx_old = 0; |
| |
| /* Now we must reprogram the rest of RX unit. */ |
| desc_dma = (u64) gp->gblock_dvma; |
| desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); |
| writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); |
| writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); |
| writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); |
| val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | |
| (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); |
| writel(val, gp->regs + RXDMA_CFG); |
| if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) |
| writel(((5 & RXDMA_BLANK_IPKTS) | |
| ((8 << 12) & RXDMA_BLANK_ITIME)), |
| gp->regs + RXDMA_BLANK); |
| else |
| writel(((5 & RXDMA_BLANK_IPKTS) | |
| ((4 << 12) & RXDMA_BLANK_ITIME)), |
| gp->regs + RXDMA_BLANK); |
| val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); |
| val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); |
| writel(val, gp->regs + RXDMA_PTHRESH); |
| val = readl(gp->regs + RXDMA_CFG); |
| writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); |
| writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); |
| val = readl(gp->regs + MAC_RXCFG); |
| writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); |
| |
| return 0; |
| } |
| |
| static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); |
| int ret = 0; |
| |
| if (netif_msg_intr(gp)) |
| printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", |
| gp->dev->name, rxmac_stat); |
| |
| if (rxmac_stat & MAC_RXSTAT_OFLW) { |
| u32 smac = readl(gp->regs + MAC_SMACHINE); |
| |
| netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); |
| dev->stats.rx_over_errors++; |
| dev->stats.rx_fifo_errors++; |
| |
| ret = gem_rxmac_reset(gp); |
| } |
| |
| if (rxmac_stat & MAC_RXSTAT_ACE) |
| dev->stats.rx_frame_errors += 0x10000; |
| |
| if (rxmac_stat & MAC_RXSTAT_CCE) |
| dev->stats.rx_crc_errors += 0x10000; |
| |
| if (rxmac_stat & MAC_RXSTAT_LCE) |
| dev->stats.rx_length_errors += 0x10000; |
| |
| /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE |
| * events. |
| */ |
| return ret; |
| } |
| |
| static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| u32 mac_cstat = readl(gp->regs + MAC_CSTAT); |
| |
| if (netif_msg_intr(gp)) |
| printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", |
| gp->dev->name, mac_cstat); |
| |
| /* This interrupt is just for pause frame and pause |
| * tracking. It is useful for diagnostics and debug |
| * but probably by default we will mask these events. |
| */ |
| if (mac_cstat & MAC_CSTAT_PS) |
| gp->pause_entered++; |
| |
| if (mac_cstat & MAC_CSTAT_PRCV) |
| gp->pause_last_time_recvd = (mac_cstat >> 16); |
| |
| return 0; |
| } |
| |
| static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| u32 mif_status = readl(gp->regs + MIF_STATUS); |
| u32 reg_val, changed_bits; |
| |
| reg_val = (mif_status & MIF_STATUS_DATA) >> 16; |
| changed_bits = (mif_status & MIF_STATUS_STAT); |
| |
| gem_handle_mif_event(gp, reg_val, changed_bits); |
| |
| return 0; |
| } |
| |
| static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); |
| |
| if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && |
| gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { |
| netdev_err(dev, "PCI error [%04x]", pci_estat); |
| |
| if (pci_estat & GREG_PCIESTAT_BADACK) |
| pr_cont(" <No ACK64# during ABS64 cycle>"); |
| if (pci_estat & GREG_PCIESTAT_DTRTO) |
| pr_cont(" <Delayed transaction timeout>"); |
| if (pci_estat & GREG_PCIESTAT_OTHER) |
| pr_cont(" <other>"); |
| pr_cont("\n"); |
| } else { |
| pci_estat |= GREG_PCIESTAT_OTHER; |
| netdev_err(dev, "PCI error\n"); |
| } |
| |
| if (pci_estat & GREG_PCIESTAT_OTHER) { |
| int pci_errs; |
| |
| /* Interrogate PCI config space for the |
| * true cause. |
| */ |
| pci_errs = pci_status_get_and_clear_errors(gp->pdev); |
| netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); |
| if (pci_errs & PCI_STATUS_PARITY) |
| netdev_err(dev, "PCI parity error detected\n"); |
| if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) |
| netdev_err(dev, "PCI target abort\n"); |
| if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) |
| netdev_err(dev, "PCI master acks target abort\n"); |
| if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) |
| netdev_err(dev, "PCI master abort\n"); |
| if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) |
| netdev_err(dev, "PCI system error SERR#\n"); |
| if (pci_errs & PCI_STATUS_DETECTED_PARITY) |
| netdev_err(dev, "PCI parity error\n"); |
| } |
| |
| /* For all PCI errors, we should reset the chip. */ |
| return 1; |
| } |
| |
| /* All non-normal interrupt conditions get serviced here. |
| * Returns non-zero if we should just exit the interrupt |
| * handler right now (ie. if we reset the card which invalidates |
| * all of the other original irq status bits). |
| */ |
| static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| if (gem_status & GREG_STAT_RXNOBUF) { |
| /* Frame arrived, no free RX buffers available. */ |
| if (netif_msg_rx_err(gp)) |
| printk(KERN_DEBUG "%s: no buffer for rx frame\n", |
| gp->dev->name); |
| dev->stats.rx_dropped++; |
| } |
| |
| if (gem_status & GREG_STAT_RXTAGERR) { |
| /* corrupt RX tag framing */ |
| if (netif_msg_rx_err(gp)) |
| printk(KERN_DEBUG "%s: corrupt rx tag framing\n", |
| gp->dev->name); |
| dev->stats.rx_errors++; |
| |
| return 1; |
| } |
| |
| if (gem_status & GREG_STAT_PCS) { |
| if (gem_pcs_interrupt(dev, gp, gem_status)) |
| return 1; |
| } |
| |
| if (gem_status & GREG_STAT_TXMAC) { |
| if (gem_txmac_interrupt(dev, gp, gem_status)) |
| return 1; |
| } |
| |
| if (gem_status & GREG_STAT_RXMAC) { |
| if (gem_rxmac_interrupt(dev, gp, gem_status)) |
| return 1; |
| } |
| |
| if (gem_status & GREG_STAT_MAC) { |
| if (gem_mac_interrupt(dev, gp, gem_status)) |
| return 1; |
| } |
| |
| if (gem_status & GREG_STAT_MIF) { |
| if (gem_mif_interrupt(dev, gp, gem_status)) |
| return 1; |
| } |
| |
| if (gem_status & GREG_STAT_PCIERR) { |
| if (gem_pci_interrupt(dev, gp, gem_status)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) |
| { |
| int entry, limit; |
| |
| entry = gp->tx_old; |
| limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); |
| while (entry != limit) { |
| struct sk_buff *skb; |
| struct gem_txd *txd; |
| dma_addr_t dma_addr; |
| u32 dma_len; |
| int frag; |
| |
| if (netif_msg_tx_done(gp)) |
| printk(KERN_DEBUG "%s: tx done, slot %d\n", |
| gp->dev->name, entry); |
| skb = gp->tx_skbs[entry]; |
| if (skb_shinfo(skb)->nr_frags) { |
| int last = entry + skb_shinfo(skb)->nr_frags; |
| int walk = entry; |
| int incomplete = 0; |
| |
| last &= (TX_RING_SIZE - 1); |
| for (;;) { |
| walk = NEXT_TX(walk); |
| if (walk == limit) |
| incomplete = 1; |
| if (walk == last) |
| break; |
| } |
| if (incomplete) |
| break; |
| } |
| gp->tx_skbs[entry] = NULL; |
| dev->stats.tx_bytes += skb->len; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| txd = &gp->init_block->txd[entry]; |
| |
| dma_addr = le64_to_cpu(txd->buffer); |
| dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; |
| |
| dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len, |
| DMA_TO_DEVICE); |
| entry = NEXT_TX(entry); |
| } |
| |
| dev->stats.tx_packets++; |
| dev_consume_skb_any(skb); |
| } |
| gp->tx_old = entry; |
| |
| /* Need to make the tx_old update visible to gem_start_xmit() |
| * before checking for netif_queue_stopped(). Without the |
| * memory barrier, there is a small possibility that gem_start_xmit() |
| * will miss it and cause the queue to be stopped forever. |
| */ |
| smp_mb(); |
| |
| if (unlikely(netif_queue_stopped(dev) && |
| TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { |
| struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); |
| |
| __netif_tx_lock(txq, smp_processor_id()); |
| if (netif_queue_stopped(dev) && |
| TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) |
| netif_wake_queue(dev); |
| __netif_tx_unlock(txq); |
| } |
| } |
| |
| static __inline__ void gem_post_rxds(struct gem *gp, int limit) |
| { |
| int cluster_start, curr, count, kick; |
| |
| cluster_start = curr = (gp->rx_new & ~(4 - 1)); |
| count = 0; |
| kick = -1; |
| dma_wmb(); |
| while (curr != limit) { |
| curr = NEXT_RX(curr); |
| if (++count == 4) { |
| struct gem_rxd *rxd = |
| &gp->init_block->rxd[cluster_start]; |
| for (;;) { |
| rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); |
| rxd++; |
| cluster_start = NEXT_RX(cluster_start); |
| if (cluster_start == curr) |
| break; |
| } |
| kick = curr; |
| count = 0; |
| } |
| } |
| if (kick >= 0) { |
| mb(); |
| writel(kick, gp->regs + RXDMA_KICK); |
| } |
| } |
| |
| #define ALIGNED_RX_SKB_ADDR(addr) \ |
| ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) |
| static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, |
| gfp_t gfp_flags) |
| { |
| struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); |
| |
| if (likely(skb)) { |
| unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); |
| skb_reserve(skb, offset); |
| } |
| return skb; |
| } |
| |
