blob: 259bdac24cf211113b8f80934feb093d61e46f2d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) Tehuti Networks Ltd. */
#include <linux/bitfield.h>
#include <linux/ethtool.h>
#include <linux/firmware.h>
#include <linux/if_vlan.h>
#include <linux/iopoll.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/phylink.h>
#include <linux/vmalloc.h>
#include <net/netdev_queues.h>
#include <net/page_pool/helpers.h>
#include "tn40.h"
#define TN40_SHORT_PACKET_SIZE 60
#define TN40_FIRMWARE_NAME "tehuti/bdx.bin"
static void tn40_enable_interrupts(struct tn40_priv *priv)
{
tn40_write_reg(priv, TN40_REG_IMR, priv->isr_mask);
}
static void tn40_disable_interrupts(struct tn40_priv *priv)
{
tn40_write_reg(priv, TN40_REG_IMR, 0);
}
static int tn40_fifo_alloc(struct tn40_priv *priv, struct tn40_fifo *f,
int fsz_type,
u16 reg_cfg0, u16 reg_cfg1,
u16 reg_rptr, u16 reg_wptr)
{
u16 memsz = TN40_FIFO_SIZE * (1 << fsz_type);
u64 cfg_base;
memset(f, 0, sizeof(struct tn40_fifo));
/* 1K extra space is allocated at the end of the fifo to simplify
* processing of descriptors that wraps around fifo's end.
*/
f->va = dma_alloc_coherent(&priv->pdev->dev,
memsz + TN40_FIFO_EXTRA_SPACE, &f->da,
GFP_KERNEL);
if (!f->va)
return -ENOMEM;
f->reg_cfg0 = reg_cfg0;
f->reg_cfg1 = reg_cfg1;
f->reg_rptr = reg_rptr;
f->reg_wptr = reg_wptr;
f->rptr = 0;
f->wptr = 0;
f->memsz = memsz;
f->size_mask = memsz - 1;
cfg_base = lower_32_bits((f->da & TN40_TX_RX_CFG0_BASE) | fsz_type);
tn40_write_reg(priv, reg_cfg0, cfg_base);
tn40_write_reg(priv, reg_cfg1, upper_32_bits(f->da));
return 0;
}
static void tn40_fifo_free(struct tn40_priv *priv, struct tn40_fifo *f)
{
dma_free_coherent(&priv->pdev->dev,
f->memsz + TN40_FIFO_EXTRA_SPACE, f->va, f->da);
}
static struct tn40_rxdb *tn40_rxdb_alloc(int nelem)
{
size_t size = sizeof(struct tn40_rxdb) + (nelem * sizeof(int)) +
(nelem * sizeof(struct tn40_rx_map));
struct tn40_rxdb *db;
int i;
db = vzalloc(size);
if (db) {
db->stack = (int *)(db + 1);
db->elems = (void *)(db->stack + nelem);
db->nelem = nelem;
db->top = nelem;
/* make the first alloc close to db struct */
for (i = 0; i < nelem; i++)
db->stack[i] = nelem - i - 1;
}
return db;
}
static void tn40_rxdb_free(struct tn40_rxdb *db)
{
vfree(db);
}
static int tn40_rxdb_alloc_elem(struct tn40_rxdb *db)
{
return db->stack[--db->top];
}
static void *tn40_rxdb_addr_elem(struct tn40_rxdb *db, unsigned int n)
{
return db->elems + n;
}
static int tn40_rxdb_available(struct tn40_rxdb *db)
{
return db->top;
}
static void tn40_rxdb_free_elem(struct tn40_rxdb *db, unsigned int n)
{
db->stack[db->top++] = n;
}
/**
* tn40_create_rx_ring - Initialize RX all related HW and SW resources
* @priv: NIC private structure
*
* create_rx_ring creates rxf and rxd fifos, updates the relevant HW registers,
* preallocates skbs for rx. It assumes that Rx is disabled in HW funcs are
* grouped for better cache usage
*
* RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
* filled and packets will be dropped by the NIC without getting into the host
* or generating interrupts. In this situation the host has no chance of
* processing all the packets. Dropping packets by the NIC is cheaper, since it
* takes 0 CPU cycles.
*
* Return: 0 on success and negative value on error.
*/
static int tn40_create_rx_ring(struct tn40_priv *priv)
{
struct page_pool_params pp = {
.dev = &priv->pdev->dev,
.napi = &priv->napi,
.dma_dir = DMA_FROM_DEVICE,
.netdev = priv->ndev,
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
.max_len = PAGE_SIZE,
};
int ret, pkt_size, nr;
priv->page_pool = page_pool_create(&pp);
if (IS_ERR(priv->page_pool))
return PTR_ERR(priv->page_pool);
ret = tn40_fifo_alloc(priv, &priv->rxd_fifo0.m, priv->rxd_size,
TN40_REG_RXD_CFG0_0, TN40_REG_RXD_CFG1_0,
TN40_REG_RXD_RPTR_0, TN40_REG_RXD_WPTR_0);
if (ret)
goto err_destroy_page_pool;
ret = tn40_fifo_alloc(priv, &priv->rxf_fifo0.m, priv->rxf_size,
TN40_REG_RXF_CFG0_0, TN40_REG_RXF_CFG1_0,
TN40_REG_RXF_RPTR_0, TN40_REG_RXF_WPTR_0);
if (ret)
goto err_free_rxd;
pkt_size = priv->ndev->mtu + VLAN_ETH_HLEN;
priv->rxf_fifo0.m.pktsz = pkt_size;
nr = priv->rxf_fifo0.m.memsz / sizeof(struct tn40_rxf_desc);
priv->rxdb0 = tn40_rxdb_alloc(nr);
if (!priv->rxdb0) {
ret = -ENOMEM;
goto err_free_rxf;
}
return 0;
err_free_rxf:
tn40_fifo_free(priv, &priv->rxf_fifo0.m);
err_free_rxd:
tn40_fifo_free(priv, &priv->rxd_fifo0.m);
err_destroy_page_pool:
page_pool_destroy(priv->page_pool);
return ret;
}
static void tn40_rx_free_buffers(struct tn40_priv *priv)
{
struct tn40_rxdb *db = priv->rxdb0;
struct tn40_rx_map *dm;
u16 i;
netdev_dbg(priv->ndev, "total =%d free =%d busy =%d\n", db->nelem,
tn40_rxdb_available(db),
db->nelem - tn40_rxdb_available(db));
for (i = 0; i < db->nelem; i++) {
dm = tn40_rxdb_addr_elem(db, i);
if (dm->page)
page_pool_put_full_page(priv->page_pool, dm->page,
false);
}
}
static void tn40_destroy_rx_ring(struct tn40_priv *priv)
{
if (priv->rxdb0) {
tn40_rx_free_buffers(priv);
tn40_rxdb_free(priv->rxdb0);
priv->rxdb0 = NULL;
}
tn40_fifo_free(priv, &priv->rxf_fifo0.m);
tn40_fifo_free(priv, &priv->rxd_fifo0.m);
page_pool_destroy(priv->page_pool);
}
static void tn40_set_rx_desc(struct tn40_priv *priv, int idx, u64 dma)
{
struct tn40_rxf_fifo *f = &priv->rxf_fifo0;
struct tn40_rxf_desc *rxfd;
int delta;
rxfd = (struct tn40_rxf_desc *)(f->m.va + f->m.wptr);
rxfd->info = cpu_to_le32(0x10003); /* INFO =1 BC =3 */
rxfd->va_lo = cpu_to_le32(idx);
rxfd->pa_lo = cpu_to_le32(lower_32_bits(dma));
rxfd->pa_hi = cpu_to_le32(upper_32_bits(dma));
rxfd->len = cpu_to_le32(f->m.pktsz);
f->m.wptr += sizeof(struct tn40_rxf_desc);
delta = f->m.wptr - f->m.memsz;
if (unlikely(delta >= 0)) {
f->m.wptr = delta;
if (delta > 0) {
memcpy(f->m.va, f->m.va + f->m.memsz, delta);
netdev_dbg(priv->ndev,
"wrapped rxd descriptor\n");
}
}
}
/**
* tn40_rx_alloc_buffers - Fill rxf fifo with buffers.
*
* @priv: NIC's private structure
*
* rx_alloc_buffers allocates buffers via the page pool API, builds rxf descs
* and pushes them (rxf descr) into the rxf fifo. The pages are stored in rxdb.
* To calculate the free space, we uses the cached values of RPTR and WPTR
* when needed. This function also updates RPTR and WPTR.
