blob: fa96db7c1a1305525c8ebde1a2eaa55cc188d05a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments K3 AM65 Ethernet QoS submodule
* Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/
*
* quality of service module includes:
* Enhanced Scheduler Traffic (EST - P802.1Qbv/D2.2)
* Interspersed Express Traffic (IET - P802.3br/D2.0)
*/
#include <linux/pm_runtime.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/time.h>
#include <linux/units.h>
#include <net/pkt_cls.h>
#include "am65-cpsw-nuss.h"
#include "am65-cpsw-qos.h"
#include "am65-cpts.h"
#include "cpsw_ale.h"
#define TO_MBPS(x) DIV_ROUND_UP((x), BYTES_PER_MBIT)
enum timer_act {
TACT_PROG, /* need program timer */
TACT_NEED_STOP, /* need stop first */
TACT_SKIP_PROG, /* just buffer can be updated */
};
static void am65_cpsw_iet_change_preemptible_tcs(struct am65_cpsw_port *port, u8 preemptible_tcs);
static u32
am65_cpsw_qos_tx_rate_calc(u32 rate_mbps, unsigned long bus_freq)
{
u32 ir;
bus_freq /= 1000000;
ir = DIV_ROUND_UP(((u64)rate_mbps * 32768), bus_freq);
return ir;
}
static void am65_cpsw_tx_pn_shaper_reset(struct am65_cpsw_port *port)
{
int prio;
for (prio = 0; prio < AM65_CPSW_PN_FIFO_PRIO_NUM; prio++) {
writel(0, port->port_base + AM65_CPSW_PN_REG_PRI_CIR(prio));
writel(0, port->port_base + AM65_CPSW_PN_REG_PRI_EIR(prio));
}
}
static void am65_cpsw_tx_pn_shaper_apply(struct am65_cpsw_port *port)
{
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
struct am65_cpsw_common *common = port->common;
struct tc_mqprio_qopt_offload *mqprio;
bool enable, shaper_susp = false;
u32 rate_mbps;
int tc, prio;
mqprio = &p_mqprio->mqprio_hw;
/* takes care of no link case as well */
if (p_mqprio->max_rate_total > port->qos.link_speed)
shaper_susp = true;
am65_cpsw_tx_pn_shaper_reset(port);
enable = p_mqprio->shaper_en && !shaper_susp;
if (!enable)
return;
/* Rate limit is specified per Traffic Class but
* for CPSW, rate limit can be applied per priority
* at port FIFO.
*
* We have assigned the same priority (TCn) to all queues
* of a Traffic Class so they share the same shaper
* bandwidth.
*/
for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
prio = tc;
rate_mbps = TO_MBPS(mqprio->min_rate[tc]);
rate_mbps = am65_cpsw_qos_tx_rate_calc(rate_mbps,
common->bus_freq);
writel(rate_mbps,
port->port_base + AM65_CPSW_PN_REG_PRI_CIR(prio));
rate_mbps = 0;
if (mqprio->max_rate[tc]) {
rate_mbps = mqprio->max_rate[tc] - mqprio->min_rate[tc];
rate_mbps = TO_MBPS(rate_mbps);
rate_mbps = am65_cpsw_qos_tx_rate_calc(rate_mbps,
common->bus_freq);
}
writel(rate_mbps,
port->port_base + AM65_CPSW_PN_REG_PRI_EIR(prio));
}
}
static int am65_cpsw_mqprio_verify_shaper(struct am65_cpsw_port *port,
struct tc_mqprio_qopt_offload *mqprio)
{
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
struct netlink_ext_ack *extack = mqprio->extack;
u64 min_rate_total = 0, max_rate_total = 0;
u32 min_rate_msk = 0, max_rate_msk = 0;
bool has_min_rate, has_max_rate;
int num_tc, i;
if (!(mqprio->flags & TC_MQPRIO_F_SHAPER))
return 0;
if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE)
return 0;
has_min_rate = !!(mqprio->flags & TC_MQPRIO_F_MIN_RATE);
has_max_rate = !!(mqprio->flags & TC_MQPRIO_F_MAX_RATE);
if (!has_min_rate && has_max_rate) {
NL_SET_ERR_MSG_MOD(extack, "min_rate is required with max_rate");
return -EOPNOTSUPP;
}
if (!has_min_rate)
return 0;
num_tc = mqprio->qopt.num_tc;
for (i = num_tc - 1; i >= 0; i--) {
u32 ch_msk;
if (mqprio->min_rate[i])
min_rate_msk |= BIT(i);
min_rate_total += mqprio->min_rate[i];
if (has_max_rate) {
if (mqprio->max_rate[i])
