blob: 3f49c0bccb286fe747eecc504931672a65f5964e [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/*
* Copyright (C) 2005-2014, 2023-2024 Intel Corporation
*/
/*
* Please use this file (commands.h) only for uCode API definitions.
* Please use iwl-xxxx-hw.h for hardware-related definitions.
* Please use dev.h for driver implementation definitions.
*/
#ifndef __iwl_commands_h__
#define __iwl_commands_h__
#include <linux/ieee80211.h>
#include <linux/types.h>
enum {
REPLY_ALIVE = 0x1,
REPLY_ERROR = 0x2,
REPLY_ECHO = 0x3, /* test command */
/* RXON and QOS commands */
REPLY_RXON = 0x10,
REPLY_RXON_ASSOC = 0x11,
REPLY_QOS_PARAM = 0x13,
REPLY_RXON_TIMING = 0x14,
/* Multi-Station support */
REPLY_ADD_STA = 0x18,
REPLY_REMOVE_STA = 0x19,
REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
REPLY_TXFIFO_FLUSH = 0x1e,
/* Security */
REPLY_WEPKEY = 0x20,
/* RX, TX, LEDs */
REPLY_TX = 0x1c,
REPLY_LEDS_CMD = 0x48,
REPLY_TX_LINK_QUALITY_CMD = 0x4e,
/* WiMAX coexistence */
COEX_PRIORITY_TABLE_CMD = 0x5a,
COEX_MEDIUM_NOTIFICATION = 0x5b,
COEX_EVENT_CMD = 0x5c,
/* Calibration */
TEMPERATURE_NOTIFICATION = 0x62,
CALIBRATION_CFG_CMD = 0x65,
CALIBRATION_RES_NOTIFICATION = 0x66,
CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
/* 802.11h related */
REPLY_QUIET_CMD = 0x71, /* not used */
REPLY_CHANNEL_SWITCH = 0x72,
CHANNEL_SWITCH_NOTIFICATION = 0x73,
REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
SPECTRUM_MEASURE_NOTIFICATION = 0x75,
/* Power Management */
POWER_TABLE_CMD = 0x77,
PM_SLEEP_NOTIFICATION = 0x7A,
PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
/* Scan commands and notifications */
REPLY_SCAN_CMD = 0x80,
REPLY_SCAN_ABORT_CMD = 0x81,
SCAN_START_NOTIFICATION = 0x82,
SCAN_RESULTS_NOTIFICATION = 0x83,
SCAN_COMPLETE_NOTIFICATION = 0x84,
/* IBSS/AP commands */
BEACON_NOTIFICATION = 0x90,
REPLY_TX_BEACON = 0x91,
WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
/* Miscellaneous commands */
REPLY_TX_POWER_DBM_CMD = 0x95,
QUIET_NOTIFICATION = 0x96, /* not used */
REPLY_TX_PWR_TABLE_CMD = 0x97,
REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
TX_ANT_CONFIGURATION_CMD = 0x98,
MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
/* Bluetooth device coexistence config command */
REPLY_BT_CONFIG = 0x9b,
/* Statistics */
REPLY_STATISTICS_CMD = 0x9c,
STATISTICS_NOTIFICATION = 0x9d,
/* RF-KILL commands and notifications */
REPLY_CARD_STATE_CMD = 0xa0,
CARD_STATE_NOTIFICATION = 0xa1,
/* Missed beacons notification */
MISSED_BEACONS_NOTIFICATION = 0xa2,
REPLY_CT_KILL_CONFIG_CMD = 0xa4,
SENSITIVITY_CMD = 0xa8,
REPLY_PHY_CALIBRATION_CMD = 0xb0,
REPLY_RX_PHY_CMD = 0xc0,
REPLY_RX_MPDU_CMD = 0xc1,
REPLY_RX = 0xc3,
REPLY_COMPRESSED_BA = 0xc5,
/* BT Coex */
REPLY_BT_COEX_PRIO_TABLE = 0xcc,
REPLY_BT_COEX_PROT_ENV = 0xcd,
REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
/* PAN commands */
REPLY_WIPAN_PARAMS = 0xb2,
REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
REPLY_WOWLAN_PATTERNS = 0xe0,
REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
REPLY_WOWLAN_GET_STATUS = 0xe5,
REPLY_D3_CONFIG = 0xd3,
REPLY_MAX = 0xff
};
/*
* Minimum number of queues. MAX_NUM is defined in hw specific files.
* Set the minimum to accommodate
* - 4 standard TX queues
* - the command queue
* - 4 PAN TX queues
* - the PAN multicast queue, and
* - the AUX (TX during scan dwell) queue.
*/
#define IWL_MIN_NUM_QUEUES 11
/*
* Command queue depends on iPAN support.
*/
#define IWL_DEFAULT_CMD_QUEUE_NUM 4
#define IWL_IPAN_CMD_QUEUE_NUM 9
#define IWL_TX_FIFO_BK 0 /* shared */
#define IWL_TX_FIFO_BE 1
#define IWL_TX_FIFO_VI 2 /* shared */
#define IWL_TX_FIFO_VO 3
#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
#define IWL_TX_FIFO_BE_IPAN 4
#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
#define IWL_TX_FIFO_VO_IPAN 5
/* re-uses the VO FIFO, uCode will properly flush/schedule */
#define IWL_TX_FIFO_AUX 5
#define IWL_TX_FIFO_UNUSED 255
#define IWLAGN_CMD_FIFO_NUM 7
/*
* This queue number is required for proper operation
* because the ucode will stop/start the scheduler as
* required.
*/
#define IWL_IPAN_MCAST_QUEUE 8
/******************************************************************************
* (0)
* Commonly used structures and definitions:
* Command header, rate_n_flags, txpower
*
*****************************************************************************/
/*
* iwlagn rate_n_flags bit fields
*
* rate_n_flags format is used in following iwlagn commands:
* REPLY_RX (response only)
* REPLY_RX_MPDU (response only)
* REPLY_TX (both command and response)
* REPLY_TX_LINK_QUALITY_CMD
*
* High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
* 2-0: 0) 6 Mbps
* 1) 12 Mbps
* 2) 18 Mbps
* 3) 24 Mbps
* 4) 36 Mbps
* 5) 48 Mbps
* 6) 54 Mbps
* 7) 60 Mbps
*
* 4-3: 0) Single stream (SISO)
* 1) Dual stream (MIMO)
* 2) Triple stream (MIMO)
*
* 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
*
* Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
* 3-0: 0xD) 6 Mbps
* 0xF) 9 Mbps
* 0x5) 12 Mbps
* 0x7) 18 Mbps
* 0x9) 24 Mbps
* 0xB) 36 Mbps
* 0x1) 48 Mbps
* 0x3) 54 Mbps
*
* Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
* 6-0: 10) 1 Mbps
* 20) 2 Mbps
* 55) 5.5 Mbps
* 110) 11 Mbps
*/
#define RATE_MCS_CODE_MSK 0x7
#define RATE_MCS_SPATIAL_POS 3
#define RATE_MCS_SPATIAL_MSK 0x18
#define RATE_MCS_HT_DUP_POS 5
#define RATE_MCS_HT_DUP_MSK 0x20
/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
#define RATE_MCS_RATE_MSK 0xff
/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
#define RATE_MCS_FLAGS_POS 8
#define RATE_MCS_HT_POS 8
#define RATE_MCS_HT_MSK 0x100
/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
#define RATE_MCS_CCK_POS 9
#define RATE_MCS_CCK_MSK 0x200
/* Bit 10: (1) Use Green Field preamble */
#define RATE_MCS_GF_POS 10
#define RATE_MCS_GF_MSK 0x400
/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
#define RATE_MCS_HT40_POS 11
#define RATE_MCS_HT40_MSK 0x800
/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
#define RATE_MCS_DUP_POS 12
#define RATE_MCS_DUP_MSK 0x1000
/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
#define RATE_MCS_SGI_POS 13
#define RATE_MCS_SGI_MSK 0x2000
/*
* rate_n_flags Tx antenna masks
* bit14:16
*/
#define RATE_MCS_ANT_POS 14
#define RATE_MCS_ANT_A_MSK 0x04000
#define RATE_MCS_ANT_B_MSK 0x08000
#define RATE_MCS_ANT_C_MSK 0x10000
#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
#define RATE_ANT_NUM 3
#define POWER_TABLE_NUM_ENTRIES 33
#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
#define POWER_TABLE_CCK_ENTRY 32
#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
#define IWL_PWR_CCK_ENTRIES 2
/*
* struct tx_power_dual_stream
*
* Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
*
* Same format as iwl_tx_power_dual_stream, but __le32
*/
struct tx_power_dual_stream {
__le32 dw;
} __packed;
/*
* Command REPLY_TX_POWER_DBM_CMD = 0x98
* struct iwlagn_tx_power_dbm_cmd
*/
#define IWLAGN_TX_POWER_AUTO 0x7f
#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
struct iwlagn_tx_power_dbm_cmd {
s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
u8 flags;
s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
u8 reserved;
} __packed;
/*
* Command TX_ANT_CONFIGURATION_CMD = 0x98
* This command is used to configure valid Tx antenna.
* By default uCode concludes the valid antenna according to the radio flavor.
* This command enables the driver to override/modify this conclusion.
*/
struct iwl_tx_ant_config_cmd {
__le32 valid;
} __packed;
/******************************************************************************
* (0a)
* Alive and Error Commands & Responses:
*
*****************************************************************************/
#define UCODE_VALID_OK cpu_to_le32(0x1)
/*
* REPLY_ALIVE = 0x1 (response only, not a command)
*
* uCode issues this "alive" notification once the runtime image is ready
* to receive commands from the driver. This is the *second* "alive"
* notification that the driver will receive after rebooting uCode;
* this "alive" is indicated by subtype field != 9.
*
* See comments documenting "BSM" (bootstrap state machine).
*
* This response includes two pointers to structures within the device's
* data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
*
* 1) log_event_table_ptr indicates base of the event log. This traces
* a 256-entry history of uCode execution within a circular buffer.
* Its header format is:
*
* __le32 log_size; log capacity (in number of entries)
* __le32 type; (1) timestamp with each entry, (0) no timestamp
* __le32 wraps; # times uCode has wrapped to top of circular buffer
* __le32 write_index; next circular buffer entry that uCode would fill
*
* The header is followed by the circular buffer of log entries. Entries
* with timestamps have the following format:
*
* __le32 event_id; range 0 - 1500
* __le32 timestamp; low 32 bits of TSF (of network, if associated)
* __le32 data; event_id-specific data value
*
* Entries without timestamps contain only event_id and data.
*
*
* 2) error_event_table_ptr indicates base of the error log. This contains
* information about any uCode error that occurs. For agn, the format
* of the error log is defined by struct iwl_error_event_table.
*
* The Linux driver can print both logs to the system log when a uCode error
* occurs.