| static int gem_rx(struct gem *gp, int work_to_do) |
| { |
| struct net_device *dev = gp->dev; |
| int entry, drops, work_done = 0; |
| u32 done; |
| |
| if (netif_msg_rx_status(gp)) |
| printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", |
| gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); |
| |
| entry = gp->rx_new; |
| drops = 0; |
| done = readl(gp->regs + RXDMA_DONE); |
| for (;;) { |
| struct gem_rxd *rxd = &gp->init_block->rxd[entry]; |
| struct sk_buff *skb; |
| u64 status = le64_to_cpu(rxd->status_word); |
| dma_addr_t dma_addr; |
| int len; |
| |
| if ((status & RXDCTRL_OWN) != 0) |
| break; |
| |
| if (work_done >= RX_RING_SIZE || work_done >= work_to_do) |
| break; |
| |
| /* When writing back RX descriptor, GEM writes status |
| * then buffer address, possibly in separate transactions. |
| * If we don't wait for the chip to write both, we could |
| * post a new buffer to this descriptor then have GEM spam |
| * on the buffer address. We sync on the RX completion |
| * register to prevent this from happening. |
| */ |
| if (entry == done) { |
| done = readl(gp->regs + RXDMA_DONE); |
| if (entry == done) |
| break; |
| } |
| |
| /* We can now account for the work we're about to do */ |
| work_done++; |
| |
| skb = gp->rx_skbs[entry]; |
| |
| len = (status & RXDCTRL_BUFSZ) >> 16; |
| if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { |
| dev->stats.rx_errors++; |
| if (len < ETH_ZLEN) |
| dev->stats.rx_length_errors++; |
| if (len & RXDCTRL_BAD) |
| dev->stats.rx_crc_errors++; |
| |
| /* We'll just return it to GEM. */ |
| drop_it: |
| dev->stats.rx_dropped++; |
| goto next; |
| } |
| |
| dma_addr = le64_to_cpu(rxd->buffer); |
| if (len > RX_COPY_THRESHOLD) { |
| struct sk_buff *new_skb; |
| |
| new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); |
| if (new_skb == NULL) { |
| drops++; |
| goto drop_it; |
| } |
| dma_unmap_page(&gp->pdev->dev, dma_addr, |
| RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE); |
| gp->rx_skbs[entry] = new_skb; |
| skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); |
| rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev, |
| virt_to_page(new_skb->data), |
| offset_in_page(new_skb->data), |
| RX_BUF_ALLOC_SIZE(gp), |
| DMA_FROM_DEVICE)); |
| skb_reserve(new_skb, RX_OFFSET); |
| |
| /* Trim the original skb for the netif. */ |
| skb_trim(skb, len); |
| } else { |
| struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); |
| |
| if (copy_skb == NULL) { |
| drops++; |
| goto drop_it; |
| } |
| |
| skb_reserve(copy_skb, 2); |
| skb_put(copy_skb, len); |
| dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len, |
| DMA_FROM_DEVICE); |
| skb_copy_from_linear_data(skb, copy_skb->data, len); |
| dma_sync_single_for_device(&gp->pdev->dev, dma_addr, |
| len, DMA_FROM_DEVICE); |
| |
| /* We'll reuse the original ring buffer. */ |
| skb = copy_skb; |
| } |
| |
| if (likely(dev->features & NETIF_F_RXCSUM)) { |
| __sum16 csum; |
| |
| csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); |
| skb->csum = csum_unfold(csum); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } |
| skb->protocol = eth_type_trans(skb, gp->dev); |
| |
| napi_gro_receive(&gp->napi, skb); |
| |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += len; |
| |
| next: |
| entry = NEXT_RX(entry); |
| } |
| |
| gem_post_rxds(gp, entry); |
| |
| gp->rx_new = entry; |
| |
| if (drops) |
| netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); |
| |
| return work_done; |
| } |
| |
| static int gem_poll(struct napi_struct *napi, int budget) |
| { |
| struct gem *gp = container_of(napi, struct gem, napi); |
| struct net_device *dev = gp->dev; |
| int work_done; |
| |
| work_done = 0; |
| do { |
| /* Handle anomalies */ |
| if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { |
| struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); |
| int reset; |
| |
| /* We run the abnormal interrupt handling code with |
| * the Tx lock. It only resets the Rx portion of the |
| * chip, but we need to guard it against DMA being |
| * restarted by the link poll timer |
| */ |
| __netif_tx_lock(txq, smp_processor_id()); |
| reset = gem_abnormal_irq(dev, gp, gp->status); |
| __netif_tx_unlock(txq); |
| if (reset) { |
| gem_schedule_reset(gp); |
| napi_complete(napi); |
| return work_done; |
| } |
| } |
| |
| /* Run TX completion thread */ |
| gem_tx(dev, gp, gp->status); |
| |
| /* Run RX thread. We don't use any locking here, |
| * code willing to do bad things - like cleaning the |
| * rx ring - must call napi_disable(), which |
| * schedule_timeout()'s if polling is already disabled. |
| */ |
| work_done += gem_rx(gp, budget - work_done); |
| |
| if (work_done >= budget) |
| return work_done; |
| |
| gp->status = readl(gp->regs + GREG_STAT); |
| } while (gp->status & GREG_STAT_NAPI); |
| |
| napi_complete_done(napi, work_done); |
| gem_enable_ints(gp); |
| |
| return work_done; |
| } |
| |
| static irqreturn_t gem_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct gem *gp = netdev_priv(dev); |
| |
| if (napi_schedule_prep(&gp->napi)) { |
| u32 gem_status = readl(gp->regs + GREG_STAT); |
| |
| if (unlikely(gem_status == 0)) { |
| napi_enable(&gp->napi); |
| return IRQ_NONE; |
| } |
| if (netif_msg_intr(gp)) |
| printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", |
| gp->dev->name, gem_status); |
| |
| gp->status = gem_status; |
| gem_disable_ints(gp); |
| __napi_schedule(&gp->napi); |
| } |
| |
| /* If polling was disabled at the time we received that |
| * interrupt, we may return IRQ_HANDLED here while we |
| * should return IRQ_NONE. No big deal... |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| netdev_err(dev, "transmit timed out, resetting\n"); |
| |
| netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", |
| readl(gp->regs + TXDMA_CFG), |
| readl(gp->regs + MAC_TXSTAT), |
| readl(gp->regs + MAC_TXCFG)); |
| netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", |
| readl(gp->regs + RXDMA_CFG), |
| readl(gp->regs + MAC_RXSTAT), |
| readl(gp->regs + MAC_RXCFG)); |
| |
| gem_schedule_reset(gp); |
| } |
| |
| static __inline__ int gem_intme(int entry) |
| { |
| /* Algorithm: IRQ every 1/2 of descriptors. */ |
| if (!(entry & ((TX_RING_SIZE>>1)-1))) |
| return 1; |
| |
| return 0; |
| } |
| |
| static netdev_tx_t gem_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| int entry; |
| u64 ctrl; |
| |
| ctrl = 0; |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| const u64 csum_start_off = skb_checksum_start_offset(skb); |
| const u64 csum_stuff_off = csum_start_off + skb->csum_offset; |
| |
| ctrl = (TXDCTRL_CENAB | |
| (csum_start_off << 15) | |
| (csum_stuff_off << 21)); |
| } |
| |
| if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { |
| /* This is a hard error, log it. */ |
| if (!netif_queue_stopped(dev)) { |
| netif_stop_queue(dev); |
| netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); |
| } |
| return NETDEV_TX_BUSY; |
| } |
| |
| entry = gp->tx_new; |
| gp->tx_skbs[entry] = skb; |
| |
| if (skb_shinfo(skb)->nr_frags == 0) { |
| struct gem_txd *txd = &gp->init_block->txd[entry]; |
| dma_addr_t mapping; |
| u32 len; |
| |
| len = skb->len; |
| mapping = dma_map_page(&gp->pdev->dev, |
| virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| len, DMA_TO_DEVICE); |
| ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; |
| if (gem_intme(entry)) |
| ctrl |= TXDCTRL_INTME; |
| txd->buffer = cpu_to_le64(mapping); |
| dma_wmb(); |
| txd->control_word = cpu_to_le64(ctrl); |
| entry = NEXT_TX(entry); |
| } else { |
| struct gem_txd *txd; |
| u32 first_len; |
| u64 intme; |
| dma_addr_t first_mapping; |
| int frag, first_entry = entry; |
| |
| intme = 0; |
| if (gem_intme(entry)) |
| intme |= TXDCTRL_INTME; |
| |
| /* We must give this initial chunk to the device last. |
| * Otherwise we could race with the device. |
| */ |
| first_len = skb_headlen(skb); |
| first_mapping = dma_map_page(&gp->pdev->dev, |
| virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| first_len, DMA_TO_DEVICE); |
| entry = NEXT_TX(entry); |
| |
| for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { |
| const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; |
| u32 len; |
| dma_addr_t mapping; |
| u64 this_ctrl; |
| |
| len = skb_frag_size(this_frag); |
| mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, |
| 0, len, DMA_TO_DEVICE); |
| this_ctrl = ctrl; |
| if (frag == skb_shinfo(skb)->nr_frags - 1) |
| this_ctrl |= TXDCTRL_EOF; |
| |
| txd = &gp->init_block->txd[entry]; |
| txd->buffer = cpu_to_le64(mapping); |
| dma_wmb(); |
| txd->control_word = cpu_to_le64(this_ctrl | len); |
| |
| if (gem_intme(entry)) |
| intme |= TXDCTRL_INTME; |
| |
| entry = NEXT_TX(entry); |
| } |
| txd = &gp->init_block->txd[first_entry]; |
| txd->buffer = cpu_to_le64(first_mapping); |
| dma_wmb(); |
| txd->control_word = |
| cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); |
| } |
| |
| gp->tx_new = entry; |
| if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { |
| netif_stop_queue(dev); |
| |
| /* netif_stop_queue() must be done before checking |
