blob: cd2fbde2e6d72efd75702f6c48a875fb7aec1051 [file] [log] [blame]
/*
* fs/nfs/nfs4proc.c
*
* Client-side procedure declarations for NFSv4.
*
* Copyright (c) 2002 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <andros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ratelimit.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/nfs_mount.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/module.h>
#include <linux/xattr.h>
#include <linux/utsname.h>
#include <linux/freezer.h>
#include <linux/iversion.h>
#include "nfs4_fs.h"
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "callback.h"
#include "pnfs.h"
#include "netns.h"
#include "sysfs.h"
#include "nfs4idmap.h"
#include "nfs4session.h"
#include "fscache.h"
#include "nfs42.h"
#include "nfs4trace.h"
#define NFSDBG_FACILITY NFSDBG_PROC
#define NFS4_BITMASK_SZ 3
#define NFS4_POLL_RETRY_MIN (HZ/10)
#define NFS4_POLL_RETRY_MAX (15*HZ)
/* file attributes which can be mapped to nfs attributes */
#define NFS4_VALID_ATTRS (ATTR_MODE \
| ATTR_UID \
| ATTR_GID \
| ATTR_SIZE \
| ATTR_ATIME \
| ATTR_MTIME \
| ATTR_CTIME \
| ATTR_ATIME_SET \
| ATTR_MTIME_SET)
struct nfs4_opendata;
static int _nfs4_recover_proc_open(struct nfs4_opendata *data);
static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr);
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fattr *fattr, struct inode *inode);
static int nfs4_do_setattr(struct inode *inode, const struct cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs_open_context *ctx, struct nfs4_label *ilabel);
#ifdef CONFIG_NFS_V4_1
static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp,
const struct cred *cred,
struct nfs4_slot *slot,
bool is_privileged);
static int nfs41_test_stateid(struct nfs_server *, const nfs4_stateid *,
const struct cred *);
static int nfs41_free_stateid(struct nfs_server *, const nfs4_stateid *,
const struct cred *, bool);
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static inline struct nfs4_label *
nfs4_label_init_security(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *label)
{
int err;
if (label == NULL)
return NULL;
if (nfs_server_capable(dir, NFS_CAP_SECURITY_LABEL) == 0)
return NULL;
label->lfs = 0;
label->pi = 0;
label->len = 0;
label->label = NULL;
err = security_dentry_init_security(dentry, sattr->ia_mode,
&dentry->d_name, NULL,
(void **)&label->label, &label->len);
if (err == 0)
return label;
return NULL;
}
static inline void
nfs4_label_release_security(struct nfs4_label *label)
{
if (label)
security_release_secctx(label->label, label->len);
}
static inline u32 *nfs4_bitmask(struct nfs_server *server, struct nfs4_label *label)
{
if (label)
return server->attr_bitmask;
return server->attr_bitmask_nl;
}
#else
static inline struct nfs4_label *
nfs4_label_init_security(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *l)
{ return NULL; }
static inline void
nfs4_label_release_security(struct nfs4_label *label)
{ return; }
static inline u32 *
nfs4_bitmask(struct nfs_server *server, struct nfs4_label *label)
{ return server->attr_bitmask; }
#endif
/* Prevent leaks of NFSv4 errors into userland */
static int nfs4_map_errors(int err)
{
if (err >= -1000)
return err;
switch (err) {
case -NFS4ERR_RESOURCE:
case -NFS4ERR_LAYOUTTRYLATER:
case -NFS4ERR_RECALLCONFLICT:
case -NFS4ERR_RETURNCONFLICT:
return -EREMOTEIO;
case -NFS4ERR_WRONGSEC:
case -NFS4ERR_WRONG_CRED:
return -EPERM;
case -NFS4ERR_BADOWNER:
case -NFS4ERR_BADNAME:
return -EINVAL;
case -NFS4ERR_SHARE_DENIED:
return -EACCES;
case -NFS4ERR_MINOR_VERS_MISMATCH:
return -EPROTONOSUPPORT;
case -NFS4ERR_FILE_OPEN:
return -EBUSY;
case -NFS4ERR_NOT_SAME:
return -ENOTSYNC;
default:
dprintk("%s could not handle NFSv4 error %d\n",
__func__, -err);
break;
}
return -EIO;
}
/*
* This is our standard bitmap for GETATTR requests.
*/
const u32 nfs4_fattr_bitmap[3] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
| FATTR4_WORD1_MOUNTED_ON_FILEID,
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
FATTR4_WORD2_SECURITY_LABEL
#endif
};
static const u32 nfs4_pnfs_open_bitmap[3] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY,
FATTR4_WORD2_MDSTHRESHOLD
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
| FATTR4_WORD2_SECURITY_LABEL
#endif
};
static const u32 nfs4_open_noattr_bitmap[3] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_FILEID,
};
const u32 nfs4_statfs_bitmap[3] = {
FATTR4_WORD0_FILES_AVAIL
| FATTR4_WORD0_FILES_FREE
| FATTR4_WORD0_FILES_TOTAL,
FATTR4_WORD1_SPACE_AVAIL
| FATTR4_WORD1_SPACE_FREE
| FATTR4_WORD1_SPACE_TOTAL
};
const u32 nfs4_pathconf_bitmap[3] = {
FATTR4_WORD0_MAXLINK
| FATTR4_WORD0_MAXNAME,
0
};
const u32 nfs4_fsinfo_bitmap[3] = { FATTR4_WORD0_MAXFILESIZE
| FATTR4_WORD0_MAXREAD
| FATTR4_WORD0_MAXWRITE
| FATTR4_WORD0_LEASE_TIME,
FATTR4_WORD1_TIME_DELTA
| FATTR4_WORD1_FS_LAYOUT_TYPES,
FATTR4_WORD2_LAYOUT_BLKSIZE
| FATTR4_WORD2_CLONE_BLKSIZE
| FATTR4_WORD2_CHANGE_ATTR_TYPE
| FATTR4_WORD2_XATTR_SUPPORT
};
const u32 nfs4_fs_locations_bitmap[3] = {
FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID
| FATTR4_WORD0_FS_LOCATIONS,
FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
| FATTR4_WORD1_MOUNTED_ON_FILEID,
};
static void nfs4_bitmap_copy_adjust(__u32 *dst, const __u32 *src,
struct inode *inode, unsigned long flags)
{
unsigned long cache_validity;
memcpy(dst, src, NFS4_BITMASK_SZ*sizeof(*dst));
if (!inode || !nfs_have_read_or_write_delegation(inode))
return;
cache_validity = READ_ONCE(NFS_I(inode)->cache_validity) | flags;
/* Remove the attributes over which we have full control */
dst[1] &= ~FATTR4_WORD1_RAWDEV;
if (!(cache_validity & NFS_INO_INVALID_SIZE))
dst[0] &= ~FATTR4_WORD0_SIZE;
if (!(cache_validity & NFS_INO_INVALID_CHANGE))
dst[0] &= ~FATTR4_WORD0_CHANGE;
if (!(cache_validity & NFS_INO_INVALID_MODE))
dst[1] &= ~FATTR4_WORD1_MODE;
if (!(cache_validity & NFS_INO_INVALID_OTHER))
dst[1] &= ~(FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP);
if (nfs_have_delegated_mtime(inode)) {
if (!(cache_validity & NFS_INO_INVALID_ATIME))
dst[1] &= ~FATTR4_WORD1_TIME_ACCESS;
if (!(cache_validity & NFS_INO_INVALID_MTIME))
dst[1] &= ~FATTR4_WORD1_TIME_MODIFY;
if (!(cache_validity & NFS_INO_INVALID_CTIME))
dst[1] &= ~FATTR4_WORD1_TIME_METADATA;
} else if (nfs_have_delegated_atime(inode)) {
if (!(cache_validity & NFS_INO_INVALID_ATIME))
dst[1] &= ~FATTR4_WORD1_TIME_ACCESS;
}
}
static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
struct nfs4_readdir_arg *readdir)
{
unsigned int attrs = FATTR4_WORD0_FILEID | FATTR4_WORD0_TYPE;
__be32 *start, *p;
if (cookie > 2) {
readdir->cookie = cookie;
memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
return;
}
readdir->cookie = 0;
memset(&readdir->verifier, 0, sizeof(readdir->verifier));
if (cookie == 2)
return;
/*
* NFSv4 servers do not return entries for '.' and '..'
* Therefore, we fake these entries here. We let '.'
* have cookie 0 and '..' have cookie 1. Note that
* when talking to the server, we always send cookie 0
* instead of 1 or 2.
*/
start = p = kmap_atomic(*readdir->pages);
if (cookie == 0) {
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_one; /* cookie, second word */
*p++ = xdr_one; /* entry len */
memcpy(p, ".\0\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(attrs); /* bitmap */
*p++ = htonl(12); /* attribute buffer length */
*p++ = htonl(NF4DIR);
p = xdr_encode_hyper(p, NFS_FILEID(d_inode(dentry)));
}
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_two; /* cookie, second word */
*p++ = xdr_two; /* entry len */
memcpy(p, "..\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(attrs); /* bitmap */
*p++ = htonl(12); /* attribute buffer length */
*p++ = htonl(NF4DIR);
p = xdr_encode_hyper(p, NFS_FILEID(d_inode(dentry->d_parent)));
readdir->pgbase = (char *)p - (char *)start;
readdir->count -= readdir->pgbase;
kunmap_atomic(start);
}
static void nfs4_fattr_set_prechange(struct nfs_fattr *fattr, u64 version)
{
if (!(fattr->valid & NFS_ATTR_FATTR_PRECHANGE)) {
fattr->pre_change_attr = version;
fattr->valid |= NFS_ATTR_FATTR_PRECHANGE;
}
}
static void nfs4_test_and_free_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
const struct nfs4_minor_version_ops *ops = server->nfs_client->cl_mvops;
ops->test_and_free_expired(server, stateid, cred);
}
static void __nfs4_free_revoked_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
stateid->type = NFS4_REVOKED_STATEID_TYPE;
nfs4_test_and_free_stateid(server, stateid, cred);
}
static void nfs4_free_revoked_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred)
{
nfs4_stateid tmp;
nfs4_stateid_copy(&tmp, stateid);
__nfs4_free_revoked_stateid(server, &tmp, cred);
}
static long nfs4_update_delay(long *timeout)
{
long ret;
if (!timeout)
return NFS4_POLL_RETRY_MAX;
if (*timeout <= 0)
*timeout = NFS4_POLL_RETRY_MIN;
if (*timeout > NFS4_POLL_RETRY_MAX)
*timeout = NFS4_POLL_RETRY_MAX;
ret = *timeout;
*timeout <<= 1;
return ret;
}
static int nfs4_delay_killable(long *timeout)
{
might_sleep();
__set_current_state(TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
schedule_timeout(nfs4_update_delay(timeout));
if (!__fatal_signal_pending(current))
return 0;
return -EINTR;
}
static int nfs4_delay_interruptible(long *timeout)
{
might_sleep();
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE_UNSAFE);
schedule_timeout(nfs4_update_delay(timeout));
if (!signal_pending(current))
return 0;
return __fatal_signal_pending(current) ? -EINTR :-ERESTARTSYS;
}
static int nfs4_delay(long *timeout, bool interruptible)
{
if (interruptible)
return nfs4_delay_interruptible(timeout);
return nfs4_delay_killable(timeout);
}
static const nfs4_stateid *
nfs4_recoverable_stateid(const nfs4_stateid *stateid)
{
if (!stateid)
return NULL;
switch (stateid->type) {
case NFS4_OPEN_STATEID_TYPE:
case NFS4_LOCK_STATEID_TYPE:
case NFS4_DELEGATION_STATEID_TYPE:
return stateid;
default:
break;
}
return NULL;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
static int nfs4_do_handle_exception(struct nfs_server *server,
int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
struct nfs4_state *state = exception->state;
const nfs4_stateid *stateid;
struct inode *inode = exception->inode;
int ret = errorcode;
exception->delay = 0;
exception->recovering = 0;
exception->retry = 0;
stateid = nfs4_recoverable_stateid(exception->stateid);
if (stateid == NULL && state != NULL)
stateid = nfs4_recoverable_stateid(&state->stateid);
switch(errorcode) {
case 0:
return 0;
case -NFS4ERR_BADHANDLE:
case -ESTALE:
if (inode != NULL && S_ISREG(inode->i_mode))
pnfs_destroy_layout(NFS_I(inode));
break;
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_PARTNER_NO_AUTH:
if (inode != NULL && stateid != NULL) {
nfs_inode_find_state_and_recover(inode,
stateid);
goto wait_on_recovery;
}
fallthrough;
case -NFS4ERR_OPENMODE:
if (inode) {
int err;
err = nfs_async_inode_return_delegation(inode,
stateid);
if (err == 0)
goto wait_on_recovery;
if (stateid != NULL && stateid->type == NFS4_DELEGATION_STATEID_TYPE) {
exception->retry = 1;
break;
}
}
if (state == NULL)
break;
ret = nfs4_schedule_stateid_recovery(server, state);
if (ret < 0)
break;
goto wait_on_recovery;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_STALE_CLIENTID:
nfs4_schedule_lease_recovery(clp);
goto wait_on_recovery;
case -NFS4ERR_MOVED:
ret = nfs4_schedule_migration_recovery(server);
if (ret < 0)
break;
goto wait_on_recovery;
case -NFS4ERR_LEASE_MOVED:
nfs4_schedule_lease_moved_recovery(clp);
goto wait_on_recovery;
#if defined(CONFIG_NFS_V4_1)
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_SEQ_FALSE_RETRY:
case -NFS4ERR_SEQ_MISORDERED:
/* Handled in nfs41_sequence_process() */
goto wait_on_recovery;
#endif /* defined(CONFIG_NFS_V4_1) */
case -NFS4ERR_FILE_OPEN:
if (exception->timeout > HZ) {
/* We have retried a decent amount, time to
* fail
*/
ret = -EBUSY;
break;
}
fallthrough;
case -NFS4ERR_DELAY:
nfs_inc_server_stats(server, NFSIOS_DELAY);
fallthrough;
case -NFS4ERR_GRACE:
case -NFS4ERR_LAYOUTTRYLATER:
case -NFS4ERR_RECALLCONFLICT:
case -NFS4ERR_RETURNCONFLICT:
exception->delay = 1;
return 0;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -NFS4ERR_OLD_STATEID:
exception->retry = 1;
break;
case -NFS4ERR_BADOWNER:
/* The following works around a Linux server bug! */
case -NFS4ERR_BADNAME:
if (server->caps & NFS_CAP_UIDGID_NOMAP) {
server->caps &= ~NFS_CAP_UIDGID_NOMAP;
exception->retry = 1;
printk(KERN_WARNING "NFS: v4 server %s "
"does not accept raw "
"uid/gids. "
"Reenabling the idmapper.\n",
server->nfs_client->cl_hostname);
}
}
/* We failed to handle the error */
return nfs4_map_errors(ret);
wait_on_recovery:
exception->recovering = 1;
return 0;
}
/*
* Track the number of NFS4ERR_DELAY related retransmissions and return
* EAGAIN if the 'softerr' mount option is set, and we've exceeded the limit
* set by 'nfs_delay_retrans'.