max_rate_msk |= BIT(i);
max_rate_total += mqprio->max_rate[i];
if (!mqprio->min_rate[i] && mqprio->max_rate[i]) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"TX tc%d rate max>0 but min=0",
i);
return -EINVAL;
}
if (mqprio->max_rate[i] &&
mqprio->max_rate[i] < mqprio->min_rate[i]) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"TX tc%d rate min(%llu)>max(%llu)",
i, mqprio->min_rate[i],
mqprio->max_rate[i]);
return -EINVAL;
}
}
ch_msk = GENMASK(num_tc - 1, i);
if ((min_rate_msk & BIT(i)) && (min_rate_msk ^ ch_msk)) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Min rate must be set sequentially hi->lo tx_rate_msk%x",
min_rate_msk);
return -EINVAL;
}
if ((max_rate_msk & BIT(i)) && (max_rate_msk ^ ch_msk)) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Max rate must be set sequentially hi->lo tx_rate_msk%x",
max_rate_msk);
return -EINVAL;
}
}
min_rate_total = TO_MBPS(min_rate_total);
max_rate_total = TO_MBPS(max_rate_total);
p_mqprio->shaper_en = true;
p_mqprio->max_rate_total = max_t(u64, min_rate_total, max_rate_total);
return 0;
}
static void am65_cpsw_reset_tc_mqprio(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
p_mqprio->shaper_en = false;
p_mqprio->max_rate_total = 0;
am65_cpsw_tx_pn_shaper_reset(port);
netdev_reset_tc(ndev);
/* Reset all Queue priorities to 0 */
writel(0, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP);
am65_cpsw_iet_change_preemptible_tcs(port, 0);
}
static int am65_cpsw_setup_mqprio(struct net_device *ndev, void *type_data)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
struct tc_mqprio_qopt_offload *mqprio = type_data;
struct am65_cpsw_common *common = port->common;
struct tc_mqprio_qopt *qopt = &mqprio->qopt;
int i, tc, offset, count, prio, ret;
u8 num_tc = qopt->num_tc;
u32 tx_prio_map = 0;
memcpy(&p_mqprio->mqprio_hw, mqprio, sizeof(*mqprio));
ret = pm_runtime_get_sync(common->dev);
if (ret < 0) {
pm_runtime_put_noidle(common->dev);
return ret;
}
if (!num_tc) {
am65_cpsw_reset_tc_mqprio(ndev);
ret = 0;
goto exit_put;
}
ret = am65_cpsw_mqprio_verify_shaper(port, mqprio);
if (ret)
goto exit_put;
netdev_set_num_tc(ndev, num_tc);
/* Multiple Linux priorities can map to a Traffic Class
* A Traffic Class can have multiple contiguous Queues,
* Queues get mapped to Channels (thread_id),
* if not VLAN tagged, thread_id is used as packet_priority
* if VLAN tagged. VLAN priority is used as packet_priority
* packet_priority gets mapped to header_priority in p0_rx_pri_map,
* header_priority gets mapped to switch_priority in pn_tx_pri_map.
* As p0_rx_pri_map is left at defaults (0x76543210), we can
* assume that Queue_n gets mapped to header_priority_n. We can then
* set the switch priority in pn_tx_pri_map.
*/
for (tc = 0; tc < num_tc; tc++) {
prio = tc;
/* For simplicity we assign the same priority (TCn) to
* all queues of a Traffic Class.
*/
for (i = qopt->offset[tc]; i < qopt->offset[tc] + qopt->count[tc]; i++)
tx_prio_map |= prio << (4 * i);
count = qopt->count[tc];
offset = qopt->offset[tc];
netdev_set_tc_queue(ndev, tc, count, offset);
}
writel(tx_prio_map, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP);
am65_cpsw_tx_pn_shaper_apply(port);
am65_cpsw_iet_change_preemptible_tcs(port, mqprio->preemptible_tcs);
exit_put:
pm_runtime_put(common->dev);
return ret;
}
static int am65_cpsw_iet_set_verify_timeout_count(struct am65_cpsw_port *port)
{
int verify_time_ms = port->qos.iet.verify_time_ms;
u32 val;
/* The number of wireside clocks contained in the verify
* timeout counter. The default is 0x1312d0
* (10ms at 125Mhz in 1G mode).