| * tx index in TX_BUFFS_AVAIL() below, because |
| * in gem_tx(), we update tx_old before checking for |
| * netif_queue_stopped(). |
| */ |
| smp_mb(); |
| if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) |
| netif_wake_queue(dev); |
| } |
| if (netif_msg_tx_queued(gp)) |
| printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", |
| dev->name, entry, skb->len); |
| mb(); |
| writel(gp->tx_new, gp->regs + TXDMA_KICK); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void gem_pcs_reset(struct gem *gp) |
| { |
| int limit; |
| u32 val; |
| |
| /* Reset PCS unit. */ |
| val = readl(gp->regs + PCS_MIICTRL); |
| val |= PCS_MIICTRL_RST; |
| writel(val, gp->regs + PCS_MIICTRL); |
| |
| limit = 32; |
| while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { |
| udelay(100); |
| if (limit-- <= 0) |
| break; |
| } |
| if (limit < 0) |
| netdev_warn(gp->dev, "PCS reset bit would not clear\n"); |
| } |
| |
| static void gem_pcs_reinit_adv(struct gem *gp) |
| { |
| u32 val; |
| |
| /* Make sure PCS is disabled while changing advertisement |
| * configuration. |
| */ |
| val = readl(gp->regs + PCS_CFG); |
| val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); |
| writel(val, gp->regs + PCS_CFG); |
| |
| /* Advertise all capabilities except asymmetric |
| * pause. |
| */ |
| val = readl(gp->regs + PCS_MIIADV); |
| val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | |
| PCS_MIIADV_SP | PCS_MIIADV_AP); |
| writel(val, gp->regs + PCS_MIIADV); |
| |
| /* Enable and restart auto-negotiation, disable wrapback/loopback, |
| * and re-enable PCS. |
| */ |
| val = readl(gp->regs + PCS_MIICTRL); |
| val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); |
| val &= ~PCS_MIICTRL_WB; |
| writel(val, gp->regs + PCS_MIICTRL); |
| |
| val = readl(gp->regs + PCS_CFG); |
| val |= PCS_CFG_ENABLE; |
| writel(val, gp->regs + PCS_CFG); |
| |
| /* Make sure serialink loopback is off. The meaning |
| * of this bit is logically inverted based upon whether |
| * you are in Serialink or SERDES mode. |
| */ |
| val = readl(gp->regs + PCS_SCTRL); |
| if (gp->phy_type == phy_serialink) |
| val &= ~PCS_SCTRL_LOOP; |
| else |
| val |= PCS_SCTRL_LOOP; |
| writel(val, gp->regs + PCS_SCTRL); |
| } |
| |
| #define STOP_TRIES 32 |
| |
| static void gem_reset(struct gem *gp) |
| { |
| int limit; |
| u32 val; |
| |
| /* Make sure we won't get any more interrupts */ |
| writel(0xffffffff, gp->regs + GREG_IMASK); |
| |
| /* Reset the chip */ |
| writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, |
| gp->regs + GREG_SWRST); |
| |
| limit = STOP_TRIES; |
| |
| do { |
| udelay(20); |
| val = readl(gp->regs + GREG_SWRST); |
| if (limit-- <= 0) |
| break; |
| } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); |
| |
| if (limit < 0) |
| netdev_err(gp->dev, "SW reset is ghetto\n"); |
| |
| if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) |
| gem_pcs_reinit_adv(gp); |
| } |
| |
| static void gem_start_dma(struct gem *gp) |
| { |
| u32 val; |
| |
| /* We are ready to rock, turn everything on. */ |
| val = readl(gp->regs + TXDMA_CFG); |
| writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); |
| val = readl(gp->regs + RXDMA_CFG); |
| writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); |
| val = readl(gp->regs + MAC_TXCFG); |
| writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); |
| val = readl(gp->regs + MAC_RXCFG); |
| writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); |
| |
| (void) readl(gp->regs + MAC_RXCFG); |
| udelay(100); |
| |
| gem_enable_ints(gp); |
| |
| writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); |
| } |
| |
| /* DMA won't be actually stopped before about 4ms tho ... |
| */ |
| static void gem_stop_dma(struct gem *gp) |
| { |
| u32 val; |
| |
| /* We are done rocking, turn everything off. */ |
| val = readl(gp->regs + TXDMA_CFG); |
| writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); |
| val = readl(gp->regs + RXDMA_CFG); |
| writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); |
| val = readl(gp->regs + MAC_TXCFG); |
| writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); |
| val = readl(gp->regs + MAC_RXCFG); |
| writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); |
| |
| (void) readl(gp->regs + MAC_RXCFG); |
| |
| /* Need to wait a bit ... done by the caller */ |
| } |
| |
| |
| // XXX dbl check what that function should do when called on PCS PHY |
| static void gem_begin_auto_negotiation(struct gem *gp, |
| const struct ethtool_link_ksettings *ep) |
| { |
| u32 advertise, features; |
| int autoneg; |
| int speed; |
| int duplex; |
| u32 advertising; |
| |
| if (ep) |
| ethtool_convert_link_mode_to_legacy_u32( |
| &advertising, ep->link_modes.advertising); |
| |
| if (gp->phy_type != phy_mii_mdio0 && |
| gp->phy_type != phy_mii_mdio1) |
| goto non_mii; |
| |
| /* Setup advertise */ |
| if (found_mii_phy(gp)) |
| features = gp->phy_mii.def->features; |
| else |
| features = 0; |
| |
| advertise = features & ADVERTISE_MASK; |
| if (gp->phy_mii.advertising != 0) |
| advertise &= gp->phy_mii.advertising; |
| |
| autoneg = gp->want_autoneg; |
| speed = gp->phy_mii.speed; |
| duplex = gp->phy_mii.duplex; |
| |
| /* Setup link parameters */ |
| if (!ep) |
| goto start_aneg; |
| if (ep->base.autoneg == AUTONEG_ENABLE) { |
| advertise = advertising; |
| autoneg = 1; |
| } else { |
| autoneg = 0; |
| speed = ep->base.speed; |
| duplex = ep->base.duplex; |
| } |
| |
| start_aneg: |
| /* Sanitize settings based on PHY capabilities */ |
| if ((features & SUPPORTED_Autoneg) == 0) |
| autoneg = 0; |
| if (speed == SPEED_1000 && |
| !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) |
| speed = SPEED_100; |
| if (speed == SPEED_100 && |
| !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) |
| speed = SPEED_10; |
| if (duplex == DUPLEX_FULL && |
| !(features & (SUPPORTED_1000baseT_Full | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_10baseT_Full))) |
| duplex = DUPLEX_HALF; |
| if (speed == 0) |
| speed = SPEED_10; |
| |
| /* If we are asleep, we don't try to actually setup the PHY, we |
| * just store the settings |
| */ |
| if (!netif_device_present(gp->dev)) { |
| gp->phy_mii.autoneg = gp->want_autoneg = autoneg; |
| gp->phy_mii.speed = speed; |
| gp->phy_mii.duplex = duplex; |
| return; |
| } |
| |
| /* Configure PHY & start aneg */ |
| gp->want_autoneg = autoneg; |
| if (autoneg) { |
| if (found_mii_phy(gp)) |
| gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); |
| gp->lstate = link_aneg; |
| } else { |
| if (found_mii_phy(gp)) |
| gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); |
| gp->lstate = link_force_ok; |
| } |
| |
| non_mii: |
| gp->timer_ticks = 0; |
| mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); |
| } |
| |
| /* A link-up condition has occurred, initialize and enable the |
| * rest of the chip. |
| */ |
| static int gem_set_link_modes(struct gem *gp) |
| { |
| struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); |
| int full_duplex, speed, pause; |
| u32 val; |
| |
| full_duplex = 0; |
| speed = SPEED_10; |
| pause = 0; |
| |
| if (found_mii_phy(gp)) { |
| if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) |
| return 1; |
| full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); |
| speed = gp->phy_mii.speed; |
| pause = gp->phy_mii.pause; |
| } else if (gp->phy_type == phy_serialink || |
| gp->phy_type == phy_serdes) { |
| u32 pcs_lpa = readl(gp->regs + PCS_MIILP); |
| |
| if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) |
| full_duplex = 1; |
| speed = SPEED_1000; |
| } |
| |
| netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", |
| speed, (full_duplex ? "full" : "half")); |
| |
| |
| /* We take the tx queue lock to avoid collisions between |
| * this code, the tx path and the NAPI-driven error path |
| */ |
| __netif_tx_lock(txq, smp_processor_id()); |
| |
| val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); |
| if (full_duplex) { |
| val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); |
| } else { |
| /* MAC_TXCFG_NBO must be zero. */ |
| } |
| writel(val, gp->regs + MAC_TXCFG); |
| |
| val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); |
| if (!full_duplex && |
| (gp->phy_type == phy_mii_mdio0 || |
| gp->phy_type == phy_mii_mdio1)) { |
| val |= MAC_XIFCFG_DISE; |
| } else if (full_duplex) { |
| val |= MAC_XIFCFG_FLED; |
| } |
| |
| if (speed == SPEED_1000) |
| val |= (MAC_XIFCFG_GMII); |
| |
| writel(val, gp->regs + MAC_XIFCFG); |
| |
| /* If gigabit and half-duplex, enable carrier extension |
| * mode. Else, disable it. |
| */ |
| if (speed == SPEED_1000 && !full_duplex) { |
| val = readl(gp->regs + MAC_TXCFG); |
| writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); |
| |
| val = readl(gp->regs + MAC_RXCFG); |
| writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); |
| } else { |
| val = readl(gp->regs + MAC_TXCFG); |
| writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); |
| |
| val = readl(gp->regs + MAC_RXCFG); |
| writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); |