*/
static void tn40_rx_alloc_buffers(struct tn40_priv *priv)
{
struct tn40_rxf_fifo *f = &priv->rxf_fifo0;
struct tn40_rxdb *db = priv->rxdb0;
struct tn40_rx_map *dm;
struct page *page;
int dno, i, idx;
dno = tn40_rxdb_available(db) - 1;
for (i = dno; i > 0; i--) {
page = page_pool_dev_alloc_pages(priv->page_pool);
if (!page)
break;
idx = tn40_rxdb_alloc_elem(db);
tn40_set_rx_desc(priv, idx, page_pool_get_dma_addr(page));
dm = tn40_rxdb_addr_elem(db, idx);
dm->page = page;
}
if (i != dno)
tn40_write_reg(priv, f->m.reg_wptr,
f->m.wptr & TN40_TXF_WPTR_WR_PTR);
netdev_dbg(priv->ndev, "write_reg 0x%04x f->m.reg_wptr 0x%x\n",
f->m.reg_wptr, f->m.wptr & TN40_TXF_WPTR_WR_PTR);
netdev_dbg(priv->ndev, "read_reg 0x%04x f->m.reg_rptr=0x%x\n",
f->m.reg_rptr, tn40_read_reg(priv, f->m.reg_rptr));
netdev_dbg(priv->ndev, "write_reg 0x%04x f->m.reg_wptr=0x%x\n",
f->m.reg_wptr, tn40_read_reg(priv, f->m.reg_wptr));
}
static void tn40_recycle_rx_buffer(struct tn40_priv *priv,
struct tn40_rxd_desc *rxdd)
{
struct tn40_rxf_fifo *f = &priv->rxf_fifo0;
struct tn40_rx_map *dm;
int idx;
idx = le32_to_cpu(rxdd->va_lo);
dm = tn40_rxdb_addr_elem(priv->rxdb0, idx);
tn40_set_rx_desc(priv, idx, page_pool_get_dma_addr(dm->page));
tn40_write_reg(priv, f->m.reg_wptr, f->m.wptr & TN40_TXF_WPTR_WR_PTR);
}
static int tn40_rx_receive(struct tn40_priv *priv, int budget)
{
struct tn40_rxd_fifo *f = &priv->rxd_fifo0;
u32 rxd_val1, rxd_err, pkt_id;
int tmp_len, size, done = 0;
struct tn40_rxdb *db = NULL;
struct tn40_rxd_desc *rxdd;
struct tn40_rx_map *dm;
struct sk_buff *skb;
u16 len, rxd_vlan;
int idx;
f->m.wptr = tn40_read_reg(priv, f->m.reg_wptr) & TN40_TXF_WPTR_WR_PTR;
size = f->m.wptr - f->m.rptr;
if (size < 0)
size += f->m.memsz; /* Size is negative :-) */
while (size > 0) {
rxdd = (struct tn40_rxd_desc *)(f->m.va + f->m.rptr);
db = priv->rxdb0;
/* We have a chicken and egg problem here. If the
* descriptor is wrapped we first need to copy the tail
* of the descriptor to the end of the buffer before
* extracting values from the descriptor. However in
* order to know if the descriptor is wrapped we need to
* obtain the length of the descriptor from (the
* wrapped) descriptor. Luckily the length is the first
* word of the descriptor. Descriptor lengths are
* multiples of 8 bytes so in case of a wrapped
* descriptor the first 8 bytes guaranteed to appear
* before the end of the buffer. We first obtain the
* length, we then copy the rest of the descriptor if
* needed and then extract the rest of the values from
* the descriptor.
*
* Do not change the order of operations as it will
* break the code!!!
*/
rxd_val1 = le32_to_cpu(rxdd->rxd_val1);
tmp_len = TN40_GET_RXD_BC(rxd_val1) << 3;
pkt_id = TN40_GET_RXD_PKT_ID(rxd_val1);
size -= tmp_len;
/* CHECK FOR A PARTIALLY ARRIVED DESCRIPTOR */
if (size < 0) {
netdev_dbg(priv->ndev,
"%s partially arrived desc tmp_len %d\n",
__func__, tmp_len);
break;
}
/* make sure that the descriptor fully is arrived
* before reading the rest of the descriptor.
*/
rmb();
/* A special treatment is given to non-contiguous
* descriptors that start near the end, wraps around
* and continue at the beginning. The second part is
* copied right after the first, and then descriptor
* is interpreted as normal. The fifo has an extra
* space to allow such operations.
*/
/* HAVE WE REACHED THE END OF THE QUEUE? */
f->m.rptr += tmp_len;
tmp_len = f->m.rptr - f->m.memsz;
if (unlikely(tmp_len >= 0)) {
f->m.rptr = tmp_len;
if (tmp_len > 0) {
/* COPY PARTIAL DESCRIPTOR
* TO THE END OF THE QUEUE
*/
netdev_dbg(priv->ndev,
"wrapped desc rptr=%d tmp_len=%d\n",
f->m.rptr, tmp_len);
memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
}
}
idx = le32_to_cpu(rxdd->va_lo);
dm = tn40_rxdb_addr_elem(db, idx);
prefetch(dm);
len = le16_to_cpu(rxdd->len);
rxd_vlan = le16_to_cpu(rxdd->rxd_vlan);
/* CHECK FOR ERRORS */
rxd_err = TN40_GET_RXD_ERR(rxd_val1);
if (unlikely(rxd_err)) {
u64_stats_update_begin(&priv->syncp);
priv->stats.rx_errors++;
u64_stats_update_end(&priv->syncp);
tn40_recycle_rx_buffer(priv, rxdd);
continue;
}
skb = napi_build_skb(page_address(dm->page), PAGE_SIZE);
if (!skb) {
u64_stats_update_begin(&priv->syncp);
priv->stats.rx_dropped++;
priv->alloc_fail++;
u64_stats_update_end(&priv->syncp);
tn40_recycle_rx_buffer(priv, rxdd);
break;
}
skb_mark_for_recycle(skb);
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, priv->ndev);
skb->ip_summed =
(pkt_id == 0) ? CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
if (TN40_GET_RXD_VTAG(rxd_val1))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
TN40_GET_RXD_VLAN_TCI(rxd_vlan));
dm->page = NULL;
tn40_rxdb_free_elem(db, idx);
napi_gro_receive(&priv->napi, skb);
u64_stats_update_begin(&priv->syncp);
priv->stats.rx_bytes += len;
u64_stats_update_end(&priv->syncp);
if (unlikely(++done >= budget))
break;
}
u64_stats_update_begin(&priv->syncp);
priv->stats.rx_packets += done;
u64_stats_update_end(&priv->syncp);
/* FIXME: Do something to minimize pci accesses */
tn40_write_reg(priv, f->m.reg_rptr, f->m.rptr & TN40_TXF_WPTR_WR_PTR);
tn40_rx_alloc_buffers(priv);
return done;
}
/* TX HW/SW interaction overview
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* There are 2 types of TX communication channels between driver and NIC.
* 1) TX Free Fifo - TXF - Holds ack descriptors for sent packets.
* 2) TX Data Fifo - TXD - Holds descriptors of full buffers.
*
* Currently the NIC supports TSO, checksumming and gather DMA
* UFO and IP fragmentation is on the way.
*
* RX SW Data Structures
* ~~~~~~~~~~~~~~~~~~~~~
* TXDB is used to keep track of all skbs owned by SW and their DMA addresses.
* For TX case, ownership lasts from getting the packet via hard_xmit and
* until the HW acknowledges sending the packet by TXF descriptors.
* TXDB is implemented as a cyclic buffer.
*
* FIFO objects keep info about the fifo's size and location, relevant HW
* registers, usage and skb db. Each RXD and RXF fifo has their own fifo
* structure. Implemented as simple struct.
*
* TX SW Execution Flow
* ~~~~~~~~~~~~~~~~~~~~
* OS calls the driver's hard_xmit method with a packet to send. The driver
* creates DMA mappings, builds TXD descriptors and kicks the HW by updating
* TXD WPTR.
*
* When a packet is sent, The HW write a TXF descriptor and the SW
* frees the original skb. To prevent TXD fifo overflow without
* reading HW registers every time, the SW deploys "tx level"
* technique. Upon startup, the tx level is initialized to TXD fifo
* length. For every sent packet, the SW gets its TXD descriptor size
* (from a pre-calculated array) and subtracts it from tx level. The
* size is also stored in txdb. When a TXF ack arrives, the SW fetched
* the size of the original TXD descriptor from the txdb and adds it
* to the tx level. When the Tx level drops below some predefined
* threshold, the driver stops the TX queue. When the TX level rises
* above that level, the tx queue is enabled again.
*
* This technique avoids excessive reading of RPTR and WPTR registers.
* As our benchmarks shows, it adds 1.5 Gbit/sec to NIC's throughput.