*/
static int nfs4_exception_should_retrans(const struct nfs_server *server,
struct nfs4_exception *exception)
{
if (server->flags & NFS_MOUNT_SOFTERR && nfs_delay_retrans >= 0) {
if (exception->retrans++ >= (unsigned short)nfs_delay_retrans)
return -EAGAIN;
}
return 0;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
int nfs4_handle_exception(struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
int ret;
ret = nfs4_do_handle_exception(server, errorcode, exception);
if (exception->delay) {
int ret2 = nfs4_exception_should_retrans(server, exception);
if (ret2 < 0) {
exception->retry = 0;
return ret2;
}
ret = nfs4_delay(&exception->timeout,
exception->interruptible);
goto out_retry;
}
if (exception->recovering) {
if (exception->task_is_privileged)
return -EDEADLOCK;
ret = nfs4_wait_clnt_recover(clp);
if (test_bit(NFS_MIG_FAILED, &server->mig_status))
return -EIO;
goto out_retry;
}
return ret;
out_retry:
if (ret == 0)
exception->retry = 1;
return ret;
}
static int
nfs4_async_handle_exception(struct rpc_task *task, struct nfs_server *server,
int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
int ret;
ret = nfs4_do_handle_exception(server, errorcode, exception);
if (exception->delay) {
int ret2 = nfs4_exception_should_retrans(server, exception);
if (ret2 < 0) {
exception->retry = 0;
return ret2;
}
rpc_delay(task, nfs4_update_delay(&exception->timeout));
goto out_retry;
}
if (exception->recovering) {
if (exception->task_is_privileged)
return -EDEADLOCK;
rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0)
rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
goto out_retry;
}
if (test_bit(NFS_MIG_FAILED, &server->mig_status))
ret = -EIO;
return ret;
out_retry:
if (ret == 0) {
exception->retry = 1;
/*
* For NFS4ERR_MOVED, the client transport will need to
* be recomputed after migration recovery has completed.
*/
if (errorcode == -NFS4ERR_MOVED)
rpc_task_release_transport(task);
}
return ret;
}
int
nfs4_async_handle_error(struct rpc_task *task, struct nfs_server *server,
struct nfs4_state *state, long *timeout)
{
struct nfs4_exception exception = {
.state = state,
};
if (task->tk_status >= 0)
return 0;
if (timeout)
exception.timeout = *timeout;
task->tk_status = nfs4_async_handle_exception(task, server,
task->tk_status,
&exception);
if (exception.delay && timeout)
*timeout = exception.timeout;
if (exception.retry)
return -EAGAIN;
return 0;
}
/*
* Return 'true' if 'clp' is using an rpc_client that is integrity protected
* or 'false' otherwise.
*/
static bool _nfs4_is_integrity_protected(struct nfs_client *clp)
{
rpc_authflavor_t flavor = clp->cl_rpcclient->cl_auth->au_flavor;
return (flavor == RPC_AUTH_GSS_KRB5I) || (flavor == RPC_AUTH_GSS_KRB5P);
}
static void do_renew_lease(struct nfs_client *clp, unsigned long timestamp)
{
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
{
struct nfs_client *clp = server->nfs_client;
if (!nfs4_has_session(clp))
do_renew_lease(clp, timestamp);
}
struct nfs4_call_sync_data {
const struct nfs_server *seq_server;
struct nfs4_sequence_args *seq_args;
struct nfs4_sequence_res *seq_res;
};
void nfs4_init_sequence(struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res, int cache_reply,
int privileged)
{
args->sa_slot = NULL;
args->sa_cache_this = cache_reply;
args->sa_privileged = privileged;
res->sr_slot = NULL;
}
static void nfs40_sequence_free_slot(struct nfs4_sequence_res *res)
{
struct nfs4_slot *slot = res->sr_slot;
struct nfs4_slot_table *tbl;
tbl = slot->table;
spin_lock(&tbl->slot_tbl_lock);
if (!nfs41_wake_and_assign_slot(tbl, slot))
nfs4_free_slot(tbl, slot);
spin_unlock(&tbl->slot_tbl_lock);
res->sr_slot = NULL;
}
static int nfs40_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
if (res->sr_slot != NULL)
nfs40_sequence_free_slot(res);
return 1;
}
#if defined(CONFIG_NFS_V4_1)
static void nfs41_release_slot(struct nfs4_slot *slot)
{
struct nfs4_session *session;
struct nfs4_slot_table *tbl;
bool send_new_highest_used_slotid = false;
if (!slot)
return;
tbl = slot->table;
session = tbl->session;
/* Bump the slot sequence number */
if (slot->seq_done)
slot->seq_nr++;
slot->seq_done = 0;
spin_lock(&tbl->slot_tbl_lock);
/* Be nice to the server: try to ensure that the last transmitted
* value for highest_user_slotid <= target_highest_slotid
*/
if (tbl->highest_used_slotid > tbl->target_highest_slotid)
send_new_highest_used_slotid = true;
if (nfs41_wake_and_assign_slot(tbl, slot)) {
send_new_highest_used_slotid = false;
goto out_unlock;
}
nfs4_free_slot(tbl, slot);
if (tbl->highest_used_slotid != NFS4_NO_SLOT)
send_new_highest_used_slotid = false;
out_unlock:
spin_unlock(&tbl->slot_tbl_lock);
if (send_new_highest_used_slotid)
nfs41_notify_server(session->clp);
if (waitqueue_active(&tbl->slot_waitq))
wake_up_all(&tbl->slot_waitq);
}
static void nfs41_sequence_free_slot(struct nfs4_sequence_res *res)
{
nfs41_release_slot(res->sr_slot);
res->sr_slot = NULL;
}
static void nfs4_slot_sequence_record_sent(struct nfs4_slot *slot,
u32 seqnr)
{
if ((s32)(seqnr - slot->seq_nr_highest_sent) > 0)
slot->seq_nr_highest_sent = seqnr;
}
static void nfs4_slot_sequence_acked(struct nfs4_slot *slot, u32 seqnr)
{
nfs4_slot_sequence_record_sent(slot, seqnr);
slot->seq_nr_last_acked = seqnr;
}
static void nfs4_probe_sequence(struct nfs_client *client, const struct cred *cred,
struct nfs4_slot *slot)
{
struct rpc_task *task = _nfs41_proc_sequence(client, cred, slot, true);
if (!IS_ERR(task))
rpc_put_task_async(task);
}
static int nfs41_sequence_process(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
struct nfs4_session *session;
struct nfs4_slot *slot = res->sr_slot;
struct nfs_client *clp;
int status;
int ret = 1;
if (slot == NULL)
goto out_noaction;
/* don't increment the sequence number if the task wasn't sent */
if (!RPC_WAS_SENT(task) || slot->seq_done)
goto out;
session = slot->table->session;
clp = session->clp;
trace_nfs4_sequence_done(session, res);
status = res->sr_status;
if (task->tk_status == -NFS4ERR_DEADSESSION)
status = -NFS4ERR_DEADSESSION;
/* Check the SEQUENCE operation status */
switch (status) {
case 0:
/* Mark this sequence number as having been acked */
nfs4_slot_sequence_acked(slot, slot->seq_nr);
/* Update the slot's sequence and clientid lease timer */
slot->seq_done = 1;
do_renew_lease(clp, res->sr_timestamp);
/* Check sequence flags */
nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags,
!!slot->privileged);
nfs41_update_target_slotid(slot->table, slot, res);
break;
case 1:
/*
* sr_status remains 1 if an RPC level error occurred.
* The server may or may not have processed the sequence
* operation..
*/
nfs4_slot_sequence_record_sent(slot, slot->seq_nr);
slot->seq_done = 1;
goto out;
case -NFS4ERR_DELAY:
/* The server detected a resend of the RPC call and
* returned NFS4ERR_DELAY as per Section 2.10.6.2
* of RFC5661.
*/
dprintk("%s: slot=%u seq=%u: Operation in progress\n",
__func__,
slot->slot_nr,
slot->seq_nr);
goto out_retry;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -NFS4ERR_SEQ_FALSE_RETRY:
/*
* The server thinks we tried to replay a request.
* Retry the call after bumping the sequence ID.
*/
nfs4_slot_sequence_acked(slot, slot->seq_nr);
goto retry_new_seq;
case -NFS4ERR_BADSLOT:
/*
* The slot id we used was probably retired. Try again
* using a different slot id.
*/
if (slot->slot_nr < slot->table->target_highest_slotid)
goto session_recover;
goto retry_nowait;
case -NFS4ERR_SEQ_MISORDERED:
nfs4_slot_sequence_record_sent(slot, slot->seq_nr);
/*
* Were one or more calls using this slot interrupted?
* If the server never received the request, then our
* transmitted slot sequence number may be too high. However,
* if the server did receive the request then it might
* accidentally give us a reply with a mismatched operation.
* We can sort this out by sending a lone sequence operation
* to the server on the same slot.
*/
if ((s32)(slot->seq_nr - slot->seq_nr_last_acked) > 1) {
slot->seq_nr--;
if (task->tk_msg.rpc_proc != &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE]) {
nfs4_probe_sequence(clp, task->tk_msg.rpc_cred, slot);
res->sr_slot = NULL;
}
goto retry_nowait;
}
/*
* RFC5661:
* A retry might be sent while the original request is
* still in progress on the replier. The replier SHOULD
* deal with the issue by returning NFS4ERR_DELAY as the
* reply to SEQUENCE or CB_SEQUENCE operation, but
* implementations MAY return NFS4ERR_SEQ_MISORDERED.
*
* Restart the search after a delay.