| } |
| |
| if (gp->phy_type == phy_serialink || |
| gp->phy_type == phy_serdes) { |
| u32 pcs_lpa = readl(gp->regs + PCS_MIILP); |
| |
| if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) |
| pause = 1; |
| } |
| |
| if (!full_duplex) |
| writel(512, gp->regs + MAC_STIME); |
| else |
| writel(64, gp->regs + MAC_STIME); |
| val = readl(gp->regs + MAC_MCCFG); |
| if (pause) |
| val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); |
| else |
| val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); |
| writel(val, gp->regs + MAC_MCCFG); |
| |
| gem_start_dma(gp); |
| |
| __netif_tx_unlock(txq); |
| |
| if (netif_msg_link(gp)) { |
| if (pause) { |
| netdev_info(gp->dev, |
| "Pause is enabled (rxfifo: %d off: %d on: %d)\n", |
| gp->rx_fifo_sz, |
| gp->rx_pause_off, |
| gp->rx_pause_on); |
| } else { |
| netdev_info(gp->dev, "Pause is disabled\n"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gem_mdio_link_not_up(struct gem *gp) |
| { |
| switch (gp->lstate) { |
| case link_force_ret: |
| netif_info(gp, link, gp->dev, |
| "Autoneg failed again, keeping forced mode\n"); |
| gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, |
| gp->last_forced_speed, DUPLEX_HALF); |
| gp->timer_ticks = 5; |
| gp->lstate = link_force_ok; |
| return 0; |
| case link_aneg: |
| /* We try forced modes after a failed aneg only on PHYs that don't |
| * have "magic_aneg" bit set, which means they internally do the |
| * while forced-mode thingy. On these, we just restart aneg |
| */ |
| if (gp->phy_mii.def->magic_aneg) |
| return 1; |
| netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); |
| /* Try forced modes. */ |
| gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, |
| DUPLEX_HALF); |
| gp->timer_ticks = 5; |
| gp->lstate = link_force_try; |
| return 0; |
| case link_force_try: |
| /* Downgrade from 100 to 10 Mbps if necessary. |
| * If already at 10Mbps, warn user about the |
| * situation every 10 ticks. |
| */ |
| if (gp->phy_mii.speed == SPEED_100) { |
| gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, |
| DUPLEX_HALF); |
| gp->timer_ticks = 5; |
| netif_info(gp, link, gp->dev, |
| "switching to forced 10bt\n"); |
| return 0; |
| } else |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static void gem_link_timer(struct timer_list *t) |
| { |
| struct gem *gp = from_timer(gp, t, link_timer); |
| struct net_device *dev = gp->dev; |
| int restart_aneg = 0; |
| |
| /* There's no point doing anything if we're going to be reset */ |
| if (gp->reset_task_pending) |
| return; |
| |
| if (gp->phy_type == phy_serialink || |
| gp->phy_type == phy_serdes) { |
| u32 val = readl(gp->regs + PCS_MIISTAT); |
| |
| if (!(val & PCS_MIISTAT_LS)) |
| val = readl(gp->regs + PCS_MIISTAT); |
| |
| if ((val & PCS_MIISTAT_LS) != 0) { |
| if (gp->lstate == link_up) |
| goto restart; |
| |
| gp->lstate = link_up; |
| netif_carrier_on(dev); |
| (void)gem_set_link_modes(gp); |
| } |
| goto restart; |
| } |
| if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { |
| /* Ok, here we got a link. If we had it due to a forced |
| * fallback, and we were configured for autoneg, we do |
| * retry a short autoneg pass. If you know your hub is |
| * broken, use ethtool ;) |
| */ |
| if (gp->lstate == link_force_try && gp->want_autoneg) { |
| gp->lstate = link_force_ret; |
| gp->last_forced_speed = gp->phy_mii.speed; |
| gp->timer_ticks = 5; |
| if (netif_msg_link(gp)) |
| netdev_info(dev, |
| "Got link after fallback, retrying autoneg once...\n"); |
| gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); |
| } else if (gp->lstate != link_up) { |
| gp->lstate = link_up; |
| netif_carrier_on(dev); |
| if (gem_set_link_modes(gp)) |
| restart_aneg = 1; |
| } |
| } else { |
| /* If the link was previously up, we restart the |
| * whole process |
| */ |
| if (gp->lstate == link_up) { |
| gp->lstate = link_down; |
| netif_info(gp, link, dev, "Link down\n"); |
| netif_carrier_off(dev); |
| gem_schedule_reset(gp); |
| /* The reset task will restart the timer */ |
| return; |
| } else if (++gp->timer_ticks > 10) { |
| if (found_mii_phy(gp)) |
| restart_aneg = gem_mdio_link_not_up(gp); |
| else |
| restart_aneg = 1; |
| } |
| } |
| if (restart_aneg) { |
| gem_begin_auto_negotiation(gp, NULL); |
| return; |
| } |
| restart: |
| mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); |
| } |
| |
| static void gem_clean_rings(struct gem *gp) |
| { |
| struct gem_init_block *gb = gp->init_block; |
| struct sk_buff *skb; |
| int i; |
| dma_addr_t dma_addr; |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct gem_rxd *rxd; |
| |
| rxd = &gb->rxd[i]; |
| if (gp->rx_skbs[i] != NULL) { |
| skb = gp->rx_skbs[i]; |
| dma_addr = le64_to_cpu(rxd->buffer); |
| dma_unmap_page(&gp->pdev->dev, dma_addr, |
| RX_BUF_ALLOC_SIZE(gp), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| gp->rx_skbs[i] = NULL; |
| } |
| rxd->status_word = 0; |
| dma_wmb(); |
| rxd->buffer = 0; |
| } |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| if (gp->tx_skbs[i] != NULL) { |
| struct gem_txd *txd; |
| int frag; |
| |
| skb = gp->tx_skbs[i]; |
| gp->tx_skbs[i] = NULL; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| int ent = i & (TX_RING_SIZE - 1); |
| |
| txd = &gb->txd[ent]; |
| dma_addr = le64_to_cpu(txd->buffer); |
| dma_unmap_page(&gp->pdev->dev, dma_addr, |
| le64_to_cpu(txd->control_word) & |
| TXDCTRL_BUFSZ, DMA_TO_DEVICE); |
| |
| if (frag != skb_shinfo(skb)->nr_frags) |
| i++; |
| } |
| dev_kfree_skb_any(skb); |
| } |
| } |
| } |
| |
| static void gem_init_rings(struct gem *gp) |
| { |
| struct gem_init_block *gb = gp->init_block; |
| struct net_device *dev = gp->dev; |
| int i; |
| dma_addr_t dma_addr; |
| |
| gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; |
| |
| gem_clean_rings(gp); |
| |
| gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, |
| (unsigned)VLAN_ETH_FRAME_LEN); |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct sk_buff *skb; |
| struct gem_rxd *rxd = &gb->rxd[i]; |
| |
| skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); |
| if (!skb) { |
| rxd->buffer = 0; |
| rxd->status_word = 0; |
| continue; |
| } |
| |
| gp->rx_skbs[i] = skb; |
| skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); |
| dma_addr = dma_map_page(&gp->pdev->dev, |
| virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| RX_BUF_ALLOC_SIZE(gp), |
| DMA_FROM_DEVICE); |
| rxd->buffer = cpu_to_le64(dma_addr); |
| dma_wmb(); |
| rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); |
| skb_reserve(skb, RX_OFFSET); |
| } |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| struct gem_txd *txd = &gb->txd[i]; |
| |
| txd->control_word = 0; |
| dma_wmb(); |
| txd->buffer = 0; |
| } |
| wmb(); |
| } |
| |
| /* Init PHY interface and start link poll state machine */ |
| static void gem_init_phy(struct gem *gp) |
| { |
| u32 mifcfg; |
| |
| /* Revert MIF CFG setting done on stop_phy */ |
| mifcfg = readl(gp->regs + MIF_CFG); |
| mifcfg &= ~MIF_CFG_BBMODE; |
| writel(mifcfg, gp->regs + MIF_CFG); |
| |
| if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { |
| int i; |
| |
| /* Those delays sucks, the HW seems to love them though, I'll |
| * seriously consider breaking some locks here to be able |
| * to schedule instead |
| */ |
| for (i = 0; i < 3; i++) { |
| #ifdef CONFIG_PPC_PMAC |
| pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); |
| msleep(20); |
| #endif |
| /* Some PHYs used by apple have problem getting back to us, |
| * we do an additional reset here |
| */ |
| sungem_phy_write(gp, MII_BMCR, BMCR_RESET); |
| msleep(20); |
| if (sungem_phy_read(gp, MII_BMCR) != 0xffff) |
| break; |
| if (i == 2) |
| netdev_warn(gp->dev, "GMAC PHY not responding !\n"); |
| } |
| } |
| |
| if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && |
| gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { |
| u32 val; |
| |
| /* Init datapath mode register. */ |
| if (gp->phy_type == phy_mii_mdio0 || |
| gp->phy_type == phy_mii_mdio1) { |
| val = PCS_DMODE_MGM; |
| } else if (gp->phy_type == phy_serialink) { |
| val = PCS_DMODE_SM | PCS_DMODE_GMOE; |
| } else { |
| val = PCS_DMODE_ESM; |
| } |
| |
| writel(val, gp->regs + PCS_DMODE); |
| } |
| |
| if (gp->phy_type == phy_mii_mdio0 || |
| gp->phy_type == phy_mii_mdio1) { |
| /* Reset and detect MII PHY */ |
| sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); |
| |
| /* Init PHY */ |
| if (gp->phy_mii.def && gp->phy_mii.def->ops->init) |
| gp->phy_mii.def->ops->init(&gp->phy_mii); |
| } else { |
| gem_pcs_reset(gp); |
| gem_pcs_reinit_adv(gp); |
| } |
| |
| /* Default aneg parameters */ |
| gp->timer_ticks = 0; |
| gp->lstate = link_down; |
| netif_carrier_off(gp->dev); |
| |
| /* Print things out */ |
| if (gp->phy_type == phy_mii_mdio0 || |
| gp->phy_type == phy_mii_mdio1) |
| netdev_info(gp->dev, "Found %s PHY\n", |
| gp->phy_mii.def ? gp->phy_mii.def->name : "no"); |
| |
| gem_begin_auto_negotiation(gp, NULL); |
| } |
| |
| static void gem_init_dma(struct gem *gp) |
| { |
| u64 desc_dma = (u64) gp->gblock_dvma; |
| u32 val; |
