blob: f488620d2844dca4c1e39688f50d549844f83dcf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2005-2014 Intel Corporation
*/
#include <linux/slab.h>
#include <net/mac80211.h>
#include "iwl-trans.h"
#include "dev.h"
#include "calib.h"
#include "agn.h"
/*****************************************************************************
* INIT calibrations framework
*****************************************************************************/
/* Opaque calibration results */
struct iwl_calib_result {
struct list_head list;
size_t cmd_len;
struct iwl_calib_cmd cmd;
};
struct statistics_general_data {
u32 beacon_silence_rssi_a;
u32 beacon_silence_rssi_b;
u32 beacon_silence_rssi_c;
u32 beacon_energy_a;
u32 beacon_energy_b;
u32 beacon_energy_c;
};
int iwl_send_calib_results(struct iwl_priv *priv)
{
struct iwl_host_cmd hcmd = {
.id = REPLY_PHY_CALIBRATION_CMD,
};
struct iwl_calib_result *res;
list_for_each_entry(res, &priv->calib_results, list) {
int ret;
hcmd.len[0] = res->cmd_len;
hcmd.data[0] = &res->cmd;
hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
ret = iwl_dvm_send_cmd(priv, &hcmd);
if (ret) {
IWL_ERR(priv, "Error %d on calib cmd %d\n",
ret, res->cmd.hdr.op_code);
return ret;
}
}
return 0;
}
int iwl_calib_set(struct iwl_priv *priv,
const struct iwl_calib_cmd *cmd, size_t len)
{
struct iwl_calib_result *res, *tmp;
if (check_sub_overflow(len, sizeof(*cmd), &len))
return -ENOMEM;
res = kmalloc(struct_size(res, cmd.data, len), GFP_ATOMIC);
if (!res)
return -ENOMEM;
res->cmd = *cmd;
memcpy(res->cmd.data, cmd->data, len);
res->cmd_len = struct_size(cmd, data, len);
list_for_each_entry(tmp, &priv->calib_results, list) {
if (tmp->cmd.hdr.op_code == res->cmd.hdr.op_code) {
list_replace(&tmp->list, &res->list);
kfree(tmp);
return 0;
}
}
/* wasn't in list already */
list_add_tail(&res->list, &priv->calib_results);
return 0;
}
void iwl_calib_free_results(struct iwl_priv *priv)
{
struct iwl_calib_result *res, *tmp;
list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
list_del(&res->list);
kfree(res);
}
}
/*****************************************************************************
* RUNTIME calibrations framework
*****************************************************************************/
/* "false alarms" are signals that our DSP tries to lock onto,
* but then determines that they are either noise, or transmissions
* from a distant wireless network (also "noise", really) that get
* "stepped on" by stronger transmissions within our own network.
* This algorithm attempts to set a sensitivity level that is high
* enough to receive all of our own network traffic, but not so
* high that our DSP gets too busy trying to lock onto non-network
* activity/noise. */
static int iwl_sens_energy_cck(struct iwl_priv *priv,
u32 norm_fa,
u32 rx_enable_time,
struct statistics_general_data *rx_info)
{
u32 max_nrg_cck = 0;
int i = 0;
u8 max_silence_rssi = 0;
u32 silence_ref = 0;
u8 silence_rssi_a = 0;
u8 silence_rssi_b = 0;
u8 silence_rssi_c = 0;
u32 val;
/* "false_alarms" values below are cross-multiplications to assess the
* numbers of false alarms within the measured period of actual Rx
* (Rx is off when we're txing), vs the min/max expected false alarms
* (some should be expected if rx is sensitive enough) in a
* hypothetical listening period of 200 time units (TU), 204.8 msec:
*
* MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
*
* */
u32 false_alarms = norm_fa * 200 * 1024;
u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
struct iwl_sensitivity_data *data = NULL;
const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
data = &(priv->sensitivity_data);
data->nrg_auto_corr_silence_diff = 0;
/* Find max silence rssi among all 3 receivers.
* This is background noise, which may include transmissions from other
* networks, measured during silence before our network's beacon */
silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
ALL_BAND_FILTER) >> 8);
silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
ALL_BAND_FILTER) >> 8);
silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
ALL_BAND_FILTER) >> 8);
val = max(silence_rssi_b, silence_rssi_c);
max_silence_rssi = max(silence_rssi_a, (u8) val);
/* Store silence rssi in 20-beacon history table */
data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
data->nrg_silence_idx++;
if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
data->nrg_silence_idx = 0;
/* Find max silence rssi across 20 beacon history */
for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
val = data->nrg_silence_rssi[i];
silence_ref = max(silence_ref, val);
}
IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
silence_rssi_a, silence_rssi_b, silence_rssi_c,
silence_ref);
/* Find max rx energy (min value!) among all 3 receivers,
* measured during beacon frame.