*/
static void tn40_do_tx_db_ptr_next(struct tn40_txdb *db,
struct tn40_tx_map **pptr)
{
++*pptr;
if (unlikely(*pptr == db->end))
*pptr = db->start;
}
static void tn40_tx_db_inc_rptr(struct tn40_txdb *db)
{
tn40_do_tx_db_ptr_next(db, &db->rptr);
}
static void tn40_tx_db_inc_wptr(struct tn40_txdb *db)
{
tn40_do_tx_db_ptr_next(db, &db->wptr);
}
static int tn40_tx_db_init(struct tn40_txdb *d, int sz_type)
{
int memsz = TN40_FIFO_SIZE * (1 << (sz_type + 1));
d->start = vzalloc(memsz);
if (!d->start)
return -ENOMEM;
/* In order to differentiate between an empty db state and a full db
* state at least one element should always be empty in order to
* avoid rptr == wptr, which means that the db is empty.
*/
d->size = memsz / sizeof(struct tn40_tx_map) - 1;
d->end = d->start + d->size + 1; /* just after last element */
/* All dbs are created empty */
d->rptr = d->start;
d->wptr = d->start;
return 0;
}
static void tn40_tx_db_close(struct tn40_txdb *d)
{
if (d->start) {
vfree(d->start);
d->start = NULL;
}
}
/* Sizes of tx desc (including padding if needed) as function of the SKB's
* frag number
* 7 - is number of lwords in txd with one phys buffer
* 3 - is number of lwords used for every additional phys buffer
* for (i = 0; i < TN40_MAX_PBL; i++) {
* lwords = 7 + (i * 3);
* if (lwords & 1)
* lwords++; pad it with 1 lword
* tn40_txd_sizes[i].bytes = lwords << 2;
* tn40_txd_sizes[i].qwords = lwords >> 1;
* }
*/
static struct {
u16 bytes;
u16 qwords; /* qword = 64 bit */
} tn40_txd_sizes[] = {
{0x20, 0x04},
{0x28, 0x05},
{0x38, 0x07},
{0x40, 0x08},
{0x50, 0x0a},
{0x58, 0x0b},
{0x68, 0x0d},
{0x70, 0x0e},
{0x80, 0x10},
{0x88, 0x11},
{0x98, 0x13},
{0xa0, 0x14},
{0xb0, 0x16},
{0xb8, 0x17},
{0xc8, 0x19},
{0xd0, 0x1a},
{0xe0, 0x1c},
{0xe8, 0x1d},
{0xf8, 0x1f},
};
static void tn40_pbl_set(struct tn40_pbl *pbl, dma_addr_t dma, int len)
{
pbl->len = cpu_to_le32(len);
pbl->pa_lo = cpu_to_le32(lower_32_bits(dma));
pbl->pa_hi = cpu_to_le32(upper_32_bits(dma));
}
static void tn40_txdb_set(struct tn40_txdb *db, dma_addr_t dma, int len)
{
db->wptr->len = len;
db->wptr->addr.dma = dma;
}
struct tn40_mapping_info {
dma_addr_t dma;
size_t size;
};
/**
* tn40_tx_map_skb - create and store DMA mappings for skb's data blocks
* @priv: NIC private structure
* @skb: socket buffer to map
* @txdd: pointer to tx descriptor to be updated
* @pkt_len: pointer to unsigned long value
*
* This function creates DMA mappings for skb's data blocks and writes them to
* PBL of a new tx descriptor. It also stores them in the tx db, so they could
* be unmapped after the data has been sent. It is the responsibility of the
* caller to make sure that there is enough space in the txdb. The last
* element holds a pointer to skb itself and is marked with a zero length.
*
* Return: 0 on success and negative value on error.
*/
static int tn40_tx_map_skb(struct tn40_priv *priv, struct sk_buff *skb,
struct tn40_txd_desc *txdd, unsigned int *pkt_len)
{
struct tn40_mapping_info info[TN40_MAX_PBL];
int nr_frags = skb_shinfo(skb)->nr_frags;
struct tn40_pbl *pbl = &txdd->pbl[0];
struct tn40_txdb *db = &priv->txdb;
unsigned int size;
int i, len, ret;
dma_addr_t dma;
netdev_dbg(priv->ndev, "TX skb %p skbLen %d dataLen %d frags %d\n", skb,
skb->len, skb->data_len, nr_frags);
if (nr_frags > TN40_MAX_PBL - 1) {
ret = skb_linearize(skb);
if (ret)
return ret;
nr_frags = skb_shinfo(skb)->nr_frags;
}
/* initial skb */
len = skb->len - skb->data_len;
dma = dma_map_single(&priv->pdev->dev, skb->data, len,
DMA_TO_DEVICE);
ret = dma_mapping_error(&priv->pdev->dev, dma);
if (ret)
return ret;
tn40_txdb_set(db, dma, len);
tn40_pbl_set(pbl++, db->wptr->addr.dma, db->wptr->len);
*pkt_len = db->wptr->len;
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
size = skb_frag_size(frag);
dma = skb_frag_dma_map(&priv->pdev->dev, frag, 0,
size, DMA_TO_DEVICE);
ret = dma_mapping_error(&priv->pdev->dev, dma);
if (ret)
goto mapping_error;
info[i].dma = dma;
info[i].size = size;
}
for (i = 0; i < nr_frags; i++) {
tn40_tx_db_inc_wptr(db);
tn40_txdb_set(db, info[i].dma, info[i].size);
tn40_pbl_set(pbl++, db->wptr->addr.dma, db->wptr->len);
*pkt_len += db->wptr->len;
}
/* SHORT_PKT_FIX */
if (skb->len < TN40_SHORT_PACKET_SIZE)
++nr_frags;
/* Add skb clean up info. */
tn40_tx_db_inc_wptr(db);
db->wptr->len = -tn40_txd_sizes[nr_frags].bytes;
db->wptr->addr.skb = skb;
tn40_tx_db_inc_wptr(db);
return 0;
mapping_error:
dma_unmap_page(&priv->pdev->dev, db->wptr->addr.dma, db->wptr->len,
DMA_TO_DEVICE);
for (; i > 0; i--)
dma_unmap_page(&priv->pdev->dev, info[i - 1].dma,
info[i - 1].size, DMA_TO_DEVICE);
return -ENOMEM;
}
static int tn40_create_tx_ring(struct tn40_priv *priv)
{
int ret;
ret = tn40_fifo_alloc(priv, &priv->txd_fifo0.m, priv->txd_size,
TN40_REG_TXD_CFG0_0, TN40_REG_TXD_CFG1_0,
TN40_REG_TXD_RPTR_0, TN40_REG_TXD_WPTR_0);
if (ret)
return ret;
ret = tn40_fifo_alloc(priv, &priv->txf_fifo0.m, priv->txf_size,
TN40_REG_TXF_CFG0_0, TN40_REG_TXF_CFG1_0,
TN40_REG_TXF_RPTR_0, TN40_REG_TXF_WPTR_0);
if (ret)
goto err_free_txd;
/* The TX db has to keep mappings for all packets sent (on
* TxD) and not yet reclaimed (on TxF).
*/
ret = tn40_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size));
if (ret)
goto err_free_txf;
/* SHORT_PKT_FIX */
priv->b0_len = 64;
priv->b0_va = dma_alloc_coherent(&priv->pdev->dev, priv->b0_len,
&priv->b0_dma, GFP_KERNEL);
if (!priv->b0_va)
goto err_free_db;
priv->tx_level = TN40_MAX_TX_LEVEL;
priv->tx_update_mark = priv->tx_level - 1024;
return 0;
err_free_db:
tn40_tx_db_close(&priv->txdb);
err_free_txf:
tn40_fifo_free(priv, &priv->txf_fifo0.m);
err_free_txd:
tn40_fifo_free(priv, &priv->txd_fifo0.m);
return -ENOMEM;
}
/**
* tn40_tx_space - Calculate the available space in the TX fifo.