| |
| val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); |
| writel(val, gp->regs + TXDMA_CFG); |
| |
| writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); |
| writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); |
| desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); |
| |
| writel(0, gp->regs + TXDMA_KICK); |
| |
| val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | |
| (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); |
| writel(val, gp->regs + RXDMA_CFG); |
| |
| writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); |
| writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); |
| |
| writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); |
| |
| val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); |
| val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); |
| writel(val, gp->regs + RXDMA_PTHRESH); |
| |
| if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) |
| writel(((5 & RXDMA_BLANK_IPKTS) | |
| ((8 << 12) & RXDMA_BLANK_ITIME)), |
| gp->regs + RXDMA_BLANK); |
| else |
| writel(((5 & RXDMA_BLANK_IPKTS) | |
| ((4 << 12) & RXDMA_BLANK_ITIME)), |
| gp->regs + RXDMA_BLANK); |
| } |
| |
| static u32 gem_setup_multicast(struct gem *gp) |
| { |
| u32 rxcfg = 0; |
| int i; |
| |
| if ((gp->dev->flags & IFF_ALLMULTI) || |
| (netdev_mc_count(gp->dev) > 256)) { |
| for (i=0; i<16; i++) |
| writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); |
| rxcfg |= MAC_RXCFG_HFE; |
| } else if (gp->dev->flags & IFF_PROMISC) { |
| rxcfg |= MAC_RXCFG_PROM; |
| } else { |
| u16 hash_table[16]; |
| u32 crc; |
| struct netdev_hw_addr *ha; |
| int i; |
| |
| memset(hash_table, 0, sizeof(hash_table)); |
| netdev_for_each_mc_addr(ha, gp->dev) { |
| crc = ether_crc_le(6, ha->addr); |
| crc >>= 24; |
| hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); |
| } |
| for (i=0; i<16; i++) |
| writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); |
| rxcfg |= MAC_RXCFG_HFE; |
| } |
| |
| return rxcfg; |
| } |
| |
| static void gem_init_mac(struct gem *gp) |
| { |
| const unsigned char *e = &gp->dev->dev_addr[0]; |
| |
| writel(0x1bf0, gp->regs + MAC_SNDPAUSE); |
| |
| writel(0x00, gp->regs + MAC_IPG0); |
| writel(0x08, gp->regs + MAC_IPG1); |
| writel(0x04, gp->regs + MAC_IPG2); |
| writel(0x40, gp->regs + MAC_STIME); |
| writel(0x40, gp->regs + MAC_MINFSZ); |
| |
| /* Ethernet payload + header + FCS + optional VLAN tag. */ |
| writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); |
| |
| writel(0x07, gp->regs + MAC_PASIZE); |
| writel(0x04, gp->regs + MAC_JAMSIZE); |
| writel(0x10, gp->regs + MAC_ATTLIM); |
| writel(0x8808, gp->regs + MAC_MCTYPE); |
| |
| writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); |
| |
| writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); |
| writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); |
| writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); |
| |
| writel(0, gp->regs + MAC_ADDR3); |
| writel(0, gp->regs + MAC_ADDR4); |
| writel(0, gp->regs + MAC_ADDR5); |
| |
| writel(0x0001, gp->regs + MAC_ADDR6); |
| writel(0xc200, gp->regs + MAC_ADDR7); |
| writel(0x0180, gp->regs + MAC_ADDR8); |
| |
| writel(0, gp->regs + MAC_AFILT0); |
| writel(0, gp->regs + MAC_AFILT1); |
| writel(0, gp->regs + MAC_AFILT2); |
| writel(0, gp->regs + MAC_AF21MSK); |
| writel(0, gp->regs + MAC_AF0MSK); |
| |
| gp->mac_rx_cfg = gem_setup_multicast(gp); |
| #ifdef STRIP_FCS |
| gp->mac_rx_cfg |= MAC_RXCFG_SFCS; |
| #endif |
| writel(0, gp->regs + MAC_NCOLL); |
| writel(0, gp->regs + MAC_FASUCC); |
| writel(0, gp->regs + MAC_ECOLL); |
| writel(0, gp->regs + MAC_LCOLL); |
| writel(0, gp->regs + MAC_DTIMER); |
| writel(0, gp->regs + MAC_PATMPS); |
| writel(0, gp->regs + MAC_RFCTR); |
| writel(0, gp->regs + MAC_LERR); |
| writel(0, gp->regs + MAC_AERR); |
| writel(0, gp->regs + MAC_FCSERR); |
| writel(0, gp->regs + MAC_RXCVERR); |
| |
| /* Clear RX/TX/MAC/XIF config, we will set these up and enable |
| * them once a link is established. |
| */ |
| writel(0, gp->regs + MAC_TXCFG); |
| writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); |
| writel(0, gp->regs + MAC_MCCFG); |
| writel(0, gp->regs + MAC_XIFCFG); |
| |
| /* Setup MAC interrupts. We want to get all of the interesting |
| * counter expiration events, but we do not want to hear about |
| * normal rx/tx as the DMA engine tells us that. |
| */ |
| writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); |
| writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); |
| |
| /* Don't enable even the PAUSE interrupts for now, we |
| * make no use of those events other than to record them. |
| */ |
| writel(0xffffffff, gp->regs + MAC_MCMASK); |
| |
| /* Don't enable GEM's WOL in normal operations |
| */ |
| if (gp->has_wol) |
| writel(0, gp->regs + WOL_WAKECSR); |
| } |
| |
| static void gem_init_pause_thresholds(struct gem *gp) |
| { |
| u32 cfg; |
| |
| /* Calculate pause thresholds. Setting the OFF threshold to the |
| * full RX fifo size effectively disables PAUSE generation which |
| * is what we do for 10/100 only GEMs which have FIFOs too small |
| * to make real gains from PAUSE. |
| */ |
| if (gp->rx_fifo_sz <= (2 * 1024)) { |
| gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; |
| } else { |
| int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; |
| int off = (gp->rx_fifo_sz - (max_frame * 2)); |
| int on = off - max_frame; |
| |
| gp->rx_pause_off = off; |
| gp->rx_pause_on = on; |
| } |
| |
| |
| /* Configure the chip "burst" DMA mode & enable some |
| * HW bug fixes on Apple version |
| */ |
| cfg = 0; |
| if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) |
| cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; |
| #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) |
| cfg |= GREG_CFG_IBURST; |
| #endif |
| cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); |
| cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); |
| writel(cfg, gp->regs + GREG_CFG); |
| |
| /* If Infinite Burst didn't stick, then use different |
| * thresholds (and Apple bug fixes don't exist) |
| */ |
| if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { |
| cfg = ((2 << 1) & GREG_CFG_TXDMALIM); |
| cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); |
| writel(cfg, gp->regs + GREG_CFG); |
| } |
| } |
| |
| static int gem_check_invariants(struct gem *gp) |
| { |
| struct pci_dev *pdev = gp->pdev; |
| u32 mif_cfg; |
| |
| /* On Apple's sungem, we can't rely on registers as the chip |
| * was been powered down by the firmware. The PHY is looked |
| * up later on. |
| */ |
| if (pdev->vendor == PCI_VENDOR_ID_APPLE) { |
| gp->phy_type = phy_mii_mdio0; |
| gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; |
| gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; |
| gp->swrst_base = 0; |
| |
| mif_cfg = readl(gp->regs + MIF_CFG); |
| mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); |
| mif_cfg |= MIF_CFG_MDI0; |
| writel(mif_cfg, gp->regs + MIF_CFG); |
| writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); |
| writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); |
| |
| /* We hard-code the PHY address so we can properly bring it out of |
| * reset later on, we can't really probe it at this point, though |
| * that isn't an issue. |
| */ |
| if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) |
| gp->mii_phy_addr = 1; |
| else |
| gp->mii_phy_addr = 0; |
| |
| return 0; |
| } |
| |
| mif_cfg = readl(gp->regs + MIF_CFG); |
| |
| if (pdev->vendor == PCI_VENDOR_ID_SUN && |
| pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { |
| /* One of the MII PHYs _must_ be present |
| * as this chip has no gigabit PHY. |
| */ |
| if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { |
| pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", |
| mif_cfg); |
| return -1; |
| } |
| } |
| |
| /* Determine initial PHY interface type guess. MDIO1 is the |
| * external PHY and thus takes precedence over MDIO0. |
| */ |
| |
| if (mif_cfg & MIF_CFG_MDI1) { |
| gp->phy_type = phy_mii_mdio1; |
| mif_cfg |= MIF_CFG_PSELECT; |
| writel(mif_cfg, gp->regs + MIF_CFG); |
| } else if (mif_cfg & MIF_CFG_MDI0) { |
| gp->phy_type = phy_mii_mdio0; |
| mif_cfg &= ~MIF_CFG_PSELECT; |
| writel(mif_cfg, gp->regs + MIF_CFG); |
| } else { |
| #ifdef CONFIG_SPARC |
| const char *p; |
| |
| p = of_get_property(gp->of_node, "shared-pins", NULL); |
| if (p && !strcmp(p, "serdes")) |
| gp->phy_type = phy_serdes; |
| else |
| #endif |
| gp->phy_type = phy_serialink; |
| } |
| if (gp->phy_type == phy_mii_mdio1 || |
| gp->phy_type == phy_mii_mdio0) { |
| int i; |
| |
| for (i = 0; i < 32; i++) { |
| gp->mii_phy_addr = i; |
| if (sungem_phy_read(gp, MII_BMCR) != 0xffff) |
| break; |
| } |
| if (i == 32) { |
| if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { |
| pr_err("RIO MII phy will not respond\n"); |
| return -1; |
| } |
| gp->phy_type = phy_serdes; |
| } |
| } |
| |
| /* Fetch the FIFO configurations now too. */ |
| gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; |
| gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; |