*/
/*
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with u32-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwl_error_event_table {
u32 valid; /* (nonzero) valid, (0) log is empty */
u32 error_id; /* type of error */
u32 pc; /* program counter */
u32 blink1; /* branch link */
u32 blink2; /* branch link */
u32 ilink1; /* interrupt link */
u32 ilink2; /* interrupt link */
u32 data1; /* error-specific data */
u32 data2; /* error-specific data */
u32 line; /* source code line of error */
u32 bcon_time; /* beacon timer */
u32 tsf_low; /* network timestamp function timer */
u32 tsf_hi; /* network timestamp function timer */
u32 gp1; /* GP1 timer register */
u32 gp2; /* GP2 timer register */
u32 gp3; /* GP3 timer register */
u32 ucode_ver; /* uCode version */
u32 hw_ver; /* HW Silicon version */
u32 brd_ver; /* HW board version */
u32 log_pc; /* log program counter */
u32 frame_ptr; /* frame pointer */
u32 stack_ptr; /* stack pointer */
u32 hcmd; /* last host command header */
u32 isr0; /* isr status register LMPM_NIC_ISR0:
* rxtx_flag */
u32 isr1; /* isr status register LMPM_NIC_ISR1:
* host_flag */
u32 isr2; /* isr status register LMPM_NIC_ISR2:
* enc_flag */
u32 isr3; /* isr status register LMPM_NIC_ISR3:
* time_flag */
u32 isr4; /* isr status register LMPM_NIC_ISR4:
* wico interrupt */
u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
u32 wait_event; /* wait event() caller address */
u32 l2p_control; /* L2pControlField */
u32 l2p_duration; /* L2pDurationField */
u32 l2p_mhvalid; /* L2pMhValidBits */
u32 l2p_addr_match; /* L2pAddrMatchStat */
u32 lmpm_pmg_sel; /* indicate which clocks are turned on
* (LMPM_PMG_SEL) */
u32 u_timestamp; /* indicate when the date and time of the
* compilation */
u32 flow_handler; /* FH read/write pointers, RX credit */
} __packed;
struct iwl_alive_resp {
u8 ucode_minor;
u8 ucode_major;
__le16 reserved1;
u8 sw_rev[8];
u8 ver_type;
u8 ver_subtype; /* not "9" for runtime alive */
__le16 reserved2;
__le32 log_event_table_ptr; /* SRAM address for event log */
__le32 error_event_table_ptr; /* SRAM address for error log */
__le32 timestamp;
__le32 is_valid;
} __packed;
/*
* REPLY_ERROR = 0x2 (response only, not a command)
*/
struct iwl_error_resp {
__le32 error_type;
u8 cmd_id;
u8 reserved1;
__le16 bad_cmd_seq_num;
__le32 error_info;
__le64 timestamp;
} __packed;
/******************************************************************************
* (1)
* RXON Commands & Responses:
*
*****************************************************************************/
/*
* Rx config defines & structure
*/
/* rx_config device types */
enum {
RXON_DEV_TYPE_AP = 1,
RXON_DEV_TYPE_ESS = 3,
RXON_DEV_TYPE_IBSS = 4,
RXON_DEV_TYPE_SNIFFER = 6,
RXON_DEV_TYPE_CP = 7,
RXON_DEV_TYPE_2STA = 8,
RXON_DEV_TYPE_P2P = 9,
};
#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
#define RXON_RX_CHAIN_VALID_POS (1)
#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
#define RXON_RX_CHAIN_CNT_POS (10)
#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
/* rx_config flags */
/* band & modulation selection */
#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
/* auto detection enable */
#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
/* TGg protection when tx */
#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
/* cck short slot & preamble */
#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
/* antenna selection */
#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
/* radar detection enable */
#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
/* rx response to host with 8-byte TSF
* (according to ON_AIR deassertion) */
#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
/* HT flags */
#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
#define RXON_FLG_HT_OPERATING_MODE_POS (23)
#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
#define RXON_FLG_CHANNEL_MODE_POS (25)
#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
/* channel mode */
enum {
CHANNEL_MODE_LEGACY = 0,
CHANNEL_MODE_PURE_40 = 1,
CHANNEL_MODE_MIXED = 2,
CHANNEL_MODE_RESERVED = 3,
};
#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
/* CTS to self (if spec allows) flag */
#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
/* rx_config filter flags */
/* accept all data frames */
#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
/* pass control & management to host */
#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
/* accept multi-cast */
#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
/* don't decrypt uni-cast frames */
#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
/* don't decrypt multi-cast frames */
#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
/* STA is associated */
#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
/* transfer to host non bssid beacons in associated state */
#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
/*
* REPLY_RXON = 0x10 (command, has simple generic response)
*
* RXON tunes the radio tuner to a service channel, and sets up a number
* of parameters that are used primarily for Rx, but also for Tx operations.
*
* NOTE: When tuning to a new channel, driver must set the
* RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
* info within the device, including the station tables, tx retry
* rate tables, and txpower tables. Driver must build a new station
* table and txpower table before transmitting anything on the RXON
* channel.
*
* NOTE: All RXONs wipe clean the internal txpower table. Driver must
* issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
* regardless of whether RXON_FILTER_ASSOC_MSK is set.
*/
struct iwl_rxon_cmd {
u8 node_addr[6];
__le16 reserved1;
u8 bssid_addr[6];
__le16 reserved2;
u8 wlap_bssid_addr[6];
__le16 reserved3;
u8 dev_type;
u8 air_propagation;
__le16 rx_chain;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 assoc_id;
__le32 flags;
__le32 filter_flags;
__le16 channel;
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
u8 ofdm_ht_triple_stream_basic_rates;
u8 reserved5;
__le16 acquisition_data;
__le16 reserved6;
} __packed;
/*
* REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
*/
struct iwl_rxon_assoc_cmd {
__le32 flags;
__le32 filter_flags;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 reserved1;
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
u8 ofdm_ht_triple_stream_basic_rates;
u8 reserved2;
__le16 rx_chain_select_flags;
__le16 acquisition_data;
__le32 reserved3;
} __packed;
#define IWL_CONN_MAX_LISTEN_INTERVAL 10
#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
/*
* REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
*/
struct iwl_rxon_time_cmd {
__le64 timestamp;
__le16 beacon_interval;
__le16 atim_window;
__le32 beacon_init_val;
__le16 listen_interval;
u8 dtim_period;
u8 delta_cp_bss_tbtts;
} __packed;
/*
* REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
*/
/**
* struct iwl5000_channel_switch_cmd
* @band: 0- 5.2GHz, 1- 2.4GHz
* @expect_beacon: 0- resume transmits after channel switch
* 1- wait for beacon to resume transmits
* @channel: new channel number
* @rxon_flags: Rx on flags
* @rxon_filter_flags: filtering parameters
* @switch_time: switch time in extended beacon format
* @reserved: reserved bytes
*/
struct iwl5000_channel_switch_cmd {
u8 band;
u8 expect_beacon;
__le16 channel;
__le32 rxon_flags;
__le32 rxon_filter_flags;
__le32 switch_time;
__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
} __packed;
/**
* struct iwl6000_channel_switch_cmd
* @band: 0- 5.2GHz, 1- 2.4GHz
* @expect_beacon: 0- resume transmits after channel switch
* 1- wait for beacon to resume transmits
* @channel: new channel number
* @rxon_flags: Rx on flags
* @rxon_filter_flags: filtering parameters
* @switch_time: switch time in extended beacon format
* @reserved: reserved bytes
*/
struct iwl6000_channel_switch_cmd {
u8 band;
u8 expect_beacon;
__le16 channel;
__le32 rxon_flags;
__le32 rxon_filter_flags;
__le32 switch_time;
__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
} __packed;
/*
* CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
*/
struct iwl_csa_notification {
__le16 band;
__le16 channel;
__le32 status; /* 0 - OK, 1 - fail */
} __packed;
/******************************************************************************
* (2)
* Quality-of-Service (QOS) Commands & Responses:
*
*****************************************************************************/
/**
* struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
* One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
*
* @cw_min: Contention window, start value in numbers of slots.
* Should be a power-of-2, minus 1. Device's default is 0x0f.
* @cw_max: Contention window, max value in numbers of slots.
* Should be a power-of-2, minus 1. Device's default is 0x3f.
* @aifsn: Number of slots in Arbitration Interframe Space (before
* performing random backoff timing prior to Tx). Device default 1.
* @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
* @reserved1: reserved for alignment
*
* Device will automatically increase contention window by (2*CW) + 1 for each
* transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
* value, to cap the CW value.
*/
struct iwl_ac_qos {
__le16 cw_min;
__le16 cw_max;
u8 aifsn;
u8 reserved1;
__le16 edca_txop;
} __packed;
/* QoS flags defines */
#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
/* Number of Access Categories (AC) (EDCA), queues 0..3 */
#define AC_NUM 4
/*
* REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
*
* This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
* 0: Background, 1: Best Effort, 2: Video, 3: Voice.
*/
struct iwl_qosparam_cmd {
__le32 qos_flags;
struct iwl_ac_qos ac[AC_NUM];
} __packed;
/******************************************************************************
* (3)
* Add/Modify Stations Commands & Responses:
*
*****************************************************************************/
/*
* Multi station support
*/
/* Special, dedicated locations within device's station table */
#define IWL_AP_ID 0
#define IWL_AP_ID_PAN 1
#define IWL_STA_ID 2
#define IWLAGN_PAN_BCAST_ID 14
#define IWLAGN_BROADCAST_ID 15
#define IWLAGN_STATION_COUNT 16
#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
#define STA_FLG_MAX_AGG_SIZE_POS (19)
#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
/* Use in mode field. 1: modify existing entry, 0: add new station entry */
#define STA_CONTROL_MODIFY_MSK 0x01
/* key flags __le16*/
#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
#define STA_KEY_FLG_KEYID_POS 8
#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
/* wep key is either from global key (0) or from station info array (1) */
#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
#define STA_KEY_MAX_NUM 8
#define STA_KEY_MAX_NUM_PAN 16
/* must not match WEP_INVALID_OFFSET */
#define IWLAGN_HW_KEY_DEFAULT 0xfe
/* Flags indicate whether to modify vs. don't change various station params */
#define STA_MODIFY_KEY_MASK 0x01
#define STA_MODIFY_TID_DISABLE_TX 0x02
#define STA_MODIFY_TX_RATE_MSK 0x04
#define STA_MODIFY_ADDBA_TID_MSK 0x08
#define STA_MODIFY_DELBA_TID_MSK 0x10
#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
/* agn */
struct iwl_keyinfo {
__le16 key_flags;
u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
u8 reserved1;
__le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
u8 key_offset;
u8 reserved2;
u8 key[16]; /* 16-byte unicast decryption key */
__le64 tx_secur_seq_cnt;
__le64 hw_tkip_mic_rx_key;
__le64 hw_tkip_mic_tx_key;
} __packed;
/**
* struct sta_id_modify
* @addr: station's MAC address
* @reserved1: reserved for alignment
* @sta_id: index of station in uCode's station table
* @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
* @reserved2: reserved for alignment
*
* Driver selects unused table index when adding new station,
* or the index to a pre-existing station entry when modifying that station.
* Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
*
* modify_mask flags select which parameters to modify vs. leave alone.
*/
struct sta_id_modify {
u8 addr[ETH_ALEN];
__le16 reserved1;
u8 sta_id;
u8 modify_mask;
__le16 reserved2;
} __packed;
/*
* REPLY_ADD_STA = 0x18 (command)
*
* The device contains an internal table of per-station information,
* with info on security keys, aggregation parameters, and Tx rates for
* initial Tx attempt and any retries (agn devices uses
* REPLY_TX_LINK_QUALITY_CMD,
*
* REPLY_ADD_STA sets up the table entry for one station, either creating
* a new entry, or modifying a pre-existing one.
*
* NOTE: RXON command (without "associated" bit set) wipes the station table
* clean. Moving into RF_KILL state does this also. Driver must set up
* new station table before transmitting anything on the RXON channel
* (except active scans or active measurements; those commands carry
* their own txpower/rate setup data).
*
* When getting started on a new channel, driver must set up the
* IWL_BROADCAST_ID entry (last entry in the table). For a client
* station in a BSS, once an AP is selected, driver sets up the AP STA
* in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
* are all that are needed for a BSS client station. If the device is
* used as AP, or in an IBSS network, driver must set up station table
* entries for all STAs in network, starting with index IWL_STA_ID.
*/
struct iwl_addsta_cmd {
u8 mode; /* 1: modify existing, 0: add new station */
u8 reserved[3];
struct sta_id_modify sta;
struct iwl_keyinfo key;
__le32 station_flags; /* STA_FLG_* */
__le32 station_flags_msk; /* STA_FLG_* */
/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
* corresponding to bit (e.g. bit 5 controls TID 5).
* Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
__le16 tid_disable_tx;
__le16 legacy_reserved;
/* TID for which to add block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
u8 add_immediate_ba_tid;
/* TID for which to remove block-ack support.
* Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
u8 remove_immediate_ba_tid;
/* Starting Sequence Number for added block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
__le16 add_immediate_ba_ssn;
/*
* Number of packets OK to transmit to station even though
* it is asleep -- used to synchronise PS-poll and u-APSD
* responses while ucode keeps track of STA sleep state.
*/
__le16 sleep_tx_count;
__le16 reserved2;
} __packed;
#define ADD_STA_SUCCESS_MSK 0x1
#define ADD_STA_NO_ROOM_IN_TABLE 0x2
#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
/*
* REPLY_ADD_STA = 0x18 (response)
*/
struct iwl_add_sta_resp {
u8 status; /* ADD_STA_* */
} __packed;
#define REM_STA_SUCCESS_MSK 0x1
/*
* REPLY_REM_STA = 0x19 (response)
*/
struct iwl_rem_sta_resp {
u8 status;
} __packed;
/*
* REPLY_REM_STA = 0x19 (command)
*/
struct iwl_rem_sta_cmd {
u8 num_sta; /* number of removed stations */
u8 reserved[3];
u8 addr[ETH_ALEN]; /* MAC addr of the first station */
u8 reserved2[2];
} __packed;
/* WiFi queues mask */
#define IWL_SCD_BK_MSK BIT(0)
#define IWL_SCD_BE_MSK BIT(1)
#define IWL_SCD_VI_MSK BIT(2)
#define IWL_SCD_VO_MSK BIT(3)
#define IWL_SCD_MGMT_MSK BIT(3)
/* PAN queues mask */
#define IWL_PAN_SCD_BK_MSK BIT(4)
#define IWL_PAN_SCD_BE_MSK BIT(5)
#define IWL_PAN_SCD_VI_MSK BIT(6)
#define IWL_PAN_SCD_VO_MSK BIT(7)
#define IWL_PAN_SCD_MGMT_MSK BIT(7)
#define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
#define IWL_AGG_TX_QUEUE_MSK 0xffc00
#define IWL_DROP_ALL BIT(1)
/*
* REPLY_TXFIFO_FLUSH = 0x1e(command and response)
*
* When using full FIFO flush this command checks the scheduler HW block WR/RD
* pointers to check if all the frames were transferred by DMA into the
* relevant TX FIFO queue. Only when the DMA is finished and the queue is
* empty the command can finish.