*/
slot->seq_nr = slot->seq_nr_highest_sent;
goto out_retry;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
goto session_recover;
default:
/* Just update the slot sequence no. */
slot->seq_done = 1;
}
out:
/* The session may be reset by one of the error handlers. */
dprintk("%s: Error %d free the slot \n", __func__, res->sr_status);
out_noaction:
return ret;
session_recover:
set_bit(NFS4_SLOT_TBL_DRAINING, &session->fc_slot_table.slot_tbl_state);
nfs4_schedule_session_recovery(session, status);
dprintk("%s ERROR: %d Reset session\n", __func__, status);
nfs41_sequence_free_slot(res);
goto out;
retry_new_seq:
++slot->seq_nr;
retry_nowait:
if (rpc_restart_call_prepare(task)) {
nfs41_sequence_free_slot(res);
task->tk_status = 0;
ret = 0;
}
goto out;
out_retry:
if (!rpc_restart_call(task))
goto out;
rpc_delay(task, NFS4_POLL_RETRY_MAX);
return 0;
}
int nfs41_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res)
{
if (!nfs41_sequence_process(task, res))
return 0;
if (res->sr_slot != NULL)
nfs41_sequence_free_slot(res);
return 1;
}
EXPORT_SYMBOL_GPL(nfs41_sequence_done);
static int nfs4_sequence_process(struct rpc_task *task, struct nfs4_sequence_res *res)
{
if (res->sr_slot == NULL)
return 1;
if (res->sr_slot->table->session != NULL)
return nfs41_sequence_process(task, res);
return nfs40_sequence_done(task, res);
}
static void nfs4_sequence_free_slot(struct nfs4_sequence_res *res)
{
if (res->sr_slot != NULL) {
if (res->sr_slot->table->session != NULL)
nfs41_sequence_free_slot(res);
else
nfs40_sequence_free_slot(res);
}
}
int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res)
{
if (res->sr_slot == NULL)
return 1;
if (!res->sr_slot->table->session)
return nfs40_sequence_done(task, res);
return nfs41_sequence_done(task, res);
}
EXPORT_SYMBOL_GPL(nfs4_sequence_done);
static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
dprintk("--> %s data->seq_server %p\n", __func__, data->seq_server);
nfs4_setup_sequence(data->seq_server->nfs_client,
data->seq_args, data->seq_res, task);
}
static void nfs41_call_sync_done(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
nfs41_sequence_done(task, data->seq_res);
}
static const struct rpc_call_ops nfs41_call_sync_ops = {
.rpc_call_prepare = nfs41_call_sync_prepare,
.rpc_call_done = nfs41_call_sync_done,
};
#else /* !CONFIG_NFS_V4_1 */
static int nfs4_sequence_process(struct rpc_task *task, struct nfs4_sequence_res *res)
{
return nfs40_sequence_done(task, res);
}
static void nfs4_sequence_free_slot(struct nfs4_sequence_res *res)
{
if (res->sr_slot != NULL)
nfs40_sequence_free_slot(res);
}
int nfs4_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
return nfs40_sequence_done(task, res);
}
EXPORT_SYMBOL_GPL(nfs4_sequence_done);
#endif /* !CONFIG_NFS_V4_1 */
static void nfs41_sequence_res_init(struct nfs4_sequence_res *res)
{
res->sr_timestamp = jiffies;
res->sr_status_flags = 0;
res->sr_status = 1;
}
static
void nfs4_sequence_attach_slot(struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
struct nfs4_slot *slot)
{
if (!slot)
return;
slot->privileged = args->sa_privileged ? 1 : 0;
args->sa_slot = slot;
res->sr_slot = slot;
}
int nfs4_setup_sequence(struct nfs_client *client,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
struct rpc_task *task)
{
struct nfs4_session *session = nfs4_get_session(client);
struct nfs4_slot_table *tbl = client->cl_slot_tbl;
struct nfs4_slot *slot;
/* slot already allocated? */
if (res->sr_slot != NULL)
goto out_start;
if (session)
tbl = &session->fc_slot_table;
spin_lock(&tbl->slot_tbl_lock);
/* The state manager will wait until the slot table is empty */
if (nfs4_slot_tbl_draining(tbl) && !args->sa_privileged)
goto out_sleep;
slot = nfs4_alloc_slot(tbl);
if (IS_ERR(slot)) {
if (slot == ERR_PTR(-ENOMEM))
goto out_sleep_timeout;
goto out_sleep;
}
spin_unlock(&tbl->slot_tbl_lock);
nfs4_sequence_attach_slot(args, res, slot);
trace_nfs4_setup_sequence(session, args);
out_start:
nfs41_sequence_res_init(res);
rpc_call_start(task);
return 0;
out_sleep_timeout:
/* Try again in 1/4 second */
if (args->sa_privileged)
rpc_sleep_on_priority_timeout(&tbl->slot_tbl_waitq, task,
jiffies + (HZ >> 2), RPC_PRIORITY_PRIVILEGED);
else
rpc_sleep_on_timeout(&tbl->slot_tbl_waitq, task,
NULL, jiffies + (HZ >> 2));
spin_unlock(&tbl->slot_tbl_lock);
return -EAGAIN;
out_sleep:
if (args->sa_privileged)
rpc_sleep_on_priority(&tbl->slot_tbl_waitq, task,
RPC_PRIORITY_PRIVILEGED);
else
rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
spin_unlock(&tbl->slot_tbl_lock);
return -EAGAIN;
}
EXPORT_SYMBOL_GPL(nfs4_setup_sequence);
static void nfs40_call_sync_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
nfs4_setup_sequence(data->seq_server->nfs_client,
data->seq_args, data->seq_res, task);
}
static void nfs40_call_sync_done(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
nfs4_sequence_done(task, data->seq_res);
}
static const struct rpc_call_ops nfs40_call_sync_ops = {
.rpc_call_prepare = nfs40_call_sync_prepare,
.rpc_call_done = nfs40_call_sync_done,
};
static int nfs4_call_sync_custom(struct rpc_task_setup *task_setup)
{
int ret;
struct rpc_task *task;
task = rpc_run_task(task_setup);
if (IS_ERR(task))
return PTR_ERR(task);
ret = task->tk_status;
rpc_put_task(task);
return ret;
}
static int nfs4_do_call_sync(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
unsigned short task_flags)
{
struct nfs_client *clp = server->nfs_client;
struct nfs4_call_sync_data data = {
.seq_server = server,
.seq_args = args,
.seq_res = res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clnt,
.rpc_message = msg,
.callback_ops = clp->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = task_flags,
};
return nfs4_call_sync_custom(&task_setup);
}
static int nfs4_call_sync_sequence(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res)
{
unsigned short task_flags = 0;
if (server->caps & NFS_CAP_MOVEABLE)
task_flags = RPC_TASK_MOVEABLE;
return nfs4_do_call_sync(clnt, server, msg, args, res, task_flags);
}
int nfs4_call_sync(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply)
{
nfs4_init_sequence(args, res, cache_reply, 0);
return nfs4_call_sync_sequence(clnt, server, msg, args, res);
}
static void
nfs4_inc_nlink_locked(struct inode *inode)
{
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_NLINK);
inc_nlink(inode);
}
static void
nfs4_inc_nlink(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs4_inc_nlink_locked(inode);
spin_unlock(&inode->i_lock);
}
static void
nfs4_dec_nlink_locked(struct inode *inode)
{
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_NLINK);
drop_nlink(inode);
}
static void
nfs4_update_changeattr_locked(struct inode *inode,
struct nfs4_change_info *cinfo,
unsigned long timestamp, unsigned long cache_validity)
{
struct nfs_inode *nfsi = NFS_I(inode);
u64 change_attr = inode_peek_iversion_raw(inode);
if (!nfs_have_delegated_mtime(inode))
cache_validity |= NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME;
if (S_ISDIR(inode->i_mode))
cache_validity |= NFS_INO_INVALID_DATA;
switch (NFS_SERVER(inode)->change_attr_type) {
case NFS4_CHANGE_TYPE_IS_UNDEFINED:
if (cinfo->after == change_attr)
goto out;
break;
default:
if ((s64)(change_attr - cinfo->after) >= 0)
goto out;
}
inode_set_iversion_raw(inode, cinfo->after);
if (!cinfo->atomic || cinfo->before != change_attr) {
if (S_ISDIR(inode->i_mode))
nfs_force_lookup_revalidate(inode);
if (!nfs_have_delegated_attributes(inode))
cache_validity |=
NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL |
NFS_INO_INVALID_SIZE | NFS_INO_INVALID_OTHER |
NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_NLINK |
NFS_INO_INVALID_MODE | NFS_INO_INVALID_XATTR;
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
}
nfsi->attrtimeo_timestamp = jiffies;
nfsi->read_cache_jiffies = timestamp;
nfsi->attr_gencount = nfs_inc_attr_generation_counter();
nfsi->cache_validity &= ~NFS_INO_INVALID_CHANGE;
out:
nfs_set_cache_invalid(inode, cache_validity);
}
void
nfs4_update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo,
unsigned long timestamp, unsigned long cache_validity)
{
spin_lock(&dir->i_lock);
nfs4_update_changeattr_locked(dir, cinfo, timestamp, cache_validity);
spin_unlock(&dir->i_lock);
}
struct nfs4_open_createattrs {
struct nfs4_label *label;
struct iattr *sattr;
const __u32 verf[2];
};
static bool nfs4_clear_cap_atomic_open_v1(struct nfs_server *server,
int err, struct nfs4_exception *exception)
{
if (err != -EINVAL)
return false;
if (!(server->caps & NFS_CAP_ATOMIC_OPEN_V1))
return false;
server->caps &= ~NFS_CAP_ATOMIC_OPEN_V1;
exception->retry = 1;
return true;
}
static fmode_t _nfs4_ctx_to_accessmode(const struct nfs_open_context *ctx)
{
return ctx->mode & (FMODE_READ|FMODE_WRITE|FMODE_EXEC);
}
static fmode_t _nfs4_ctx_to_openmode(const struct nfs_open_context *ctx)
{
fmode_t ret = ctx->mode & (FMODE_READ|FMODE_WRITE);
return (ctx->mode & FMODE_EXEC) ? FMODE_READ | ret : ret;
}
static u32
nfs4_fmode_to_share_access(fmode_t fmode)
{
u32 res = 0;
switch (fmode & (FMODE_READ | FMODE_WRITE)) {
case FMODE_READ:
res = NFS4_SHARE_ACCESS_READ;
break;
case FMODE_WRITE:
res = NFS4_SHARE_ACCESS_WRITE;
break;
case FMODE_READ|FMODE_WRITE:
res = NFS4_SHARE_ACCESS_BOTH;
}
return res;
}
static u32
nfs4_map_atomic_open_share(struct nfs_server *server,
fmode_t fmode, int openflags)
{
u32 res = nfs4_fmode_to_share_access(fmode);
if (!(server->caps & NFS_CAP_ATOMIC_OPEN_V1))
goto out;
/* Want no delegation if we're using O_DIRECT */
if (openflags & O_DIRECT) {
res |= NFS4_SHARE_WANT_NO_DELEG;
goto out;
}
/* res |= NFS4_SHARE_WANT_NO_PREFERENCE; */
if (server->caps & NFS_CAP_DELEGTIME)
res |= NFS4_SHARE_WANT_DELEG_TIMESTAMPS;
if (server->caps & NFS_CAP_OPEN_XOR)
res |= NFS4_SHARE_WANT_OPEN_XOR_DELEGATION;
out:
return res;
}
static enum open_claim_type4
nfs4_map_atomic_open_claim(struct nfs_server *server,
enum open_claim_type4 claim)
{
if (server->caps & NFS_CAP_ATOMIC_OPEN_V1)
return claim;
switch (claim) {
default:
return claim;
case NFS4_OPEN_CLAIM_FH:
return NFS4_OPEN_CLAIM_NULL;
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
return NFS4_OPEN_CLAIM_DELEGATE_CUR;
case NFS4_OPEN_CLAIM_DELEG_PREV_FH:
return NFS4_OPEN_CLAIM_DELEGATE_PREV;
}
}
static void nfs4_init_opendata_res(struct nfs4_opendata *p)
{
p->o_res.f_attr = &p->f_attr;
p->o_res.seqid = p->o_arg.seqid;
p->c_res.seqid = p->c_arg.seqid;
p->o_res.server = p->o_arg.server;
p->o_res.access_request = p->o_arg.access;
nfs_fattr_init(&p->f_attr);
nfs_fattr_init_names(&p->f_attr, &p->owner_name, &p->group_name);
}
static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
struct nfs4_state_owner *sp, fmode_t fmode, int flags,
const struct nfs4_open_createattrs *c,
enum open_claim_type4 claim,
gfp_t gfp_mask)
{
struct dentry *parent = dget_parent(dentry);
struct inode *dir = d_inode(parent);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
struct nfs4_label *label = (c != NULL) ? c->label : NULL;
struct nfs4_opendata *p;
p = kzalloc(sizeof(*p), gfp_mask);
if (p == NULL)
goto err;
p->f_attr.label = nfs4_label_alloc(server, gfp_mask);
if (IS_ERR(p->f_attr.label))
goto err_free_p;
p->a_label = nfs4_label_alloc(server, gfp_mask);
if (IS_ERR(p->a_label))
goto err_free_f;
alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid;
p->o_arg.seqid = alloc_seqid(&sp->so_seqid, gfp_mask);
if (IS_ERR(p->o_arg.seqid))
goto err_free_label;
nfs_sb_active(dentry->d_sb);
p->dentry = dget(dentry);
p->dir = parent;
p->owner = sp;
atomic_inc(&sp->so_count);
p->o_arg.open_flags = flags;
p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE);
p->o_arg.claim = nfs4_map_atomic_open_claim(server, claim);
p->o_arg.share_access = nfs4_map_atomic_open_share(server,
fmode, flags);
if (flags & O_CREAT) {
p->o_arg.umask = current_umask();
p->o_arg.label = nfs4_label_copy(p->a_label, label);
if (c->sattr != NULL && c->sattr->ia_valid != 0) {
p->o_arg.u.attrs = &p->attrs;
memcpy(&p->attrs, c->sattr, sizeof(p->attrs));
memcpy(p->o_arg.u.verifier.data, c->verf,
sizeof(p->o_arg.u.verifier.data));
}
}
/* ask server to check for all possible rights as results
* are cached */
switch (p->o_arg.claim) {
default:
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
p->o_arg.access = NFS4_ACCESS_READ | NFS4_ACCESS_MODIFY |
NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE |
NFS4_ACCESS_EXECUTE |
nfs_access_xattr_mask(server);
}
p->o_arg.clientid = server->nfs_client->cl_clientid;
p->o_arg.id.create_time = ktime_to_ns(sp->so_seqid.create_time);
p->o_arg.id.uniquifier = sp->so_seqid.owner_id;
p->o_arg.name = &dentry->d_name;
p->o_arg.server = server;
p->o_arg.bitmask = nfs4_bitmask(server, label);
p->o_arg.open_bitmap = &nfs4_fattr_bitmap[0];
switch (p->o_arg.claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEGATE_PREV:
p->o_arg.fh = NFS_FH(dir);
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
case NFS4_OPEN_CLAIM_FH:
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
case NFS4_OPEN_CLAIM_DELEG_PREV_FH:
p->o_arg.fh = NFS_FH(d_inode(dentry));
}
p->c_arg.fh = &p->o_res.fh;
p->c_arg.stateid = &p->o_res.stateid;
p->c_arg.seqid = p->o_arg.seqid;
nfs4_init_opendata_res(p);
kref_init(&p->kref);
return p;
err_free_label:
nfs4_label_free(p->a_label);
err_free_f:
nfs4_label_free(p->f_attr.label);
err_free_p:
kfree(p);
err:
dput(parent);
return NULL;
}
static void nfs4_opendata_free(struct kref *kref)
{
struct nfs4_opendata *p = container_of(kref,
struct nfs4_opendata, kref);
struct super_block *sb = p->dentry->d_sb;
nfs4_lgopen_release(p->lgp);
nfs_free_seqid(p->o_arg.seqid);
nfs4_sequence_free_slot(&p->o_res.seq_res);
if (p->state != NULL)
nfs4_put_open_state(p->state);
nfs4_put_state_owner(p->owner);
nfs4_label_free(p->a_label);
nfs4_label_free(p->f_attr.label);
dput(p->dir);
dput(p->dentry);
nfs_sb_deactive(sb);
nfs_fattr_free_names(&p->f_attr);
kfree(p->f_attr.mdsthreshold);
kfree(p);
}
static void nfs4_opendata_put(struct nfs4_opendata *p)
{
if (p != NULL)
kref_put(&p->kref, nfs4_opendata_free);
}
static bool nfs4_mode_match_open_stateid(struct nfs4_state *state,
fmode_t fmode)
{
switch(fmode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_READ|FMODE_WRITE:
return state->n_rdwr != 0;
case FMODE_WRITE:
return state->n_wronly != 0;
case FMODE_READ:
return state->n_rdonly != 0;
}
WARN_ON_ONCE(1);
return false;
}
static int can_open_cached(struct nfs4_state *state, fmode_t mode,
int open_mode, enum open_claim_type4 claim)
{
int ret = 0;
if (open_mode & (O_EXCL|O_TRUNC))
goto out;
switch (claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
goto out;
default:
break;
}
switch (mode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_READ:
ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0
&& state->n_rdonly != 0;
break;
case FMODE_WRITE:
ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0
&& state->n_wronly != 0;
break;
case FMODE_READ|FMODE_WRITE:
ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0
&& state->n_rdwr != 0;
}
out:
return ret;
}
static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode,
enum open_claim_type4 claim)
{
if (delegation == NULL)
return 0;
if ((delegation->type & fmode) != fmode)
return 0;
switch (claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
if (!test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags))
break;
fallthrough;
default:
return 0;
}
nfs_mark_delegation_referenced(delegation);
return 1;
}
static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode)
{
switch (fmode) {
case FMODE_WRITE:
state->n_wronly++;
break;
case FMODE_READ:
state->n_rdonly++;
break;
case FMODE_READ|FMODE_WRITE:
state->n_rdwr++;
}
nfs4_state_set_mode_locked(state, state->state | fmode);
}
#ifdef CONFIG_NFS_V4_1
static bool nfs_open_stateid_recover_openmode(struct nfs4_state *state)
{
if (state->n_rdonly && !test_bit(NFS_O_RDONLY_STATE, &state->flags))
return true;
if (state->n_wronly && !test_bit(NFS_O_WRONLY_STATE, &state->flags))
return true;
if (state->n_rdwr && !test_bit(NFS_O_RDWR_STATE, &state->flags))
return true;
return false;
}
#endif /* CONFIG_NFS_V4_1 */
static void nfs_state_log_update_open_stateid(struct nfs4_state *state)
{
if (test_and_clear_bit(NFS_STATE_CHANGE_WAIT, &state->flags))
wake_up_all(&state->waitq);
}
static void nfs_test_and_clear_all_open_stateid(struct nfs4_state *state)
{
struct nfs_client *clp = state->owner->so_server->nfs_client;
bool need_recover = false;
if (test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags) && state->n_rdonly)
need_recover = true;
if (test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags) && state->n_wronly)
need_recover = true;
if (test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags) && state->n_rdwr)
need_recover = true;
if (need_recover)
nfs4_state_mark_reclaim_nograce(clp, state);
}
/*
* Check for whether or not the caller may update the open stateid
* to the value passed in by stateid.