* @priv: NIC private structure
*
* Return: available space in TX fifo in bytes
*/
static int tn40_tx_space(struct tn40_priv *priv)
{
struct tn40_txd_fifo *f = &priv->txd_fifo0;
int fsize;
f->m.rptr = tn40_read_reg(priv, f->m.reg_rptr) & TN40_TXF_WPTR_WR_PTR;
fsize = f->m.rptr - f->m.wptr;
if (fsize <= 0)
fsize = f->m.memsz + fsize;
return fsize;
}
#define TN40_TXD_FULL_CHECKSUM 7
static netdev_tx_t tn40_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct tn40_priv *priv = netdev_priv(ndev);
struct tn40_txd_fifo *f = &priv->txd_fifo0;
int txd_checksum = TN40_TXD_FULL_CHECKSUM;
struct tn40_txd_desc *txdd;
int nr_frags, len, err;
unsigned int pkt_len;
int txd_vlan_id = 0;
int txd_lgsnd = 0;
int txd_vtag = 0;
int txd_mss = 0;
/* Build tx descriptor */
txdd = (struct tn40_txd_desc *)(f->m.va + f->m.wptr);
err = tn40_tx_map_skb(priv, skb, txdd, &pkt_len);
if (err) {
u64_stats_update_begin(&priv->syncp);
priv->stats.tx_dropped++;
u64_stats_update_end(&priv->syncp);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
nr_frags = skb_shinfo(skb)->nr_frags;
if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
txd_checksum = 0;
if (skb_shinfo(skb)->gso_size) {
txd_mss = skb_shinfo(skb)->gso_size;
txd_lgsnd = 1;
netdev_dbg(priv->ndev, "skb %p pkt len %d gso size = %d\n", skb,
pkt_len, txd_mss);
}
if (skb_vlan_tag_present(skb)) {
/* Don't cut VLAN ID to 12 bits */
txd_vlan_id = skb_vlan_tag_get(skb);
txd_vtag = 1;
}
txdd->va_hi = 0;
txdd->va_lo = 0;
txdd->length = cpu_to_le16(pkt_len);
txdd->mss = cpu_to_le16(txd_mss);
txdd->txd_val1 =
cpu_to_le32(TN40_TXD_W1_VAL
(tn40_txd_sizes[nr_frags].qwords, txd_checksum,
txd_vtag, txd_lgsnd, txd_vlan_id));
netdev_dbg(priv->ndev, "=== w1 qwords[%d] %d =====\n", nr_frags,
tn40_txd_sizes[nr_frags].qwords);
netdev_dbg(priv->ndev, "=== TxD desc =====================\n");
netdev_dbg(priv->ndev, "=== w1: 0x%x ================\n",
txdd->txd_val1);
netdev_dbg(priv->ndev, "=== w2: mss 0x%x len 0x%x\n", txdd->mss,
txdd->length);
/* SHORT_PKT_FIX */
if (pkt_len < TN40_SHORT_PACKET_SIZE) {
struct tn40_pbl *pbl = &txdd->pbl[++nr_frags];
txdd->length = cpu_to_le16(TN40_SHORT_PACKET_SIZE);
txdd->txd_val1 =
cpu_to_le32(TN40_TXD_W1_VAL
(tn40_txd_sizes[nr_frags].qwords,
txd_checksum, txd_vtag, txd_lgsnd,
txd_vlan_id));
pbl->len = cpu_to_le32(TN40_SHORT_PACKET_SIZE - pkt_len);
pbl->pa_lo = cpu_to_le32(lower_32_bits(priv->b0_dma));
pbl->pa_hi = cpu_to_le32(upper_32_bits(priv->b0_dma));
netdev_dbg(priv->ndev, "=== SHORT_PKT_FIX ==============\n");
netdev_dbg(priv->ndev, "=== nr_frags : %d ==============\n",
nr_frags);
}
/* Increment TXD write pointer. In case of fifo wrapping copy
* reminder of the descriptor to the beginning.
*/
f->m.wptr += tn40_txd_sizes[nr_frags].bytes;
len = f->m.wptr - f->m.memsz;
if (unlikely(len >= 0)) {
f->m.wptr = len;
if (len > 0)
memcpy(f->m.va, f->m.va + f->m.memsz, len);
}
/* Force memory writes to complete before letting the HW know
* there are new descriptors to fetch.
*/
wmb();
priv->tx_level -= tn40_txd_sizes[nr_frags].bytes;
if (priv->tx_level > priv->tx_update_mark) {
tn40_write_reg(priv, f->m.reg_wptr,
f->m.wptr & TN40_TXF_WPTR_WR_PTR);
} else {
if (priv->tx_noupd++ > TN40_NO_UPD_PACKETS) {
priv->tx_noupd = 0;
tn40_write_reg(priv, f->m.reg_wptr,
f->m.wptr & TN40_TXF_WPTR_WR_PTR);
}
}
u64_stats_update_begin(&priv->syncp);
priv->stats.tx_packets++;
priv->stats.tx_bytes += pkt_len;
u64_stats_update_end(&priv->syncp);
if (priv->tx_level < TN40_MIN_TX_LEVEL) {
netdev_dbg(priv->ndev, "TX Q STOP level %d\n", priv->tx_level);
netif_stop_queue(ndev);
}
return NETDEV_TX_OK;
}
static void tn40_tx_cleanup(struct tn40_priv *priv)
{
struct tn40_txf_fifo *f = &priv->txf_fifo0;
struct tn40_txdb *db = &priv->txdb;
int tx_level = 0;
f->m.wptr = tn40_read_reg(priv, f->m.reg_wptr) & TN40_TXF_WPTR_MASK;
netif_tx_lock(priv->ndev);
while (f->m.wptr != f->m.rptr) {
f->m.rptr += TN40_TXF_DESC_SZ;
f->m.rptr &= f->m.size_mask;
/* Unmap all fragments */
/* First has to come tx_maps containing DMA */
do {
dma_addr_t addr = db->rptr->addr.dma;
size_t size = db->rptr->len;
netif_tx_unlock(priv->ndev);
dma_unmap_page(&priv->pdev->dev, addr,
size, DMA_TO_DEVICE);
netif_tx_lock(priv->ndev);
tn40_tx_db_inc_rptr(db);
} while (db->rptr->len > 0);
tx_level -= db->rptr->len; /* '-' Because the len is negative */
/* Now should come skb pointer - free it */
dev_kfree_skb_any(db->rptr->addr.skb);
netdev_dbg(priv->ndev, "dev_kfree_skb_any %p %d\n",
db->rptr->addr.skb, -db->rptr->len);
tn40_tx_db_inc_rptr(db);
}
/* Let the HW know which TXF descriptors were cleaned */
tn40_write_reg(priv, f->m.reg_rptr, f->m.rptr & TN40_TXF_WPTR_WR_PTR);
/* We reclaimed resources, so in case the Q is stopped by xmit
* callback, we resume the transmission and use tx_lock to
* synchronize with xmit.
*/
priv->tx_level += tx_level;
if (priv->tx_noupd) {
priv->tx_noupd = 0;
tn40_write_reg(priv, priv->txd_fifo0.m.reg_wptr,
priv->txd_fifo0.m.wptr & TN40_TXF_WPTR_WR_PTR);
}
if (unlikely(netif_queue_stopped(priv->ndev) &&
netif_carrier_ok(priv->ndev) &&
(priv->tx_level >= TN40_MAX_TX_LEVEL / 2))) {
netdev_dbg(priv->ndev, "TX Q WAKE level %d\n", priv->tx_level);
netif_wake_queue(priv->ndev);
}
netif_tx_unlock(priv->ndev);
}
static void tn40_tx_free_skbs(struct tn40_priv *priv)
{
struct tn40_txdb *db = &priv->txdb;
while (db->rptr != db->wptr) {
if (likely(db->rptr->len))
dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
db->rptr->len, DMA_TO_DEVICE);
else
dev_kfree_skb(db->rptr->addr.skb);
tn40_tx_db_inc_rptr(db);
}
}
static void tn40_destroy_tx_ring(struct tn40_priv *priv)
{
tn40_tx_free_skbs(priv);
tn40_fifo_free(priv, &priv->txd_fifo0.m);
tn40_fifo_free(priv, &priv->txf_fifo0.m);
tn40_tx_db_close(&priv->txdb);
/* SHORT_PKT_FIX */
if (priv->b0_len) {
dma_free_coherent(&priv->pdev->dev, priv->b0_len, priv->b0_va,
priv->b0_dma);
priv->b0_len = 0;
}
}
/**
* tn40_tx_push_desc - Push a descriptor to TxD fifo.
*
* @priv: NIC private structure
* @data: desc's data
* @size: desc's size
*
* This function pushes desc to TxD fifo and overlaps it if needed.
*
* This function does not check for available space, nor does it check
* that the data size is smaller than the fifo size. Checking for
* space is the responsibility of the caller.
*/
static void tn40_tx_push_desc(struct tn40_priv *priv, void *data, int size)
{
struct tn40_txd_fifo *f = &priv->txd_fifo0;
int i = f->m.memsz - f->m.wptr;
if (size == 0)
return;
if (i > size) {
memcpy(f->m.va + f->m.wptr, data, size);
f->m.wptr += size;
} else {
memcpy(f->m.va + f->m.wptr, data, i);
f->m.wptr = size - i;
memcpy(f->m.va, data + i, f->m.wptr);
}
tn40_write_reg(priv, f->m.reg_wptr, f->m.wptr & TN40_TXF_WPTR_WR_PTR);
}
/**
* tn40_tx_push_desc_safe - push descriptor to TxD fifo in a safe way.