* This command is used to flush the TXFIFO from transmit commands, it may
* operate on single or multiple queues, the command queue can't be flushed by
* this command. The command response is returned when all the queue flush
* operations are done. Each TX command flushed return response with the FLUSH
* status set in the TX response status. When FIFO flush operation is used,
* the flush operation ends when both the scheduler DMA done and TXFIFO empty
* are set.
*
* @queue_control: bit mask for which queues to flush
* @flush_control: flush controls
* 0: Dump single MSDU
* 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
* 2: Dump all FIFO
*/
struct iwl_txfifo_flush_cmd_v3 {
__le32 queue_control;
__le16 flush_control;
__le16 reserved;
} __packed;
struct iwl_txfifo_flush_cmd_v2 {
__le16 queue_control;
__le16 flush_control;
} __packed;
/*
* REPLY_WEP_KEY = 0x20
*/
struct iwl_wep_key {
u8 key_index;
u8 key_offset;
u8 reserved1[2];
u8 key_size;
u8 reserved2[3];
u8 key[16];
} __packed;
struct iwl_wep_cmd {
u8 num_keys;
u8 global_key_type;
u8 flags;
u8 reserved;
struct iwl_wep_key key[];
} __packed;
#define WEP_KEY_WEP_TYPE 1
#define WEP_KEYS_MAX 4
#define WEP_INVALID_OFFSET 0xff
#define WEP_KEY_LEN_64 5
#define WEP_KEY_LEN_128 13
/******************************************************************************
* (4)
* Rx Responses:
*
*****************************************************************************/
#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
#define RX_RES_STATUS_STATION_FOUND (1<<6)
#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
#define IWLAGN_RX_RES_PHY_CNT 8
#define IWLAGN_RX_RES_AGC_IDX 1
#define IWLAGN_RX_RES_RSSI_AB_IDX 2
#define IWLAGN_RX_RES_RSSI_C_IDX 3
#define IWLAGN_OFDM_AGC_MSK 0xfe00
#define IWLAGN_OFDM_AGC_BIT_POS 9
#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
struct iwlagn_non_cfg_phy {
__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
} __packed;
/*
* REPLY_RX = 0xc3 (response only, not a command)
* Used only for legacy (non 11n) frames.
*/
struct iwl_rx_phy_res {
u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
u8 stat_id; /* configurable DSP phy data set ID */
u8 reserved1;
__le64 timestamp; /* TSF at on air rise */
__le32 beacon_time_stamp; /* beacon at on-air rise */
__le16 phy_flags; /* general phy flags: band, modulation, ... */
__le16 channel; /* channel number */
u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
__le32 rate_n_flags; /* RATE_MCS_* */
__le16 byte_count; /* frame's byte-count */
__le16 frame_time; /* frame's time on the air */
} __packed;
struct iwl_rx_mpdu_res_start {
__le16 byte_count;
__le16 reserved;
} __packed;
/******************************************************************************
* (5)
* Tx Commands & Responses:
*
* Driver must place each REPLY_TX command into one of the prioritized Tx
* queues in host DRAM, shared between driver and device (see comments for
* SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
* are preparing to transmit, the device pulls the Tx command over the PCI
* bus via one of the device's Tx DMA channels, to fill an internal FIFO
* from which data will be transmitted.
*
* uCode handles all timing and protocol related to control frames
* (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
* handle reception of block-acks; uCode updates the host driver via
* REPLY_COMPRESSED_BA.
*
* uCode handles retrying Tx when an ACK is expected but not received.
* This includes trying lower data rates than the one requested in the Tx
* command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
*
* Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
* This command must be executed after every RXON command, before Tx can occur.
*****************************************************************************/
/* REPLY_TX Tx flags field */
/*
* 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
* before this frame. if CTS-to-self required check
* RXON_FLG_SELF_CTS_EN status.
*/
#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
/* 1: Expect ACK from receiving station
* 0: Don't expect ACK (MAC header's duration field s/b 0)
* Set this for unicast frames, but not broadcast/multicast. */
#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
/* For agn devices:
* 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
* Tx command's initial_rate_index indicates first rate to try;
* uCode walks through table for additional Tx attempts.
* 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
* This rate will be used for all Tx attempts; it will not be scaled. */
#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
/* 1: Expect immediate block-ack.
* Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
/* Tx antenna selection field; reserved (0) for agn devices. */
#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
/* 1: Ignore Bluetooth priority for this frame.
* 0: Delay Tx until Bluetooth device is done (normal usage). */
#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
/* 1: uCode overrides sequence control field in MAC header.
* 0: Driver provides sequence control field in MAC header.
* Set this for management frames, non-QOS data frames, non-unicast frames,
* and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
/* 1: This frame is non-last MPDU; more fragments are coming.
* 0: Last fragment, or not using fragmentation. */
#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
* 0: No TSF required in outgoing frame.
* Set this for transmitting beacons and probe responses. */
#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
* alignment of frame's payload data field.
* 0: No pad
* Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
* field (but not both). Driver must align frame data (i.e. data following
* MAC header) to DWORD boundary. */
#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
/* accelerate aggregation support
* 0 - no CCMP encryption; 1 - CCMP encryption */
#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
/* HCCA-AP - disable duration overwriting. */
#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
/*
* TX command security control
*/
#define TX_CMD_SEC_WEP 0x01
#define TX_CMD_SEC_CCM 0x02
#define TX_CMD_SEC_TKIP 0x03
#define TX_CMD_SEC_MSK 0x03
#define TX_CMD_SEC_SHIFT 6
#define TX_CMD_SEC_KEY128 0x08
/*
* REPLY_TX = 0x1c (command)
*/
/*
* Used for managing Tx retries when expecting block-acks.
* Driver should set these fields to 0.
*/
struct iwl_dram_scratch {
u8 try_cnt; /* Tx attempts */
u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
__le16 reserved;
} __packed;
struct iwl_tx_cmd {
/*
* MPDU byte count:
* MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
* + 8 byte IV for CCM or TKIP (not used for WEP)
* + Data payload
* + 8-byte MIC (not used for CCM/WEP)
* NOTE: Does not include Tx command bytes, post-MAC pad bytes,
* MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
* Range: 14-2342 bytes.
*/
__le16 len;
/*
* MPDU or MSDU byte count for next frame.
* Used for fragmentation and bursting, but not 11n aggregation.
* Same as "len", but for next frame. Set to 0 if not applicable.
*/
__le16 next_frame_len;
__le32 tx_flags; /* TX_CMD_FLG_* */
/* uCode may modify this field of the Tx command (in host DRAM!).
* Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
struct iwl_dram_scratch scratch;
/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
__le32 rate_n_flags; /* RATE_MCS_* */
/* Index of destination station in uCode's station table */
u8 sta_id;
/* Type of security encryption: CCM or TKIP */
u8 sec_ctl; /* TX_CMD_SEC_* */
/*
* Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
* Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
* data frames, this field may be used to selectively reduce initial
* rate (via non-0 value) for special frames (e.g. management), while
* still supporting rate scaling for all frames.
*/
u8 initial_rate_index;
u8 reserved;
u8 key[16];
__le16 next_frame_flags;
__le16 reserved2;
union {
__le32 life_time;
__le32 attempt;
} stop_time;
/* Host DRAM physical address pointer to "scratch" in this command.
* Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
__le32 dram_lsb_ptr;
u8 dram_msb_ptr;
u8 rts_retry_limit; /*byte 50 */
u8 data_retry_limit; /*byte 51 */
u8 tid_tspec;
union {
__le16 pm_frame_timeout;
__le16 attempt_duration;
} timeout;
/*
* Duration of EDCA burst Tx Opportunity, in 32-usec units.
* Set this if txop time is not specified by HCCA protocol (e.g. by AP).
*/
__le16 driver_txop;
/*
* MAC header goes here, followed by 2 bytes padding if MAC header
* length is 26 or 30 bytes, followed by payload data
*/
union {
DECLARE_FLEX_ARRAY(u8, payload);
DECLARE_FLEX_ARRAY(struct ieee80211_hdr, hdr);
};
} __packed;
/*
* TX command response is sent after *agn* transmission attempts.
*
* both postpone and abort status are expected behavior from uCode. there is
* no special operation required from driver; except for RFKILL_FLUSH,
* which required tx flush host command to flush all the tx frames in queues
*/
enum {
TX_STATUS_SUCCESS = 0x01,
TX_STATUS_DIRECT_DONE = 0x02,
/* postpone TX */
TX_STATUS_POSTPONE_DELAY = 0x40,
TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
TX_STATUS_POSTPONE_BT_PRIO = 0x42,
TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
/* abort TX */
TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
TX_STATUS_FAIL_LONG_LIMIT = 0x83,
TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
TX_STATUS_FAIL_DEST_PS = 0x88,
TX_STATUS_FAIL_HOST_ABORTED = 0x89,
TX_STATUS_FAIL_BT_RETRY = 0x8a,
TX_STATUS_FAIL_STA_INVALID = 0x8b,
TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
TX_STATUS_FAIL_TID_DISABLE = 0x8d,
TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
};
#define TX_PACKET_MODE_REGULAR 0x0000
#define TX_PACKET_MODE_BURST_SEQ 0x0100
#define TX_PACKET_MODE_BURST_FIRST 0x0200
enum {
TX_POWER_PA_NOT_ACTIVE = 0x0,
};
enum {
TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
TX_STATUS_DELAY_MSK = 0x00000040,
TX_STATUS_ABORT_MSK = 0x00000080,
TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
TX_RESERVED = 0x00780000, /* bits 19:22 */
TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
};
/* *******************************
* TX aggregation status
******************************* */
enum {
AGG_TX_STATE_TRANSMITTED = 0x00,
AGG_TX_STATE_UNDERRUN_MSK = 0x01,
AGG_TX_STATE_BT_PRIO_MSK = 0x02,
AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
AGG_TX_STATE_ABORT_MSK = 0x08,
AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
AGG_TX_STATE_DUMP_TX_MSK = 0x200,
AGG_TX_STATE_DELAY_TX_MSK = 0x400
};
#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
#define AGG_TX_TRY_POS 12
#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
/* # tx attempts for first frame in aggregation */
#define AGG_TX_STATE_TRY_CNT_POS 12
#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
/* Command ID and sequence number of Tx command for this frame */
#define AGG_TX_STATE_SEQ_NUM_POS 16
#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
/*
* REPLY_TX = 0x1c (response)
*
* This response may be in one of two slightly different formats, indicated
* by the frame_count field:
*
* 1) No aggregation (frame_count == 1). This reports Tx results for
* a single frame. Multiple attempts, at various bit rates, may have
* been made for this frame.
*
* 2) Aggregation (frame_count > 1). This reports Tx results for
* 2 or more frames that used block-acknowledge. All frames were
* transmitted at same rate. Rate scaling may have been used if first
* frame in this new agg block failed in previous agg block(s).
*
* Note that, for aggregation, ACK (block-ack) status is not delivered here;
* block-ack has not been received by the time the agn device records
* this status.
* This status relates to reasons the tx might have been blocked or aborted
* within the sending station (this agn device), rather than whether it was
* received successfully by the destination station.
*/
struct agg_tx_status {
__le16 status;
__le16 sequence;
} __packed;
/* refer to ra_tid */
#define IWLAGN_TX_RES_TID_POS 0
#define IWLAGN_TX_RES_TID_MSK 0x0f
#define IWLAGN_TX_RES_RA_POS 4
#define IWLAGN_TX_RES_RA_MSK 0xf0
struct iwlagn_tx_resp {
u8 frame_count; /* 1 no aggregation, >1 aggregation */
u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
u8 failure_rts; /* # failures due to unsuccessful RTS */
u8 failure_frame; /* # failures due to no ACK (unused for agg) */
/* For non-agg: Rate at which frame was successful.
* For agg: Rate at which all frames were transmitted. */
__le32 rate_n_flags; /* RATE_MCS_* */
/* For non-agg: RTS + CTS + frame tx attempts time + ACK.
* For agg: RTS + CTS + aggregation tx time + block-ack time. */
__le16 wireless_media_time; /* uSecs */
u8 pa_status; /* RF power amplifier measurement (not used) */
u8 pa_integ_res_a[3];
u8 pa_integ_res_b[3];
u8 pa_integ_res_C[3];
__le32 tfd_info;
__le16 seq_ctl;
__le16 byte_cnt;
u8 tlc_info;
u8 ra_tid; /* tid (0:3), sta_id (4:7) */
__le16 frame_ctrl;
/*
* For non-agg: frame status TX_STATUS_*
* For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
* fields follow this one, up to frame_count.
* Bit fields:
* 11- 0: AGG_TX_STATE_* status code
* 15-12: Retry count for 1st frame in aggregation (retries
* occur if tx failed for this frame when it was a
* member of a previous aggregation block). If rate
* scaling is used, retry count indicates the rate
* table entry used for all frames in the new agg.
* 31-16: Sequence # for this frame's Tx cmd (not SSN!)