*/
val = 125 * HZ_PER_MHZ; /* assuming 125MHz wireside clock */
val /= MILLIHZ_PER_HZ; /* count per ms timeout */
val *= verify_time_ms; /* count for timeout ms */
if (val > AM65_CPSW_PN_MAC_VERIFY_CNT_MASK)
return -EINVAL;
writel(val, port->port_base + AM65_CPSW_PN_REG_IET_VERIFY);
return 0;
}
static int am65_cpsw_iet_verify_wait(struct am65_cpsw_port *port)
{
u32 ctrl, status;
int try;
try = 20;
do {
/* Reset the verify state machine by writing 1
* to LINKFAIL
*/
ctrl = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
ctrl |= AM65_CPSW_PN_IET_MAC_LINKFAIL;
writel(ctrl, port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
/* Clear MAC_LINKFAIL bit to start Verify. */
ctrl = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
ctrl &= ~AM65_CPSW_PN_IET_MAC_LINKFAIL;
writel(ctrl, port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
msleep(port->qos.iet.verify_time_ms);
status = readl(port->port_base + AM65_CPSW_PN_REG_IET_STATUS);
if (status & AM65_CPSW_PN_MAC_VERIFIED)
return 0;
if (status & AM65_CPSW_PN_MAC_VERIFY_FAIL) {
netdev_dbg(port->ndev,
"MAC Merge verify failed, trying again\n");
continue;
}
if (status & AM65_CPSW_PN_MAC_RESPOND_ERR) {
netdev_dbg(port->ndev, "MAC Merge respond error\n");
return -ENODEV;
}
if (status & AM65_CPSW_PN_MAC_VERIFY_ERR) {
netdev_dbg(port->ndev, "MAC Merge verify error\n");
return -ENODEV;
}
} while (try-- > 0);
netdev_dbg(port->ndev, "MAC Merge verify timeout\n");
return -ETIMEDOUT;
}
static void am65_cpsw_iet_set_preempt_mask(struct am65_cpsw_port *port, u8 preemptible_tcs)
{
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
val &= ~AM65_CPSW_PN_IET_MAC_PREMPT_MASK;
val |= AM65_CPSW_PN_IET_MAC_SET_PREEMPT(preemptible_tcs);
writel(val, port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
}
/* enable common IET_ENABLE only if at least 1 port has rx IET enabled.
* UAPI doesn't allow tx enable without rx enable.
*/
void am65_cpsw_iet_common_enable(struct am65_cpsw_common *common)
{
struct am65_cpsw_port *port;
bool rx_enable = false;
u32 val;
int i;
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
val = readl(port->port_base + AM65_CPSW_PN_REG_CTL);
rx_enable = !!(val & AM65_CPSW_PN_CTL_IET_PORT_EN);
if (rx_enable)
break;
}
val = readl(common->cpsw_base + AM65_CPSW_REG_CTL);
if (rx_enable)
val |= AM65_CPSW_CTL_IET_EN;
else
val &= ~AM65_CPSW_CTL_IET_EN;
writel(val, common->cpsw_base + AM65_CPSW_REG_CTL);
common->iet_enabled = rx_enable;
}
/* CPSW does not have an IRQ to notify changes to the MAC Merge TX status
* (active/inactive), but the preemptible traffic classes should only be
* committed to hardware once TX is active. Resort to polling.
*/
void am65_cpsw_iet_commit_preemptible_tcs(struct am65_cpsw_port *port)
{
u8 preemptible_tcs;
int err;
u32 val;
if (port->qos.link_speed == SPEED_UNKNOWN)
return;
val = readl(port->port_base + AM65_CPSW_PN_REG_CTL);
if (!(val & AM65_CPSW_PN_CTL_IET_PORT_EN))
return;
/* update common IET enable */
am65_cpsw_iet_common_enable(port->common);
/* update verify count */
err = am65_cpsw_iet_set_verify_timeout_count(port);
if (err) {
netdev_err(port->ndev, "couldn't set verify count: %d\n", err);
return;
}
val = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
if (!(val & AM65_CPSW_PN_IET_MAC_DISABLEVERIFY)) {
err = am65_cpsw_iet_verify_wait(port);
if (err)
return;
}
preemptible_tcs = port->qos.iet.preemptible_tcs;
am65_cpsw_iet_set_preempt_mask(port, preemptible_tcs);
}
static void am65_cpsw_iet_change_preemptible_tcs(struct am65_cpsw_port *port, u8 preemptible_tcs)
{
struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(port->ndev);
port->qos.iet.preemptible_tcs = preemptible_tcs;
mutex_lock(&priv->mm_lock);
am65_cpsw_iet_commit_preemptible_tcs(port);
mutex_unlock(&priv->mm_lock);
}
static void am65_cpsw_iet_link_state_update(struct net_device *ndev)
{
struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
mutex_lock(&priv->mm_lock);
am65_cpsw_iet_commit_preemptible_tcs(port);
mutex_unlock(&priv->mm_lock);
}
static int am65_cpsw_port_est_enabled(struct am65_cpsw_port *port)
{
return port->qos.est_oper || port->qos.est_admin;
}
static void am65_cpsw_est_enable(struct am65_cpsw_common *common, int enable)
{
u32 val;
val = readl(common->cpsw_base + AM65_CPSW_REG_CTL);
if (enable)
val |= AM65_CPSW_CTL_EST_EN;
else
val &= ~AM65_CPSW_CTL_EST_EN;
writel(val, common->cpsw_base + AM65_CPSW_REG_CTL);
common->est_enabled = enable;
}
static void am65_cpsw_port_est_enable(struct am65_cpsw_port *port, int enable)
{
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_CTL);
if (enable)
val |= AM65_CPSW_PN_CTL_EST_PORT_EN;
else
val &= ~AM65_CPSW_PN_CTL_EST_PORT_EN;
writel(val, port->port_base + AM65_CPSW_PN_REG_CTL);
}
/* target new EST RAM buffer, actual toggle happens after cycle completion */
static void am65_cpsw_port_est_assign_buf_num(struct net_device *ndev,
int buf_num)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL);
if (buf_num)
val |= AM65_CPSW_PN_EST_BUFSEL;
else
val &= ~AM65_CPSW_PN_EST_BUFSEL;
writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL);
}
/* am65_cpsw_port_est_is_swapped() - Indicate if h/w is transitioned
* admin -> oper or not
*
* Return true if already transitioned. i.e oper is equal to admin and buf
* numbers match (est_oper->buf match with est_admin->buf).