| |
| if (pdev->vendor == PCI_VENDOR_ID_SUN) { |
| if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { |
| if (gp->tx_fifo_sz != (9 * 1024) || |
| gp->rx_fifo_sz != (20 * 1024)) { |
| pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", |
| gp->tx_fifo_sz, gp->rx_fifo_sz); |
| return -1; |
| } |
| gp->swrst_base = 0; |
| } else { |
| if (gp->tx_fifo_sz != (2 * 1024) || |
| gp->rx_fifo_sz != (2 * 1024)) { |
| pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", |
| gp->tx_fifo_sz, gp->rx_fifo_sz); |
| return -1; |
| } |
| gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void gem_reinit_chip(struct gem *gp) |
| { |
| /* Reset the chip */ |
| gem_reset(gp); |
| |
| /* Make sure ints are disabled */ |
| gem_disable_ints(gp); |
| |
| /* Allocate & setup ring buffers */ |
| gem_init_rings(gp); |
| |
| /* Configure pause thresholds */ |
| gem_init_pause_thresholds(gp); |
| |
| /* Init DMA & MAC engines */ |
| gem_init_dma(gp); |
| gem_init_mac(gp); |
| } |
| |
| |
| static void gem_stop_phy(struct gem *gp, int wol) |
| { |
| u32 mifcfg; |
| |
| /* Let the chip settle down a bit, it seems that helps |
| * for sleep mode on some models |
| */ |
| msleep(10); |
| |
| /* Make sure we aren't polling PHY status change. We |
| * don't currently use that feature though |
| */ |
| mifcfg = readl(gp->regs + MIF_CFG); |
| mifcfg &= ~MIF_CFG_POLL; |
| writel(mifcfg, gp->regs + MIF_CFG); |
| |
| if (wol && gp->has_wol) { |
| const unsigned char *e = &gp->dev->dev_addr[0]; |
| u32 csr; |
| |
| /* Setup wake-on-lan for MAGIC packet */ |
| writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, |
| gp->regs + MAC_RXCFG); |
| writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); |
| writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); |
| writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); |
| |
| writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); |
| csr = WOL_WAKECSR_ENABLE; |
| if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) |
| csr |= WOL_WAKECSR_MII; |
| writel(csr, gp->regs + WOL_WAKECSR); |
| } else { |
| writel(0, gp->regs + MAC_RXCFG); |
| (void)readl(gp->regs + MAC_RXCFG); |
| /* Machine sleep will die in strange ways if we |
| * dont wait a bit here, looks like the chip takes |
| * some time to really shut down |
| */ |
| msleep(10); |
| } |
| |
| writel(0, gp->regs + MAC_TXCFG); |
| writel(0, gp->regs + MAC_XIFCFG); |
| writel(0, gp->regs + TXDMA_CFG); |
| writel(0, gp->regs + RXDMA_CFG); |
| |
| if (!wol) { |
| gem_reset(gp); |
| writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); |
| writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); |
| |
| if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) |
| gp->phy_mii.def->ops->suspend(&gp->phy_mii); |
| |
| /* According to Apple, we must set the MDIO pins to this begnign |
| * state or we may 1) eat more current, 2) damage some PHYs |
| */ |
| writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); |
| writel(0, gp->regs + MIF_BBCLK); |
| writel(0, gp->regs + MIF_BBDATA); |
| writel(0, gp->regs + MIF_BBOENAB); |
| writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); |
| (void) readl(gp->regs + MAC_XIFCFG); |
| } |
| } |
| |
| static int gem_do_start(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| int rc; |
| |
| pci_set_master(gp->pdev); |
| |
| /* Init & setup chip hardware */ |
| gem_reinit_chip(gp); |
| |
| /* An interrupt might come in handy */ |
| rc = request_irq(gp->pdev->irq, gem_interrupt, |
| IRQF_SHARED, dev->name, (void *)dev); |
| if (rc) { |
| netdev_err(dev, "failed to request irq !\n"); |
| |
| gem_reset(gp); |
| gem_clean_rings(gp); |
| gem_put_cell(gp); |
| return rc; |
| } |
| |
| /* Mark us as attached again if we come from resume(), this has |
| * no effect if we weren't detached and needs to be done now. |
| */ |
| netif_device_attach(dev); |
| |
| /* Restart NAPI & queues */ |
| gem_netif_start(gp); |
| |
| /* Detect & init PHY, start autoneg etc... this will |
| * eventually result in starting DMA operations when |
| * the link is up |
| */ |
| gem_init_phy(gp); |
| |
| return 0; |
| } |
| |
| static void gem_do_stop(struct net_device *dev, int wol) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| /* Stop NAPI and stop tx queue */ |
| gem_netif_stop(gp); |
| |
| /* Make sure ints are disabled. We don't care about |
| * synchronizing as NAPI is disabled, thus a stray |
| * interrupt will do nothing bad (our irq handler |
| * just schedules NAPI) |
| */ |
| gem_disable_ints(gp); |
| |
| /* Stop the link timer */ |
| del_timer_sync(&gp->link_timer); |
| |
| /* We cannot cancel the reset task while holding the |
| * rtnl lock, we'd get an A->B / B->A deadlock stituation |
| * if we did. This is not an issue however as the reset |
| * task is synchronized vs. us (rtnl_lock) and will do |
| * nothing if the device is down or suspended. We do |
| * still clear reset_task_pending to avoid a spurrious |
| * reset later on in case we do resume before it gets |
| * scheduled. |
| */ |
| gp->reset_task_pending = 0; |
| |
| /* If we are going to sleep with WOL */ |
| gem_stop_dma(gp); |
| msleep(10); |
| if (!wol) |
| gem_reset(gp); |
| msleep(10); |
| |
| /* Get rid of rings */ |
| gem_clean_rings(gp); |
| |
| /* No irq needed anymore */ |
| free_irq(gp->pdev->irq, (void *) dev); |
| |
| /* Shut the PHY down eventually and setup WOL */ |
| gem_stop_phy(gp, wol); |
| } |
| |
| static void gem_reset_task(struct work_struct *work) |
| { |
| struct gem *gp = container_of(work, struct gem, reset_task); |
| |
| /* Lock out the network stack (essentially shield ourselves |
| * against a racing open, close, control call, or suspend |
| */ |
| rtnl_lock(); |
| |
| /* Skip the reset task if suspended or closed, or if it's |
| * been cancelled by gem_do_stop (see comment there) |
| */ |
| if (!netif_device_present(gp->dev) || |
| !netif_running(gp->dev) || |
| !gp->reset_task_pending) { |
| rtnl_unlock(); |
| return; |
| } |
| |
| /* Stop the link timer */ |
| del_timer_sync(&gp->link_timer); |
| |
| /* Stop NAPI and tx */ |
| gem_netif_stop(gp); |
| |
| /* Reset the chip & rings */ |
| gem_reinit_chip(gp); |
| if (gp->lstate == link_up) |
| gem_set_link_modes(gp); |
| |
| /* Restart NAPI and Tx */ |
| gem_netif_start(gp); |
| |
| /* We are back ! */ |
| gp->reset_task_pending = 0; |
| |
| /* If the link is not up, restart autoneg, else restart the |
| * polling timer |
| */ |
| if (gp->lstate != link_up) |
| gem_begin_auto_negotiation(gp, NULL); |
| else |
| mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); |
| |
| rtnl_unlock(); |
| } |
| |
| static int gem_open(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| int rc; |
| |
| /* We allow open while suspended, we just do nothing, |
| * the chip will be initialized in resume() |
| */ |
| if (netif_device_present(dev)) { |
| /* Enable the cell */ |
| gem_get_cell(gp); |
| |
| /* Make sure PCI access and bus master are enabled */ |
| rc = pci_enable_device(gp->pdev); |
| if (rc) { |
| netdev_err(dev, "Failed to enable chip on PCI bus !\n"); |
| |
| /* Put cell and forget it for now, it will be considered |
| *as still asleep, a new sleep cycle may bring it back |
| */ |
| gem_put_cell(gp); |
| return -ENXIO; |
| } |
| return gem_do_start(dev); |
| } |
| |
| return 0; |
| } |
| |
| static int gem_close(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| if (netif_device_present(dev)) { |
| gem_do_stop(dev, 0); |
| |
| /* Make sure bus master is disabled */ |
| pci_disable_device(gp->pdev); |
| |
| /* Cell not needed neither if no WOL */ |
| if (!gp->asleep_wol) |
| gem_put_cell(gp); |
| } |
| return 0; |
| } |
| |
| static int __maybe_unused gem_suspend(struct device *dev_d) |
| { |
| struct net_device *dev = dev_get_drvdata(dev_d); |
| struct gem *gp = netdev_priv(dev); |
| |
| /* Lock the network stack first to avoid racing with open/close, |
| * reset task and setting calls |
| */ |
| rtnl_lock(); |
| |
| /* Not running, mark ourselves non-present, no need for |
| * a lock here |
| */ |
| if (!netif_running(dev)) { |
| netif_device_detach(dev); |
| rtnl_unlock(); |
| return 0; |
| } |
| netdev_info(dev, "suspending, WakeOnLan %s\n", |
| (gp->wake_on_lan && netif_running(dev)) ? |
| "enabled" : "disabled"); |
| |
| /* Tell the network stack we're gone. gem_do_stop() below will |
| * synchronize with TX, stop NAPI etc... |
| */ |
| netif_device_detach(dev); |
| |
| /* Switch off chip, remember WOL setting */ |
| gp->asleep_wol = !!gp->wake_on_lan; |
| gem_do_stop(dev, gp->asleep_wol); |
| |
| /* Cell not needed neither if no WOL */ |
| if (!gp->asleep_wol) |
| gem_put_cell(gp); |
| |
| /* Unlock the network stack */ |
| rtnl_unlock(); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused gem_resume(struct device *dev_d) |
| { |
| struct net_device *dev = dev_get_drvdata(dev_d); |
| struct gem *gp = netdev_priv(dev); |
| |
| /* See locking comment in gem_suspend */ |
| rtnl_lock(); |
| |
| /* Not running, mark ourselves present, no need for |
| * a lock here |
| */ |