*/
struct agg_tx_status status; /* TX status (in aggregation -
* status of 1st frame) */
} __packed;
/*
* REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
*
* Reports Block-Acknowledge from recipient station
*/
struct iwl_compressed_ba_resp {
__le32 sta_addr_lo32;
__le16 sta_addr_hi16;
__le16 reserved;
/* Index of recipient (BA-sending) station in uCode's station table */
u8 sta_id;
u8 tid;
__le16 seq_ctl;
__le64 bitmap;
__le16 scd_flow;
__le16 scd_ssn;
u8 txed; /* number of frames sent */
u8 txed_2_done; /* number of frames acked */
__le16 reserved1;
} __packed;
/*
* REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
*
*/
/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
/* # of EDCA prioritized tx fifos */
#define LINK_QUAL_AC_NUM AC_NUM
/* # entries in rate scale table to support Tx retries */
#define LINK_QUAL_MAX_RETRY_NUM 16
/* Tx antenna selection values */
#define LINK_QUAL_ANT_A_MSK (1 << 0)
#define LINK_QUAL_ANT_B_MSK (1 << 1)
#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
/*
* struct iwl_link_qual_general_params
*
* Used in REPLY_TX_LINK_QUALITY_CMD
*/
struct iwl_link_qual_general_params {
u8 flags;
/* No entries at or above this (driver chosen) index contain MIMO */
u8 mimo_delimiter;
/* Best single antenna to use for single stream (legacy, SISO). */
u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
/* Best antennas to use for MIMO */
u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
/*
* If driver needs to use different initial rates for different
* EDCA QOS access categories (as implemented by tx fifos 0-3),
* this table will set that up, by indicating the indexes in the
* rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
* Otherwise, driver should set all entries to 0.
*
* Entry usage:
* 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
* TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
*/
u8 start_rate_index[LINK_QUAL_AC_NUM];
} __packed;
#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
/*
* struct iwl_link_qual_agg_params
*
* Used in REPLY_TX_LINK_QUALITY_CMD
*/
struct iwl_link_qual_agg_params {
/*
*Maximum number of uSec in aggregation.
* default set to 4000 (4 milliseconds) if not configured in .cfg
*/
__le16 agg_time_limit;
/*
* Number of Tx retries allowed for a frame, before that frame will
* no longer be considered for the start of an aggregation sequence
* (scheduler will then try to tx it as single frame).
* Driver should set this to 3.
*/
u8 agg_dis_start_th;
/*
* Maximum number of frames in aggregation.
* 0 = no limit (default). 1 = no aggregation.
* Other values = max # frames in aggregation.
*/
u8 agg_frame_cnt_limit;
__le32 reserved;
} __packed;
/*
* REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
*
* For agn devices
*
* Each station in the agn device's internal station table has its own table
* of 16
* Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
* an ACK is not received. This command replaces the entire table for
* one station.
*
* NOTE: Station must already be in agn device's station table.
* Use REPLY_ADD_STA.
*
* The rate scaling procedures described below work well. Of course, other
* procedures are possible, and may work better for particular environments.
*
*
* FILLING THE RATE TABLE
*
* Given a particular initial rate and mode, as determined by the rate
* scaling algorithm described below, the Linux driver uses the following
* formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
* Link Quality command:
*
*
* 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
* a) Use this same initial rate for first 3 entries.
* b) Find next lower available rate using same mode (SISO or MIMO),
* use for next 3 entries. If no lower rate available, switch to
* legacy mode (no HT40 channel, no MIMO, no short guard interval).
* c) If using MIMO, set command's mimo_delimiter to number of entries
* using MIMO (3 or 6).
* d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
* no MIMO, no short guard interval), at the next lower bit rate
* (e.g. if second HT bit rate was 54, try 48 legacy), and follow
* legacy procedure for remaining table entries.
*
* 2) If using legacy initial rate:
* a) Use the initial rate for only one entry.
* b) For each following entry, reduce the rate to next lower available
* rate, until reaching the lowest available rate.
* c) When reducing rate, also switch antenna selection.
* d) Once lowest available rate is reached, repeat this rate until
* rate table is filled (16 entries), switching antenna each entry.
*
*
* ACCUMULATING HISTORY
*
* The rate scaling algorithm for agn devices, as implemented in Linux driver,
* uses two sets of frame Tx success history: One for the current/active
* modulation mode, and one for a speculative/search mode that is being
* attempted. If the speculative mode turns out to be more effective (i.e.
* actual transfer rate is better), then the driver continues to use the
* speculative mode as the new current active mode.
*
* Each history set contains, separately for each possible rate, data for a
* sliding window of the 62 most recent tx attempts at that rate. The data
* includes a shifting bitmap of success(1)/failure(0), and sums of successful
* and attempted frames, from which the driver can additionally calculate a
* success ratio (success / attempted) and number of failures
* (attempted - success), and control the size of the window (attempted).
* The driver uses the bit map to remove successes from the success sum, as
* the oldest tx attempts fall out of the window.
*
* When the agn device makes multiple tx attempts for a given frame, each
* attempt might be at a different rate, and have different modulation
* characteristics (e.g. antenna, fat channel, short guard interval), as set
* up in the rate scaling table in the Link Quality command. The driver must
* determine which rate table entry was used for each tx attempt, to determine
* which rate-specific history to update, and record only those attempts that
* match the modulation characteristics of the history set.
*
* When using block-ack (aggregation), all frames are transmitted at the same
* rate, since there is no per-attempt acknowledgment from the destination
* station. The Tx response struct iwl_tx_resp indicates the Tx rate in
* rate_n_flags field. After receiving a block-ack, the driver can update
* history for the entire block all at once.
*
*
* FINDING BEST STARTING RATE:
*
* When working with a selected initial modulation mode (see below), the
* driver attempts to find a best initial rate. The initial rate is the
* first entry in the Link Quality command's rate table.
*
* 1) Calculate actual throughput (success ratio * expected throughput, see
* table below) for current initial rate. Do this only if enough frames
* have been attempted to make the value meaningful: at least 6 failed
* tx attempts, or at least 8 successes. If not enough, don't try rate
* scaling yet.
*
* 2) Find available rates adjacent to current initial rate. Available means:
* a) supported by hardware &&
* b) supported by association &&
* c) within any constraints selected by user
*
* 3) Gather measured throughputs for adjacent rates. These might not have
* enough history to calculate a throughput. That's okay, we might try
* using one of them anyway!
*
* 4) Try decreasing rate if, for current rate:
* a) success ratio is < 15% ||
* b) lower adjacent rate has better measured throughput ||
* c) higher adjacent rate has worse throughput, and lower is unmeasured
*
* As a sanity check, if decrease was determined above, leave rate
* unchanged if:
* a) lower rate unavailable
* b) success ratio at current rate > 85% (very good)
* c) current measured throughput is better than expected throughput
* of lower rate (under perfect 100% tx conditions, see table below)
*
* 5) Try increasing rate if, for current rate:
* a) success ratio is < 15% ||
* b) both adjacent rates' throughputs are unmeasured (try it!) ||
* b) higher adjacent rate has better measured throughput ||
* c) lower adjacent rate has worse throughput, and higher is unmeasured
*
* As a sanity check, if increase was determined above, leave rate
* unchanged if:
* a) success ratio at current rate < 70%. This is not particularly
* good performance; higher rate is sure to have poorer success.
*
* 6) Re-evaluate the rate after each tx frame. If working with block-
* acknowledge, history and statistics may be calculated for the entire
* block (including prior history that fits within the history windows),
* before re-evaluation.
*
* FINDING BEST STARTING MODULATION MODE:
*
* After working with a modulation mode for a "while" (and doing rate scaling),
* the driver searches for a new initial mode in an attempt to improve
* throughput. The "while" is measured by numbers of attempted frames:
*
* For legacy mode, search for new mode after:
* 480 successful frames, or 160 failed frames
* For high-throughput modes (SISO or MIMO), search for new mode after:
* 4500 successful frames, or 400 failed frames
*
* Mode switch possibilities are (3 for each mode):
*
* For legacy:
* Change antenna, try SISO (if HT association), try MIMO (if HT association)
* For SISO:
* Change antenna, try MIMO, try shortened guard interval (SGI)
* For MIMO:
* Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
*
* When trying a new mode, use the same bit rate as the old/current mode when
* trying antenna switches and shortened guard interval. When switching to
* SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
* for which the expected throughput (under perfect conditions) is about the
* same or slightly better than the actual measured throughput delivered by
* the old/current mode.
*
* Actual throughput can be estimated by multiplying the expected throughput
* by the success ratio (successful / attempted tx frames). Frame size is
* not considered in this calculation; it assumes that frame size will average
* out to be fairly consistent over several samples. The following are
* metric values for expected throughput assuming 100% success ratio.
* Only G band has support for CCK rates:
*
* RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
*
* G: 7 13 35 58 40 57 72 98 121 154 177 186 186
* A: 0 0 0 0 40 57 72 98 121 154 177 186 186
* SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
* SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
* MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
* SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
* SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
* SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
* MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
* SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
*
* After the new mode has been tried for a short while (minimum of 6 failed
* frames or 8 successful frames), compare success ratio and actual throughput
* estimate of the new mode with the old. If either is better with the new
* mode, continue to use the new mode.
*
* Continue comparing modes until all 3 possibilities have been tried.
* If moving from legacy to HT, try all 3 possibilities from the new HT
* mode. After trying all 3, a best mode is found. Continue to use this mode
* for the longer "while" described above (e.g. 480 successful frames for
* legacy), and then repeat the search process.
*
*/
struct iwl_link_quality_cmd {
/* Index of destination/recipient station in uCode's station table */
u8 sta_id;
u8 reserved1;
__le16 control; /* not used */
struct iwl_link_qual_general_params general_params;
struct iwl_link_qual_agg_params agg_params;
/*
* Rate info; when using rate-scaling, Tx command's initial_rate_index
* specifies 1st Tx rate attempted, via index into this table.
* agn devices works its way through table when retrying Tx.
*/
struct {
__le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
} rs_table[LINK_QUAL_MAX_RETRY_NUM];
__le32 reserved2;
} __packed;
/*
* BT configuration enable flags:
* bit 0 - 1: BT channel announcement enabled
* 0: disable
* bit 1 - 1: priority of BT device enabled
* 0: disable
* bit 2 - 1: BT 2 wire support enabled
* 0: disable
*/
#define BT_COEX_DISABLE (0x0)
#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
#define BT_ENABLE_PRIORITY BIT(1)
#define BT_ENABLE_2_WIRE BIT(2)
#define BT_COEX_DISABLE (0x0)
#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
#define BT_LEAD_TIME_MIN (0x0)
#define BT_LEAD_TIME_DEF (0x1E)
#define BT_LEAD_TIME_MAX (0xFF)
#define BT_MAX_KILL_MIN (0x1)
#define BT_MAX_KILL_DEF (0x5)
#define BT_MAX_KILL_MAX (0xFF)
#define BT_DURATION_LIMIT_DEF 625
#define BT_DURATION_LIMIT_MAX 1250
#define BT_DURATION_LIMIT_MIN 625
#define BT_ON_THRESHOLD_DEF 4
#define BT_ON_THRESHOLD_MAX 1000
#define BT_ON_THRESHOLD_MIN 1
#define BT_FRAG_THRESHOLD_DEF 0
#define BT_FRAG_THRESHOLD_MAX 0
#define BT_FRAG_THRESHOLD_MIN 0
#define BT_AGG_THRESHOLD_DEF 1200
#define BT_AGG_THRESHOLD_MAX 8000
#define BT_AGG_THRESHOLD_MIN 400
/*
* REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
*
* agn devices support hardware handshake with Bluetooth device on
* same platform. Bluetooth device alerts wireless device when it will Tx;
* wireless device can delay or kill its own Tx to accommodate.