* false if before transition. i.e oper is not equal to admin, (i.e a
* previous admin command is waiting to be transitioned to oper state
* and est_oper->buf not match with est_oper->buf).
*/
static int am65_cpsw_port_est_is_swapped(struct net_device *ndev, int *oper,
int *admin)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_FIFO_STATUS);
*oper = !!(val & AM65_CPSW_PN_FST_EST_BUFACT);
val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL);
*admin = !!(val & AM65_CPSW_PN_EST_BUFSEL);
return *admin == *oper;
}
/* am65_cpsw_port_est_get_free_buf_num() - Get free buffer number for
* Admin to program the new schedule.
*
* Logic as follows:-
* If oper is same as admin, return the other buffer (!oper) as the admin
* buffer. If oper is not the same, driver let the current oper to continue
* as it is in the process of transitioning from admin -> oper. So keep the
* oper by selecting the same oper buffer by writing to EST_BUFSEL bit in
* EST CTL register. In the second iteration they will match and code returns.
* The actual buffer to write command is selected later before it is ready
* to update the schedule.
*/
static int am65_cpsw_port_est_get_free_buf_num(struct net_device *ndev)
{
int oper, admin;
int roll = 2;
while (roll--) {
if (am65_cpsw_port_est_is_swapped(ndev, &oper, &admin))
return !oper;
/* admin is not set, so hinder transition as it's not allowed
* to touch memory in-flight, by targeting same oper buf.
*/
am65_cpsw_port_est_assign_buf_num(ndev, oper);
dev_info(&ndev->dev,
"Prev. EST admin cycle is in transit %d -> %d\n",
oper, admin);
}
return admin;
}
static void am65_cpsw_admin_to_oper(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
devm_kfree(&ndev->dev, port->qos.est_oper);
port->qos.est_oper = port->qos.est_admin;
port->qos.est_admin = NULL;
}
static void am65_cpsw_port_est_get_buf_num(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL);
val &= ~AM65_CPSW_PN_EST_ONEBUF;
writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL);
est_new->buf = am65_cpsw_port_est_get_free_buf_num(ndev);
/* rolled buf num means changed buf while configuring */
if (port->qos.est_oper && port->qos.est_admin &&
est_new->buf == port->qos.est_oper->buf)
am65_cpsw_admin_to_oper(ndev);
}
static void am65_cpsw_est_set(struct net_device *ndev, int enable)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_common *common = port->common;
int common_enable = 0;
int i;
am65_cpsw_port_est_enable(port, enable);
for (i = 0; i < common->port_num; i++)
common_enable |= am65_cpsw_port_est_enabled(&common->ports[i]);
common_enable |= enable;
am65_cpsw_est_enable(common, common_enable);
}
/* This update is supposed to be used in any routine before getting real state
* of admin -> oper transition, particularly it's supposed to be used in some
* generic routine for providing real state to Taprio Qdisc.
*/
static void am65_cpsw_est_update_state(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int oper, admin;
if (!port->qos.est_admin)
return;
if (!am65_cpsw_port_est_is_swapped(ndev, &oper, &admin))
return;
am65_cpsw_admin_to_oper(ndev);
}
/* Fetch command count it's number of bytes in Gigabit mode or nibbles in
* 10/100Mb mode. So, having speed and time in ns, recalculate ns to number of
* bytes/nibbles that can be sent while transmission on given speed.