*
* @priv: NIC private structure
* @data: descriptor data
* @size: descriptor size
*
* This function does check for available space and, if necessary,
* waits for the NIC to read existing data before writing new data.
*/
static void tn40_tx_push_desc_safe(struct tn40_priv *priv, void *data, int size)
{
int timer = 0;
while (size > 0) {
/* We subtract 8 because when the fifo is full rptr ==
* wptr, which also means that fifo is empty, we can
* understand the difference, but could the HW do the
* same ???
*/
int avail = tn40_tx_space(priv) - 8;
if (avail <= 0) {
if (timer++ > 300) /* Prevent endless loop */
break;
/* Give the HW a chance to clean the fifo */
usleep_range(50, 60);
continue;
}
avail = min(avail, size);
netdev_dbg(priv->ndev,
"about to push %d bytes starting %p size %d\n",
avail, data, size);
tn40_tx_push_desc(priv, data, avail);
size -= avail;
data += avail;
}
}
int tn40_set_link_speed(struct tn40_priv *priv, u32 speed)
{
u32 val;
int i;
netdev_dbg(priv->ndev, "speed %d\n", speed);
switch (speed) {
case SPEED_10000:
case SPEED_5000:
case SPEED_2500:
netdev_dbg(priv->ndev, "link_speed %d\n", speed);
tn40_write_reg(priv, 0x1010, 0x217); /*ETHSD.REFCLK_CONF */
tn40_write_reg(priv, 0x104c, 0x4c); /*ETHSD.L0_RX_PCNT */
tn40_write_reg(priv, 0x1050, 0x4c); /*ETHSD.L1_RX_PCNT */
tn40_write_reg(priv, 0x1054, 0x4c); /*ETHSD.L2_RX_PCNT */
tn40_write_reg(priv, 0x1058, 0x4c); /*ETHSD.L3_RX_PCNT */
tn40_write_reg(priv, 0x102c, 0x434); /*ETHSD.L0_TX_PCNT */
tn40_write_reg(priv, 0x1030, 0x434); /*ETHSD.L1_TX_PCNT */
tn40_write_reg(priv, 0x1034, 0x434); /*ETHSD.L2_TX_PCNT */
tn40_write_reg(priv, 0x1038, 0x434); /*ETHSD.L3_TX_PCNT */
tn40_write_reg(priv, 0x6300, 0x0400); /*MAC.PCS_CTRL */
tn40_write_reg(priv, 0x1018, 0x00); /*Mike2 */
udelay(5);
tn40_write_reg(priv, 0x1018, 0x04); /*Mike2 */
udelay(5);
tn40_write_reg(priv, 0x1018, 0x06); /*Mike2 */
udelay(5);
/*MikeFix1 */
/*L0: 0x103c , L1: 0x1040 , L2: 0x1044 , L3: 0x1048 =0x81644 */
tn40_write_reg(priv, 0x103c, 0x81644); /*ETHSD.L0_TX_DCNT */
tn40_write_reg(priv, 0x1040, 0x81644); /*ETHSD.L1_TX_DCNT */
tn40_write_reg(priv, 0x1044, 0x81644); /*ETHSD.L2_TX_DCNT */
tn40_write_reg(priv, 0x1048, 0x81644); /*ETHSD.L3_TX_DCNT */
tn40_write_reg(priv, 0x1014, 0x043); /*ETHSD.INIT_STAT */
for (i = 1000; i; i--) {
usleep_range(50, 60);
/*ETHSD.INIT_STAT */
val = tn40_read_reg(priv, 0x1014);
if (val & (1 << 9)) {
/*ETHSD.INIT_STAT */
tn40_write_reg(priv, 0x1014, 0x3);
/*ETHSD.INIT_STAT */
val = tn40_read_reg(priv, 0x1014);
break;
}
}
if (!i)
netdev_err(priv->ndev, "MAC init timeout!\n");
tn40_write_reg(priv, 0x6350, 0x0); /*MAC.PCS_IF_MODE */
tn40_write_reg(priv, TN40_REG_CTRLST, 0xC13); /*0x93//0x13 */
tn40_write_reg(priv, 0x111c, 0x7ff); /*MAC.MAC_RST_CNT */
usleep_range(2000, 2100);
tn40_write_reg(priv, 0x111c, 0x0); /*MAC.MAC_RST_CNT */
break;
case SPEED_1000:
case SPEED_100:
tn40_write_reg(priv, 0x1010, 0x613); /*ETHSD.REFCLK_CONF */
tn40_write_reg(priv, 0x104c, 0x4d); /*ETHSD.L0_RX_PCNT */
tn40_write_reg(priv, 0x1050, 0x0); /*ETHSD.L1_RX_PCNT */
tn40_write_reg(priv, 0x1054, 0x0); /*ETHSD.L2_RX_PCNT */
tn40_write_reg(priv, 0x1058, 0x0); /*ETHSD.L3_RX_PCNT */
tn40_write_reg(priv, 0x102c, 0x35); /*ETHSD.L0_TX_PCNT */
tn40_write_reg(priv, 0x1030, 0x0); /*ETHSD.L1_TX_PCNT */
tn40_write_reg(priv, 0x1034, 0x0); /*ETHSD.L2_TX_PCNT */
tn40_write_reg(priv, 0x1038, 0x0); /*ETHSD.L3_TX_PCNT */
tn40_write_reg(priv, 0x6300, 0x01140); /*MAC.PCS_CTRL */
tn40_write_reg(priv, 0x1014, 0x043); /*ETHSD.INIT_STAT */
for (i = 1000; i; i--) {
usleep_range(50, 60);
val = tn40_read_reg(priv, 0x1014); /*ETHSD.INIT_STAT */
if (val & (1 << 9)) {
/*ETHSD.INIT_STAT */
tn40_write_reg(priv, 0x1014, 0x3);
/*ETHSD.INIT_STAT */
val = tn40_read_reg(priv, 0x1014);
break;
}
}
if (!i)
netdev_err(priv->ndev, "MAC init timeout!\n");
tn40_write_reg(priv, 0x6350, 0x2b); /*MAC.PCS_IF_MODE 1g */
tn40_write_reg(priv, 0x6310, 0x9801); /*MAC.PCS_DEV_AB */
tn40_write_reg(priv, 0x6314, 0x1); /*MAC.PCS_PART_AB */
tn40_write_reg(priv, 0x6348, 0xc8); /*MAC.PCS_LINK_LO */
tn40_write_reg(priv, 0x634c, 0xc8); /*MAC.PCS_LINK_HI */
usleep_range(50, 60);
tn40_write_reg(priv, TN40_REG_CTRLST, 0xC13); /*0x93//0x13 */
tn40_write_reg(priv, 0x111c, 0x7ff); /*MAC.MAC_RST_CNT */
usleep_range(2000, 2100);
tn40_write_reg(priv, 0x111c, 0x0); /*MAC.MAC_RST_CNT */
tn40_write_reg(priv, 0x6300, 0x1140); /*MAC.PCS_CTRL */
break;
case 0: /* Link down */
tn40_write_reg(priv, 0x104c, 0x0); /*ETHSD.L0_RX_PCNT */
tn40_write_reg(priv, 0x1050, 0x0); /*ETHSD.L1_RX_PCNT */
tn40_write_reg(priv, 0x1054, 0x0); /*ETHSD.L2_RX_PCNT */
tn40_write_reg(priv, 0x1058, 0x0); /*ETHSD.L3_RX_PCNT */
tn40_write_reg(priv, 0x102c, 0x0); /*ETHSD.L0_TX_PCNT */
tn40_write_reg(priv, 0x1030, 0x0); /*ETHSD.L1_TX_PCNT */
tn40_write_reg(priv, 0x1034, 0x0); /*ETHSD.L2_TX_PCNT */
tn40_write_reg(priv, 0x1038, 0x0); /*ETHSD.L3_TX_PCNT */
tn40_write_reg(priv, TN40_REG_CTRLST, 0x800);
tn40_write_reg(priv, 0x111c, 0x7ff); /*MAC.MAC_RST_CNT */
usleep_range(2000, 2100);
tn40_write_reg(priv, 0x111c, 0x0); /*MAC.MAC_RST_CNT */
break;
default:
netdev_err(priv->ndev,
"Link speed was not identified yet (%d)\n", speed);
speed = 0;
break;
}
return speed;
}
static void tn40_link_changed(struct tn40_priv *priv)
{
u32 link = tn40_read_reg(priv,
TN40_REG_MAC_LNK_STAT) & TN40_MAC_LINK_STAT;
netdev_dbg(priv->ndev, "link changed %u\n", link);
}
static void tn40_isr_extra(struct tn40_priv *priv, u32 isr)
{
if (isr & (TN40_IR_LNKCHG0 | TN40_IR_LNKCHG1 | TN40_IR_TMR0)) {
netdev_dbg(priv->ndev, "isr = 0x%x\n", isr);
tn40_link_changed(priv);
}
}
static irqreturn_t tn40_isr_napi(int irq, void *dev)
{
struct tn40_priv *priv = netdev_priv((struct net_device *)dev);
u32 isr;
isr = tn40_read_reg(priv, TN40_REG_ISR_MSK0);
if (unlikely(!isr)) {
tn40_enable_interrupts(priv);
return IRQ_NONE; /* Not our interrupt */
}
if (isr & TN40_IR_EXTRA)
tn40_isr_extra(priv, isr);
if (isr & (TN40_IR_RX_DESC_0 | TN40_IR_TX_FREE_0 | TN40_IR_TMR1)) {
if (likely(napi_schedule_prep(&priv->napi))) {
__napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
/* We get here if an interrupt has slept into the
* small time window between these lines in
* tn40_poll: tn40_enable_interrupts(priv); return 0;
*
* Currently interrupts are disabled (since we read
* the ISR register) and we have failed to register
* the next poll. So we read the regs to trigger the
* chip and allow further interrupts.