*/
struct iwl_bt_cmd {
u8 flags;
u8 lead_time;
u8 max_kill;
u8 reserved;
__le32 kill_ack_mask;
__le32 kill_cts_mask;
} __packed;
#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
#define IWLAGN_BT_FLAG_COEX_MODE_3W 2
#define IWLAGN_BT_FLAG_COEX_MODE_4W 3
#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
/* Disable Sync PSPoll on SCO/eSCO */
#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
#define IWLAGN_BT_PRIO_BOOST_MIN 0x00
#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
#define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
#define IWLAGN_BT_MAX_KILL_DEFAULT 5
#define IWLAGN_BT3_T7_DEFAULT 1
enum iwl_bt_kill_idx {
IWL_BT_KILL_DEFAULT = 0,
IWL_BT_KILL_OVERRIDE = 1,
IWL_BT_KILL_REDUCE = 2,
};
#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
#define IWLAGN_BT3_T2_DEFAULT 0xc
#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
IWLAGN_BT_VALID_BOOST | \
IWLAGN_BT_VALID_MAX_KILL | \
IWLAGN_BT_VALID_3W_TIMERS | \
IWLAGN_BT_VALID_KILL_ACK_MASK | \
IWLAGN_BT_VALID_KILL_CTS_MASK | \
IWLAGN_BT_VALID_REDUCED_TX_PWR | \
IWLAGN_BT_VALID_3W_LUT)
#define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
#define IWLAGN_BT_DECISION_LUT_SIZE 12
struct iwl_basic_bt_cmd {
u8 flags;
u8 ledtime; /* unused */
u8 max_kill;
u8 bt3_timer_t7_value;
__le32 kill_ack_mask;
__le32 kill_cts_mask;
u8 bt3_prio_sample_time;
u8 bt3_timer_t2_value;
__le16 bt4_reaction_time; /* unused */
__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
/*
* bit 0: use reduced tx power for control frame
* bit 1 - 7: reserved
*/
u8 reduce_txpower;
u8 reserved;
__le16 valid;
};
struct iwl_bt_cmd_v1 {
struct iwl_basic_bt_cmd basic;
u8 prio_boost;
/*
* set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
* if configure the following patterns
*/
u8 tx_prio_boost; /* SW boost of WiFi tx priority */
__le16 rx_prio_boost; /* SW boost of WiFi rx priority */
};
struct iwl_bt_cmd_v2 {
struct iwl_basic_bt_cmd basic;
__le32 prio_boost;
/*
* set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
* if configure the following patterns
*/
u8 reserved;
u8 tx_prio_boost; /* SW boost of WiFi tx priority */
__le16 rx_prio_boost; /* SW boost of WiFi rx priority */
};
#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
struct iwlagn_bt_sco_cmd {
__le32 flags;
};
/******************************************************************************
* (6)
* Spectrum Management (802.11h) Commands, Responses, Notifications:
*
*****************************************************************************/
/*
* Spectrum Management
*/
#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
RXON_FILTER_CTL2HOST_MSK | \
RXON_FILTER_ACCEPT_GRP_MSK | \
RXON_FILTER_DIS_DECRYPT_MSK | \
RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
RXON_FILTER_ASSOC_MSK | \
RXON_FILTER_BCON_AWARE_MSK)
struct iwl_measure_channel {
__le32 duration; /* measurement duration in extended beacon
* format */
u8 channel; /* channel to measure */
u8 type; /* see enum iwl_measure_type */
__le16 reserved;
} __packed;
/*
* REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
*/
struct iwl_spectrum_cmd {
__le16 len; /* number of bytes starting from token */
u8 token; /* token id */
u8 id; /* measurement id -- 0 or 1 */
u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
u8 periodic; /* 1 = periodic */
__le16 path_loss_timeout;
__le32 start_time; /* start time in extended beacon format */
__le32 reserved2;
__le32 flags; /* rxon flags */
__le32 filter_flags; /* rxon filter flags */
__le16 channel_count; /* minimum 1, maximum 10 */
__le16 reserved3;
struct iwl_measure_channel channels[10];
} __packed;
/*
* REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
*/
struct iwl_spectrum_resp {
u8 token;
u8 id; /* id of the prior command replaced, or 0xff */
__le16 status; /* 0 - command will be handled
* 1 - cannot handle (conflicts with another
* measurement) */
} __packed;
enum iwl_measurement_state {
IWL_MEASUREMENT_START = 0,
IWL_MEASUREMENT_STOP = 1,
};
enum iwl_measurement_status {
IWL_MEASUREMENT_OK = 0,
IWL_MEASUREMENT_CONCURRENT = 1,
IWL_MEASUREMENT_CSA_CONFLICT = 2,
IWL_MEASUREMENT_TGH_CONFLICT = 3,
/* 4-5 reserved */
IWL_MEASUREMENT_STOPPED = 6,
IWL_MEASUREMENT_TIMEOUT = 7,
IWL_MEASUREMENT_PERIODIC_FAILED = 8,
};
#define NUM_ELEMENTS_IN_HISTOGRAM 8
struct iwl_measurement_histogram {
__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
} __packed;
/* clear channel availability counters */
struct iwl_measurement_cca_counters {
__le32 ofdm;
__le32 cck;
} __packed;
enum iwl_measure_type {
IWL_MEASURE_BASIC = (1 << 0),
IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
IWL_MEASURE_FRAME = (1 << 4),
/* bits 5:6 are reserved */
IWL_MEASURE_IDLE = (1 << 7),
};
/*
* SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
*/
struct iwl_spectrum_notification {
u8 id; /* measurement id -- 0 or 1 */
u8 token;
u8 channel_index; /* index in measurement channel list */
u8 state; /* 0 - start, 1 - stop */
__le32 start_time; /* lower 32-bits of TSF */
u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
u8 channel;
u8 type; /* see enum iwl_measurement_type */
u8 reserved1;
/* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
* valid if applicable for measurement type requested. */
__le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
__le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
__le32 cca_time; /* channel load time in usecs */
u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
* unidentified */
u8 reserved2[3];
struct iwl_measurement_histogram histogram;
__le32 stop_time; /* lower 32-bits of TSF */
__le32 status; /* see iwl_measurement_status */
} __packed;
/******************************************************************************
* (7)
* Power Management Commands, Responses, Notifications:
*
*****************************************************************************/
/*
* struct iwl_powertable_cmd - Power Table Command
* @flags: See below:
*
* POWER_TABLE_CMD = 0x77 (command, has simple generic response)
*
* PM allow:
* bit 0 - '0' Driver not allow power management
* '1' Driver allow PM (use rest of parameters)
*
* uCode send sleep notifications:
* bit 1 - '0' Don't send sleep notification
* '1' send sleep notification (SEND_PM_NOTIFICATION)
*
* Sleep over DTIM
* bit 2 - '0' PM have to walk up every DTIM
* '1' PM could sleep over DTIM till listen Interval.
*
* PCI power managed
* bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
* '1' !(PCI_CFG_LINK_CTRL & 0x1)
*
* Fast PD
* bit 4 - '1' Put radio to sleep when receiving frame for others
*
* Force sleep Modes
* bit 31/30- '00' use both mac/xtal sleeps
* '01' force Mac sleep
* '10' force xtal sleep
* '11' Illegal set
*
* NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
* ucode assume sleep over DTIM is allowed and we don't need to wake up
* for every DTIM.
*/
#define IWL_POWER_VEC_SIZE 5
#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
struct iwl_powertable_cmd {
__le16 flags;
u8 keep_alive_seconds;
u8 debug_flags;
__le32 rx_data_timeout;
__le32 tx_data_timeout;
__le32 sleep_interval[IWL_POWER_VEC_SIZE];
__le32 keep_alive_beacons;
} __packed;
/*
* PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
* all devices identical.
*/
struct iwl_sleep_notification {
u8 pm_sleep_mode;
u8 pm_wakeup_src;
__le16 reserved;
__le32 sleep_time;
__le32 tsf_low;
__le32 bcon_timer;
} __packed;
/* Sleep states. all devices identical. */
enum {
IWL_PM_NO_SLEEP = 0,
IWL_PM_SLP_MAC = 1,
IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
IWL_PM_SLP_PHY = 4,
IWL_PM_SLP_REPENT = 5,
IWL_PM_WAKEUP_BY_TIMER = 6,
IWL_PM_WAKEUP_BY_DRIVER = 7,
IWL_PM_WAKEUP_BY_RFKILL = 8,
/* 3 reserved */
IWL_PM_NUM_OF_MODES = 12,
};
/*
* REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
*/
#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
struct iwl_card_state_cmd {
__le32 status; /* CARD_STATE_CMD_* request new power state */
} __packed;
/*
* CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
*/
struct iwl_card_state_notif {
__le32 flags;
} __packed;
#define HW_CARD_DISABLED 0x01
#define SW_CARD_DISABLED 0x02
#define CT_CARD_DISABLED 0x04
#define RXON_CARD_DISABLED 0x10
struct iwl_ct_kill_config {
__le32 reserved;
__le32 critical_temperature_M;
__le32 critical_temperature_R;
} __packed;
/* 1000, and 6x00 */
struct iwl_ct_kill_throttling_config {
__le32 critical_temperature_exit;
__le32 reserved;
__le32 critical_temperature_enter;
} __packed;
/******************************************************************************
* (8)
* Scan Commands, Responses, Notifications:
*
*****************************************************************************/
#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
/*
* struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
*
* One for each channel in the scan list.
* Each channel can independently select:
* 1) SSID for directed active scans
* 2) Txpower setting (for rate specified within Tx command)
* 3) How long to stay on-channel (behavior may be modified by quiet_time,
* quiet_plcp_th, good_CRC_th)
*
* To avoid uCode errors, make sure the following are true (see comments
* under struct iwl_scan_cmd about max_out_time and quiet_time):
* 1) If using passive_dwell (i.e. passive_dwell != 0):
* active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
* 2) quiet_time <= active_dwell
* 3) If restricting off-channel time (i.e. max_out_time !=0):
* passive_dwell < max_out_time
* active_dwell < max_out_time
*/
struct iwl_scan_channel {
/*
* type is defined as:
* 0:0 1 = active, 0 = passive
* 1:20 SSID direct bit map; if a bit is set, then corresponding
* SSID IE is transmitted in probe request.
* 21:31 reserved
*/
__le32 type;
__le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
u8 tx_gain; /* gain for analog radio */
u8 dsp_atten; /* gain for DSP */
__le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
__le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
} __packed;
/* set number of direct probes __le32 type */
#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
/*
* struct iwl_ssid_ie - directed scan network information element
*
* Up to 20 of these may appear in REPLY_SCAN_CMD,
* selected by "type" bit field in struct iwl_scan_channel;
* each channel may select different ssids from among the 20 entries.
* SSID IEs get transmitted in reverse order of entry.
*/
struct iwl_ssid_ie {
u8 id;
u8 len;
u8 ssid[32];
} __packed;
#define PROBE_OPTION_MAX 20
#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
#define IWL_GOOD_CRC_TH_DISABLED 0
#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
#define IWL_MAX_CMD_SIZE 4096
/*
* REPLY_SCAN_CMD = 0x80 (command)
*
* The hardware scan command is very powerful; the driver can set it up to
* maintain (relatively) normal network traffic while doing a scan in the
* background. The max_out_time and suspend_time control the ratio of how
* long the device stays on an associated network channel ("service channel")
* vs. how long it's away from the service channel, i.e. tuned to other channels
* for scanning.
*
* max_out_time is the max time off-channel (in usec), and suspend_time
* is how long (in "extended beacon" format) that the scan is "suspended"
* after returning to the service channel. That is, suspend_time is the
* time that we stay on the service channel, doing normal work, between
* scan segments. The driver may set these parameters differently to support
* scanning when associated vs. not associated, and light vs. heavy traffic
* loads when associated.
*
* After receiving this command, the device's scan engine does the following;
*
* 1) Sends SCAN_START notification to driver
* 2) Checks to see if it has time to do scan for one channel
* 3) Sends NULL packet, with power-save (PS) bit set to 1,
* to tell AP that we're going off-channel
* 4) Tunes to first channel in scan list, does active or passive scan
* 5) Sends SCAN_RESULT notification to driver
* 6) Checks to see if it has time to do scan on *next* channel in list
* 7) Repeats 4-6 until it no longer has time to scan the next channel
* before max_out_time expires
* 8) Returns to service channel
* 9) Sends NULL packet with PS=0 to tell AP that we're back
* 10) Stays on service channel until suspend_time expires
* 11) Repeats entire process 2-10 until list is complete
* 12) Sends SCAN_COMPLETE notification
*
* For fast, efficient scans, the scan command also has support for staying on
* a channel for just a short time, if doing active scanning and getting no
* responses to the transmitted probe request. This time is controlled by
* quiet_time, and the number of received packets below which a channel is
* considered "quiet" is controlled by quiet_plcp_threshold.
*
* For active scanning on channels that have regulatory restrictions against
* blindly transmitting, the scan can listen before transmitting, to make sure
* that there is already legitimate activity on the channel. If enough
* packets are cleanly received on the channel (controlled by good_CRC_th,
* typical value 1), the scan engine starts transmitting probe requests.
*
* Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
*
* To avoid uCode errors, see timing restrictions described under
* struct iwl_scan_channel.
*/
enum iwl_scan_flags {
/* BIT(0) currently unused */
IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
/* bits 2-7 reserved */
};
struct iwl_scan_cmd {
__le16 len;
u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
u8 channel_count; /* # channels in channel list */
__le16 quiet_time; /* dwell only this # millisecs on quiet channel
* (only for active scan) */
__le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
__le16 good_CRC_th; /* passive -> active promotion threshold */
__le16 rx_chain; /* RXON_RX_CHAIN_* */
__le32 max_out_time; /* max usec to be away from associated (service)
* channel */
__le32 suspend_time; /* pause scan this long (in "extended beacon
* format") when returning to service chnl:
*/
__le32 flags; /* RXON_FLG_* */
__le32 filter_flags; /* RXON_FILTER_* */
/* For active scans (set to all-0s for passive scans).
* Does not include payload. Must specify Tx rate; no rate scaling. */
struct iwl_tx_cmd tx_cmd;
/* For directed active scans (set to all-0s otherwise) */
struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
/*
* Probe request frame, followed by channel list.
*
* Size of probe request frame is specified by byte count in tx_cmd.
* Channel list follows immediately after probe request frame.
* Number of channels in list is specified by channel_count.
* Each channel in list is of type:
*
* struct iwl_scan_channel channels[0];
*
* NOTE: Only one band of channels can be scanned per pass. You
* must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
* for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
* before requesting another scan.