*/
static int am65_est_cmd_ns_to_cnt(u64 ns, int link_speed)
{
u64 temp;
temp = ns * link_speed;
if (link_speed < SPEED_1000)
temp <<= 1;
return DIV_ROUND_UP(temp, 8 * 1000);
}
static void __iomem *am65_cpsw_est_set_sched_cmds(void __iomem *addr,
int fetch_cnt,
int fetch_allow)
{
u32 prio_mask, cmd_fetch_cnt, cmd;
do {
if (fetch_cnt > AM65_CPSW_FETCH_CNT_MAX) {
fetch_cnt -= AM65_CPSW_FETCH_CNT_MAX;
cmd_fetch_cnt = AM65_CPSW_FETCH_CNT_MAX;
} else {
cmd_fetch_cnt = fetch_cnt;
/* fetch count can't be less than 16? */
if (cmd_fetch_cnt && cmd_fetch_cnt < 16)
cmd_fetch_cnt = 16;
fetch_cnt = 0;
}
prio_mask = fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK;
cmd = (cmd_fetch_cnt << AM65_CPSW_FETCH_CNT_OFFSET) | prio_mask;
writel(cmd, addr);
addr += 4;
} while (fetch_cnt);
return addr;
}
static int am65_cpsw_est_calc_cmd_num(struct net_device *ndev,
struct tc_taprio_qopt_offload *taprio,
int link_speed)
{
int i, cmd_cnt, cmd_sum = 0;
u32 fetch_cnt;
for (i = 0; i < taprio->num_entries; i++) {
if (taprio->entries[i].command != TC_TAPRIO_CMD_SET_GATES) {
dev_err(&ndev->dev, "Only SET command is supported");
return -EINVAL;
}
fetch_cnt = am65_est_cmd_ns_to_cnt(taprio->entries[i].interval,
link_speed);
cmd_cnt = DIV_ROUND_UP(fetch_cnt, AM65_CPSW_FETCH_CNT_MAX);
if (!cmd_cnt)
cmd_cnt++;
cmd_sum += cmd_cnt;
if (!fetch_cnt)
break;
}
return cmd_sum;
}
static int am65_cpsw_est_check_scheds(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int cmd_num;
cmd_num = am65_cpsw_est_calc_cmd_num(ndev, &est_new->taprio,
port->qos.link_speed);
if (cmd_num < 0)
return cmd_num;
if (cmd_num > AM65_CPSW_FETCH_RAM_CMD_NUM / 2) {
dev_err(&ndev->dev, "No fetch RAM");
return -ENOMEM;
}
return 0;
}
static void am65_cpsw_est_set_sched_list(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 fetch_cnt, fetch_allow, all_fetch_allow = 0;
void __iomem *ram_addr, *max_ram_addr;
struct tc_taprio_sched_entry *entry;
int i, ram_size;
ram_addr = port->fetch_ram_base;
ram_size = AM65_CPSW_FETCH_RAM_CMD_NUM * 2;
ram_addr += est_new->buf * ram_size;
max_ram_addr = ram_size + ram_addr;
for (i = 0; i < est_new->taprio.num_entries; i++) {
entry = &est_new->taprio.entries[i];
fetch_cnt = am65_est_cmd_ns_to_cnt(entry->interval,
port->qos.link_speed);
fetch_allow = entry->gate_mask;
if (fetch_allow > AM65_CPSW_FETCH_ALLOW_MAX)
dev_dbg(&ndev->dev, "fetch_allow > 8 bits: %d\n",
fetch_allow);
ram_addr = am65_cpsw_est_set_sched_cmds(ram_addr, fetch_cnt,
fetch_allow);
if (!fetch_cnt && i < est_new->taprio.num_entries - 1) {
dev_info(&ndev->dev,
"next scheds after %d have no impact", i + 1);
break;
}
all_fetch_allow |= fetch_allow;
}
/* end cmd, enabling non-timed queues for potential over cycle time */
if (ram_addr < max_ram_addr)
writel(~all_fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK, ram_addr);
}
/*
* Enable ESTf periodic output, set cycle start time and interval.
*/
static int am65_cpsw_timer_set(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_common *common = port->common;
struct am65_cpts *cpts = common->cpts;
struct am65_cpts_estf_cfg cfg;
cfg.ns_period = est_new->taprio.cycle_time;
cfg.ns_start = est_new->taprio.base_time;
return am65_cpts_estf_enable(cpts, port->port_id - 1, &cfg);
}
static void am65_cpsw_timer_stop(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpts *cpts = port->common->cpts;
am65_cpts_estf_disable(cpts, port->port_id - 1);
}
static enum timer_act am65_cpsw_timer_act(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct tc_taprio_qopt_offload *taprio_oper, *taprio_new;
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpts *cpts = port->common->cpts;
u64 cur_time;
s64 diff;
if (!port->qos.est_oper)
return TACT_PROG;
taprio_new = &est_new->taprio;
taprio_oper = &port->qos.est_oper->taprio;
if (taprio_new->cycle_time != taprio_oper->cycle_time)
return TACT_NEED_STOP;
/* in order to avoid timer reset get base_time form oper taprio */
if (!taprio_new->base_time && taprio_oper)
taprio_new->base_time = taprio_oper->base_time;
if (taprio_new->base_time == taprio_oper->base_time)
return TACT_SKIP_PROG;
/* base times are cycle synchronized */
diff = taprio_new->base_time - taprio_oper->base_time;