*/
tn40_read_reg(priv, TN40_REG_TXF_WPTR_0);
tn40_read_reg(priv, TN40_REG_RXD_WPTR_0);
}
tn40_enable_interrupts(priv);
return IRQ_HANDLED;
}
static int tn40_poll(struct napi_struct *napi, int budget)
{
struct tn40_priv *priv = container_of(napi, struct tn40_priv, napi);
int work_done;
tn40_tx_cleanup(priv);
if (!budget)
return 0;
work_done = tn40_rx_receive(priv, budget);
if (work_done == budget)
return budget;
if (napi_complete_done(napi, work_done))
tn40_enable_interrupts(priv);
return work_done;
}
static int tn40_fw_load(struct tn40_priv *priv)
{
const struct firmware *fw = NULL;
int master, ret;
u32 val;
ret = request_firmware(&fw, TN40_FIRMWARE_NAME, &priv->pdev->dev);
if (ret)
return ret;
master = tn40_read_reg(priv, TN40_REG_INIT_SEMAPHORE);
if (!tn40_read_reg(priv, TN40_REG_INIT_STATUS) && master) {
netdev_dbg(priv->ndev, "Loading FW...\n");
tn40_tx_push_desc_safe(priv, (void *)fw->data, fw->size);
msleep(100);
}
ret = read_poll_timeout(tn40_read_reg, val, val, 2000, 400000, false,
priv, TN40_REG_INIT_STATUS);
if (master)
tn40_write_reg(priv, TN40_REG_INIT_SEMAPHORE, 1);
if (ret) {
netdev_err(priv->ndev, "firmware loading failed\n");
netdev_dbg(priv->ndev, "VPC: 0x%x VIC: 0x%x STATUS: 0x%xd\n",
tn40_read_reg(priv, TN40_REG_VPC),
tn40_read_reg(priv, TN40_REG_VIC),
tn40_read_reg(priv, TN40_REG_INIT_STATUS));
ret = -EIO;
} else {
netdev_dbg(priv->ndev, "firmware loading success\n");
}
release_firmware(fw);
return ret;
}
static void tn40_restore_mac(struct net_device *ndev, struct tn40_priv *priv)
{
u32 val;
netdev_dbg(priv->ndev, "mac0 =%x mac1 =%x mac2 =%x\n",
tn40_read_reg(priv, TN40_REG_UNC_MAC0_A),
tn40_read_reg(priv, TN40_REG_UNC_MAC1_A),
tn40_read_reg(priv, TN40_REG_UNC_MAC2_A));
val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
tn40_write_reg(priv, TN40_REG_UNC_MAC2_A, val);
val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
tn40_write_reg(priv, TN40_REG_UNC_MAC1_A, val);
val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
tn40_write_reg(priv, TN40_REG_UNC_MAC0_A, val);
/* More then IP MAC address */
tn40_write_reg(priv, TN40_REG_MAC_ADDR_0,
(ndev->dev_addr[3] << 24) | (ndev->dev_addr[2] << 16) |
(ndev->dev_addr[1] << 8) | (ndev->dev_addr[0]));
tn40_write_reg(priv, TN40_REG_MAC_ADDR_1,
(ndev->dev_addr[5] << 8) | (ndev->dev_addr[4]));
netdev_dbg(priv->ndev, "mac0 =%x mac1 =%x mac2 =%x\n",
tn40_read_reg(priv, TN40_REG_UNC_MAC0_A),
tn40_read_reg(priv, TN40_REG_UNC_MAC1_A),
tn40_read_reg(priv, TN40_REG_UNC_MAC2_A));
}
static void tn40_hw_start(struct tn40_priv *priv)
{
tn40_write_reg(priv, TN40_REG_FRM_LENGTH, 0X3FE0);
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A, 0X10fd);
/*MikeFix1 */
/*L0: 0x103c , L1: 0x1040 , L2: 0x1044 , L3: 0x1048 =0x81644 */
tn40_write_reg(priv, 0x103c, 0x81644); /*ETHSD.L0_TX_DCNT */
tn40_write_reg(priv, 0x1040, 0x81644); /*ETHSD.L1_TX_DCNT */
tn40_write_reg(priv, 0x1044, 0x81644); /*ETHSD.L2_TX_DCNT */
tn40_write_reg(priv, 0x1048, 0x81644); /*ETHSD.L3_TX_DCNT */
tn40_write_reg(priv, TN40_REG_RX_FIFO_SECTION, 0x10);
tn40_write_reg(priv, TN40_REG_TX_FIFO_SECTION, 0xE00010);
tn40_write_reg(priv, TN40_REG_RX_FULLNESS, 0);
tn40_write_reg(priv, TN40_REG_TX_FULLNESS, 0);
tn40_write_reg(priv, TN40_REG_VGLB, 0);
tn40_write_reg(priv, TN40_REG_MAX_FRAME_A,
priv->rxf_fifo0.m.pktsz & TN40_MAX_FRAME_AB_VAL);
tn40_write_reg(priv, TN40_REG_RDINTCM0, priv->rdintcm);
tn40_write_reg(priv, TN40_REG_RDINTCM2, 0);
/* old val = 0x300064 */
tn40_write_reg(priv, TN40_REG_TDINTCM0, priv->tdintcm);
/* Enable timer interrupt once in 2 secs. */
tn40_restore_mac(priv->ndev, priv);
/* Pause frame */
tn40_write_reg(priv, 0x12E0, 0x28);
tn40_write_reg(priv, TN40_REG_PAUSE_QUANT, 0xFFFF);
tn40_write_reg(priv, 0x6064, 0xF);
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A,
TN40_GMAC_RX_FILTER_OSEN | TN40_GMAC_RX_FILTER_TXFC |
TN40_GMAC_RX_FILTER_AM | TN40_GMAC_RX_FILTER_AB);
tn40_enable_interrupts(priv);
}
static int tn40_hw_reset(struct tn40_priv *priv)
{
u32 val;
/* Reset sequences: read, write 1, read, write 0 */
val = tn40_read_reg(priv, TN40_REG_CLKPLL);
tn40_write_reg(priv, TN40_REG_CLKPLL, (val | TN40_CLKPLL_SFTRST) + 0x8);
usleep_range(50, 60);
val = tn40_read_reg(priv, TN40_REG_CLKPLL);
tn40_write_reg(priv, TN40_REG_CLKPLL, val & ~TN40_CLKPLL_SFTRST);
/* Check that the PLLs are locked and reset ended */
val = read_poll_timeout(tn40_read_reg, val,
(val & TN40_CLKPLL_LKD) == TN40_CLKPLL_LKD,
10000, 700000, false, priv, TN40_REG_CLKPLL);
if (val)
return -EIO;
usleep_range(50, 60);
/* Do any PCI-E read transaction */
tn40_read_reg(priv, TN40_REG_RXD_CFG0_0);
return 0;
}
static void tn40_sw_reset(struct tn40_priv *priv)
{
int i, ret;
u32 val;
/* 1. load MAC (obsolete) */
/* 2. disable Rx (and Tx) */
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A, 0);
msleep(100);
/* 3. Disable port */
tn40_write_reg(priv, TN40_REG_DIS_PORT, 1);