*/
u8 data[];
} __packed;
/* Can abort will notify by complete notification with abort status. */
#define CAN_ABORT_STATUS cpu_to_le32(0x1)
/* complete notification statuses */
#define ABORT_STATUS 0x2
/*
* REPLY_SCAN_CMD = 0x80 (response)
*/
struct iwl_scanreq_notification {
__le32 status; /* 1: okay, 2: cannot fulfill request */
} __packed;
/*
* SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
*/
struct iwl_scanstart_notification {
__le32 tsf_low;
__le32 tsf_high;
__le32 beacon_timer;
u8 channel;
u8 band;
u8 reserved[2];
__le32 status;
} __packed;
#define SCAN_OWNER_STATUS 0x1
#define MEASURE_OWNER_STATUS 0x2
#define IWL_PROBE_STATUS_OK 0
#define IWL_PROBE_STATUS_TX_FAILED BIT(0)
/* error statuses combined with TX_FAILED */
#define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
#define IWL_PROBE_STATUS_FAIL_BT BIT(2)
#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
/*
* SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
*/
struct iwl_scanresults_notification {
u8 channel;
u8 band;
u8 probe_status;
u8 num_probe_not_sent; /* not enough time to send */
__le32 tsf_low;
__le32 tsf_high;
__le32 statistics[NUMBER_OF_STATISTICS];
} __packed;
/*
* SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
*/
struct iwl_scancomplete_notification {
u8 scanned_channels;
u8 status;
u8 bt_status; /* BT On/Off status */
u8 last_channel;
__le32 tsf_low;
__le32 tsf_high;
} __packed;
/******************************************************************************
* (9)
* IBSS/AP Commands and Notifications:
*
*****************************************************************************/
enum iwl_ibss_manager {
IWL_NOT_IBSS_MANAGER = 0,
IWL_IBSS_MANAGER = 1,
};
/*
* BEACON_NOTIFICATION = 0x90 (notification only, not a command)
*/
struct iwlagn_beacon_notif {
struct iwlagn_tx_resp beacon_notify_hdr;
__le32 low_tsf;
__le32 high_tsf;
__le32 ibss_mgr_status;
} __packed;
/*
* REPLY_TX_BEACON = 0x91 (command, has simple generic response)
*/
struct iwl_tx_beacon_cmd {
struct iwl_tx_cmd tx;
__le16 tim_idx;
u8 tim_size;
u8 reserved1;
struct ieee80211_hdr frame[]; /* beacon frame */
} __packed;
/******************************************************************************
* (10)
* Statistics Commands and Notifications:
*
*****************************************************************************/
#define IWL_TEMP_CONVERT 260
#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
/* Used for passing to driver number of successes and failures per rate */
struct rate_histogram {
union {
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
} success;
union {
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
} failed;
} __packed;
/* statistics command response */
struct statistics_dbg {
__le32 burst_check;
__le32 burst_count;
__le32 wait_for_silence_timeout_cnt;
__le32 reserved[3];
} __packed;
struct statistics_rx_phy {
__le32 ina_cnt;
__le32 fina_cnt;
__le32 plcp_err;
__le32 crc32_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 false_alarm_cnt;
__le32 fina_sync_err_cnt;
__le32 sfd_timeout;
__le32 fina_timeout;
__le32 unresponded_rts;
__le32 rxe_frame_limit_overrun;
__le32 sent_ack_cnt;
__le32 sent_cts_cnt;
__le32 sent_ba_rsp_cnt;
__le32 dsp_self_kill;
__le32 mh_format_err;
__le32 re_acq_main_rssi_sum;
__le32 reserved3;
} __packed;
struct statistics_rx_ht_phy {
__le32 plcp_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 crc32_err;
__le32 mh_format_err;
__le32 agg_crc32_good;
__le32 agg_mpdu_cnt;
__le32 agg_cnt;
__le32 unsupport_mcs;
} __packed;
#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
struct statistics_rx_non_phy {
__le32 bogus_cts; /* CTS received when not expecting CTS */
__le32 bogus_ack; /* ACK received when not expecting ACK */
__le32 non_bssid_frames; /* number of frames with BSSID that
* doesn't belong to the STA BSSID */
__le32 filtered_frames; /* count frames that were dumped in the
* filtering process */
__le32 non_channel_beacons; /* beacons with our bss id but not on
* our serving channel */
__le32 channel_beacons; /* beacons with our bss id and in our
* serving channel */
__le32 num_missed_bcon; /* number of missed beacons */
__le32 adc_rx_saturation_time; /* count in 0.8us units the time the
* ADC was in saturation */
__le32 ina_detection_search_time;/* total time (in 0.8us) searched
* for INA */
__le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
__le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
__le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
__le32 interference_data_flag; /* flag for interference data
* availability. 1 when data is
* available. */
__le32 channel_load; /* counts RX Enable time in uSec */
__le32 dsp_false_alarms; /* DSP false alarm (both OFDM
* and CCK) counter */
__le32 beacon_rssi_a;
__le32 beacon_rssi_b;
__le32 beacon_rssi_c;
__le32 beacon_energy_a;
__le32 beacon_energy_b;
__le32 beacon_energy_c;
} __packed;
struct statistics_rx_non_phy_bt {
struct statistics_rx_non_phy common;
/* additional stats for bt */
__le32 num_bt_kills;
__le32 reserved[2];
} __packed;
struct statistics_rx {
struct statistics_rx_phy ofdm;
struct statistics_rx_phy cck;
struct statistics_rx_non_phy general;
struct statistics_rx_ht_phy ofdm_ht;
} __packed;
struct statistics_rx_bt {
struct statistics_rx_phy ofdm;
struct statistics_rx_phy cck;
struct statistics_rx_non_phy_bt general;
struct statistics_rx_ht_phy ofdm_ht;
} __packed;
/**
* struct statistics_tx_power - current tx power
*
* @ant_a: current tx power on chain a in 1/2 dB step
* @ant_b: current tx power on chain b in 1/2 dB step
* @ant_c: current tx power on chain c in 1/2 dB step
* @reserved: reserved for alignment
*/
struct statistics_tx_power {
u8 ant_a;
u8 ant_b;
u8 ant_c;
u8 reserved;
} __packed;
struct statistics_tx_non_phy_agg {
__le32 ba_timeout;
__le32 ba_reschedule_frames;
__le32 scd_query_agg_frame_cnt;
__le32 scd_query_no_agg;
__le32 scd_query_agg;
__le32 scd_query_mismatch;
__le32 frame_not_ready;
__le32 underrun;
__le32 bt_prio_kill;
__le32 rx_ba_rsp_cnt;
} __packed;
struct statistics_tx {
__le32 preamble_cnt;
__le32 rx_detected_cnt;
__le32 bt_prio_defer_cnt;
__le32 bt_prio_kill_cnt;
__le32 few_bytes_cnt;
__le32 cts_timeout;
__le32 ack_timeout;
__le32 expected_ack_cnt;
__le32 actual_ack_cnt;
__le32 dump_msdu_cnt;
__le32 burst_abort_next_frame_mismatch_cnt;
__le32 burst_abort_missing_next_frame_cnt;
__le32 cts_timeout_collision;
__le32 ack_or_ba_timeout_collision;
struct statistics_tx_non_phy_agg agg;
/*
* "tx_power" are optional parameters provided by uCode,
* 6000 series is the only device provide the information,
* Those are reserved fields for all the other devices
*/
struct statistics_tx_power tx_power;
__le32 reserved1;
} __packed;
struct statistics_div {
__le32 tx_on_a;
__le32 tx_on_b;
__le32 exec_time;
__le32 probe_time;
__le32 reserved1;
__le32 reserved2;
} __packed;
struct statistics_general_common {
__le32 temperature; /* radio temperature */
__le32 temperature_m; /* radio voltage */
struct statistics_dbg dbg;
__le32 sleep_time;
__le32 slots_out;
__le32 slots_idle;
__le32 ttl_timestamp;
struct statistics_div div;
__le32 rx_enable_counter;
/*
* num_of_sos_states:
* count the number of times we have to re-tune
* in order to get out of bad PHY status
*/
__le32 num_of_sos_states;
} __packed;
struct statistics_bt_activity {
/* Tx statistics */
__le32 hi_priority_tx_req_cnt;
__le32 hi_priority_tx_denied_cnt;
__le32 lo_priority_tx_req_cnt;
__le32 lo_priority_tx_denied_cnt;
/* Rx statistics */
__le32 hi_priority_rx_req_cnt;
__le32 hi_priority_rx_denied_cnt;
__le32 lo_priority_rx_req_cnt;
__le32 lo_priority_rx_denied_cnt;
} __packed;
struct statistics_general {
struct statistics_general_common common;
__le32 reserved2;
__le32 reserved3;
} __packed;
struct statistics_general_bt {
struct statistics_general_common common;
struct statistics_bt_activity activity;
__le32 reserved2;
__le32 reserved3;
} __packed;
#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
/*
* REPLY_STATISTICS_CMD = 0x9c,
* all devices identical.
*
* This command triggers an immediate response containing uCode statistics.
* The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
*
* If the CLEAR_STATS configuration flag is set, uCode will clear its
* internal copy of the statistics (counters) after issuing the response.
* This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
*
* If the DISABLE_NOTIF configuration flag is set, uCode will not issue
* STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
* does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
*/
#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
struct iwl_statistics_cmd {
__le32 configuration_flags; /* IWL_STATS_CONF_* */
} __packed;
/*
* STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
*
* By default, uCode issues this notification after receiving a beacon
* while associated. To disable this behavior, set DISABLE_NOTIF flag in the
* REPLY_STATISTICS_CMD 0x9c, above.
*
* Statistics counters continue to increment beacon after beacon, but are
* cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
* 0x9c with CLEAR_STATS bit set (see above).
*
* uCode also issues this notification during scans. uCode clears statistics
* appropriately so that each notification contains statistics for only the
* one channel that has just been scanned.
*/
#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
struct iwl_notif_statistics {
__le32 flag;
struct statistics_rx rx;
struct statistics_tx tx;
struct statistics_general general;
} __packed;
struct iwl_bt_notif_statistics {
__le32 flag;
struct statistics_rx_bt rx;
struct statistics_tx tx;
struct statistics_general_bt general;
} __packed;
/*
* MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
*
* uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
* in regardless of how many missed beacons, which mean when driver receive the
* notification, inside the command, it can find all the beacons information
* which include number of total missed beacons, number of consecutive missed
* beacons, number of beacons received and number of beacons expected to
* receive.
*
* If uCode detected consecutive_missed_beacons > 5, it will reset the radio
* in order to bring the radio/PHY back to working state; which has no relation
* to when driver will perform sensitivity calibration.
*
* Driver should set it own missed_beacon_threshold to decide when to perform
* sensitivity calibration based on number of consecutive missed beacons in
* order to improve overall performance, especially in noisy environment.
*
*/
#define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
#define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
struct iwl_missed_beacon_notif {
__le32 consecutive_missed_beacons;
__le32 total_missed_becons;
__le32 num_expected_beacons;
__le32 num_recvd_beacons;
} __packed;
/******************************************************************************
* (11)
* Rx Calibration Commands:
*
* With the uCode used for open source drivers, most Tx calibration (except
* for Tx Power) and most Rx calibration is done by uCode during the
* "initialize" phase of uCode boot. Driver must calibrate only:
*
* 1) Tx power (depends on temperature), described elsewhere
* 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
* 3) Receiver sensitivity (to optimize signal detection)
*
*****************************************************************************/
/*
* SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
*
* This command sets up the Rx signal detector for a sensitivity level that
* is high enough to lock onto all signals within the associated network,
* but low enough to ignore signals that are below a certain threshold, so as
* not to have too many "false alarms". False alarms are signals that the
* Rx DSP tries to lock onto, but then discards after determining that they
* are noise.
*
* The optimum number of false alarms is between 5 and 50 per 200 TUs
* (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
* time listening, not transmitting). Driver must adjust sensitivity so that
* the ratio of actual false alarms to actual Rx time falls within this range.
*
* While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
* received beacon. These provide information to the driver to analyze the
* sensitivity. Don't analyze statistics that come in from scanning, or any
* other non-associated-network source. Pertinent statistics include:
*
* From "general" statistics (struct statistics_rx_non_phy):
*
* (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
* Measure of energy of desired signal. Used for establishing a level
* below which the device does not detect signals.
*
* (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
* Measure of background noise in silent period after beacon.
*
* channel_load
* uSecs of actual Rx time during beacon period (varies according to
* how much time was spent transmitting).
*
* From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
*
* false_alarm_cnt
* Signal locks abandoned early (before phy-level header).
*
* plcp_err
* Signal locks abandoned late (during phy-level header).
*
* NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
* beacon to beacon, i.e. each value is an accumulation of all errors
* before and including the latest beacon. Values will wrap around to 0
* after counting up to 2^32 - 1. Driver must differentiate vs.
* previous beacon's values to determine # false alarms in the current
* beacon period.