diff = diff < 0 ? -diff : diff;
if (diff % taprio_new->cycle_time)
return TACT_NEED_STOP;
cur_time = am65_cpts_ns_gettime(cpts);
if (taprio_new->base_time <= cur_time + taprio_new->cycle_time)
return TACT_SKIP_PROG;
/* TODO: Admin schedule at future time is not currently supported */
return TACT_NEED_STOP;
}
static void am65_cpsw_stop_est(struct net_device *ndev)
{
am65_cpsw_est_set(ndev, 0);
am65_cpsw_timer_stop(ndev);
}
static void am65_cpsw_taprio_destroy(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
am65_cpsw_stop_est(ndev);
devm_kfree(&ndev->dev, port->qos.est_admin);
devm_kfree(&ndev->dev, port->qos.est_oper);
port->qos.est_oper = NULL;
port->qos.est_admin = NULL;
am65_cpsw_reset_tc_mqprio(ndev);
}
static void am65_cpsw_cp_taprio(struct tc_taprio_qopt_offload *from,
struct tc_taprio_qopt_offload *to)
{
int i;
*to = *from;
for (i = 0; i < from->num_entries; i++)
to->entries[i] = from->entries[i];
}
static int am65_cpsw_taprio_replace(struct net_device *ndev,
struct tc_taprio_qopt_offload *taprio)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct netlink_ext_ack *extack = taprio->mqprio.extack;
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpts *cpts = common->cpts;
struct am65_cpsw_est *est_new;
u64 cur_time, n;
int ret, tact;
if (!netif_running(ndev)) {
NL_SET_ERR_MSG_MOD(extack, "interface is down, link speed unknown");
return -ENETDOWN;
}
if (common->pf_p0_rx_ptype_rrobin) {
NL_SET_ERR_MSG_MOD(extack,
"p0-rx-ptype-rrobin flag conflicts with taprio qdisc");
return -EINVAL;
}
if (port->qos.link_speed == SPEED_UNKNOWN)
return -ENOLINK;
if (taprio->cycle_time_extension) {
NL_SET_ERR_MSG_MOD(extack,
"cycle time extension not supported");
return -EOPNOTSUPP;
}
est_new = devm_kzalloc(&ndev->dev,
struct_size(est_new, taprio.entries, taprio->num_entries),
GFP_KERNEL);
if (!est_new)
return -ENOMEM;
ret = am65_cpsw_setup_mqprio(ndev, &taprio->mqprio);
if (ret)
return ret;
am65_cpsw_cp_taprio(taprio, &est_new->taprio);
am65_cpsw_est_update_state(ndev);
ret = am65_cpsw_est_check_scheds(ndev, est_new);
if (ret < 0)
goto fail;
tact = am65_cpsw_timer_act(ndev, est_new);
if (tact == TACT_NEED_STOP) {
NL_SET_ERR_MSG_MOD(extack,
"Can't toggle estf timer, stop taprio first");
ret = -EINVAL;
goto fail;
}
if (tact == TACT_PROG)
am65_cpsw_timer_stop(ndev);
am65_cpsw_port_est_get_buf_num(ndev, est_new);
am65_cpsw_est_set_sched_list(ndev, est_new);
am65_cpsw_port_est_assign_buf_num(ndev, est_new->buf);
/* If the base-time is in the past, start schedule from the time:
* base_time + (N*cycle_time)
* where N is the smallest possible integer such that the above
* time is in the future.
*/
cur_time = am65_cpts_ns_gettime(cpts);
if (est_new->taprio.base_time < cur_time) {
n = div64_u64(cur_time - est_new->taprio.base_time, est_new->taprio.cycle_time);
est_new->taprio.base_time += (n + 1) * est_new->taprio.cycle_time;
}
am65_cpsw_est_set(ndev, 1);
if (tact == TACT_PROG) {
ret = am65_cpsw_timer_set(ndev, est_new);
if (ret) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to set cycle time");
goto fail;
}
}
devm_kfree(&ndev->dev, port->qos.est_admin);
port->qos.est_admin = est_new;
am65_cpsw_iet_change_preemptible_tcs(port, taprio->mqprio.preemptible_tcs);
return 0;
fail:
am65_cpsw_reset_tc_mqprio(ndev);
devm_kfree(&ndev->dev, est_new);
return ret;
}
static void am65_cpsw_est_link_up(struct net_device *ndev, int link_speed)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
ktime_t cur_time;
s64 delta;
if (!am65_cpsw_port_est_enabled(port))
return;
if (port->qos.link_down_time) {
cur_time = ktime_get();
delta = ktime_us_delta(cur_time, port->qos.link_down_time);
if (delta > USEC_PER_SEC) {
dev_err(&ndev->dev,
"Link has been lost too long, stopping TAS");
goto purge_est;
}
}
return;
purge_est:
am65_cpsw_taprio_destroy(ndev);
}
static int am65_cpsw_setup_taprio(struct net_device *ndev, void *type_data)
{
struct tc_taprio_qopt_offload *taprio = type_data;
int err = 0;
switch (taprio->cmd) {
case TAPRIO_CMD_REPLACE:
err = am65_cpsw_taprio_replace(ndev, taprio);
break;
case TAPRIO_CMD_DESTROY:
am65_cpsw_taprio_destroy(ndev);
break;
default:
err = -EOPNOTSUPP;
}
return err;
}
static int am65_cpsw_tc_query_caps(struct net_device *ndev, void *type_data)