/* 4. Disable queue */
tn40_write_reg(priv, TN40_REG_DIS_QU, 1);
/* 5. Wait until hw is disabled */
ret = read_poll_timeout(tn40_read_reg, val, val & 1, 10000, 500000,
false, priv, TN40_REG_RST_PORT);
if (ret)
netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
/* 6. Disable interrupts */
tn40_write_reg(priv, TN40_REG_RDINTCM0, 0);
tn40_write_reg(priv, TN40_REG_TDINTCM0, 0);
tn40_write_reg(priv, TN40_REG_IMR, 0);
tn40_read_reg(priv, TN40_REG_ISR);
/* 7. Reset queue */
tn40_write_reg(priv, TN40_REG_RST_QU, 1);
/* 8. Reset port */
tn40_write_reg(priv, TN40_REG_RST_PORT, 1);
/* 9. Zero all read and write pointers */
for (i = TN40_REG_TXD_WPTR_0; i <= TN40_REG_TXF_RPTR_3; i += 0x10)
tn40_write_reg(priv, i, 0);
/* 10. Unset port disable */
tn40_write_reg(priv, TN40_REG_DIS_PORT, 0);
/* 11. Unset queue disable */
tn40_write_reg(priv, TN40_REG_DIS_QU, 0);
/* 12. Unset queue reset */
tn40_write_reg(priv, TN40_REG_RST_QU, 0);
/* 13. Unset port reset */
tn40_write_reg(priv, TN40_REG_RST_PORT, 0);
/* 14. Enable Rx */
/* Skipped. will be done later */
}
static int tn40_start(struct tn40_priv *priv)
{
int ret;
ret = tn40_create_tx_ring(priv);
if (ret) {
netdev_err(priv->ndev, "failed to tx init %d\n", ret);
return ret;
}
ret = tn40_create_rx_ring(priv);
if (ret) {
netdev_err(priv->ndev, "failed to rx init %d\n", ret);
goto err_tx_ring;
}
tn40_rx_alloc_buffers(priv);
if (tn40_rxdb_available(priv->rxdb0) != 1) {
ret = -ENOMEM;
netdev_err(priv->ndev, "failed to allocate rx buffers\n");
goto err_rx_ring;
}
ret = request_irq(priv->pdev->irq, &tn40_isr_napi, IRQF_SHARED,
priv->ndev->name, priv->ndev);
if (ret) {
netdev_err(priv->ndev, "failed to request irq %d\n", ret);
goto err_rx_ring;
}
tn40_hw_start(priv);
return 0;
err_rx_ring:
tn40_destroy_rx_ring(priv);
err_tx_ring:
tn40_destroy_tx_ring(priv);
return ret;
}
static void tn40_stop(struct tn40_priv *priv)
{
tn40_disable_interrupts(priv);
free_irq(priv->pdev->irq, priv->ndev);
tn40_sw_reset(priv);
tn40_destroy_tx_ring(priv);
tn40_destroy_rx_ring(priv);
}
static int tn40_close(struct net_device *ndev)
{
struct tn40_priv *priv = netdev_priv(ndev);
phylink_stop(priv->phylink);
phylink_disconnect_phy(priv->phylink);
napi_disable(&priv->napi);
netif_napi_del(&priv->napi);
tn40_stop(priv);
return 0;
}
static int tn40_open(struct net_device *dev)
{
struct tn40_priv *priv = netdev_priv(dev);
int ret;
ret = phylink_connect_phy(priv->phylink, priv->phydev);
if (ret) {
netdev_err(dev, "failed to connect to phy %d\n", ret);
return ret;
}
tn40_sw_reset(priv);
ret = tn40_start(priv);
if (ret) {
phylink_disconnect_phy(priv->phylink);
netdev_err(dev, "failed to start %d\n", ret);
return ret;
}
napi_enable(&priv->napi);
phylink_start(priv->phylink);
netif_start_queue(priv->ndev);
return 0;
}
static void __tn40_vlan_rx_vid(struct net_device *ndev, uint16_t vid,
int enable)
{
struct tn40_priv *priv = netdev_priv(ndev);
u32 reg, bit, val;
netdev_dbg(priv->ndev, "vid =%d value =%d\n", (int)vid, enable);
reg = TN40_REG_VLAN_0 + (vid / 32) * 4;
bit = 1 << vid % 32;
val = tn40_read_reg(priv, reg);
netdev_dbg(priv->ndev, "reg =%x, val =%x, bit =%d\n", reg, val, bit);
if (enable)
val |= bit;
else
val &= ~bit;
netdev_dbg(priv->ndev, "new val %x\n", val);
tn40_write_reg(priv, reg, val);
}
static int tn40_vlan_rx_add_vid(struct net_device *ndev,
__always_unused __be16 proto, u16 vid)
{
__tn40_vlan_rx_vid(ndev, vid, 1);
return 0;
}
static int tn40_vlan_rx_kill_vid(struct net_device *ndev,
__always_unused __be16 proto, u16 vid)
{
__tn40_vlan_rx_vid(ndev, vid, 0);
return 0;
}
static void tn40_setmulti(struct net_device *ndev)
{
u32 rxf_val = TN40_GMAC_RX_FILTER_AM | TN40_GMAC_RX_FILTER_AB |
TN40_GMAC_RX_FILTER_OSEN | TN40_GMAC_RX_FILTER_TXFC;
struct tn40_priv *priv = netdev_priv(ndev);
int i;
/* IMF - imperfect (hash) rx multicast filter */
/* PMF - perfect rx multicast filter */
/* FIXME: RXE(OFF) */
if (ndev->flags & IFF_PROMISC) {
rxf_val |= TN40_GMAC_RX_FILTER_PRM;
} else if (ndev->flags & IFF_ALLMULTI) {
/* set IMF to accept all multicast frames */
for (i = 0; i < TN40_MAC_MCST_HASH_NUM; i++)
tn40_write_reg(priv,
TN40_REG_RX_MCST_HASH0 + i * 4, ~0);
} else if (netdev_mc_count(ndev)) {
struct netdev_hw_addr *mclist;
u32 reg, val;
u8 hash;
/* Set IMF to deny all multicast frames */
for (i = 0; i < TN40_MAC_MCST_HASH_NUM; i++)
tn40_write_reg(priv,
TN40_REG_RX_MCST_HASH0 + i * 4, 0);
/* Set PMF to deny all multicast frames */
for (i = 0; i < TN40_MAC_MCST_NUM; i++) {
tn40_write_reg(priv,
TN40_REG_RX_MAC_MCST0 + i * 8, 0);
tn40_write_reg(priv,
TN40_REG_RX_MAC_MCST1 + i * 8, 0);
}
/* Use PMF to accept first MAC_MCST_NUM (15) addresses */
/* TBD: Sort the addresses and write them in ascending
* order into RX_MAC_MCST regs. we skip this phase now
* and accept ALL multicast frames through IMF. Accept
* the rest of addresses throw IMF.