* Save it in 10-beacon history table. */
i = data->nrg_energy_idx;
val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
data->nrg_energy_idx++;
if (data->nrg_energy_idx >= 10)
data->nrg_energy_idx = 0;
/* Find min rx energy (max value) across 10 beacon history.
* This is the minimum signal level that we want to receive well.
* Add backoff (margin so we don't miss slightly lower energy frames).
* This establishes an upper bound (min value) for energy threshold. */
max_nrg_cck = data->nrg_value[0];
for (i = 1; i < 10; i++)
max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
max_nrg_cck += 6;
IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
rx_info->beacon_energy_a, rx_info->beacon_energy_b,
rx_info->beacon_energy_c, max_nrg_cck - 6);
/* Count number of consecutive beacons with fewer-than-desired
* false alarms. */
if (false_alarms < min_false_alarms)
data->num_in_cck_no_fa++;
else
data->num_in_cck_no_fa = 0;
IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
data->num_in_cck_no_fa);
/* If we got too many false alarms this time, reduce sensitivity */
if ((false_alarms > max_false_alarms) &&
(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
false_alarms, max_false_alarms);
IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
data->nrg_curr_state = IWL_FA_TOO_MANY;
/* Store for "fewer than desired" on later beacon */
data->nrg_silence_ref = silence_ref;
/* increase energy threshold (reduce nrg value)
* to decrease sensitivity */
data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
/* Else if we got fewer than desired, increase sensitivity */
} else if (false_alarms < min_false_alarms) {
data->nrg_curr_state = IWL_FA_TOO_FEW;
/* Compare silence level with silence level for most recent
* healthy number or too many false alarms */
data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
(s32)silence_ref;
IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
false_alarms, min_false_alarms,
data->nrg_auto_corr_silence_diff);
/* Increase value to increase sensitivity, but only if:
* 1a) previous beacon did *not* have *too many* false alarms
* 1b) AND there's a significant difference in Rx levels
* from a previous beacon with too many, or healthy # FAs
* OR 2) We've seen a lot of beacons (100) with too few
* false alarms */
if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
/* Increase nrg value to increase sensitivity */
val = data->nrg_th_cck + NRG_STEP_CCK;
data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
} else {
IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
}
/* Else we got a healthy number of false alarms, keep status quo */
} else {
IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
data->nrg_curr_state = IWL_FA_GOOD_RANGE;
/* Store for use in "fewer than desired" with later beacon */
data->nrg_silence_ref = silence_ref;
/* If previous beacon had too many false alarms,
* give it some extra margin by reducing sensitivity again
* (but don't go below measured energy of desired Rx) */
if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
IWL_DEBUG_CALIB(priv, "... increasing margin\n");
if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
data->nrg_th_cck -= NRG_MARGIN;
else
data->nrg_th_cck = max_nrg_cck;
}
}
/* Make sure the energy threshold does not go above the measured
* energy of the desired Rx signals (reduced by backoff margin),
* or else we might start missing Rx frames.
* Lower value is higher energy, so we use max()!