*
* Total number of false alarms = false_alarms + plcp_errs
*
* For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
* (notice that the start points for OFDM are at or close to settings for
* maximum sensitivity):
*
* START / MIN / MAX
* HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
* HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
* HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
* HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
*
* If actual rate of OFDM false alarms (+ plcp_errors) is too high
* (greater than 50 for each 204.8 msecs listening), reduce sensitivity
* by *adding* 1 to all 4 of the table entries above, up to the max for
* each entry. Conversely, if false alarm rate is too low (less than 5
* for each 204.8 msecs listening), *subtract* 1 from each entry to
* increase sensitivity.
*
* For CCK sensitivity, keep track of the following:
*
* 1). 20-beacon history of maximum background noise, indicated by
* (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
* 3 receivers. For any given beacon, the "silence reference" is
* the maximum of last 60 samples (20 beacons * 3 receivers).
*
* 2). 10-beacon history of strongest signal level, as indicated
* by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
* i.e. the strength of the signal through the best receiver at the
* moment. These measurements are "upside down", with lower values
* for stronger signals, so max energy will be *minimum* value.
*
* Then for any given beacon, the driver must determine the *weakest*
* of the strongest signals; this is the minimum level that needs to be
* successfully detected, when using the best receiver at the moment.
* "Max cck energy" is the maximum (higher value means lower energy!)
* of the last 10 minima. Once this is determined, driver must add
* a little margin by adding "6" to it.
*
* 3). Number of consecutive beacon periods with too few false alarms.
* Reset this to 0 at the first beacon period that falls within the
* "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
*
* Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
* (notice that the start points for CCK are at maximum sensitivity):
*
* START / MIN / MAX
* HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
* HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
* HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
*
* If actual rate of CCK false alarms (+ plcp_errors) is too high
* (greater than 50 for each 204.8 msecs listening), method for reducing
* sensitivity is:
*
* 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
* up to max 400.
*
* 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
* sensitivity has been reduced a significant amount; bring it up to
* a moderate 161. Otherwise, *add* 3, up to max 200.
*
* 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
* sensitivity has been reduced only a moderate or small amount;
* *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
* down to min 0. Otherwise (if gain has been significantly reduced),
* don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
*
* b) Save a snapshot of the "silence reference".
*
* If actual rate of CCK false alarms (+ plcp_errors) is too low
* (less than 5 for each 204.8 msecs listening), method for increasing
* sensitivity is used only if:
*
* 1a) Previous beacon did not have too many false alarms
* 1b) AND difference between previous "silence reference" and current
* "silence reference" (prev - current) is 2 or more,
* OR 2) 100 or more consecutive beacon periods have had rate of
* less than 5 false alarms per 204.8 milliseconds rx time.
*
* Method for increasing sensitivity:
*
* 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
* down to min 125.
*
* 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
* down to min 200.
*
* 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
*
* If actual rate of CCK false alarms (+ plcp_errors) is within good range
* (between 5 and 50 for each 204.8 msecs listening):
*
* 1) Save a snapshot of the silence reference.
*
* 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
* give some extra margin to energy threshold by *subtracting* 8
* from value in HD_MIN_ENERGY_CCK_DET_INDEX.
*
* For all cases (too few, too many, good range), make sure that the CCK
* detection threshold (energy) is below the energy level for robust
* detection over the past 10 beacon periods, the "Max cck energy".
* Lower values mean higher energy; this means making sure that the value
* in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
*
*/
/*
* Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
*/
#define HD_TABLE_SIZE (11) /* number of entries */
#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
/*
* Additional table entries in enhance SENSITIVITY_CMD
*/
#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
#define HD_RESERVED (22)
/* number of entries for enhanced tbl */
#define ENHANCE_HD_TABLE_SIZE (23)
/* number of additional entries for enhanced tbl */
#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
/* Control field in struct iwl_sensitivity_cmd */
#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
/**
* struct iwl_sensitivity_cmd
* @control: (1) updates working table, (0) updates default table
* @table: energy threshold values, use HD_* as index into table
*
* Always use "1" in "control" to update uCode's working table and DSP.
*/
struct iwl_sensitivity_cmd {
__le16 control; /* always use "1" */
__le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
} __packed;
/*
*
*/
struct iwl_enhance_sensitivity_cmd {
__le16 control; /* always use "1" */
__le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
} __packed;
/*
* REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
*
* This command sets the relative gains of agn device's 3 radio receiver chains.
*
* After the first association, driver should accumulate signal and noise
* statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
* beacons from the associated network (don't collect statistics that come
* in from scanning, or any other non-network source).
*
* DISCONNECTED ANTENNA:
*
* Driver should determine which antennas are actually connected, by comparing
* average beacon signal levels for the 3 Rx chains. Accumulate (add) the
* following values over 20 beacons, one accumulator for each of the chains
* a/b/c, from struct statistics_rx_non_phy:
*
* beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
*
* Find the strongest signal from among a/b/c. Compare the other two to the
* strongest. If any signal is more than 15 dB (times 20, unless you
* divide the accumulated values by 20) below the strongest, the driver
* considers that antenna to be disconnected, and should not try to use that
* antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
* driver should declare the stronger one as connected, and attempt to use it
* (A and B are the only 2 Tx chains!).
*
*
* RX BALANCE:
*
* Driver should balance the 3 receivers (but just the ones that are connected
* to antennas, see above) for gain, by comparing the average signal levels
* detected during the silence after each beacon (background noise).
* Accumulate (add) the following values over 20 beacons, one accumulator for
* each of the chains a/b/c, from struct statistics_rx_non_phy:
*
* beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
*
* Find the weakest background noise level from among a/b/c. This Rx chain
* will be the reference, with 0 gain adjustment. Attenuate other channels by
* finding noise difference:
*
* (accum_noise[i] - accum_noise[reference]) / 30
*
* The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
* For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
* driver should limit the difference results to a range of 0-3 (0-4.5 dB),
* and set bit 2 to indicate "reduce gain". The value for the reference
* (weakest) chain should be "0".
*
* diff_gain_[abc] bit fields:
* 2: (1) reduce gain, (0) increase gain
* 1-0: amount of gain, units of 1.5 dB
*/
/* Phy calibration command for series */
enum {
IWL_PHY_CALIBRATE_DC_CMD = 8,
IWL_PHY_CALIBRATE_LO_CMD = 9,
IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
};
/* This enum defines the bitmap of various calibrations to enable in both
* init ucode and runtime ucode through CALIBRATION_CFG_CMD.
*/
enum iwl_ucode_calib_cfg {
IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
IWL_CALIB_CFG_DC_IDX = BIT(1),
IWL_CALIB_CFG_LO_IDX = BIT(2),
IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
IWL_CALIB_CFG_NOISE_IDX = BIT(5),
IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
IWL_CALIB_CFG_PAPD_IDX = BIT(8),
IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
};
#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
IWL_CALIB_CFG_DC_IDX | \
IWL_CALIB_CFG_LO_IDX | \
IWL_CALIB_CFG_TX_IQ_IDX | \
IWL_CALIB_CFG_RX_IQ_IDX | \
IWL_CALIB_CFG_CRYSTAL_IDX)
#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
IWL_CALIB_CFG_DC_IDX | \
IWL_CALIB_CFG_LO_IDX | \
IWL_CALIB_CFG_TX_IQ_IDX | \
IWL_CALIB_CFG_RX_IQ_IDX | \
IWL_CALIB_CFG_TEMPERATURE_IDX | \
IWL_CALIB_CFG_PAPD_IDX | \
IWL_CALIB_CFG_TX_PWR_IDX | \
IWL_CALIB_CFG_CRYSTAL_IDX)
#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
struct iwl_calib_cfg_elmnt_s {
__le32 is_enable;
__le32 start;
__le32 send_res;
__le32 apply_res;
__le32 reserved;
} __packed;
struct iwl_calib_cfg_status_s {
struct iwl_calib_cfg_elmnt_s once;
struct iwl_calib_cfg_elmnt_s perd;
__le32 flags;
} __packed;
struct iwl_calib_cfg_cmd {
struct iwl_calib_cfg_status_s ucd_calib_cfg;
struct iwl_calib_cfg_status_s drv_calib_cfg;
__le32 reserved1;
} __packed;
struct iwl_calib_hdr {
u8 op_code;
u8 first_group;
u8 groups_num;
u8 data_valid;
} __packed;
struct iwl_calib_cmd {
struct iwl_calib_hdr hdr;
u8 data[];
} __packed;
struct iwl_calib_xtal_freq_cmd {
struct iwl_calib_hdr hdr;
u8 cap_pin1;
u8 cap_pin2;
u8 pad[2];
} __packed;
#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
struct iwl_calib_temperature_offset_cmd {
struct iwl_calib_hdr hdr;
__le16 radio_sensor_offset;
__le16 reserved;
} __packed;
struct iwl_calib_temperature_offset_v2_cmd {
struct iwl_calib_hdr hdr;
__le16 radio_sensor_offset_high;
__le16 radio_sensor_offset_low;
__le16 burntVoltageRef;
__le16 reserved;
} __packed;
/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
struct iwl_calib_chain_noise_reset_cmd {
struct iwl_calib_hdr hdr;
u8 data[];
};
/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
struct iwl_calib_chain_noise_gain_cmd {
struct iwl_calib_hdr hdr;
u8 delta_gain_1;
u8 delta_gain_2;
u8 pad[2];
} __packed;
/******************************************************************************
* (12)
* Miscellaneous Commands:
*
*****************************************************************************/
/*
* LEDs Command & Response
* REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
*
* For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
* this command turns it on or off, or sets up a periodic blinking cycle.
*/
struct iwl_led_cmd {
__le32 interval; /* "interval" in uSec */
u8 id; /* 1: Activity, 2: Link, 3: Tech */
u8 off; /* # intervals off while blinking;
* "0", with >0 "on" value, turns LED on */
u8 on; /* # intervals on while blinking;
* "0", regardless of "off", turns LED off */
u8 reserved;
} __packed;
/*
* station priority table entries
* also used as potential "events" value for both
* COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
*/
/*
* COEX events entry flag masks
* RP - Requested Priority
* WP - Win Medium Priority: priority assigned when the contention has been won
*/
#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
#define COEX_CU_UNASSOC_IDLE_RP 4
#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
#define COEX_CU_CALIBRATION_RP 4
#define COEX_CU_PERIODIC_CALIBRATION_RP 4
#define COEX_CU_CONNECTION_ESTAB_RP 4
#define COEX_CU_ASSOCIATED_IDLE_RP 4
#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
#define COEX_CU_ASSOC_AUTO_SCAN_RP 4
#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
#define COEX_CU_RF_ON_RP 6
#define COEX_CU_RF_OFF_RP 4
#define COEX_CU_STAND_ALONE_DEBUG_RP 6
#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
#define COEX_CU_RSRVD1_RP 4
#define COEX_CU_RSRVD2_RP 4
#define COEX_CU_UNASSOC_IDLE_WP 3
#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
#define COEX_CU_CALIBRATION_WP 3
#define COEX_CU_PERIODIC_CALIBRATION_WP 3
#define COEX_CU_CONNECTION_ESTAB_WP 3
#define COEX_CU_ASSOCIATED_IDLE_WP 3
#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
#define COEX_CU_ASSOC_AUTO_SCAN_WP 3
#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
#define COEX_CU_RF_ON_WP 3
#define COEX_CU_RF_OFF_WP 3
#define COEX_CU_STAND_ALONE_DEBUG_WP 6
#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
#define COEX_CU_RSRVD1_WP 3
#define COEX_CU_RSRVD2_WP 3
#define COEX_UNASSOC_IDLE_FLAGS 0
#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
#define COEX_UNASSOC_AUTO_SCAN_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
#define COEX_CALIBRATION_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
#define COEX_PERIODIC_CALIBRATION_FLAGS 0
/*
* COEX_CONNECTION_ESTAB:
* we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
*/
#define COEX_CONNECTION_ESTAB_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
#define COEX_ASSOCIATED_IDLE_FLAGS 0
#define COEX_ASSOC_MANUAL_SCAN_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
#define COEX_ASSOC_AUTO_SCAN_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
#define COEX_RF_ON_FLAGS 0
#define COEX_RF_OFF_FLAGS 0
#define COEX_STAND_ALONE_DEBUG_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
#define COEX_IPAN_ASSOC_LEVEL_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
#define COEX_RSRVD1_FLAGS 0
#define COEX_RSRVD2_FLAGS 0
/*
* COEX_CU_RF_ON is the event wrapping all radio ownership.