*
* Note: This function relies heavily on the server implementing
* RFC7530 Section 9.1.4.2, and RFC5661 Section 8.2.2
* correctly.
* i.e. The stateid seqids have to be initialised to 1, and
* are then incremented on every state transition.
*/
static bool nfs_stateid_is_sequential(struct nfs4_state *state,
const nfs4_stateid *stateid)
{
if (test_bit(NFS_OPEN_STATE, &state->flags)) {
/* The common case - we're updating to a new sequence number */
if (nfs4_stateid_match_other(stateid, &state->open_stateid)) {
if (nfs4_stateid_is_next(&state->open_stateid, stateid))
return true;
return false;
}
/* The server returned a new stateid */
}
/* This is the first OPEN in this generation */
if (stateid->seqid == cpu_to_be32(1))
return true;
return false;
}
static void nfs_resync_open_stateid_locked(struct nfs4_state *state)
{
if (!(state->n_wronly || state->n_rdonly || state->n_rdwr))
return;
if (state->n_wronly)
set_bit(NFS_O_WRONLY_STATE, &state->flags);
if (state->n_rdonly)
set_bit(NFS_O_RDONLY_STATE, &state->flags);
if (state->n_rdwr)
set_bit(NFS_O_RDWR_STATE, &state->flags);
set_bit(NFS_OPEN_STATE, &state->flags);
}
static void nfs_clear_open_stateid_locked(struct nfs4_state *state,
nfs4_stateid *stateid, fmode_t fmode)
{
clear_bit(NFS_O_RDWR_STATE, &state->flags);
switch (fmode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_WRITE:
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
break;
case FMODE_READ:
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
break;
case 0:
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
clear_bit(NFS_OPEN_STATE, &state->flags);
}
if (stateid == NULL)
return;
/* Handle OPEN+OPEN_DOWNGRADE races */
if (nfs4_stateid_match_other(stateid, &state->open_stateid) &&
!nfs4_stateid_is_newer(stateid, &state->open_stateid)) {
nfs_resync_open_stateid_locked(state);
goto out;
}
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
nfs4_stateid_copy(&state->stateid, stateid);
nfs4_stateid_copy(&state->open_stateid, stateid);
trace_nfs4_open_stateid_update(state->inode, stateid, 0);
out:
nfs_state_log_update_open_stateid(state);
}
static void nfs_clear_open_stateid(struct nfs4_state *state,
nfs4_stateid *arg_stateid,
nfs4_stateid *stateid, fmode_t fmode)
{
write_seqlock(&state->seqlock);
/* Ignore, if the CLOSE argment doesn't match the current stateid */
if (nfs4_state_match_open_stateid_other(state, arg_stateid))
nfs_clear_open_stateid_locked(state, stateid, fmode);
write_sequnlock(&state->seqlock);
if (test_bit(NFS_STATE_RECLAIM_NOGRACE, &state->flags))
nfs4_schedule_state_manager(state->owner->so_server->nfs_client);
}
static void nfs_set_open_stateid_locked(struct nfs4_state *state,
const nfs4_stateid *stateid, nfs4_stateid *freeme)
__must_hold(&state->owner->so_lock)
__must_hold(&state->seqlock)
__must_hold(RCU)
{
DEFINE_WAIT(wait);
int status = 0;
for (;;) {
if (nfs_stateid_is_sequential(state, stateid))
break;
if (status)
break;
/* Rely on seqids for serialisation with NFSv4.0 */
if (!nfs4_has_session(NFS_SERVER(state->inode)->nfs_client))
break;
set_bit(NFS_STATE_CHANGE_WAIT, &state->flags);
prepare_to_wait(&state->waitq, &wait, TASK_KILLABLE);
/*
* Ensure we process the state changes in the same order
* in which the server processed them by delaying the
* update of the stateid until we are in sequence.
*/
write_sequnlock(&state->seqlock);
spin_unlock(&state->owner->so_lock);
rcu_read_unlock();
trace_nfs4_open_stateid_update_wait(state->inode, stateid, 0);
if (!fatal_signal_pending(current)) {
if (schedule_timeout(5*HZ) == 0)
status = -EAGAIN;
else
status = 0;
} else
status = -EINTR;
finish_wait(&state->waitq, &wait);
rcu_read_lock();
spin_lock(&state->owner->so_lock);
write_seqlock(&state->seqlock);
}
if (test_bit(NFS_OPEN_STATE, &state->flags) &&
!nfs4_stateid_match_other(stateid, &state->open_stateid)) {
nfs4_stateid_copy(freeme, &state->open_stateid);
nfs_test_and_clear_all_open_stateid(state);
}
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
nfs4_stateid_copy(&state->stateid, stateid);
nfs4_stateid_copy(&state->open_stateid, stateid);
trace_nfs4_open_stateid_update(state->inode, stateid, status);
nfs_state_log_update_open_stateid(state);
}
static void nfs_state_set_open_stateid(struct nfs4_state *state,
const nfs4_stateid *open_stateid,
fmode_t fmode,
nfs4_stateid *freeme)
{
/*
* Protect the call to nfs4_state_set_mode_locked and
* serialise the stateid update
*/
write_seqlock(&state->seqlock);
nfs_set_open_stateid_locked(state, open_stateid, freeme);
switch (fmode) {
case FMODE_READ:
set_bit(NFS_O_RDONLY_STATE, &state->flags);
break;
case FMODE_WRITE:
set_bit(NFS_O_WRONLY_STATE, &state->flags);
break;
case FMODE_READ|FMODE_WRITE:
set_bit(NFS_O_RDWR_STATE, &state->flags);
}
set_bit(NFS_OPEN_STATE, &state->flags);
write_sequnlock(&state->seqlock);
}
static void nfs_state_clear_open_state_flags(struct nfs4_state *state)
{
clear_bit(NFS_O_RDWR_STATE, &state->flags);
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
clear_bit(NFS_OPEN_STATE, &state->flags);
}
static void nfs_state_set_delegation(struct nfs4_state *state,
const nfs4_stateid *deleg_stateid,
fmode_t fmode)
{
/*
* Protect the call to nfs4_state_set_mode_locked and
* serialise the stateid update
*/
write_seqlock(&state->seqlock);
nfs4_stateid_copy(&state->stateid, deleg_stateid);
set_bit(NFS_DELEGATED_STATE, &state->flags);
write_sequnlock(&state->seqlock);
}
static void nfs_state_clear_delegation(struct nfs4_state *state)
{
write_seqlock(&state->seqlock);
nfs4_stateid_copy(&state->stateid, &state->open_stateid);
clear_bit(NFS_DELEGATED_STATE, &state->flags);
write_sequnlock(&state->seqlock);
}
int update_open_stateid(struct nfs4_state *state,
const nfs4_stateid *open_stateid,
const nfs4_stateid *delegation,
fmode_t fmode)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_delegation *deleg_cur;
nfs4_stateid freeme = { };
int ret = 0;
fmode &= (FMODE_READ|FMODE_WRITE);
rcu_read_lock();
spin_lock(&state->owner->so_lock);
if (open_stateid != NULL) {
nfs_state_set_open_stateid(state, open_stateid, fmode, &freeme);
ret = 1;
}
deleg_cur = nfs4_get_valid_delegation(state->inode);
if (deleg_cur == NULL)
goto no_delegation;
spin_lock(&deleg_cur->lock);
if (rcu_dereference(nfsi->delegation) != deleg_cur ||
test_bit(NFS_DELEGATION_RETURNING, &deleg_cur->flags) ||
(deleg_cur->type & fmode) != fmode)
goto no_delegation_unlock;
if (delegation == NULL)
delegation = &deleg_cur->stateid;
else if (!nfs4_stateid_match_other(&deleg_cur->stateid, delegation))
goto no_delegation_unlock;
nfs_mark_delegation_referenced(deleg_cur);
nfs_state_set_delegation(state, &deleg_cur->stateid, fmode);
ret = 1;
no_delegation_unlock:
spin_unlock(&deleg_cur->lock);
no_delegation:
if (ret)
update_open_stateflags(state, fmode);
spin_unlock(&state->owner->so_lock);
rcu_read_unlock();
if (test_bit(NFS_STATE_RECLAIM_NOGRACE, &state->flags))
nfs4_schedule_state_manager(clp);
if (freeme.type != 0)
nfs4_test_and_free_stateid(server, &freeme,
state->owner->so_cred);
return ret;
}
static bool nfs4_update_lock_stateid(struct nfs4_lock_state *lsp,
const nfs4_stateid *stateid)
{
struct nfs4_state *state = lsp->ls_state;
bool ret = false;
spin_lock(&state->state_lock);
if (!nfs4_stateid_match_other(stateid, &lsp->ls_stateid))
goto out_noupdate;
if (!nfs4_stateid_is_newer(stateid, &lsp->ls_stateid))
goto out_noupdate;
nfs4_stateid_copy(&lsp->ls_stateid, stateid);
ret = true;
out_noupdate:
spin_unlock(&state->state_lock);
return ret;
}
static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode)
{
struct nfs_delegation *delegation;
fmode &= FMODE_READ|FMODE_WRITE;
rcu_read_lock();
delegation = nfs4_get_valid_delegation(inode);
if (delegation == NULL || (delegation->type & fmode) == fmode) {
rcu_read_unlock();
return;
}
rcu_read_unlock();
nfs4_inode_return_delegation(inode);
}
static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
{
struct nfs4_state *state = opendata->state;
struct nfs_delegation *delegation;
int open_mode = opendata->o_arg.open_flags;
fmode_t fmode = opendata->o_arg.fmode;
enum open_claim_type4 claim = opendata->o_arg.claim;
nfs4_stateid stateid;
int ret = -EAGAIN;
for (;;) {
spin_lock(&state->owner->so_lock);
if (can_open_cached(state, fmode, open_mode, claim)) {
update_open_stateflags(state, fmode);
spin_unlock(&state->owner->so_lock);
goto out_return_state;
}
spin_unlock(&state->owner->so_lock);
rcu_read_lock();
delegation = nfs4_get_valid_delegation(state->inode);
if (!can_open_delegated(delegation, fmode, claim)) {
rcu_read_unlock();
break;
}
/* Save the delegation */
nfs4_stateid_copy(&stateid, &delegation->stateid);
rcu_read_unlock();
nfs_release_seqid(opendata->o_arg.seqid);
if (!opendata->is_recover) {
ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
if (ret != 0)
goto out;
}
ret = -EAGAIN;
/* Try to update the stateid using the delegation */
if (update_open_stateid(state, NULL, &stateid, fmode))
goto out_return_state;
}
out:
return ERR_PTR(ret);
out_return_state:
refcount_inc(&state->count);
return state;
}
static void
nfs4_process_delegation(struct inode *inode, const struct cred *cred,
enum open_claim_type4 claim,
const struct nfs4_open_delegation *delegation)
{
switch (delegation->open_delegation_type) {
case NFS4_OPEN_DELEGATE_READ:
case NFS4_OPEN_DELEGATE_WRITE:
case NFS4_OPEN_DELEGATE_READ_ATTRS_DELEG:
case NFS4_OPEN_DELEGATE_WRITE_ATTRS_DELEG:
break;
default:
return;
}
switch (claim) {
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
pr_err_ratelimited("NFS: Broken NFSv4 server %s is "
"returning a delegation for "
"OPEN(CLAIM_DELEGATE_CUR)\n",
NFS_SERVER(inode)->nfs_client->cl_hostname);
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
nfs_inode_reclaim_delegation(inode, cred, delegation->type,
&delegation->stateid,
delegation->pagemod_limit,
delegation->open_delegation_type);
break;
default:
nfs_inode_set_delegation(inode, cred, delegation->type,
&delegation->stateid,
delegation->pagemod_limit,
delegation->open_delegation_type);
}
if (delegation->do_recall)
nfs_async_inode_return_delegation(inode, &delegation->stateid);
}
/*
* Check the inode attributes against the CLAIM_PREVIOUS returned attributes
* and update the nfs4_state.