*/
data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
data->nrg_prev_state = data->nrg_curr_state;
/* Auto-correlation CCK algorithm */
if (false_alarms > min_false_alarms) {
/* increase auto_corr values to decrease sensitivity
* so the DSP won't be disturbed by the noise
*/
if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
else {
val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
data->auto_corr_cck =
min((u32)ranges->auto_corr_max_cck, val);
}
val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
data->auto_corr_cck_mrc =
min((u32)ranges->auto_corr_max_cck_mrc, val);
} else if ((false_alarms < min_false_alarms) &&
((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
/* Decrease auto_corr values to increase sensitivity */
val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
data->auto_corr_cck =
max((u32)ranges->auto_corr_min_cck, val);
val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
data->auto_corr_cck_mrc =
max((u32)ranges->auto_corr_min_cck_mrc, val);
}
return 0;
}
static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
u32 norm_fa,
u32 rx_enable_time)
{
u32 val;
u32 false_alarms = norm_fa * 200 * 1024;
u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
struct iwl_sensitivity_data *data = NULL;
const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
data = &(priv->sensitivity_data);
/* If we got too many false alarms this time, reduce sensitivity */
if (false_alarms > max_false_alarms) {
IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
false_alarms, max_false_alarms);
val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm =
min((u32)ranges->auto_corr_max_ofdm, val);
val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc =
min((u32)ranges->auto_corr_max_ofdm_mrc, val);
val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_x1 =
min((u32)ranges->auto_corr_max_ofdm_x1, val);
val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc_x1 =
min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
}
/* Else if we got fewer than desired, increase sensitivity */
else if (false_alarms < min_false_alarms) {
IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
false_alarms, min_false_alarms);
val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm =
max((u32)ranges->auto_corr_min_ofdm, val);
val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc =
max((u32)ranges->auto_corr_min_ofdm_mrc, val);
val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_x1 =
max((u32)ranges->auto_corr_min_ofdm_x1, val);
val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc_x1 =
max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
} else {
IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
min_false_alarms, false_alarms, max_false_alarms);
}
return 0;
}
static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
struct iwl_sensitivity_data *data,
__le16 *tbl)
{
tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm);
tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm_x1);
tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
cpu_to_le16((u16)data->auto_corr_cck);
tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16((u16)data->auto_corr_cck_mrc);
tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
cpu_to_le16((u16)data->nrg_th_cck);
tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
cpu_to_le16((u16)data->nrg_th_ofdm);
tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
cpu_to_le16(data->barker_corr_th_min);
tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16(data->barker_corr_th_min_mrc);
tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
cpu_to_le16(data->nrg_th_cca);
IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
data->nrg_th_ofdm);
IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
data->auto_corr_cck, data->auto_corr_cck_mrc,
data->nrg_th_cck);
}
/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
static int iwl_sensitivity_write(struct iwl_priv *priv)
{
struct iwl_sensitivity_cmd cmd;
struct iwl_sensitivity_data *data = NULL;
struct iwl_host_cmd cmd_out = {
.id = SENSITIVITY_CMD,
.len = { sizeof(struct iwl_sensitivity_cmd), },
.flags = CMD_ASYNC,
.data = { &cmd, },
};
data = &(priv->sensitivity_data);
memset(&cmd, 0, sizeof(cmd));
iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
/* Update uCode's "work" table, and copy it to DSP */
cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
/* Don't send command to uCode if nothing has changed */
if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
sizeof(u16)*HD_TABLE_SIZE)) {
IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
return 0;
}
/* Copy table for comparison next time */
memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
sizeof(u16)*HD_TABLE_SIZE);
return iwl_dvm_send_cmd(priv, &cmd_out);
}
/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
{
struct iwl_enhance_sensitivity_cmd cmd;
struct iwl_sensitivity_data *data = NULL;
struct iwl_host_cmd cmd_out = {
.id = SENSITIVITY_CMD,
.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
.flags = CMD_ASYNC,
.data = { &cmd, },
};
data = &(priv->sensitivity_data);
memset(&cmd, 0, sizeof(cmd));
iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