*/
netdev_for_each_mc_addr(mclist, ndev) {
hash = 0;
for (i = 0; i < ETH_ALEN; i++)
hash ^= mclist->addr[i];
reg = TN40_REG_RX_MCST_HASH0 + ((hash >> 5) << 2);
val = tn40_read_reg(priv, reg);
val |= (1 << (hash % 32));
tn40_write_reg(priv, reg, val);
}
} else {
rxf_val |= TN40_GMAC_RX_FILTER_AB;
}
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A, rxf_val);
/* Enable RX */
/* FIXME: RXE(ON) */
}
static int tn40_set_mac(struct net_device *ndev, void *p)
{
struct tn40_priv *priv = netdev_priv(ndev);
struct sockaddr *addr = p;
eth_hw_addr_set(ndev, addr->sa_data);
tn40_restore_mac(ndev, priv);
return 0;
}
static void tn40_mac_init(struct tn40_priv *priv)
{
u8 addr[ETH_ALEN];
u64 val;
val = (u64)tn40_read_reg(priv, TN40_REG_UNC_MAC0_A);
val |= (u64)tn40_read_reg(priv, TN40_REG_UNC_MAC1_A) << 16;
val |= (u64)tn40_read_reg(priv, TN40_REG_UNC_MAC2_A) << 32;
u64_to_ether_addr(val, addr);
eth_hw_addr_set(priv->ndev, addr);
}
static void tn40_get_stats(struct net_device *ndev,
struct rtnl_link_stats64 *stats)
{
struct tn40_priv *priv = netdev_priv(ndev);
unsigned int start;
do {
start = u64_stats_fetch_begin(&priv->syncp);
stats->tx_packets = priv->stats.tx_packets;
stats->tx_bytes = priv->stats.tx_bytes;
stats->tx_dropped = priv->stats.tx_dropped;
stats->rx_packets = priv->stats.rx_packets;
stats->rx_bytes = priv->stats.rx_bytes;
stats->rx_dropped = priv->stats.rx_dropped;
stats->rx_errors = priv->stats.rx_errors;
} while (u64_stats_fetch_retry(&priv->syncp, start));
}
static const struct net_device_ops tn40_netdev_ops = {
.ndo_open = tn40_open,
.ndo_stop = tn40_close,
.ndo_start_xmit = tn40_start_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = tn40_setmulti,
.ndo_get_stats64 = tn40_get_stats,
.ndo_set_mac_address = tn40_set_mac,
.ndo_vlan_rx_add_vid = tn40_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = tn40_vlan_rx_kill_vid,
};
static int tn40_ethtool_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct tn40_priv *priv = netdev_priv(ndev);
return phylink_ethtool_ksettings_get(priv->phylink, cmd);
}
static const struct ethtool_ops tn40_ethtool_ops = {
.get_link = ethtool_op_get_link,
.get_link_ksettings = tn40_ethtool_get_link_ksettings,
};
static void tn40_get_queue_stats_rx(struct net_device *ndev, int idx,
struct netdev_queue_stats_rx *stats)
{
struct tn40_priv *priv = netdev_priv(ndev);
unsigned int start;
do {
start = u64_stats_fetch_begin(&priv->syncp);
stats->packets = priv->stats.rx_packets;
stats->bytes = priv->stats.rx_bytes;
stats->alloc_fail = priv->alloc_fail;
} while (u64_stats_fetch_retry(&priv->syncp, start));
}
static void tn40_get_queue_stats_tx(struct net_device *ndev, int idx,
struct netdev_queue_stats_tx *stats)
{
struct tn40_priv *priv = netdev_priv(ndev);
unsigned int start;
do {
start = u64_stats_fetch_begin(&priv->syncp);
stats->packets = priv->stats.tx_packets;
stats->bytes = priv->stats.tx_bytes;
} while (u64_stats_fetch_retry(&priv->syncp, start));
}
static void tn40_get_base_stats(struct net_device *ndev,
struct netdev_queue_stats_rx *rx,
struct netdev_queue_stats_tx *tx)
{
rx->packets = 0;
rx->bytes = 0;
rx->alloc_fail = 0;
tx->packets = 0;
tx->bytes = 0;
}
static const struct netdev_stat_ops tn40_stat_ops = {
.get_queue_stats_rx = tn40_get_queue_stats_rx,
.get_queue_stats_tx = tn40_get_queue_stats_tx,
.get_base_stats = tn40_get_base_stats,
};
static int tn40_priv_init(struct tn40_priv *priv)
{
int ret;
tn40_set_link_speed(priv, 0);
/* Set GPIO[9:0] to output 0 */
tn40_write_reg(priv, 0x51E0, 0x30010006); /* GPIO_OE_ WR CMD */
tn40_write_reg(priv, 0x51F0, 0x0); /* GPIO_OE_ DATA */
tn40_write_reg(priv, TN40_REG_MDIO_CMD_STAT, 0x3ec8);
/* we use tx descriptors to load a firmware. */
ret = tn40_create_tx_ring(priv);
if (ret)
return ret;
ret = tn40_fw_load(priv);
tn40_destroy_tx_ring(priv);
return ret;
}
static struct net_device *tn40_netdev_alloc(struct pci_dev *pdev)
{
struct net_device *ndev;
ndev = devm_alloc_etherdev(&pdev->dev, sizeof(struct tn40_priv));
if (!ndev)
return NULL;
ndev->netdev_ops = &tn40_netdev_ops;
ndev->ethtool_ops = &tn40_ethtool_ops;
ndev->stat_ops = &tn40_stat_ops;
ndev->tx_queue_len = TN40_NDEV_TXQ_LEN;
ndev->mem_start = pci_resource_start(pdev, 0);
ndev->mem_end = pci_resource_end(pdev, 0);
ndev->min_mtu = ETH_ZLEN;
ndev->max_mtu = TN40_MAX_MTU;
ndev->features = NETIF_F_IP_CSUM |
NETIF_F_SG |
NETIF_F_FRAGLIST |
NETIF_F_TSO | NETIF_F_GRO |
NETIF_F_RXCSUM |
NETIF_F_RXHASH |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_FILTER;
ndev->vlan_features = NETIF_F_IP_CSUM |
NETIF_F_SG |
NETIF_F_TSO | NETIF_F_GRO | NETIF_F_RXHASH;
if (dma_get_mask(&pdev->dev) == DMA_BIT_MASK(64)) {
ndev->features |= NETIF_F_HIGHDMA;
ndev->vlan_features |= NETIF_F_HIGHDMA;
}
ndev->hw_features |= ndev->features;
SET_NETDEV_DEV(ndev, &pdev->dev);
netif_stop_queue(ndev);
return ndev;
}
static int tn40_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *ndev;
struct tn40_priv *priv;
unsigned int nvec = 1;
void __iomem *regs;
int ret;
ret = pci_enable_device(pdev);
if (ret)
return ret;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(&pdev->dev, "failed to set DMA mask.\n");
goto err_disable_device;
}
ret = pci_request_regions(pdev, TN40_DRV_NAME);
if (ret) {
dev_err(&pdev->dev, "failed to request PCI regions.\n");
goto err_disable_device;
}
pci_set_master(pdev);
regs = pci_iomap(pdev, 0, TN40_REGS_SIZE);
if (!regs) {
ret = -EIO;
dev_err(&pdev->dev, "failed to map PCI bar.\n");
goto err_free_regions;
}
ndev = tn40_netdev_alloc(pdev);
if (!ndev) {
ret = -ENOMEM;
dev_err(&pdev->dev, "failed to allocate netdev.\n");
goto err_iounmap;
}
priv = netdev_priv(ndev);
pci_set_drvdata(pdev, priv);
netif_napi_add(ndev, &priv->napi, tn40_poll);
priv->regs = regs;
priv->pdev = pdev;
priv->ndev = ndev;
/* Initialize fifo sizes. */
priv->txd_size = 3;
priv->txf_size = 3;
priv->rxd_size = 3;
priv->rxf_size = 3;
/* Initialize the initial coalescing registers. */
priv->rdintcm = TN40_INT_REG_VAL(0x20, 1, 4, 12);
priv->tdintcm = TN40_INT_REG_VAL(0x20, 1, 0, 12);
ret = tn40_hw_reset(priv);
if (ret) {
dev_err(&pdev->dev, "failed to reset HW.\n");
goto err_unset_drvdata;
}
ret = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_MSI);
if (ret < 0) {
dev_err(&pdev->dev, "failed to allocate irq.\n");
goto err_unset_drvdata;
}
ret = tn40_mdiobus_init(priv);
if (ret) {
dev_err(&pdev->dev, "failed to initialize mdio bus.\n");
goto err_free_irq;
}
priv->stats_flag =
((tn40_read_reg(priv, TN40_FPGA_VER) & 0xFFF) != 308);
u64_stats_init(&priv->syncp);
priv->isr_mask = TN40_IR_RX_FREE_0 | TN40_IR_LNKCHG0 | TN40_IR_PSE |
TN40_IR_TMR0 | TN40_IR_RX_DESC_0 | TN40_IR_TX_FREE_0 |
TN40_IR_TMR1;
tn40_mac_init(priv);
ret = tn40_phy_register(priv);
if (ret) {
dev_err(&pdev->dev, "failed to set up PHY.\n");
goto err_free_irq;
}
ret = tn40_priv_init(priv);
if (ret) {
dev_err(&pdev->dev, "failed to initialize tn40_priv.\n");
goto err_unregister_phydev;
}
ret = register_netdev(ndev);
if (ret) {
dev_err(&pdev->dev, "failed to register netdev.\n");
goto err_unregister_phydev;
}
return 0;
err_unregister_phydev:
tn40_phy_unregister(priv);
err_free_irq:
pci_free_irq_vectors(pdev);
err_unset_drvdata:
pci_set_drvdata(pdev, NULL);
err_iounmap:
iounmap(regs);
err_free_regions:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return ret;
}
static void tn40_remove(struct pci_dev *pdev)
{
struct tn40_priv *priv = pci_get_drvdata(pdev);
struct net_device *ndev = priv->ndev;
unregister_netdev(ndev);
tn40_phy_unregister(priv);
pci_free_irq_vectors(priv->pdev);
pci_set_drvdata(pdev, NULL);
iounmap(priv->regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static const struct pci_device_id tn40_id_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
PCI_VENDOR_ID_TEHUTI, 0x3015) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
PCI_VENDOR_ID_DLINK, 0x4d00) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
PCI_VENDOR_ID_ASUSTEK, 0x8709) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
PCI_VENDOR_ID_EDIMAX, 0x8103) },
{ }
};
static struct pci_driver tn40_driver = {
.name = TN40_DRV_NAME,
.id_table = tn40_id_table,
.probe = tn40_probe,
.remove = tn40_remove,
};
module_pci_driver(tn40_driver);
MODULE_DEVICE_TABLE(pci, tn40_id_table);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(TN40_FIRMWARE_NAME);
MODULE_DESCRIPTION("Tehuti Network TN40xx Driver");