*/
static struct nfs4_state *
_nfs4_opendata_reclaim_to_nfs4_state(struct nfs4_opendata *data)
{
struct inode *inode = data->state->inode;
struct nfs4_state *state = data->state;
int ret;
if (!data->rpc_done) {
if (data->rpc_status)
return ERR_PTR(data->rpc_status);
return nfs4_try_open_cached(data);
}
ret = nfs_refresh_inode(inode, &data->f_attr);
if (ret)
return ERR_PTR(ret);
nfs4_process_delegation(state->inode,
data->owner->so_cred,
data->o_arg.claim,
&data->o_res.delegation);
if (!(data->o_res.rflags & NFS4_OPEN_RESULT_NO_OPEN_STATEID)) {
if (!update_open_stateid(state, &data->o_res.stateid,
NULL, data->o_arg.fmode))
return ERR_PTR(-EAGAIN);
} else if (!update_open_stateid(state, NULL, NULL, data->o_arg.fmode))
return ERR_PTR(-EAGAIN);
refcount_inc(&state->count);
return state;
}
static struct inode *
nfs4_opendata_get_inode(struct nfs4_opendata *data)
{
struct inode *inode;
switch (data->o_arg.claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEGATE_PREV:
if (!(data->f_attr.valid & NFS_ATTR_FATTR))
return ERR_PTR(-EAGAIN);
inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh,
&data->f_attr);
break;
default:
inode = d_inode(data->dentry);
ihold(inode);
nfs_refresh_inode(inode, &data->f_attr);
}
return inode;
}
static struct nfs4_state *
nfs4_opendata_find_nfs4_state(struct nfs4_opendata *data)
{
struct nfs4_state *state;
struct inode *inode;
inode = nfs4_opendata_get_inode(data);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (data->state != NULL && data->state->inode == inode) {
state = data->state;
refcount_inc(&state->count);
} else
state = nfs4_get_open_state(inode, data->owner);
iput(inode);
if (state == NULL)
state = ERR_PTR(-ENOMEM);
return state;
}
static struct nfs4_state *
_nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
struct nfs4_state *state;
if (!data->rpc_done) {
state = nfs4_try_open_cached(data);
trace_nfs4_cached_open(data->state);
goto out;
}
state = nfs4_opendata_find_nfs4_state(data);
if (IS_ERR(state))
goto out;
nfs4_process_delegation(state->inode,
data->owner->so_cred,
data->o_arg.claim,
&data->o_res.delegation);
if (!(data->o_res.rflags & NFS4_OPEN_RESULT_NO_OPEN_STATEID)) {
if (!update_open_stateid(state, &data->o_res.stateid,
NULL, data->o_arg.fmode)) {
nfs4_put_open_state(state);
state = ERR_PTR(-EAGAIN);
}
} else if (!update_open_stateid(state, NULL, NULL, data->o_arg.fmode)) {
nfs4_put_open_state(state);
state = ERR_PTR(-EAGAIN);
}
out:
nfs_release_seqid(data->o_arg.seqid);
return state;
}
static struct nfs4_state *
nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
struct nfs4_state *ret;
if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
ret =_nfs4_opendata_reclaim_to_nfs4_state(data);
else
ret = _nfs4_opendata_to_nfs4_state(data);
nfs4_sequence_free_slot(&data->o_res.seq_res);
return ret;
}
static struct nfs_open_context *
nfs4_state_find_open_context_mode(struct nfs4_state *state, fmode_t mode)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_open_context *ctx;
rcu_read_lock();
list_for_each_entry_rcu(ctx, &nfsi->open_files, list) {
if (ctx->state != state)
continue;
if ((ctx->mode & mode) != mode)
continue;
if (!get_nfs_open_context(ctx))
continue;
rcu_read_unlock();
return ctx;
}
rcu_read_unlock();
return ERR_PTR(-ENOENT);
}
static struct nfs_open_context *
nfs4_state_find_open_context(struct nfs4_state *state)
{
struct nfs_open_context *ctx;
ctx = nfs4_state_find_open_context_mode(state, FMODE_READ|FMODE_WRITE);
if (!IS_ERR(ctx))
return ctx;
ctx = nfs4_state_find_open_context_mode(state, FMODE_WRITE);
if (!IS_ERR(ctx))
return ctx;
return nfs4_state_find_open_context_mode(state, FMODE_READ);
}
static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx,
struct nfs4_state *state, enum open_claim_type4 claim)
{
struct nfs4_opendata *opendata;
opendata = nfs4_opendata_alloc(ctx->dentry, state->owner, 0, 0,
NULL, claim, GFP_NOFS);
if (opendata == NULL)
return ERR_PTR(-ENOMEM);
opendata->state = state;
refcount_inc(&state->count);
return opendata;
}
static int nfs4_open_recover_helper(struct nfs4_opendata *opendata,
fmode_t fmode)
{
struct nfs4_state *newstate;
struct nfs_server *server = NFS_SB(opendata->dentry->d_sb);
int openflags = opendata->o_arg.open_flags;
int ret;
if (!nfs4_mode_match_open_stateid(opendata->state, fmode))
return 0;
opendata->o_arg.fmode = fmode;
opendata->o_arg.share_access =
nfs4_map_atomic_open_share(server, fmode, openflags);
memset(&opendata->o_res, 0, sizeof(opendata->o_res));
memset(&opendata->c_res, 0, sizeof(opendata->c_res));
nfs4_init_opendata_res(opendata);
ret = _nfs4_recover_proc_open(opendata);
if (ret != 0)
return ret;
newstate = nfs4_opendata_to_nfs4_state(opendata);
if (IS_ERR(newstate))
return PTR_ERR(newstate);
if (newstate != opendata->state)
ret = -ESTALE;
nfs4_close_state(newstate, fmode);
return ret;
}
static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
{
int ret;
/* memory barrier prior to reading state->n_* */
smp_rmb();
ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE);
if (ret != 0)
return ret;
ret = nfs4_open_recover_helper(opendata, FMODE_WRITE);
if (ret != 0)
return ret;
ret = nfs4_open_recover_helper(opendata, FMODE_READ);
if (ret != 0)
return ret;
/*
* We may have performed cached opens for all three recoveries.
* Check if we need to update the current stateid.
*/
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
!nfs4_stateid_match(&state->stateid, &state->open_stateid)) {
write_seqlock(&state->seqlock);
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
nfs4_stateid_copy(&state->stateid, &state->open_stateid);
write_sequnlock(&state->seqlock);
}
return 0;
}
/*
* OPEN_RECLAIM:
* reclaim state on the server after a reboot.
*/
static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_delegation *delegation;
struct nfs4_opendata *opendata;
u32 delegation_type = NFS4_OPEN_DELEGATE_NONE;
int status;
opendata = nfs4_open_recoverdata_alloc(ctx, state,
NFS4_OPEN_CLAIM_PREVIOUS);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
rcu_read_lock();
delegation = rcu_dereference(NFS_I(state->inode)->delegation);
if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0) {
switch(delegation->type) {
case FMODE_READ:
delegation_type = NFS4_OPEN_DELEGATE_READ;
if (test_bit(NFS_DELEGATION_DELEGTIME, &delegation->flags))
delegation_type = NFS4_OPEN_DELEGATE_READ_ATTRS_DELEG;
break;
case FMODE_WRITE:
case FMODE_READ|FMODE_WRITE:
delegation_type = NFS4_OPEN_DELEGATE_WRITE;
if (test_bit(NFS_DELEGATION_DELEGTIME, &delegation->flags))
delegation_type = NFS4_OPEN_DELEGATE_WRITE_ATTRS_DELEG;
}
}
rcu_read_unlock();
opendata->o_arg.u.delegation_type = delegation_type;
status = nfs4_open_recover(opendata, state);
nfs4_opendata_put(opendata);
return status;
}
static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_open_reclaim(ctx, state);
trace_nfs4_open_reclaim(ctx, 0, err);
if (nfs4_clear_cap_atomic_open_v1(server, err, &exception))
continue;
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return -EAGAIN;
clear_bit(NFS_DELEGATED_STATE, &state->flags);
nfs_state_clear_open_state_flags(state);
ret = nfs4_do_open_reclaim(ctx, state);
put_nfs_open_context(ctx);
return ret;
}
static int nfs4_handle_delegation_recall_error(struct nfs_server *server, struct nfs4_state *state, const nfs4_stateid *stateid, struct file_lock *fl, int err)
{
switch (err) {
default:
printk(KERN_ERR "NFS: %s: unhandled error "
"%d.\n", __func__, err);
fallthrough;
case 0:
case -ENOENT:
case -EAGAIN:
case -ESTALE:
case -ETIMEDOUT:
break;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
return -EAGAIN;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
/* Don't recall a delegation if it was lost */
nfs4_schedule_lease_recovery(server->nfs_client);
return -EAGAIN;
case -NFS4ERR_MOVED:
nfs4_schedule_migration_recovery(server);
return -EAGAIN;
case -NFS4ERR_LEASE_MOVED:
nfs4_schedule_lease_moved_recovery(server->nfs_client);
return -EAGAIN;
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OPENMODE:
nfs_inode_find_state_and_recover(state->inode,
stateid);
nfs4_schedule_stateid_recovery(server, state);
return -EAGAIN;
case -NFS4ERR_DELAY:
case -NFS4ERR_GRACE:
ssleep(1);
return -EAGAIN;
case -ENOMEM:
case -NFS4ERR_DENIED:
if (fl) {
struct nfs4_lock_state *lsp = fl->fl_u.nfs4_fl.owner;
if (lsp)
set_bit(NFS_LOCK_LOST, &lsp->ls_flags);
}
return 0;
}
return err;
}
int nfs4_open_delegation_recall(struct nfs_open_context *ctx,
struct nfs4_state *state, const nfs4_stateid *stateid)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_opendata *opendata;
int err = 0;
opendata = nfs4_open_recoverdata_alloc(ctx, state,
NFS4_OPEN_CLAIM_DELEG_CUR_FH);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
nfs4_stateid_copy(&opendata->o_arg.u.delegation, stateid);
if (!test_bit(NFS_O_RDWR_STATE, &state->flags)) {
err = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE);
if (err)
goto out;
}
if (!test_bit(NFS_O_WRONLY_STATE, &state->flags)) {
err = nfs4_open_recover_helper(opendata, FMODE_WRITE);
if (err)
goto out;
}
if (!test_bit(NFS_O_RDONLY_STATE, &state->flags)) {
err = nfs4_open_recover_helper(opendata, FMODE_READ);
if (err)
goto out;
}
nfs_state_clear_delegation(state);
out:
nfs4_opendata_put(opendata);
return nfs4_handle_delegation_recall_error(server, state, stateid, NULL, err);
}
static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
nfs4_setup_sequence(data->o_arg.server->nfs_client,
&data->c_arg.seq_args, &data->c_res.seq_res, task);
}
static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
nfs40_sequence_done(task, &data->c_res.seq_res);
data->rpc_status = task->tk_status;
if (data->rpc_status == 0) {
nfs4_stateid_copy(&data->o_res.stateid, &data->c_res.stateid);
nfs_confirm_seqid(&data->owner->so_seqid, 0);
renew_lease(data->o_res.server, data->timestamp);
data->rpc_done = true;
}
}
static void nfs4_open_confirm_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (!data->cancelled)
goto out_free;
/* In case of error, no cleanup! */
if (!data->rpc_done)
goto out_free;
state = nfs4_opendata_to_nfs4_state(data);
if (!IS_ERR(state))
nfs4_close_state(state, data->o_arg.fmode);
out_free:
nfs4_opendata_put(data);
}
static const struct rpc_call_ops nfs4_open_confirm_ops = {
.rpc_call_prepare = nfs4_open_confirm_prepare,
.rpc_call_done = nfs4_open_confirm_done,
.rpc_release = nfs4_open_confirm_release,
};
/*
* Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
*/
static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
{
struct nfs_server *server = NFS_SERVER(d_inode(data->dir));
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
.rpc_argp = &data->c_arg,
.rpc_resp = &data->c_res,
.rpc_cred = data->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_open_confirm_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int status;
nfs4_init_sequence(&data->c_arg.seq_args, &data->c_res.seq_res, 1,
data->is_recover);
kref_get(&data->kref);
data->rpc_done = false;
data->rpc_status = 0;
data->timestamp = jiffies;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = rpc_wait_for_completion_task(task);
if (status != 0) {
data->cancelled = true;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state_owner *sp = data->owner;
struct nfs_client *clp = sp->so_server->nfs_client;
enum open_claim_type4 claim = data->o_arg.claim;
if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
goto out_wait;
/*
* Check if we still need to send an OPEN call, or if we can use
* a delegation instead.
*/
if (data->state != NULL) {
struct nfs_delegation *delegation;
if (can_open_cached(data->state, data->o_arg.fmode,
data->o_arg.open_flags, claim))
goto out_no_action;
rcu_read_lock();
delegation = nfs4_get_valid_delegation(data->state->inode);
if (can_open_delegated(delegation, data->o_arg.fmode, claim))
goto unlock_no_action;
rcu_read_unlock();
}
/* Update client id. */
data->o_arg.clientid = clp->cl_clientid;
switch (claim) {
default:
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
case NFS4_OPEN_CLAIM_DELEG_PREV_FH:
data->o_arg.open_bitmap = &nfs4_open_noattr_bitmap[0];
fallthrough;
case NFS4_OPEN_CLAIM_FH:
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
}
data->timestamp = jiffies;
if (nfs4_setup_sequence(data->o_arg.server->nfs_client,
&data->o_arg.seq_args,
&data->o_res.seq_res,
task) != 0)
nfs_release_seqid(data->o_arg.seqid);
/* Set the create mode (note dependency on the session type) */
data->o_arg.createmode = NFS4_CREATE_UNCHECKED;
if (data->o_arg.open_flags & O_EXCL) {
data->o_arg.createmode = NFS4_CREATE_EXCLUSIVE4_1;
if (clp->cl_mvops->minor_version == 0) {
data->o_arg.createmode = NFS4_CREATE_EXCLUSIVE;
/* don't put an ACCESS op in OPEN compound if O_EXCL,
* because ACCESS will return permission denied for
* all bits until close */
data->o_res.access_request = data->o_arg.access = 0;
} else if (nfs4_has_persistent_session(clp))
data->o_arg.createmode = NFS4_CREATE_GUARDED;
}
return;
unlock_no_action:
trace_nfs4_cached_open(data->state);
rcu_read_unlock();
out_no_action:
task->tk_action = NULL;
out_wait:
nfs4_sequence_done(task, &data->o_res.seq_res);
}
static void nfs4_open_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
data->rpc_status = task->tk_status;
if (!nfs4_sequence_process(task, &data->o_res.seq_res))
return;
if (task->tk_status == 0) {
if (data->o_res.f_attr->valid & NFS_ATTR_FATTR_TYPE) {
switch (data->o_res.f_attr->mode & S_IFMT) {
case S_IFREG:
break;
case S_IFLNK:
data->rpc_status = -ELOOP;
break;
case S_IFDIR:
data->rpc_status = -EISDIR;
break;
default:
data->rpc_status = -ENOTDIR;
}
}
renew_lease(data->o_res.server, data->timestamp);
if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
nfs_confirm_seqid(&data->owner->so_seqid, 0);
}
data->rpc_done = true;
}
static void nfs4_open_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (!data->cancelled)
goto out_free;
/* In case of error, no cleanup! */
if (data->rpc_status != 0 || !data->rpc_done)
goto out_free;
/* In case we need an open_confirm, no cleanup! */
if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
goto out_free;
state = nfs4_opendata_to_nfs4_state(data);
if (!IS_ERR(state))
nfs4_close_state(state, data->o_arg.fmode);
out_free:
nfs4_opendata_put(data);
}
static const struct rpc_call_ops nfs4_open_ops = {
.rpc_call_prepare = nfs4_open_prepare,
.rpc_call_done = nfs4_open_done,
.rpc_release = nfs4_open_release,
};
static int nfs4_run_open_task(struct nfs4_opendata *data,
struct nfs_open_context *ctx)
{
struct inode *dir = d_inode(data->dir);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
.rpc_argp = o_arg,
.rpc_resp = o_res,
.rpc_cred = data->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_open_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int status;
if (nfs_server_capable(dir, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
kref_get(&data->kref);
data->rpc_done = false;
data->rpc_status = 0;
data->cancelled = false;
data->is_recover = false;
if (!ctx) {
nfs4_init_sequence(&o_arg->seq_args, &o_res->seq_res, 1, 1);
data->is_recover = true;
task_setup_data.flags |= RPC_TASK_TIMEOUT;
} else {
nfs4_init_sequence(&o_arg->seq_args, &o_res->seq_res, 1, 0);
pnfs_lgopen_prepare(data, ctx);
}
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = rpc_wait_for_completion_task(task);
if (status != 0) {
data->cancelled = true;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static int _nfs4_recover_proc_open(struct nfs4_opendata *data)
{
struct inode *dir = d_inode(data->dir);
struct nfs_openres *o_res = &data->o_res;
int status;
status = nfs4_run_open_task(data, NULL);
if (status != 0 || !data->rpc_done)
return status;
nfs_fattr_map_and_free_names(NFS_SERVER(dir), &data->f_attr);
if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM)
status = _nfs4_proc_open_confirm(data);
return status;
}
/*
* Additional permission checks in order to distinguish between an
* open for read, and an open for execute. This works around the
* fact that NFSv4 OPEN treats read and execute permissions as being
* the same.