| if (!netif_running(dev)) { |
| netif_device_attach(dev); |
| rtnl_unlock(); |
| return 0; |
| } |
| |
| /* Enable the cell */ |
| gem_get_cell(gp); |
| |
| /* Restart chip. If that fails there isn't much we can do, we |
| * leave things stopped. |
| */ |
| gem_do_start(dev); |
| |
| /* If we had WOL enabled, the cell clock was never turned off during |
| * sleep, so we end up beeing unbalanced. Fix that here |
| */ |
| if (gp->asleep_wol) |
| gem_put_cell(gp); |
| |
| /* Unlock the network stack */ |
| rtnl_unlock(); |
| |
| return 0; |
| } |
| |
| static struct net_device_stats *gem_get_stats(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| /* I have seen this being called while the PM was in progress, |
| * so we shield against this. Let's also not poke at registers |
| * while the reset task is going on. |
| * |
| * TODO: Move stats collection elsewhere (link timer ?) and |
| * make this a nop to avoid all those synchro issues |
| */ |
| if (!netif_device_present(dev) || !netif_running(dev)) |
| goto bail; |
| |
| /* Better safe than sorry... */ |
| if (WARN_ON(!gp->cell_enabled)) |
| goto bail; |
| |
| dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); |
| writel(0, gp->regs + MAC_FCSERR); |
| |
| dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); |
| writel(0, gp->regs + MAC_AERR); |
| |
| dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); |
| writel(0, gp->regs + MAC_LERR); |
| |
| dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); |
| dev->stats.collisions += |
| (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); |
| writel(0, gp->regs + MAC_ECOLL); |
| writel(0, gp->regs + MAC_LCOLL); |
| bail: |
| return &dev->stats; |
| } |
| |
| static int gem_set_mac_address(struct net_device *dev, void *addr) |
| { |
| struct sockaddr *macaddr = (struct sockaddr *) addr; |
| const unsigned char *e = &dev->dev_addr[0]; |
| struct gem *gp = netdev_priv(dev); |
| |
| if (!is_valid_ether_addr(macaddr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| eth_hw_addr_set(dev, macaddr->sa_data); |
| |
| /* We'll just catch it later when the device is up'd or resumed */ |
| if (!netif_running(dev) || !netif_device_present(dev)) |
| return 0; |
| |
| /* Better safe than sorry... */ |
| if (WARN_ON(!gp->cell_enabled)) |
| return 0; |
| |
| writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); |
| writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); |
| writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); |
| |
| return 0; |
| } |
| |
| static void gem_set_multicast(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| u32 rxcfg, rxcfg_new; |
| int limit = 10000; |
| |
| if (!netif_running(dev) || !netif_device_present(dev)) |
| return; |
| |
| /* Better safe than sorry... */ |
| if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) |
| return; |
| |
| rxcfg = readl(gp->regs + MAC_RXCFG); |
| rxcfg_new = gem_setup_multicast(gp); |
| #ifdef STRIP_FCS |
| rxcfg_new |= MAC_RXCFG_SFCS; |
| #endif |
| gp->mac_rx_cfg = rxcfg_new; |
| |
| writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); |
| while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { |
| if (!limit--) |
| break; |
| udelay(10); |
| } |
| |
| rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); |
| rxcfg |= rxcfg_new; |
| |
| writel(rxcfg, gp->regs + MAC_RXCFG); |
| } |
| |
| /* Jumbo-grams don't seem to work :-( */ |
| #define GEM_MIN_MTU ETH_MIN_MTU |
| #if 1 |
| #define GEM_MAX_MTU ETH_DATA_LEN |
| #else |
| #define GEM_MAX_MTU 9000 |
| #endif |
| |
| static int gem_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| WRITE_ONCE(dev->mtu, new_mtu); |
| |
| /* We'll just catch it later when the device is up'd or resumed */ |
| if (!netif_running(dev) || !netif_device_present(dev)) |
| return 0; |
| |
| /* Better safe than sorry... */ |
| if (WARN_ON(!gp->cell_enabled)) |
| return 0; |
| |
| gem_netif_stop(gp); |
| gem_reinit_chip(gp); |
| if (gp->lstate == link_up) |
| gem_set_link_modes(gp); |
| gem_netif_start(gp); |
| |
| return 0; |
| } |
| |
| static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| strscpy(info->driver, DRV_NAME, sizeof(info->driver)); |
| strscpy(info->version, DRV_VERSION, sizeof(info->version)); |
| strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); |
| } |
| |
| static int gem_get_link_ksettings(struct net_device *dev, |
| struct ethtool_link_ksettings *cmd) |
| { |
| struct gem *gp = netdev_priv(dev); |
| u32 supported, advertising; |
| |
| if (gp->phy_type == phy_mii_mdio0 || |
| gp->phy_type == phy_mii_mdio1) { |
| if (gp->phy_mii.def) |
| supported = gp->phy_mii.def->features; |
| else |
| supported = (SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full); |
| |
| /* XXX hardcoded stuff for now */ |
| cmd->base.port = PORT_MII; |
| cmd->base.phy_address = 0; /* XXX fixed PHYAD */ |
| |
| /* Return current PHY settings */ |
| cmd->base.autoneg = gp->want_autoneg; |
| cmd->base.speed = gp->phy_mii.speed; |
| cmd->base.duplex = gp->phy_mii.duplex; |
| advertising = gp->phy_mii.advertising; |
| |
| /* If we started with a forced mode, we don't have a default |
| * advertise set, we need to return something sensible so |
| * userland can re-enable autoneg properly. |
| */ |
| if (advertising == 0) |
| advertising = supported; |
| } else { // XXX PCS ? |
| supported = |
| (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | |
| SUPPORTED_Autoneg); |
| advertising = supported; |
| cmd->base.speed = 0; |
| cmd->base.duplex = 0; |
| cmd->base.port = 0; |
| cmd->base.phy_address = 0; |
| cmd->base.autoneg = 0; |
| |
| /* serdes means usually a Fibre connector, with most fixed */ |
| if (gp->phy_type == phy_serdes) { |
| cmd->base.port = PORT_FIBRE; |
| supported = (SUPPORTED_1000baseT_Half | |
| SUPPORTED_1000baseT_Full | |
| SUPPORTED_FIBRE | SUPPORTED_Autoneg | |
| SUPPORTED_Pause | SUPPORTED_Asym_Pause); |
| advertising = supported; |
| if (gp->lstate == link_up) |
| cmd->base.speed = SPEED_1000; |
| cmd->base.duplex = DUPLEX_FULL; |
| cmd->base.autoneg = 1; |
| } |
| } |
| |
| ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, |
| supported); |
| ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, |
| advertising); |
| |
| return 0; |
| } |
| |
| static int gem_set_link_ksettings(struct net_device *dev, |
| const struct ethtool_link_ksettings *cmd) |
| { |
| struct gem *gp = netdev_priv(dev); |
| u32 speed = cmd->base.speed; |
| u32 advertising; |
| |
| ethtool_convert_link_mode_to_legacy_u32(&advertising, |
| cmd->link_modes.advertising); |
| |
| /* Verify the settings we care about. */ |
| if (cmd->base.autoneg != AUTONEG_ENABLE && |
| cmd->base.autoneg != AUTONEG_DISABLE) |
| return -EINVAL; |
| |
| if (cmd->base.autoneg == AUTONEG_ENABLE && |
| advertising == 0) |
| return -EINVAL; |
| |
| if (cmd->base.autoneg == AUTONEG_DISABLE && |
| ((speed != SPEED_1000 && |
| speed != SPEED_100 && |
| speed != SPEED_10) || |
| (cmd->base.duplex != DUPLEX_HALF && |
| cmd->base.duplex != DUPLEX_FULL))) |
| return -EINVAL; |
| |
| /* Apply settings and restart link process. */ |
| if (netif_device_present(gp->dev)) { |
| del_timer_sync(&gp->link_timer); |
| gem_begin_auto_negotiation(gp, cmd); |
| } |
| |
| return 0; |
| } |
| |
| static int gem_nway_reset(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| if (!gp->want_autoneg) |
| return -EINVAL; |
| |
| /* Restart link process */ |
| if (netif_device_present(gp->dev)) { |
| del_timer_sync(&gp->link_timer); |
| gem_begin_auto_negotiation(gp, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static u32 gem_get_msglevel(struct net_device *dev) |
| { |
| struct gem *gp = netdev_priv(dev); |
| return gp->msg_enable; |
| } |
| |
| static void gem_set_msglevel(struct net_device *dev, u32 value) |
| { |
| struct gem *gp = netdev_priv(dev); |
| gp->msg_enable = value; |
| } |
| |
| |
| /* Add more when I understand how to program the chip */ |
| /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ |
| |
| #define WOL_SUPPORTED_MASK (WAKE_MAGIC) |
| |
| static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| /* Add more when I understand how to program the chip */ |
| if (gp->has_wol) { |
| wol->supported = WOL_SUPPORTED_MASK; |
| wol->wolopts = gp->wake_on_lan; |
| } else { |
| wol->supported = 0; |
| wol->wolopts = 0; |
| } |
| } |
| |
| static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct gem *gp = netdev_priv(dev); |
| |
| if (!gp->has_wol) |
| return -EOPNOTSUPP; |
| gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; |
| return 0; |
| } |
| |
| static const struct ethtool_ops gem_ethtool_ops = { |
| .get_drvinfo = gem_get_drvinfo, |
| .get_link = ethtool_op_get_link, |
| .nway_reset = gem_nway_reset, |
| .get_msglevel = gem_get_msglevel, |
| .set_msglevel = gem_set_msglevel, |
| .get_wol = gem_get_wol, |
| .set_wol = gem_set_wol, |
| .get_link_ksettings = gem_get_link_ksettings, |
| .set_link_ksettings = gem_set_link_ksettings, |
| }; |
| |
| static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct gem *gp = netdev_priv(dev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| int rc = -EOPNOTSUPP; |