if (priv->lib->hd_v2) {
cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
} else {
cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
}
/* Update uCode's "work" table, and copy it to DSP */
cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
/* Don't send command to uCode if nothing has changed */
if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
sizeof(u16)*HD_TABLE_SIZE) &&
!memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
&(priv->enhance_sensitivity_tbl[0]),
sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
return 0;
}
/* Copy table for comparison next time */
memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
sizeof(u16)*HD_TABLE_SIZE);
memcpy(&(priv->enhance_sensitivity_tbl[0]),
&(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
return iwl_dvm_send_cmd(priv, &cmd_out);
}
void iwl_init_sensitivity(struct iwl_priv *priv)
{
int ret = 0;
int i;
struct iwl_sensitivity_data *data = NULL;
const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
return;
IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
/* Clear driver's sensitivity algo data */
data = &(priv->sensitivity_data);
if (ranges == NULL)
return;
memset(data, 0, sizeof(struct iwl_sensitivity_data));
data->num_in_cck_no_fa = 0;
data->nrg_curr_state = IWL_FA_TOO_MANY;
data->nrg_prev_state = IWL_FA_TOO_MANY;
data->nrg_silence_ref = 0;
data->nrg_silence_idx = 0;
data->nrg_energy_idx = 0;
for (i = 0; i < 10; i++)
data->nrg_value[i] = 0;
for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
data->nrg_silence_rssi[i] = 0;
data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
data->nrg_th_cck = ranges->nrg_th_cck;
data->nrg_th_ofdm = ranges->nrg_th_ofdm;
data->barker_corr_th_min = ranges->barker_corr_th_min;
data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
data->nrg_th_cca = ranges->nrg_th_cca;
data->last_bad_plcp_cnt_ofdm = 0;
data->last_fa_cnt_ofdm = 0;
data->last_bad_plcp_cnt_cck = 0;
data->last_fa_cnt_cck = 0;
if (priv->fw->enhance_sensitivity_table)
ret |= iwl_enhance_sensitivity_write(priv);
else
ret |= iwl_sensitivity_write(priv);
IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
}
void iwl_sensitivity_calibration(struct iwl_priv *priv)
{
u32 rx_enable_time;
u32 fa_cck;
u32 fa_ofdm;
u32 bad_plcp_cck;
u32 bad_plcp_ofdm;
u32 norm_fa_ofdm;
u32 norm_fa_cck;
struct iwl_sensitivity_data *data = NULL;
struct statistics_rx_non_phy *rx_info;
struct statistics_rx_phy *ofdm, *cck;
struct statistics_general_data statis;
if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
return;
data = &(priv->sensitivity_data);
if (!iwl_is_any_associated(priv)) {
IWL_DEBUG_CALIB(priv, "<< - not associated\n");
return;
}
spin_lock_bh(&priv->statistics.lock);
rx_info = &priv->statistics.rx_non_phy;
ofdm = &priv->statistics.rx_ofdm;
cck = &priv->statistics.rx_cck;
if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
spin_unlock_bh(&priv->statistics.lock);
return;
}
/* Extract Statistics: */
rx_enable_time = le32_to_cpu(rx_info->channel_load);
fa_cck = le32_to_cpu(cck->false_alarm_cnt);
fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
bad_plcp_cck = le32_to_cpu(cck->plcp_err);
bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
statis.beacon_silence_rssi_a =
le32_to_cpu(rx_info->beacon_silence_rssi_a);
statis.beacon_silence_rssi_b =
le32_to_cpu(rx_info->beacon_silence_rssi_b);
statis.beacon_silence_rssi_c =
le32_to_cpu(rx_info->beacon_silence_rssi_c);
statis.beacon_energy_a =
le32_to_cpu(rx_info->beacon_energy_a);
statis.beacon_energy_b =
le32_to_cpu(rx_info->beacon_energy_b);
statis.beacon_energy_c =
le32_to_cpu(rx_info->beacon_energy_c);
spin_unlock_bh(&priv->statistics.lock);
IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
if (!rx_enable_time) {
IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
return;
}
/* These statistics increase monotonically, and do not reset
* at each beacon. Calculate difference from last value, or just
* use the new statistics value if it has reset or wrapped around. */
if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
data->last_bad_plcp_cnt_cck = bad_plcp_cck;
else {
bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
data->last_bad_plcp_cnt_cck += bad_plcp_cck;
}
if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
else {
bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
}
if (data->last_fa_cnt_ofdm > fa_ofdm)
data->last_fa_cnt_ofdm = fa_ofdm;
else {
fa_ofdm -= data->last_fa_cnt_ofdm;
data->last_fa_cnt_ofdm += fa_ofdm;
}
if (data->last_fa_cnt_cck > fa_cck)
data->last_fa_cnt_cck = fa_cck;
else {
fa_cck -= data->last_fa_cnt_cck;
data->last_fa_cnt_cck += fa_cck;
}
/* Total aborted signal locks */
norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
norm_fa_cck = fa_cck + bad_plcp_cck;
IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
if (priv->fw->enhance_sensitivity_table)
iwl_enhance_sensitivity_write(priv);
else
iwl_sensitivity_write(priv);
}
static inline u8 find_first_chain(u8 mask)
{
if (mask & ANT_A)
return CHAIN_A;
if (mask & ANT_B)
return CHAIN_B;
return CHAIN_C;
}
/*
* Run disconnected antenna algorithm to find out which antennas are
* disconnected.