* Note that in the non-execute case, we want to turn off permission
* checking if we just created a new file (POSIX open() semantics).
*/
static int nfs4_opendata_access(const struct cred *cred,
struct nfs4_opendata *opendata,
struct nfs4_state *state, fmode_t fmode)
{
struct nfs_access_entry cache;
u32 mask, flags;
/* access call failed or for some reason the server doesn't
* support any access modes -- defer access call until later */
if (opendata->o_res.access_supported == 0)
return 0;
mask = 0;
if (fmode & FMODE_EXEC) {
/* ONLY check for exec rights */
if (S_ISDIR(state->inode->i_mode))
mask = NFS4_ACCESS_LOOKUP;
else
mask = NFS4_ACCESS_EXECUTE;
} else if ((fmode & FMODE_READ) && !opendata->file_created)
mask = NFS4_ACCESS_READ;
nfs_access_set_mask(&cache, opendata->o_res.access_result);
nfs_access_add_cache(state->inode, &cache, cred);
flags = NFS4_ACCESS_READ | NFS4_ACCESS_EXECUTE | NFS4_ACCESS_LOOKUP;
if ((mask & ~cache.mask & flags) == 0)
return 0;
return -EACCES;
}
/*
* Note: On error, nfs4_proc_open will free the struct nfs4_opendata
*/
static int _nfs4_proc_open(struct nfs4_opendata *data,
struct nfs_open_context *ctx)
{
struct inode *dir = d_inode(data->dir);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
int status;
status = nfs4_run_open_task(data, ctx);
if (!data->rpc_done)
return status;
if (status != 0) {
if (status == -NFS4ERR_BADNAME &&
!(o_arg->open_flags & O_CREAT))
return -ENOENT;
return status;
}
nfs_fattr_map_and_free_names(server, &data->f_attr);
if (o_arg->open_flags & O_CREAT) {
if (o_arg->open_flags & O_EXCL)
data->file_created = true;
else if (o_res->cinfo.before != o_res->cinfo.after)
data->file_created = true;
if (data->file_created ||
inode_peek_iversion_raw(dir) != o_res->cinfo.after)
nfs4_update_changeattr(dir, &o_res->cinfo,
o_res->f_attr->time_start,
NFS_INO_INVALID_DATA);
}
if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0)
server->caps &= ~NFS_CAP_POSIX_LOCK;
if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(data);
if (status != 0)
return status;
}
if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) {
struct nfs_fh *fh = &o_res->fh;
nfs4_sequence_free_slot(&o_res->seq_res);
if (o_arg->claim == NFS4_OPEN_CLAIM_FH)
fh = NFS_FH(d_inode(data->dentry));
nfs4_proc_getattr(server, fh, o_res->f_attr, NULL);
}
return 0;
}
/*
* OPEN_EXPIRED:
* reclaim state on the server after a network partition.
* Assumes caller holds the appropriate lock
*/
static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs4_opendata *opendata;
int ret;
opendata = nfs4_open_recoverdata_alloc(ctx, state, NFS4_OPEN_CLAIM_FH);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
/*
* We're not recovering a delegation, so ask for no delegation.
* Otherwise the recovery thread could deadlock with an outstanding
* delegation return.
*/
opendata->o_arg.open_flags = O_DIRECT;
ret = nfs4_open_recover(opendata, state);
if (ret == -ESTALE)
d_drop(ctx->dentry);
nfs4_opendata_put(opendata);
return ret;
}
static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_open_expired(ctx, state);
trace_nfs4_open_expired(ctx, 0, err);
if (nfs4_clear_cap_atomic_open_v1(server, err, &exception))
continue;
switch (err) {
default:
goto out;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
nfs4_handle_exception(server, err, &exception);
err = 0;
}
} while (exception.retry);
out:
return err;
}
static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return -EAGAIN;
ret = nfs4_do_open_expired(ctx, state);
put_nfs_open_context(ctx);
return ret;
}
static void nfs_finish_clear_delegation_stateid(struct nfs4_state *state,
const nfs4_stateid *stateid)
{
nfs_remove_bad_delegation(state->inode, stateid);
nfs_state_clear_delegation(state);
}
static void nfs40_clear_delegation_stateid(struct nfs4_state *state)
{
if (rcu_access_pointer(NFS_I(state->inode)->delegation) != NULL)
nfs_finish_clear_delegation_stateid(state, NULL);
}
static int nfs40_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
/* NFSv4.0 doesn't allow for delegation recovery on open expire */
nfs40_clear_delegation_stateid(state);
nfs_state_clear_open_state_flags(state);
return nfs4_open_expired(sp, state);
}
static int nfs40_test_and_free_expired_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred)
{
return -NFS4ERR_BAD_STATEID;
}
#if defined(CONFIG_NFS_V4_1)
static int nfs41_test_and_free_expired_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred)
{
int status;
switch (stateid->type) {
default:
break;
case NFS4_INVALID_STATEID_TYPE:
case NFS4_SPECIAL_STATEID_TYPE:
return -NFS4ERR_BAD_STATEID;
case NFS4_REVOKED_STATEID_TYPE:
goto out_free;
}
status = nfs41_test_stateid(server, stateid, cred);
switch (status) {
case -NFS4ERR_EXPIRED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_DELEG_REVOKED:
break;
default:
return status;
}
out_free:
/* Ack the revoked state to the server */
nfs41_free_stateid(server, stateid, cred, true);
return -NFS4ERR_EXPIRED;
}
static int nfs41_check_delegation_stateid(struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
nfs4_stateid stateid;
struct nfs_delegation *delegation;
const struct cred *cred = NULL;
int status, ret = NFS_OK;
/* Get the delegation credential for use by test/free_stateid */
rcu_read_lock();
delegation = rcu_dereference(NFS_I(state->inode)->delegation);
if (delegation == NULL) {
rcu_read_unlock();
nfs_state_clear_delegation(state);
return NFS_OK;
}
spin_lock(&delegation->lock);
nfs4_stateid_copy(&stateid, &delegation->stateid);
if (!test_and_clear_bit(NFS_DELEGATION_TEST_EXPIRED,
&delegation->flags)) {
spin_unlock(&delegation->lock);
rcu_read_unlock();
return NFS_OK;
}
if (delegation->cred)
cred = get_cred(delegation->cred);
spin_unlock(&delegation->lock);
rcu_read_unlock();
status = nfs41_test_and_free_expired_stateid(server, &stateid, cred);
trace_nfs4_test_delegation_stateid(state, NULL, status);
if (status == -NFS4ERR_EXPIRED || status == -NFS4ERR_BAD_STATEID)
nfs_finish_clear_delegation_stateid(state, &stateid);
else
ret = status;
put_cred(cred);
return ret;
}
static void nfs41_delegation_recover_stateid(struct nfs4_state *state)
{
nfs4_stateid tmp;
if (test_bit(NFS_DELEGATED_STATE, &state->flags) &&
nfs4_copy_delegation_stateid(state->inode, state->state,
&tmp, NULL) &&
nfs4_stateid_match_other(&state->stateid, &tmp))
nfs_state_set_delegation(state, &tmp, state->state);
else
nfs_state_clear_delegation(state);
}
/**
* nfs41_check_expired_locks - possibly free a lock stateid
*
* @state: NFSv4 state for an inode
*
* Returns NFS_OK if recovery for this stateid is now finished.
* Otherwise a negative NFS4ERR value is returned.
*/
static int nfs41_check_expired_locks(struct nfs4_state *state)
{
int status, ret = NFS_OK;
struct nfs4_lock_state *lsp, *prev = NULL;
struct nfs_server *server = NFS_SERVER(state->inode);
if (!test_bit(LK_STATE_IN_USE, &state->flags))
goto out;
spin_lock(&state->state_lock);
list_for_each_entry(lsp, &state->lock_states, ls_locks) {
if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags)) {
const struct cred *cred = lsp->ls_state->owner->so_cred;
refcount_inc(&lsp->ls_count);
spin_unlock(&state->state_lock);
nfs4_put_lock_state(prev);
prev = lsp;
status = nfs41_test_and_free_expired_stateid(server,
&lsp->ls_stateid,
cred);
trace_nfs4_test_lock_stateid(state, lsp, status);
if (status == -NFS4ERR_EXPIRED ||
status == -NFS4ERR_BAD_STATEID) {
clear_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags);
lsp->ls_stateid.type = NFS4_INVALID_STATEID_TYPE;
if (!recover_lost_locks)
set_bit(NFS_LOCK_LOST, &lsp->ls_flags);
} else if (status != NFS_OK) {
ret = status;
nfs4_put_lock_state(prev);
goto out;
}
spin_lock(&state->state_lock);
}
}
spin_unlock(&state->state_lock);
nfs4_put_lock_state(prev);
out:
return ret;
}
/**
* nfs41_check_open_stateid - possibly free an open stateid
*
* @state: NFSv4 state for an inode
*
* Returns NFS_OK if recovery for this stateid is now finished.
* Otherwise a negative NFS4ERR value is returned.
*/
static int nfs41_check_open_stateid(struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
nfs4_stateid *stateid = &state->open_stateid;
const struct cred *cred = state->owner->so_cred;
int status;
if (test_bit(NFS_OPEN_STATE, &state->flags) == 0)
return -NFS4ERR_BAD_STATEID;
status = nfs41_test_and_free_expired_stateid(server, stateid, cred);
trace_nfs4_test_open_stateid(state, NULL, status);
if (status == -NFS4ERR_EXPIRED || status == -NFS4ERR_BAD_STATEID) {
nfs_state_clear_open_state_flags(state);
stateid->type = NFS4_INVALID_STATEID_TYPE;
return status;
}
if (nfs_open_stateid_recover_openmode(state))
return -NFS4ERR_OPENMODE;
return NFS_OK;
}
static int nfs41_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
int status;
status = nfs41_check_delegation_stateid(state);
if (status != NFS_OK)
return status;
nfs41_delegation_recover_stateid(state);
status = nfs41_check_expired_locks(state);
if (status != NFS_OK)
return status;
status = nfs41_check_open_stateid(state);
if (status != NFS_OK)
status = nfs4_open_expired(sp, state);
return status;
}
#endif
/*
* on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
* fields corresponding to attributes that were used to store the verifier.
* Make sure we clobber those fields in the later setattr call
*/
static unsigned nfs4_exclusive_attrset(struct nfs4_opendata *opendata,
struct iattr *sattr, struct nfs4_label **label)
{
const __u32 *bitmask = opendata->o_arg.server->exclcreat_bitmask;
__u32 attrset[3];
unsigned ret;
unsigned i;
for (i = 0; i < ARRAY_SIZE(attrset); i++) {
attrset[i] = opendata->o_res.attrset[i];
if (opendata->o_arg.createmode == NFS4_CREATE_EXCLUSIVE4_1)
attrset[i] &= ~bitmask[i];
}
ret = (opendata->o_arg.createmode == NFS4_CREATE_EXCLUSIVE) ?