* We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
*/
#define COEX_CU_RF_ON_FLAGS \
(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
enum {
/* un-association part */
COEX_UNASSOC_IDLE = 0,
COEX_UNASSOC_MANUAL_SCAN = 1,
COEX_UNASSOC_AUTO_SCAN = 2,
/* calibration */
COEX_CALIBRATION = 3,
COEX_PERIODIC_CALIBRATION = 4,
/* connection */
COEX_CONNECTION_ESTAB = 5,
/* association part */
COEX_ASSOCIATED_IDLE = 6,
COEX_ASSOC_MANUAL_SCAN = 7,
COEX_ASSOC_AUTO_SCAN = 8,
COEX_ASSOC_ACTIVE_LEVEL = 9,
/* RF ON/OFF */
COEX_RF_ON = 10,
COEX_RF_OFF = 11,
COEX_STAND_ALONE_DEBUG = 12,
/* IPAN */
COEX_IPAN_ASSOC_LEVEL = 13,
/* reserved */
COEX_RSRVD1 = 14,
COEX_RSRVD2 = 15,
COEX_NUM_OF_EVENTS = 16
};
/*
* Coexistence WIFI/WIMAX Command
* COEX_PRIORITY_TABLE_CMD = 0x5a
*
*/
struct iwl_wimax_coex_event_entry {
u8 request_prio;
u8 win_medium_prio;
u8 reserved;
u8 flags;
} __packed;
/* COEX flag masks */
/* Station table is valid */
#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
/* UnMask wake up src at unassociated sleep */
#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
/* UnMask wake up src at associated sleep */
#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
/* Enable CoEx feature. */
#define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
struct iwl_wimax_coex_cmd {
u8 flags;
u8 reserved[3];
struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
} __packed;
/*
* Coexistence MEDIUM NOTIFICATION
* COEX_MEDIUM_NOTIFICATION = 0x5b
*
* notification from uCode to host to indicate medium changes
*
*/
/*
* status field
* bit 0 - 2: medium status
* bit 3: medium change indication
* bit 4 - 31: reserved
*/
/* status option values, (0 - 2 bits) */
#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
#define COEX_MEDIUM_MSK (0x7)
/* send notification status (1 bit) */
#define COEX_MEDIUM_CHANGED (0x8)
#define COEX_MEDIUM_CHANGED_MSK (0x8)
#define COEX_MEDIUM_SHIFT (3)
struct iwl_coex_medium_notification {
__le32 status;
__le32 events;
} __packed;
/*
* Coexistence EVENT Command
* COEX_EVENT_CMD = 0x5c
*
* send from host to uCode for coex event request.
*/
/* flags options */
#define COEX_EVENT_REQUEST_MSK (0x1)
struct iwl_coex_event_cmd {
u8 flags;
u8 event;
__le16 reserved;
} __packed;
struct iwl_coex_event_resp {
__le32 status;
} __packed;
/******************************************************************************
* Bluetooth Coexistence commands
*
*****************************************************************************/
/*
* BT Status notification
* REPLY_BT_COEX_PROFILE_NOTIF = 0xce
*/
enum iwl_bt_coex_profile_traffic_load {
IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
/*
* There are no more even though below is a u8, the
* indication from the BT device only has two bits.
*/
};
#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
/* BT UART message - Share Part (BT -> WiFi) */
#define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
#define BT_UART_MSG_FRAME1MSGTYPE_MSK \
(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
#define BT_UART_MSG_FRAME1SSN_POS (3)
#define BT_UART_MSG_FRAME1SSN_MSK \
(0x3 << BT_UART_MSG_FRAME1SSN_POS)
#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
#define BT_UART_MSG_FRAME1RESERVED_POS (6)
#define BT_UART_MSG_FRAME1RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
#define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
#define BT_UART_MSG_FRAME2CHLSEQN_MSK \
(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
#define BT_UART_MSG_FRAME2INBAND_POS (5)
#define BT_UART_MSG_FRAME2INBAND_MSK \
(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
#define BT_UART_MSG_FRAME2RESERVED_POS (6)
#define BT_UART_MSG_FRAME2RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
#define BT_UART_MSG_FRAME3SCOESCO_POS (0)
#define BT_UART_MSG_FRAME3SCOESCO_MSK \
(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
#define BT_UART_MSG_FRAME3SNIFF_POS (1)
#define BT_UART_MSG_FRAME3SNIFF_MSK \
(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
#define BT_UART_MSG_FRAME3A2DP_POS (2)
#define BT_UART_MSG_FRAME3A2DP_MSK \
(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
#define BT_UART_MSG_FRAME3ACL_POS (3)
#define BT_UART_MSG_FRAME3ACL_MSK \
(0x1 << BT_UART_MSG_FRAME3ACL_POS)
#define BT_UART_MSG_FRAME3MASTER_POS (4)
#define BT_UART_MSG_FRAME3MASTER_MSK \
(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
#define BT_UART_MSG_FRAME3OBEX_POS (5)
#define BT_UART_MSG_FRAME3OBEX_MSK \
(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
#define BT_UART_MSG_FRAME3RESERVED_POS (6)
#define BT_UART_MSG_FRAME3RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
#define BT_UART_MSG_FRAME4RESERVED_POS (6)
#define BT_UART_MSG_FRAME4RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
#define BT_UART_MSG_FRAME5RESERVED_POS (6)
#define BT_UART_MSG_FRAME5RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
#define BT_UART_MSG_FRAME6RESERVED_POS (6)
#define BT_UART_MSG_FRAME6RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
#define BT_UART_MSG_FRAME7PAGE_POS (3)
#define BT_UART_MSG_FRAME7PAGE_MSK \
(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
#define BT_UART_MSG_FRAME7INQUIRY_POS (4)
#define BT_UART_MSG_FRAME7INQUIRY_MSK \
(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
#define BT_UART_MSG_FRAME7RESERVED_POS (6)
#define BT_UART_MSG_FRAME7RESERVED_MSK \
(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
/* BT Session Activity 2 UART message (BT -> WiFi) */
#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
#define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
#define BT_UART_MSG_2_FRAME2RESERVED_MSK \
(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
#define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
#define BT_UART_MSG_2_FRAME3RESERVED_MSK \
(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
#define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
#define BT_UART_MSG_2_FRAME4RESERVED_MSK \
(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
#define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
#define BT_UART_MSG_2_FRAME5RESERVED_MSK \
(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
#define BT_UART_MSG_2_FRAME6RFU_POS (5)
#define BT_UART_MSG_2_FRAME6RFU_MSK \
(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
#define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
#define BT_UART_MSG_2_FRAME6RESERVED_MSK \
(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
#define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
#define BT_UART_MSG_2_FRAME7RESERVED_MSK \
(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
struct iwl_bt_uart_msg {
u8 header;
u8 frame1;
u8 frame2;
u8 frame3;
u8 frame4;
u8 frame5;
u8 frame6;
u8 frame7;
} __packed;
struct iwl_bt_coex_profile_notif {
struct iwl_bt_uart_msg last_bt_uart_msg;
u8 bt_status; /* 0 - off, 1 - on */
u8 bt_traffic_load; /* 0 .. 3? */
u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
u8 reserved;
} __packed;
#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
/*
* BT Coexistence Priority table
* REPLY_BT_COEX_PRIO_TABLE = 0xcc
*/
enum bt_coex_prio_table_events {
BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
BT_COEX_PRIO_TBL_EVT_DTIM = 6,
BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
BT_COEX_PRIO_TBL_EVT_MAX,
};
enum bt_coex_prio_table_priorities {
BT_COEX_PRIO_TBL_DISABLED = 0,
BT_COEX_PRIO_TBL_PRIO_LOW = 1,
BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
BT_COEX_PRIO_TBL_MAX,
};
struct iwl_bt_coex_prio_table_cmd {
u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
} __packed;
#define IWL_BT_COEX_ENV_CLOSE 0
#define IWL_BT_COEX_ENV_OPEN 1
/*
* BT Protection Envelope
* REPLY_BT_COEX_PROT_ENV = 0xcd
*/
struct iwl_bt_coex_prot_env_cmd {
u8 action; /* 0 = closed, 1 = open */
u8 type; /* 0 .. 15 */
u8 reserved[2];
} __packed;
/*
* REPLY_D3_CONFIG
*/
enum iwlagn_d3_wakeup_filters {
IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
};
struct iwlagn_d3_config_cmd {
__le32 min_sleep_time;
__le32 wakeup_flags;
} __packed;
/*
* REPLY_WOWLAN_PATTERNS
*/
#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
struct iwlagn_wowlan_pattern {
u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
u8 mask_size;
u8 pattern_size;
__le16 reserved;
} __packed;
#define IWLAGN_WOWLAN_MAX_PATTERNS 20
struct iwlagn_wowlan_patterns_cmd {
__le32 n_patterns;
struct iwlagn_wowlan_pattern patterns[];
} __packed;
/*
* REPLY_WOWLAN_WAKEUP_FILTER
*/
enum iwlagn_wowlan_wakeup_filters {
IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
};
struct iwlagn_wowlan_wakeup_filter_cmd {
__le32 enabled;
__le16 non_qos_seq;
__le16 reserved;
__le16 qos_seq[8];
};
/*
* REPLY_WOWLAN_TSC_RSC_PARAMS
*/
#define IWLAGN_NUM_RSC 16
struct tkip_sc {
__le16 iv16;
__le16 pad;
__le32 iv32;
} __packed;
struct iwlagn_tkip_rsc_tsc {
struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
struct tkip_sc tsc;
} __packed;
struct aes_sc {
__le64 pn;
} __packed;
struct iwlagn_aes_rsc_tsc {
struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
struct aes_sc tsc;
} __packed;
union iwlagn_all_tsc_rsc {
struct iwlagn_tkip_rsc_tsc tkip;
struct iwlagn_aes_rsc_tsc aes;
};
struct iwlagn_wowlan_rsc_tsc_params_cmd {
union iwlagn_all_tsc_rsc all_tsc_rsc;
} __packed;
/*
* REPLY_WOWLAN_TKIP_PARAMS
*/
#define IWLAGN_MIC_KEY_SIZE 8
#define IWLAGN_P1K_SIZE 5
struct iwlagn_mic_keys {
u8 tx[IWLAGN_MIC_KEY_SIZE];
u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
} __packed;
struct iwlagn_p1k_cache {
__le16 p1k[IWLAGN_P1K_SIZE];
} __packed;
#define IWLAGN_NUM_RX_P1K_CACHE 2
struct iwlagn_wowlan_tkip_params_cmd {
struct iwlagn_mic_keys mic_keys;
struct iwlagn_p1k_cache tx;
struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
} __packed;
/*
* REPLY_WOWLAN_KEK_KCK_MATERIAL
*/
#define IWLAGN_KCK_MAX_SIZE 32
#define IWLAGN_KEK_MAX_SIZE 32
struct iwlagn_wowlan_kek_kck_material_cmd {
u8 kck[IWLAGN_KCK_MAX_SIZE];
u8 kek[IWLAGN_KEK_MAX_SIZE];
__le16 kck_len;
__le16 kek_len;
__le64 replay_ctr;
} __packed;
#define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
/*
* REPLY_WOWLAN_GET_STATUS = 0xe5
*/
struct iwlagn_wowlan_status {
__le64 replay_ctr;
__le32 rekey_status;
__le32 wakeup_reason;
u8 pattern_number;
u8 reserved1;
__le16 qos_seq_ctr[8];
__le16 non_qos_seq_ctr;
__le16 reserved2;
union iwlagn_all_tsc_rsc tsc_rsc;
__le16 reserved3;
} __packed;
/*
* REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
*/
/*
* Minimum slot time in TU
*/
#define IWL_MIN_SLOT_TIME 20
/**
* struct iwl_wipan_slot
* @width: Time in TU
* @type:
* 0 - BSS
* 1 - PAN
* @reserved: reserved for alignment
*/
struct iwl_wipan_slot {
__le16 width;
u8 type;
u8 reserved;
} __packed;
#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
/**
* struct iwl_wipan_params_cmd
* @flags:
* bit0: reserved
* bit1: CP leave channel with CTS
* bit2: CP leave channel qith Quiet
* bit3: slotted mode
* 1 - work in slotted mode
* 0 - work in non slotted mode
* bit4: filter beacon notification
* bit5: full tx slotted mode. if this flag is set,
* uCode will perform leaving channel methods in context switch
* also when working in same channel mode
* @num_slots: 1 - 10
* @slots: per-slot data
* @reserved: reserved for alignment
*/
struct iwl_wipan_params_cmd {
__le16 flags;
u8 reserved;
u8 num_slots;
struct iwl_wipan_slot slots[10];
} __packed;
/*
* REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
*
* TODO: Figure out what this is used for,
* it can only switch between 2.4 GHz
* channels!!
*/
struct iwl_wipan_p2p_channel_switch_cmd {
__le16 channel;
__le16 reserved;
};
/*
* REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
*
* This is used by the device to notify us of the
* NoA schedule it determined so we can forward it
* to userspace for inclusion in probe responses.
*
* In beacons, the NoA schedule is simply appended
* to the frame we give the device.
*/
struct iwl_wipan_noa_descriptor {
u8 count;
__le32 duration;
__le32 interval;
__le32 starttime;
} __packed;
struct iwl_wipan_noa_attribute {
u8 id;
__le16 length;
u8 index;
u8 ct_window;
struct iwl_wipan_noa_descriptor descr0, descr1;
u8 reserved;
} __packed;
struct iwl_wipan_noa_notification {
u32 noa_active;
struct iwl_wipan_noa_attribute noa_attribute;
} __packed;
#endif /* __iwl_commands_h__ */