*/
static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
struct iwl_chain_noise_data *data)
{
u32 active_chains = 0;
u32 max_average_sig;
u16 max_average_sig_antenna_i;
u8 num_tx_chains;
u8 first_chain;
u16 i = 0;
average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
if (average_sig[0] >= average_sig[1]) {
max_average_sig = average_sig[0];
max_average_sig_antenna_i = 0;
active_chains = (1 << max_average_sig_antenna_i);
} else {
max_average_sig = average_sig[1];
max_average_sig_antenna_i = 1;
active_chains = (1 << max_average_sig_antenna_i);
}
if (average_sig[2] >= max_average_sig) {
max_average_sig = average_sig[2];
max_average_sig_antenna_i = 2;
active_chains = (1 << max_average_sig_antenna_i);
}
IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
average_sig[0], average_sig[1], average_sig[2]);
IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
max_average_sig, max_average_sig_antenna_i);
/* Compare signal strengths for all 3 receivers. */
for (i = 0; i < NUM_RX_CHAINS; i++) {
if (i != max_average_sig_antenna_i) {
s32 rssi_delta = (max_average_sig - average_sig[i]);
/* If signal is very weak, compared with
* strongest, mark it as disconnected. */
if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
data->disconn_array[i] = 1;
else
active_chains |= (1 << i);
IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
"disconn_array[i] = %d\n",
i, rssi_delta, data->disconn_array[i]);
}
}
/*
* The above algorithm sometimes fails when the ucode
* reports 0 for all chains. It's not clear why that
* happens to start with, but it is then causing trouble
* because this can make us enable more chains than the
* hardware really has.
*
* To be safe, simply mask out any chains that we know
* are not on the device.
*/
active_chains &= priv->nvm_data->valid_rx_ant;
num_tx_chains = 0;
for (i = 0; i < NUM_RX_CHAINS; i++) {
/* loops on all the bits of
* priv->hw_setting.valid_tx_ant */
u8 ant_msk = (1 << i);
if (!(priv->nvm_data->valid_tx_ant & ant_msk))
continue;
num_tx_chains++;
if (data->disconn_array[i] == 0)
/* there is a Tx antenna connected */
break;
if (num_tx_chains == priv->hw_params.tx_chains_num &&
data->disconn_array[i]) {
/*
* If all chains are disconnected
* connect the first valid tx chain
*/
first_chain =
find_first_chain(priv->nvm_data->valid_tx_ant);
data->disconn_array[first_chain] = 0;
active_chains |= BIT(first_chain);
IWL_DEBUG_CALIB(priv,
"All Tx chains are disconnected W/A - declare %d as connected\n",
first_chain);
break;
}
}
if (active_chains != priv->nvm_data->valid_rx_ant &&
active_chains != priv->chain_noise_data.active_chains)
IWL_DEBUG_CALIB(priv,
"Detected that not all antennas are connected! "
"Connected: %#x, valid: %#x.\n",
active_chains,
priv->nvm_data->valid_rx_ant);
/* Save for use within RXON, TX, SCAN commands, etc. */
data->active_chains = active_chains;
IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
active_chains);
}
static void iwlagn_gain_computation(struct iwl_priv *priv,
u32 average_noise[NUM_RX_CHAINS],
u8 default_chain)
{
int i;
s32 delta_g;
struct iwl_chain_noise_data *data = &priv->chain_noise_data;
/*
* Find Gain Code for the chains based on "default chain"
*/
for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
if ((data->disconn_array[i])) {
data->delta_gain_code[i] = 0;
continue;
}
delta_g = (priv->lib->chain_noise_scale *
((s32)average_noise[default_chain] -
(s32)average_noise[i])) / 1500;
/* bound gain by 2 bits value max, 3rd bit is sign */
data->delta_gain_code[i] =
min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
if (delta_g < 0)
/*
* set negative sign ...
* note to Intel developers: This is uCode API format,
* not the format of any internal device registers.
* Do not change this format for e.g. 6050 or similar
* devices. Change format only if more resolution
* (i.e. more than 2 bits magnitude) is needed.
*/
data->delta_gain_code[i] |= (1 << 2);
}
IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
data->delta_gain_code[1], data->delta_gain_code[2]);
if (!data->radio_write) {
struct iwl_calib_chain_noise_gain_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
iwl_set_calib_hdr(&cmd.hdr,
priv->phy_calib_chain_noise_gain_cmd);
cmd.delta_gain_1 = data->delta_gain_code[1];
cmd.delta_gain_2 = data->delta_gain_code[2];
iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
CMD_ASYNC, sizeof(cmd), &cmd);
data->radio_write = 1;
data->state = IWL_CHAIN_NOISE_CALIBRATED;
}
}
/*
* Accumulate 16 beacons of signal and noise statistics for each of
* 3 receivers/antennas/rx-chains, then figure out:
* 1) Which antennas are connected.