sattr->ia_valid : 0;
if ((attrset[1] & (FATTR4_WORD1_TIME_ACCESS|FATTR4_WORD1_TIME_ACCESS_SET))) {
if (sattr->ia_valid & ATTR_ATIME_SET)
ret |= ATTR_ATIME_SET;
else
ret |= ATTR_ATIME;
}
if ((attrset[1] & (FATTR4_WORD1_TIME_MODIFY|FATTR4_WORD1_TIME_MODIFY_SET))) {
if (sattr->ia_valid & ATTR_MTIME_SET)
ret |= ATTR_MTIME_SET;
else
ret |= ATTR_MTIME;
}
if (!(attrset[2] & FATTR4_WORD2_SECURITY_LABEL))
*label = NULL;
return ret;
}
static int _nfs4_open_and_get_state(struct nfs4_opendata *opendata,
struct nfs_open_context *ctx)
{
struct nfs4_state_owner *sp = opendata->owner;
struct nfs_server *server = sp->so_server;
struct dentry *dentry;
struct nfs4_state *state;
fmode_t acc_mode = _nfs4_ctx_to_accessmode(ctx);
struct inode *dir = d_inode(opendata->dir);
unsigned long dir_verifier;
int ret;
dir_verifier = nfs_save_change_attribute(dir);
ret = _nfs4_proc_open(opendata, ctx);
if (ret != 0)
goto out;
state = _nfs4_opendata_to_nfs4_state(opendata);
ret = PTR_ERR(state);
if (IS_ERR(state))
goto out;
ctx->state = state;
if (server->caps & NFS_CAP_POSIX_LOCK)
set_bit(NFS_STATE_POSIX_LOCKS, &state->flags);
if (opendata->o_res.rflags & NFS4_OPEN_RESULT_MAY_NOTIFY_LOCK)
set_bit(NFS_STATE_MAY_NOTIFY_LOCK, &state->flags);
if (opendata->o_res.rflags & NFS4_OPEN_RESULT_PRESERVE_UNLINKED)
set_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(state->inode)->flags);
dentry = opendata->dentry;
if (d_really_is_negative(dentry)) {
struct dentry *alias;
d_drop(dentry);
alias = d_exact_alias(dentry, state->inode);
if (!alias)
alias = d_splice_alias(igrab(state->inode), dentry);
/* d_splice_alias() can't fail here - it's a non-directory */
if (alias) {
dput(ctx->dentry);
ctx->dentry = dentry = alias;
}
}
switch(opendata->o_arg.claim) {
default:
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEGATE_PREV:
if (!opendata->rpc_done)
break;
if (opendata->o_res.delegation.type != 0)
dir_verifier = nfs_save_change_attribute(dir);
nfs_set_verifier(dentry, dir_verifier);
}
/* Parse layoutget results before we check for access */
pnfs_parse_lgopen(state->inode, opendata->lgp, ctx);
ret = nfs4_opendata_access(sp->so_cred, opendata, state, acc_mode);
if (ret != 0)
goto out;
if (d_inode(dentry) == state->inode)
nfs_inode_attach_open_context(ctx);
out:
if (!opendata->cancelled) {
if (opendata->lgp) {
nfs4_lgopen_release(opendata->lgp);
opendata->lgp = NULL;
}
nfs4_sequence_free_slot(&opendata->o_res.seq_res);
}
return ret;
}
/*
* Returns a referenced nfs4_state
*/
static int _nfs4_do_open(struct inode *dir,
struct nfs_open_context *ctx,
int flags,
const struct nfs4_open_createattrs *c,
int *opened)
{
struct nfs4_state_owner *sp;
struct nfs4_state *state = NULL;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_opendata *opendata;
struct dentry *dentry = ctx->dentry;
const struct cred *cred = ctx->cred;
struct nfs4_threshold **ctx_th = &ctx->mdsthreshold;
fmode_t fmode = _nfs4_ctx_to_openmode(ctx);
enum open_claim_type4 claim = NFS4_OPEN_CLAIM_NULL;
struct iattr *sattr = c->sattr;
struct nfs4_label *label = c->label;
int status;
/* Protect against reboot recovery conflicts */
status = -ENOMEM;
sp = nfs4_get_state_owner(server, cred, GFP_KERNEL);
if (sp == NULL) {
dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
goto out_err;
}
status = nfs4_client_recover_expired_lease(server->nfs_client);
if (status != 0)
goto err_put_state_owner;
if (d_really_is_positive(dentry))
nfs4_return_incompatible_delegation(d_inode(dentry), fmode);
status = -ENOMEM;
if (d_really_is_positive(dentry))
claim = NFS4_OPEN_CLAIM_FH;
opendata = nfs4_opendata_alloc(dentry, sp, fmode, flags,
c, claim, GFP_KERNEL);
if (opendata == NULL)
goto err_put_state_owner;
if (server->attr_bitmask[2] & FATTR4_WORD2_MDSTHRESHOLD) {
if (!opendata->f_attr.mdsthreshold) {
opendata->f_attr.mdsthreshold = pnfs_mdsthreshold_alloc();
if (!opendata->f_attr.mdsthreshold)
goto err_opendata_put;
}
opendata->o_arg.open_bitmap = &nfs4_pnfs_open_bitmap[0];
}
if (d_really_is_positive(dentry))
opendata->state = nfs4_get_open_state(d_inode(dentry), sp);
status = _nfs4_open_and_get_state(opendata, ctx);
if (status != 0)
goto err_opendata_put;
state = ctx->state;
if ((opendata->o_arg.open_flags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL) &&
(opendata->o_arg.createmode != NFS4_CREATE_GUARDED)) {
unsigned attrs = nfs4_exclusive_attrset(opendata, sattr, &label);
/*
* send create attributes which was not set by open
* with an extra setattr.
*/
if (attrs || label) {
unsigned ia_old = sattr->ia_valid;
sattr->ia_valid = attrs;
nfs_fattr_init(opendata->o_res.f_attr);
status = nfs4_do_setattr(state->inode, cred,
opendata->o_res.f_attr, sattr,
ctx, label);
if (status == 0) {
nfs_setattr_update_inode(state->inode, sattr,
opendata->o_res.f_attr);
nfs_setsecurity(state->inode, opendata->o_res.f_attr);
}
sattr->ia_valid = ia_old;
}
}
if (opened && opendata->file_created)
*opened = 1;
if (pnfs_use_threshold(ctx_th, opendata->f_attr.mdsthreshold, server)) {
*ctx_th = opendata->f_attr.mdsthreshold;
opendata->f_attr.mdsthreshold = NULL;
}
nfs4_opendata_put(opendata);
nfs4_put_state_owner(sp);
return 0;
err_opendata_put:
nfs4_opendata_put(opendata);
err_put_state_owner:
nfs4_put_state_owner(sp);
out_err:
return status;
}
static struct nfs4_state *nfs4_do_open(struct inode *dir,
struct nfs_open_context *ctx,
int flags,
struct iattr *sattr,
struct nfs4_label *label,
int *opened)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_state *res;
struct nfs4_open_createattrs c = {
.label = label,
.sattr = sattr,
.verf = {
[0] = (__u32)jiffies,
[1] = (__u32)current->pid,
},
};
int status;
do {
status = _nfs4_do_open(dir, ctx, flags, &c, opened);
res = ctx->state;
trace_nfs4_open_file(ctx, flags, status);
if (status == 0)
break;
/* NOTE: BAD_SEQID means the server and client disagree about the
* book-keeping w.r.t. state-changing operations
* (OPEN/CLOSE/LOCK/LOCKU...)
* It is actually a sign of a bug on the client or on the server.
*
* If we receive a BAD_SEQID error in the particular case of
* doing an OPEN, we assume that nfs_increment_open_seqid() will
* have unhashed the old state_owner for us, and that we can
* therefore safely retry using a new one. We should still warn
* the user though...
*/
if (status == -NFS4ERR_BAD_SEQID) {
pr_warn_ratelimited("NFS: v4 server %s "
" returned a bad sequence-id error!\n",
NFS_SERVER(dir)->nfs_client->cl_hostname);
exception.retry = 1;
continue;
}
/*
* BAD_STATEID on OPEN means that the server cancelled our
* state before it received the OPEN_CONFIRM.
* Recover by retrying the request as per the discussion
* on Page 181 of RFC3530.
*/
if (status == -NFS4ERR_BAD_STATEID) {
exception.retry = 1;
continue;
}
if (status == -NFS4ERR_EXPIRED) {
nfs4_schedule_lease_recovery(server->nfs_client);
exception.retry = 1;
continue;
}
if (status == -EAGAIN) {
/* We must have found a delegation */
exception.retry = 1;
continue;
}
if (nfs4_clear_cap_atomic_open_v1(server, status, &exception))
continue;
res = ERR_PTR(nfs4_handle_exception(server,
status, &exception));
} while (exception.retry);
return res;
}
static int _nfs4_do_setattr(struct inode *inode,
struct nfs_setattrargs *arg,
struct nfs_setattrres *res,
const struct cred *cred,
struct nfs_open_context *ctx)
{
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = arg,
.rpc_resp = res,
.rpc_cred = cred,
};
const struct cred *delegation_cred = NULL;
unsigned long timestamp = jiffies;
bool truncate;
int status;
nfs_fattr_init(res->fattr);
/* Servers should only apply open mode checks for file size changes */
truncate = (arg->iap->ia_valid & ATTR_SIZE) ? true : false;
if (!truncate) {
nfs4_inode_make_writeable(inode);
goto zero_stateid;
}
if (nfs4_copy_delegation_stateid(inode, FMODE_WRITE, &arg->stateid, &delegation_cred)) {
/* Use that stateid */
} else if (ctx != NULL && ctx->state) {
struct nfs_lock_context *l_ctx;
if (!nfs4_valid_open_stateid(ctx->state))
return -EBADF;
l_ctx = nfs_get_lock_context(ctx);
if (IS_ERR(l_ctx))
return PTR_ERR(l_ctx);
status = nfs4_select_rw_stateid(ctx->state, FMODE_WRITE, l_ctx,
&arg->stateid, &delegation_cred);
nfs_put_lock_context(l_ctx);
if (status == -EIO)
return -EBADF;
else if (status == -EAGAIN)
goto zero_stateid;
} else {
zero_stateid:
nfs4_stateid_copy(&arg->stateid, &zero_stateid);
}
if (delegation_cred)
msg.rpc_cred = delegation_cred;
status = nfs4_call_sync(server->client, server, &msg, &arg->seq_args, &res->seq_res, 1);
put_cred(delegation_cred);
if (status == 0 && ctx != NULL)
renew_lease(server, timestamp);
trace_nfs4_setattr(inode, &arg->stateid, status);
return status;
}
static int nfs4_do_setattr(struct inode *inode, const struct cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs_open_context *ctx, struct nfs4_label *ilabel)
{
struct nfs_server *server = NFS_SERVER(inode);
__u32 bitmask[NFS4_BITMASK_SZ];
struct nfs4_state *state = ctx ? ctx->state : NULL;
struct nfs_setattrargs arg = {
.fh = NFS_FH(inode),
.iap = sattr,
.server = server,
.bitmask = bitmask,
.label = ilabel,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct nfs4_exception exception = {
.state = state,
.inode = inode,
.stateid = &arg.stateid,
};
unsigned long adjust_flags = NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME;
int err;
if (sattr->ia_valid & (ATTR_MODE | ATTR_KILL_SUID | ATTR_KILL_SGID))
adjust_flags |= NFS_INO_INVALID_MODE;
if (sattr->ia_valid & (ATTR_UID | ATTR_GID))
adjust_flags |= NFS_INO_INVALID_OTHER;
do {
nfs4_bitmap_copy_adjust(bitmask, nfs4_bitmask(server, fattr->label),
inode, adjust_flags);
err = _nfs4_do_setattr(inode, &arg, &res, cred, ctx);
switch (err) {
case -NFS4ERR_OPENMODE:
if (!(sattr->ia_valid & ATTR_SIZE)) {
pr_warn_once("NFSv4: server %s is incorrectly "
"applying open mode checks to "
"a SETATTR that is not "
"changing file size.\n",
server->nfs_client->cl_hostname);
}
if (state && !(state->state & FMODE_WRITE)) {
err = -EBADF;
if (sattr->ia_valid & ATTR_OPEN)
err = -EACCES;
goto out;
}
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
out:
return err;
}
static bool
nfs4_wait_on_layoutreturn(struct inode *inode, struct rpc_task *task)
{
if (inode == NULL || !nfs_have_layout(inode))
return false;
return pnfs_wait_on_layoutreturn(inode, task);
}
/*
* Update the seqid of an open stateid
*/
static void nfs4_sync_open_stateid(nfs4_stateid *dst,
struct nfs4_state *state)
{
__be32 seqid_open;
u32 dst_seqid;
int seq;
for (;;) {
if (!nfs4_valid_open_stateid(state))
break;
seq = read_seqbegin(&state->seqlock);
if (!nfs4_state_match_open_stateid_other(state, dst)) {
nfs4_stateid_copy(dst, &state->open_stateid);
if (read_seqretry(&state->seqlock, seq))
continue;
break;
}
seqid_open = state->open_stateid.seqid;
if (read_seqretry(&state->seqlock, seq))
continue;
dst_seqid = be32_to_cpu(dst->seqid);
if ((s32)(dst_seqid - be32_to_cpu(seqid_open)) < 0)
dst->seqid = seqid_open;
break;
}
}
/*
* Update the seqid of an open stateid after receiving
* NFS4ERR_OLD_STATEID
*/
static bool nfs4_refresh_open_old_stateid(nfs4_stateid *dst,
struct nfs4_state *state)
{
__be32 seqid_open;
u32 dst_seqid;
bool ret;
int seq, status = -EAGAIN;
DEFINE_WAIT(wait);
for (;;) {
ret = false;
if (!nfs4_valid_open_stateid(state))
break;
seq = read_seqbegin(&state->seqlock);
if (!nfs4_state_match_open_stateid_other(state, dst)) {
if (read_seqretry(&state->seqlock, seq))
continue;
break;
}
write_seqlock(&state->seqlock);
seqid_open = state->open_stateid.seqid;
dst_seqid = be32_to_cpu(dst->seqid);
/* Did another OPEN bump the state's seqid? try again: */
if ((s32)(be32_to_cpu(seqid_open) - dst_seqid) > 0) {
dst->seqid = seqid_open;
write_sequnlock(&state->seqlock);
ret = true;
break;
}
/* server says we're behind but we haven't seen the update yet */
set_bit(NFS_STATE_CHANGE_WAIT, &state->flags);
prepare_to_wait(&state->waitq, &wait, TASK_KILLABLE);
write_sequnlock(&state->seqlock);
trace_nfs4_close_stateid_update_wait(state->inode, dst, 0);
if (fatal_signal_pending(current))
status = -EINTR;
else
if (schedule_timeout(5*HZ) != 0)
status = 0;
finish_wait(&state->waitq, &wait);
if (!status)
continue;
if (status == -EINTR)
break;
/* we slept the whole 5 seconds, we must have lost a seqid */
dst->seqid = cpu_to_be32(dst_seqid + 1);
ret = true;
break;
}
return ret;
}
struct nfs4_closedata {
struct inode *inode;
struct nfs4_state *state;
struct nfs_closeargs arg;
struct nfs_closeres res;
struct {
struct nfs4_layoutreturn_args arg;
struct nfs4_layoutreturn_res res;
struct nfs4_xdr_opaque_data ld_private;
u32 roc_barrier;
bool roc;
} lr;
struct nfs_fattr fattr;
unsigned long timestamp;
};
static void nfs4_free_closedata(void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state_owner *sp = calldata->state->owner;
struct super_block *sb = calldata->state->inode->i_sb;
if (calldata->lr.roc)
pnfs_roc_release(&calldata->lr.arg, &calldata->lr.res,
calldata->res.lr_ret);
nfs4_put_open_state(calldata->state);