{
struct tc_query_caps_base *base = type_data;
switch (base->type) {
case TC_SETUP_QDISC_MQPRIO: {
struct tc_mqprio_caps *caps = base->caps;
caps->validate_queue_counts = true;
return 0;
}
case TC_SETUP_QDISC_TAPRIO: {
struct tc_taprio_caps *caps = base->caps;
caps->gate_mask_per_txq = true;
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static int am65_cpsw_qos_clsflower_add_policer(struct am65_cpsw_port *port,
struct netlink_ext_ack *extack,
struct flow_cls_offload *cls,
u64 rate_pkt_ps)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
struct am65_cpsw_qos *qos = &port->qos;
struct flow_match_eth_addrs match;
int ret;
if (dissector->used_keys &
~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) {
NL_SET_ERR_MSG_MOD(extack,
"Unsupported keys used");
return -EOPNOTSUPP;
}
if (flow_rule_match_has_control_flags(rule, extack))
return -EOPNOTSUPP;
if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address");
return -EOPNOTSUPP;
}
flow_rule_match_eth_addrs(rule, &match);
if (!is_zero_ether_addr(match.mask->src)) {
NL_SET_ERR_MSG_MOD(extack,
"Matching on source MAC not supported");
return -EOPNOTSUPP;
}
if (is_broadcast_ether_addr(match.key->dst) &&
is_broadcast_ether_addr(match.mask->dst)) {
ret = cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, rate_pkt_ps);
if (ret)
return ret;
qos->ale_bc_ratelimit.cookie = cls->cookie;
qos->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps;
} else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) &&
ether_addr_equal_unaligned(match.mask->dst, mc_mac)) {
ret = cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, rate_pkt_ps);
if (ret)
return ret;
qos->ale_mc_ratelimit.cookie = cls->cookie;
qos->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps;
} else {
NL_SET_ERR_MSG_MOD(extack, "Not supported matching key");
return -EOPNOTSUPP;
}
return 0;
}
static int am65_cpsw_qos_clsflower_policer_validate(const struct flow_action *action,
const struct flow_action_entry *act,
struct netlink_ext_ack *extack)
{
if (act->police.exceed.act_id != FLOW_ACTION_DROP) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when exceed action is not drop");
return -EOPNOTSUPP;
}
if (act->police.notexceed.act_id != FLOW_ACTION_PIPE &&
act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when conform action is not pipe or ok");
return -EOPNOTSUPP;
}
if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT &&
!flow_action_is_last_entry(action, act)) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when conform action is ok, but action is not last");
return -EOPNOTSUPP;
}
if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps ||
act->police.avrate || act->police.overhead) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when bytes per second/peakrate/avrate/overhead is configured");
return -EOPNOTSUPP;
}
return 0;
}
static int am65_cpsw_qos_configure_clsflower(struct am65_cpsw_port *port,
struct flow_cls_offload *cls)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct netlink_ext_ack *extack = cls->common.extack;
const struct flow_action_entry *act;
int i, ret;
flow_action_for_each(i, act, &rule->action) {
switch (act->id) {
case FLOW_ACTION_POLICE:
ret = am65_cpsw_qos_clsflower_policer_validate(&rule->action, act, extack);
if (ret)
return ret;
return am65_cpsw_qos_clsflower_add_policer(port, extack, cls,
act->police.rate_pkt_ps);
default:
NL_SET_ERR_MSG_MOD(extack,
"Action not supported");
return -EOPNOTSUPP;
}
}
return -EOPNOTSUPP;
}
static int am65_cpsw_qos_delete_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls)
{
struct am65_cpsw_qos *qos = &port->qos;
if (cls->cookie == qos->ale_bc_ratelimit.cookie) {
qos->ale_bc_ratelimit.cookie = 0;
qos->ale_bc_ratelimit.rate_packet_ps = 0;
cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, 0);
}
if (cls->cookie == qos->ale_mc_ratelimit.cookie) {
qos->ale_mc_ratelimit.cookie = 0;
qos->ale_mc_ratelimit.rate_packet_ps = 0;
cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, 0);
}
return 0;
}
static int am65_cpsw_qos_setup_tc_clsflower(struct am65_cpsw_port *port,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return am65_cpsw_qos_configure_clsflower(port, cls_flower);