* 2) Differential rx gain settings to balance the 3 receivers.
*/
void iwl_chain_noise_calibration(struct iwl_priv *priv)
{
struct iwl_chain_noise_data *data = NULL;
u32 chain_noise_a;
u32 chain_noise_b;
u32 chain_noise_c;
u32 chain_sig_a;
u32 chain_sig_b;
u32 chain_sig_c;
u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
u16 i = 0;
u16 rxon_chnum = INITIALIZATION_VALUE;
u16 stat_chnum = INITIALIZATION_VALUE;
u8 rxon_band24;
u8 stat_band24;
struct statistics_rx_non_phy *rx_info;
/*
* MULTI-FIXME:
* When we support multiple interfaces on different channels,
* this must be modified/fixed.
*/
struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
return;
data = &(priv->chain_noise_data);
/*
* Accumulate just the first "chain_noise_num_beacons" after
* the first association, then we're done forever.
*/
if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
if (data->state == IWL_CHAIN_NOISE_ALIVE)
IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
return;
}
spin_lock_bh(&priv->statistics.lock);
rx_info = &priv->statistics.rx_non_phy;
if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
spin_unlock_bh(&priv->statistics.lock);
return;
}
rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
rxon_chnum = le16_to_cpu(ctx->staging.channel);
stat_band24 =
!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
/* Make sure we accumulate data for just the associated channel
* (even if scanning). */
if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
rxon_chnum, rxon_band24);
spin_unlock_bh(&priv->statistics.lock);
return;
}
/*
* Accumulate beacon statistics values across
* "chain_noise_num_beacons"
*/
chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
IN_BAND_FILTER;
chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
IN_BAND_FILTER;
chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
IN_BAND_FILTER;
chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
spin_unlock_bh(&priv->statistics.lock);
data->beacon_count++;
data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
rxon_chnum, rxon_band24, data->beacon_count);
IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
chain_sig_a, chain_sig_b, chain_sig_c);
IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
chain_noise_a, chain_noise_b, chain_noise_c);
/* If this is the "chain_noise_num_beacons", determine:
* 1) Disconnected antennas (using signal strengths)
* 2) Differential gain (using silence noise) to balance receivers */
if (data->beacon_count != IWL_CAL_NUM_BEACONS)
return;
/* Analyze signal for disconnected antenna */
if (priv->lib->bt_params &&
priv->lib->bt_params->advanced_bt_coexist) {
/* Disable disconnected antenna algorithm for advanced
bt coex, assuming valid antennas are connected */
data->active_chains = priv->nvm_data->valid_rx_ant;
for (i = 0; i < NUM_RX_CHAINS; i++)
if (!(data->active_chains & (1<<i)))
data->disconn_array[i] = 1;
} else
iwl_find_disconn_antenna(priv, average_sig, data);
/* Analyze noise for rx balance */
average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
for (i = 0; i < NUM_RX_CHAINS; i++) {
if (!(data->disconn_array[i]) &&
(average_noise[i] <= min_average_noise)) {
/* This means that chain i is active and has
* lower noise values so far: */
min_average_noise = average_noise[i];
min_average_noise_antenna_i = i;
}
}
IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
average_noise[0], average_noise[1],
average_noise[2]);
IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
min_average_noise, min_average_noise_antenna_i);
iwlagn_gain_computation(
priv, average_noise,
find_first_chain(priv->nvm_data->valid_rx_ant));
/* Some power changes may have been made during the calibration.
* Update and commit the RXON
*/
iwl_update_chain_flags(priv);
data->state = IWL_CHAIN_NOISE_DONE;
iwl_power_update_mode(priv, false);
}
void iwl_reset_run_time_calib(struct iwl_priv *priv)
{
int i;
memset(&(priv->sensitivity_data), 0,
sizeof(struct iwl_sensitivity_data));
memset(&(priv->chain_noise_data), 0,
sizeof(struct iwl_chain_noise_data));
for (i = 0; i < NUM_RX_CHAINS; i++)
priv->chain_noise_data.delta_gain_code[i] =
CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
/* Ask for statistics now, the uCode will send notification
* periodically after association */
iwl_send_statistics_request(priv, CMD_ASYNC, true);
}