| |
| /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that |
| * netif_device_present() is true and holds rtnl_lock for us |
| * so we have nothing to worry about |
| */ |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: /* Get address of MII PHY in use. */ |
| data->phy_id = gp->mii_phy_addr; |
| fallthrough; |
| |
| case SIOCGMIIREG: /* Read MII PHY register. */ |
| data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, |
| data->reg_num & 0x1f); |
| rc = 0; |
| break; |
| |
| case SIOCSMIIREG: /* Write MII PHY register. */ |
| __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, |
| data->val_in); |
| rc = 0; |
| break; |
| } |
| return rc; |
| } |
| |
| #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) |
| /* Fetch MAC address from vital product data of PCI ROM. */ |
| static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) |
| { |
| int this_offset; |
| |
| for (this_offset = 0x20; this_offset < len; this_offset++) { |
| void __iomem *p = rom_base + this_offset; |
| int i; |
| |
| if (readb(p + 0) != 0x90 || |
| readb(p + 1) != 0x00 || |
| readb(p + 2) != 0x09 || |
| readb(p + 3) != 0x4e || |
| readb(p + 4) != 0x41 || |
| readb(p + 5) != 0x06) |
| continue; |
| |
| this_offset += 6; |
| p += 6; |
| |
| for (i = 0; i < 6; i++) |
| dev_addr[i] = readb(p + i); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) |
| { |
| size_t size; |
| void __iomem *p = pci_map_rom(pdev, &size); |
| |
| if (p) { |
| int found; |
| |
| found = readb(p) == 0x55 && |
| readb(p + 1) == 0xaa && |
| find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); |
| pci_unmap_rom(pdev, p); |
| if (found) |
| return; |
| } |
| |
| /* Sun MAC prefix then 3 random bytes. */ |
| dev_addr[0] = 0x08; |
| dev_addr[1] = 0x00; |
| dev_addr[2] = 0x20; |
| get_random_bytes(dev_addr + 3, 3); |
| } |
| #endif /* not Sparc and not PPC */ |
| |
| static int gem_get_device_address(struct gem *gp) |
| { |
| #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) |
| struct net_device *dev = gp->dev; |
| const unsigned char *addr; |
| |
| addr = of_get_property(gp->of_node, "local-mac-address", NULL); |
| if (addr == NULL) { |
| #ifdef CONFIG_SPARC |
| addr = idprom->id_ethaddr; |
| #else |
| printk("\n"); |
| pr_err("%s: can't get mac-address\n", dev->name); |
| return -1; |
| #endif |
| } |
| eth_hw_addr_set(dev, addr); |
| #else |
| u8 addr[ETH_ALEN]; |
| |
| get_gem_mac_nonobp(gp->pdev, addr); |
| eth_hw_addr_set(gp->dev, addr); |
| #endif |
| return 0; |
| } |
| |
| static void gem_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| |
| if (dev) { |
| struct gem *gp = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| |
| /* Ensure reset task is truly gone */ |
| cancel_work_sync(&gp->reset_task); |
| |
| /* Free resources */ |
| dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block), |
| gp->init_block, gp->gblock_dvma); |
| iounmap(gp->regs); |
| pci_release_regions(pdev); |
| free_netdev(dev); |
| } |
| } |
| |
| static const struct net_device_ops gem_netdev_ops = { |
| .ndo_open = gem_open, |
| .ndo_stop = gem_close, |
| .ndo_start_xmit = gem_start_xmit, |
| .ndo_get_stats = gem_get_stats, |
| .ndo_set_rx_mode = gem_set_multicast, |
| .ndo_eth_ioctl = gem_ioctl, |
| .ndo_tx_timeout = gem_tx_timeout, |
| .ndo_change_mtu = gem_change_mtu, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = gem_set_mac_address, |
| }; |
| |
| static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| unsigned long gemreg_base, gemreg_len; |
| struct net_device *dev; |
| struct gem *gp; |
| int err, pci_using_dac; |
| |
| printk_once(KERN_INFO "%s", version); |
| |
| /* Apple gmac note: during probe, the chip is powered up by |
| * the arch code to allow the code below to work (and to let |
| * the chip be probed on the config space. It won't stay powered |
| * up until the interface is brought up however, so we can't rely |
| * on register configuration done at this point. |
| */ |
| err = pci_enable_device(pdev); |
| if (err) { |
| pr_err("Cannot enable MMIO operation, aborting\n"); |
| return err; |
| } |
| pci_set_master(pdev); |
| |
| /* Configure DMA attributes. */ |
| |
| /* All of the GEM documentation states that 64-bit DMA addressing |
| * is fully supported and should work just fine. However the |
| * front end for RIO based GEMs is different and only supports |
| * 32-bit addressing. |
| * |
| * For now we assume the various PPC GEMs are 32-bit only as well. |
| */ |
| if (pdev->vendor == PCI_VENDOR_ID_SUN && |
| pdev->device == PCI_DEVICE_ID_SUN_GEM && |
| !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
| pci_using_dac = 1; |
| } else { |
| err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| pr_err("No usable DMA configuration, aborting\n"); |
| goto err_disable_device; |
| } |
| pci_using_dac = 0; |
| } |
| |
| gemreg_base = pci_resource_start(pdev, 0); |
| gemreg_len = pci_resource_len(pdev, 0); |
| |
| if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { |
| pr_err("Cannot find proper PCI device base address, aborting\n"); |
| err = -ENODEV; |
| goto err_disable_device; |
| } |
| |
| dev = alloc_etherdev(sizeof(*gp)); |
| if (!dev) { |
| err = -ENOMEM; |
| goto err_disable_device; |
| } |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| gp = netdev_priv(dev); |
| |
| err = pci_request_regions(pdev, DRV_NAME); |
| if (err) { |
| pr_err("Cannot obtain PCI resources, aborting\n"); |
| goto err_out_free_netdev; |
| } |
| |
| gp->pdev = pdev; |
| gp->dev = dev; |
| |
| gp->msg_enable = DEFAULT_MSG; |
| |
| timer_setup(&gp->link_timer, gem_link_timer, 0); |
| |
| INIT_WORK(&gp->reset_task, gem_reset_task); |
| |
| gp->lstate = link_down; |
| gp->timer_ticks = 0; |
| netif_carrier_off(dev); |
| |
| gp->regs = ioremap(gemreg_base, gemreg_len); |
| if (!gp->regs) { |
| pr_err("Cannot map device registers, aborting\n"); |
| err = -EIO; |
| goto err_out_free_res; |
| } |
| |
| /* On Apple, we want a reference to the Open Firmware device-tree |
| * node. We use it for clock control. |
| */ |
| #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) |
| gp->of_node = pci_device_to_OF_node(pdev); |
| #endif |
| |
| /* Only Apple version supports WOL afaik */ |
| if (pdev->vendor == PCI_VENDOR_ID_APPLE) |
| gp->has_wol = 1; |
| |
| /* Make sure cell is enabled */ |
| gem_get_cell(gp); |
| |
| /* Make sure everything is stopped and in init state */ |
| gem_reset(gp); |
| |
| /* Fill up the mii_phy structure (even if we won't use it) */ |
| gp->phy_mii.dev = dev; |
| gp->phy_mii.mdio_read = _sungem_phy_read; |
| gp->phy_mii.mdio_write = _sungem_phy_write; |
| #ifdef CONFIG_PPC_PMAC |
| gp->phy_mii.platform_data = gp->of_node; |
| #endif |
| /* By default, we start with autoneg */ |
| gp->want_autoneg = 1; |
| |
| /* Check fifo sizes, PHY type, etc... */ |
| if (gem_check_invariants(gp)) { |
| err = -ENODEV; |
| goto err_out_iounmap; |
| } |
| |
| /* It is guaranteed that the returned buffer will be at least |
| * PAGE_SIZE aligned. |
| */ |
| gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block), |
| &gp->gblock_dvma, GFP_KERNEL); |
| if (!gp->init_block) { |
| pr_err("Cannot allocate init block, aborting\n"); |
| err = -ENOMEM; |
| goto err_out_iounmap; |
| } |
| |
| err = gem_get_device_address(gp); |
| if (err) |
| goto err_out_free_consistent; |
| |
| dev->netdev_ops = &gem_netdev_ops; |
| netif_napi_add(dev, &gp->napi, gem_poll); |
| dev->ethtool_ops = &gem_ethtool_ops; |
| dev->watchdog_timeo = 5 * HZ; |
| dev->dma = 0; |
| |
| /* Set that now, in case PM kicks in now */ |
| pci_set_drvdata(pdev, dev); |
| |
| /* We can do scatter/gather and HW checksum */ |
| dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM; |
| dev->features = dev->hw_features; |
| if (pci_using_dac) |
| dev->features |= NETIF_F_HIGHDMA; |
| |
| /* MTU range: 68 - 1500 (Jumbo mode is broken) */ |
| dev->min_mtu = GEM_MIN_MTU; |
| dev->max_mtu = GEM_MAX_MTU; |
| |
| /* Register with kernel */ |
| if (register_netdev(dev)) { |
| pr_err("Cannot register net device, aborting\n"); |
| err = -ENOMEM; |
| goto err_out_free_consistent; |
| } |
| |
| /* Undo the get_cell with appropriate locking (we could use |
| * ndo_init/uninit but that would be even more clumsy imho) |
| */ |
| rtnl_lock(); |
| gem_put_cell(gp); |
| rtnl_unlock(); |
| |
| netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", |
| dev->dev_addr); |
| return 0; |
| |
| err_out_free_consistent: |
| gem_remove_one(pdev); |
| err_out_iounmap: |
| gem_put_cell(gp); |
| iounmap(gp->regs); |
| |
| err_out_free_res: |
| pci_release_regions(pdev); |
| |
| err_out_free_netdev: |
| free_netdev(dev); |
| err_disable_device: |
| pci_disable_device(pdev); |
| return err; |
| |
| } |
| |
| static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume); |
| |
| static struct pci_driver gem_driver = { |
| .name = GEM_MODULE_NAME, |
| .id_table = gem_pci_tbl, |
| .probe = gem_init_one, |
| .remove = gem_remove_one, |
| .driver.pm = &gem_pm_ops, |
| }; |
| |
| module_pci_driver(gem_driver); |