case FLOW_CLS_DESTROY:
return am65_cpsw_qos_delete_clsflower(port, cls_flower);
default:
return -EOPNOTSUPP;
}
}
static int am65_cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
{
struct am65_cpsw_port *port = cb_priv;
if (!tc_cls_can_offload_and_chain0(port->ndev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return am65_cpsw_qos_setup_tc_clsflower(port, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(am65_cpsw_qos_block_cb_list);
static int am65_cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
return flow_block_cb_setup_simple(f, &am65_cpsw_qos_block_cb_list,
am65_cpsw_qos_setup_tc_block_cb,
port, port, true);
}
static void
am65_cpsw_qos_tx_p0_rate_apply(struct am65_cpsw_common *common,
int tx_ch, u32 rate_mbps)
{
struct am65_cpsw_host *host = am65_common_get_host(common);
u32 ch_cir;
int i;
ch_cir = am65_cpsw_qos_tx_rate_calc(rate_mbps, common->bus_freq);
writel(ch_cir, host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch));
/* update rates for every port tx queues */
for (i = 0; i < common->port_num; i++) {
struct net_device *ndev = common->ports[i].ndev;
if (!ndev)
continue;
netdev_get_tx_queue(ndev, tx_ch)->tx_maxrate = rate_mbps;
}
}
int am65_cpsw_qos_ndo_tx_p0_set_maxrate(struct net_device *ndev,
int queue, u32 rate_mbps)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_common *common = port->common;
struct am65_cpsw_tx_chn *tx_chn;
u32 ch_rate, tx_ch_rate_msk_new;
u32 ch_msk = 0;
int ret;
dev_dbg(common->dev, "apply TX%d rate limiting %uMbps tx_rate_msk%x\n",
queue, rate_mbps, common->tx_ch_rate_msk);
if (common->pf_p0_rx_ptype_rrobin) {
dev_err(common->dev, "TX Rate Limiting failed - rrobin mode\n");
return -EINVAL;
}
ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
if (ch_rate == rate_mbps)
return 0;
ret = pm_runtime_get_sync(common->dev);
if (ret < 0) {
pm_runtime_put_noidle(common->dev);
return ret;
}
ret = 0;
tx_ch_rate_msk_new = common->tx_ch_rate_msk;
if (rate_mbps && !(tx_ch_rate_msk_new & BIT(queue))) {
tx_ch_rate_msk_new |= BIT(queue);
ch_msk = GENMASK(common->tx_ch_num - 1, queue);
ch_msk = tx_ch_rate_msk_new ^ ch_msk;
} else if (!rate_mbps) {
tx_ch_rate_msk_new &= ~BIT(queue);
ch_msk = queue ? GENMASK(queue - 1, 0) : 0;
ch_msk = tx_ch_rate_msk_new & ch_msk;
}
if (ch_msk) {
dev_err(common->dev, "TX rate limiting has to be enabled sequentially hi->lo tx_rate_msk:%x tx_rate_msk_new:%x\n",
common->tx_ch_rate_msk, tx_ch_rate_msk_new);
ret = -EINVAL;
goto exit_put;
}
tx_chn = &common->tx_chns[queue];
tx_chn->rate_mbps = rate_mbps;
common->tx_ch_rate_msk = tx_ch_rate_msk_new;
if (!common->usage_count)
/* will be applied on next netif up */
goto exit_put;
am65_cpsw_qos_tx_p0_rate_apply(common, queue, rate_mbps);
exit_put:
pm_runtime_put(common->dev);
return ret;
}
void am65_cpsw_qos_tx_p0_rate_init(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host = am65_common_get_host(common);
int tx_ch;
for (tx_ch = 0; tx_ch < common->tx_ch_num; tx_ch++) {
struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[tx_ch];
u32 ch_cir;
if (!tx_chn->rate_mbps)
continue;
ch_cir = am65_cpsw_qos_tx_rate_calc(tx_chn->rate_mbps,
common->bus_freq);
writel(ch_cir,
host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch));
}
}
int am65_cpsw_qos_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_QUERY_CAPS:
return am65_cpsw_tc_query_caps(ndev, type_data);
case TC_SETUP_QDISC_TAPRIO:
return am65_cpsw_setup_taprio(ndev, type_data);
case TC_SETUP_QDISC_MQPRIO:
return am65_cpsw_setup_mqprio(ndev, type_data);
case TC_SETUP_BLOCK:
return am65_cpsw_qos_setup_tc_block(ndev, type_data);
default:
return -EOPNOTSUPP;
}
}
void am65_cpsw_qos_link_up(struct net_device *ndev, int link_speed)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
port->qos.link_speed = link_speed;
am65_cpsw_tx_pn_shaper_apply(port);
am65_cpsw_iet_link_state_update(ndev);
am65_cpsw_est_link_up(ndev, link_speed);
port->qos.link_down_time = 0;
}
void am65_cpsw_qos_link_down(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
port->qos.link_speed = SPEED_UNKNOWN;
am65_cpsw_tx_pn_shaper_apply(port);
am65_cpsw_iet_link_state_update(ndev);
if (!port->qos.link_down_time)
port->qos.link_down_time = ktime_get();
}