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_state_owner(sp);
nfs_sb_deactive(sb);
kfree(calldata);
}
static void nfs4_close_done(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct nfs_server *server = NFS_SERVER(calldata->inode);
nfs4_stateid *res_stateid = NULL;
struct nfs4_exception exception = {
.state = state,
.inode = calldata->inode,
.stateid = &calldata->arg.stateid,
};
if (!nfs4_sequence_done(task, &calldata->res.seq_res))
return;
trace_nfs4_close(state, &calldata->arg, &calldata->res, task->tk_status);
/* Handle Layoutreturn errors */
if (pnfs_roc_done(task, &calldata->arg.lr_args, &calldata->res.lr_res,
&calldata->res.lr_ret) == -EAGAIN)
goto out_restart;
/* hmm. we are done with the inode, and in the process of freeing
* the state_owner. we keep this around to process errors
*/
switch (task->tk_status) {
case 0:
res_stateid = &calldata->res.stateid;
renew_lease(server, calldata->timestamp);
break;
case -NFS4ERR_ACCESS:
if (calldata->arg.bitmask != NULL) {
calldata->arg.bitmask = NULL;
calldata->res.fattr = NULL;
goto out_restart;
}
break;
case -NFS4ERR_OLD_STATEID:
/* Did we race with OPEN? */
if (nfs4_refresh_open_old_stateid(&calldata->arg.stateid,
state))
goto out_restart;
goto out_release;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_free_revoked_stateid(server,
&calldata->arg.stateid,
task->tk_msg.rpc_cred);
fallthrough;
case -NFS4ERR_BAD_STATEID:
if (calldata->arg.fmode == 0)
break;
fallthrough;
default:
task->tk_status = nfs4_async_handle_exception(task,
server, task->tk_status, &exception);
if (exception.retry)
goto out_restart;
}
nfs_clear_open_stateid(state, &calldata->arg.stateid,
res_stateid, calldata->arg.fmode);
out_release:
task->tk_status = 0;
nfs_release_seqid(calldata->arg.seqid);
nfs_refresh_inode(calldata->inode, &calldata->fattr);
dprintk("%s: ret = %d\n", __func__, task->tk_status);
return;
out_restart:
task->tk_status = 0;
rpc_restart_call_prepare(task);
goto out_release;
}
static void nfs4_close_prepare(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct inode *inode = calldata->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct pnfs_layout_hdr *lo;
bool is_rdonly, is_wronly, is_rdwr;
int call_close = 0;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
goto out_wait;
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
spin_lock(&state->owner->so_lock);
is_rdwr = test_bit(NFS_O_RDWR_STATE, &state->flags);
is_rdonly = test_bit(NFS_O_RDONLY_STATE, &state->flags);
is_wronly = test_bit(NFS_O_WRONLY_STATE, &state->flags);
/* Calculate the change in open mode */
calldata->arg.fmode = 0;
if (state->n_rdwr == 0) {
if (state->n_rdonly == 0)
call_close |= is_rdonly;
else if (is_rdonly)
calldata->arg.fmode |= FMODE_READ;
if (state->n_wronly == 0)
call_close |= is_wronly;
else if (is_wronly)
calldata->arg.fmode |= FMODE_WRITE;
if (calldata->arg.fmode != (FMODE_READ|FMODE_WRITE))
call_close |= is_rdwr;
} else if (is_rdwr)
calldata->arg.fmode |= FMODE_READ|FMODE_WRITE;
nfs4_sync_open_stateid(&calldata->arg.stateid, state);
if (!nfs4_valid_open_stateid(state))
call_close = 0;
spin_unlock(&state->owner->so_lock);
if (!call_close) {
/* Note: exit _without_ calling nfs4_close_done */
goto out_no_action;
}
if (!calldata->lr.roc && nfs4_wait_on_layoutreturn(inode, task)) {
nfs_release_seqid(calldata->arg.seqid);
goto out_wait;
}
lo = calldata->arg.lr_args ? calldata->arg.lr_args->layout : NULL;
if (lo && !pnfs_layout_is_valid(lo)) {
calldata->arg.lr_args = NULL;
calldata->res.lr_res = NULL;
}
if (calldata->arg.fmode == 0)
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE];
if (calldata->arg.fmode == 0 || calldata->arg.fmode == FMODE_READ) {
/* Close-to-open cache consistency revalidation */
if (!nfs4_have_delegation(inode, FMODE_READ, 0)) {
nfs4_bitmask_set(calldata->arg.bitmask_store,
server->cache_consistency_bitmask,
inode, 0);
calldata->arg.bitmask = calldata->arg.bitmask_store;
} else
calldata->arg.bitmask = NULL;
}
calldata->arg.share_access =
nfs4_fmode_to_share_access(calldata->arg.fmode);
if (calldata->res.fattr == NULL)
calldata->arg.bitmask = NULL;
else if (calldata->arg.bitmask == NULL)
calldata->res.fattr = NULL;
calldata->timestamp = jiffies;
if (nfs4_setup_sequence(NFS_SERVER(inode)->nfs_client,
&calldata->arg.seq_args,
&calldata->res.seq_res,
task) != 0)
nfs_release_seqid(calldata->arg.seqid);
return;
out_no_action:
task->tk_action = NULL;
out_wait:
nfs4_sequence_done(task, &calldata->res.seq_res);
}
static const struct rpc_call_ops nfs4_close_ops = {
.rpc_call_prepare = nfs4_close_prepare,
.rpc_call_done = nfs4_close_done,
.rpc_release = nfs4_free_closedata,
};
/*
* It is possible for data to be read/written from a mem-mapped file
* after the sys_close call (which hits the vfs layer as a flush).
* This means that we can't safely call nfsv4 close on a file until
* the inode is cleared. This in turn means that we are not good
* NFSv4 citizens - we do not indicate to the server to update the file's
* share state even when we are done with one of the three share
* stateid's in the inode.
*
* NOTE: Caller must be holding the sp->so_owner semaphore!
*/
int nfs4_do_close(struct nfs4_state *state, gfp_t gfp_mask, int wait)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
struct nfs4_closedata *calldata;
struct nfs4_state_owner *sp = state->owner;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
.rpc_cred = state->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_close_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int status = -ENOMEM;
if (nfs_server_capable(state->inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_CLEANUP,
&task_setup_data.rpc_client, &msg);
calldata = kzalloc(sizeof(*calldata), gfp_mask);
if (calldata == NULL)
goto out;
nfs4_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 1, 0);
calldata->inode = state->inode;
calldata->state = state;
calldata->arg.fh = NFS_FH(state->inode);
if (!nfs4_copy_open_stateid(&calldata->arg.stateid, state))
goto out_free_calldata;
/* Serialization for the sequence id */
alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid;
calldata->arg.seqid = alloc_seqid(&state->owner->so_seqid, gfp_mask);
if (IS_ERR(calldata->arg.seqid))
goto out_free_calldata;
nfs_fattr_init(&calldata->fattr);
calldata->arg.fmode = 0;
calldata->lr.arg.ld_private = &calldata->lr.ld_private;
calldata->res.fattr = &calldata->fattr;
calldata->res.seqid = calldata->arg.seqid;
calldata->res.server = server;
calldata->res.lr_ret = -NFS4ERR_NOMATCHING_LAYOUT;
calldata->lr.roc = pnfs_roc(state->inode,
&calldata->lr.arg, &calldata->lr.res, msg.rpc_cred);
if (calldata->lr.roc) {
calldata->arg.lr_args = &calldata->lr.arg;
calldata->res.lr_res = &calldata->lr.res;
}
nfs_sb_active(calldata->inode->i_sb);
msg.rpc_argp = &calldata->arg;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = 0;
if (wait)
status = rpc_wait_for_completion_task(task);
rpc_put_task(task);
return status;
out_free_calldata:
kfree(calldata);
out:
nfs4_put_open_state(state);
nfs4_put_state_owner(sp);
return status;
}
static struct inode *
nfs4_atomic_open(struct inode *dir, struct nfs_open_context *ctx,
int open_flags, struct iattr *attr, int *opened)
{
struct nfs4_state *state;
struct nfs4_label l, *label;
label = nfs4_label_init_security(dir, ctx->dentry, attr, &l);
/* Protect against concurrent sillydeletes */
state = nfs4_do_open(dir, ctx, open_flags, attr, label, opened);
nfs4_label_release_security(label);
if (IS_ERR(state))
return ERR_CAST(state);
return state->inode;
}
static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync)
{
if (ctx->state == NULL)
return;
if (is_sync)
nfs4_close_sync(ctx->state, _nfs4_ctx_to_openmode(ctx));
else
nfs4_close_state(ctx->state, _nfs4_ctx_to_openmode(ctx));
}
#define FATTR4_WORD1_NFS40_MASK (2*FATTR4_WORD1_MOUNTED_ON_FILEID - 1UL)
#define FATTR4_WORD2_NFS41_MASK (2*FATTR4_WORD2_SUPPATTR_EXCLCREAT - 1UL)
#define FATTR4_WORD2_NFS42_MASK (2*FATTR4_WORD2_OPEN_ARGUMENTS - 1UL)
#define FATTR4_WORD2_NFS42_TIME_DELEG_MASK \
(FATTR4_WORD2_TIME_DELEG_MODIFY|FATTR4_WORD2_TIME_DELEG_ACCESS)
static bool nfs4_server_delegtime_capable(struct nfs4_server_caps_res *res)
{
u32 share_access_want = res->open_caps.oa_share_access_want[0];
u32 attr_bitmask = res->attr_bitmask[2];
return (share_access_want & NFS4_SHARE_WANT_DELEG_TIMESTAMPS) &&
((attr_bitmask & FATTR4_WORD2_NFS42_TIME_DELEG_MASK) ==
FATTR4_WORD2_NFS42_TIME_DELEG_MASK);
}
static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
u32 minorversion = server->nfs_client->cl_minorversion;
u32 bitmask[3] = {
[0] = FATTR4_WORD0_SUPPORTED_ATTRS,
};
struct nfs4_server_caps_arg args = {
.fhandle = fhandle,
.bitmask = bitmask,
};
struct nfs4_server_caps_res res = {};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
int i;
bitmask[0] = FATTR4_WORD0_SUPPORTED_ATTRS |
FATTR4_WORD0_FH_EXPIRE_TYPE |
FATTR4_WORD0_LINK_SUPPORT |
FATTR4_WORD0_SYMLINK_SUPPORT |
FATTR4_WORD0_ACLSUPPORT |
FATTR4_WORD0_CASE_INSENSITIVE |
FATTR4_WORD0_CASE_PRESERVING;
if (minorversion)
bitmask[2] = FATTR4_WORD2_SUPPATTR_EXCLCREAT |
FATTR4_WORD2_OPEN_ARGUMENTS;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (status == 0) {
bitmask[0] = (FATTR4_WORD0_SUPPORTED_ATTRS |
FATTR4_WORD0_FH_EXPIRE_TYPE |
FATTR4_WORD0_LINK_SUPPORT |
FATTR4_WORD0_SYMLINK_SUPPORT |
FATTR4_WORD0_ACLSUPPORT |
FATTR4_WORD0_CASE_INSENSITIVE |
FATTR4_WORD0_CASE_PRESERVING) &
res.attr_bitmask[0];
/* Sanity check the server answers */
switch (minorversion) {
case 0:
res.attr_bitmask[1] &= FATTR4_WORD1_NFS40_MASK;
res.attr_bitmask[2] = 0;
break;
case 1:
res.attr_bitmask[2] &= FATTR4_WORD2_NFS41_MASK;
bitmask[2] = FATTR4_WORD2_SUPPATTR_EXCLCREAT &
res.attr_bitmask[2];
break;
case 2:
res.attr_bitmask[2] &= FATTR4_WORD2_NFS42_MASK;
bitmask[2] = (FATTR4_WORD2_SUPPATTR_EXCLCREAT |
FATTR4_WORD2_OPEN_ARGUMENTS) &
res.attr_bitmask[2];
}
memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
server->caps &= ~(NFS_CAP_ACLS | NFS_CAP_HARDLINKS |
NFS_CAP_SYMLINKS| NFS_CAP_SECURITY_LABEL);
server->fattr_valid = NFS_ATTR_FATTR_V4;
if (res.attr_bitmask[0] & FATTR4_WORD0_ACL &&
res.acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
server->caps |= NFS_CAP_ACLS;
if (res.has_links != 0)
server->caps |= NFS_CAP_HARDLINKS;
if (res.has_symlinks != 0)
server->caps |= NFS_CAP_SYMLINKS;
if (res.case_insensitive)
server->caps |= NFS_CAP_CASE_INSENSITIVE;
if (res.case_preserving)
server->caps |= NFS_CAP_CASE_PRESERVING;
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
if (res.attr_bitmask[2] & FATTR4_WORD2_SECURITY_LABEL)
server->caps |= NFS_CAP_SECURITY_LABEL;
#endif
if (res.attr_bitmask[0] & FATTR4_WORD0_FS_LOCATIONS)
server->caps |= NFS_CAP_FS_LOCATIONS;
if (!(res.attr_bitmask[0] & FATTR4_WORD0_FILEID))
server->fattr_valid &= ~NFS_ATTR_FATTR_FILEID;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_MODE))
server->fattr_valid &= ~NFS_ATTR_FATTR_MODE;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS))
server->fattr_valid &= ~NFS_ATTR_FATTR_NLINK;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_OWNER))
server->fattr_valid &= ~(NFS_ATTR_FATTR_OWNER |
NFS_ATTR_FATTR_OWNER_NAME);
if (!(res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP))
server->fattr_valid &= ~(NFS_ATTR_FATTR_GROUP |
NFS_ATTR_FATTR_GROUP_NAME);
if (!(res.attr_bitmask[1] & FATTR4_WORD1_SPACE_USED))
server->fattr_valid &= ~NFS_ATTR_FATTR_SPACE_USED;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS))
server->fattr_valid &= ~NFS_ATTR_FATTR_ATIME;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA))
server->fattr_valid &= ~NFS_ATTR_FATTR_CTIME;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY))
server->fattr_valid &= ~NFS_ATTR_FATTR_MTIME;
memcpy(server->attr_bitmask_nl, res.attr_bitmask,
sizeof(server->attr_bitmask));
server->attr_bitmask_nl[2] &= ~FATTR4_WORD2_SECURITY_LABEL;
if (res.open_caps.oa_share_access_want[0] &
NFS4_SHARE_WANT_OPEN_XOR_DELEGATION)
server->caps |= NFS_CAP_OPEN_XOR;
if (nfs4_server_delegtime_capable(&res))
server->caps |= NFS_CAP_DELEGTIME;
memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask));
server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE;
server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY;
server->cache_consistency_bitmask[2] = 0;
/* Avoid a regression due to buggy server */
for (i = 0; i < ARRAY_SIZE(res.exclcreat_bitmask); i++)
res.exclcreat_bitmask[i] &= res.attr_bitmask[i];
memcpy(server->exclcreat_bitmask, res.exclcreat_bitmask,
sizeof(server->exclcreat_bitmask));
server->acl_bitmask = res.acl_bitmask;
server->fh_expire_type = res.fh_expire_type;
}
return status;
}
int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
nfs4_server_set_init_caps(server);
do {
err = nfs4_handle_exception(server,
_nfs4_server_capabilities(server, fhandle),
&exception);
} while (exception.retry);
return err;
}
static void test_fs_location_for_trunking(struct nfs4_fs_location *location,
struct nfs_client *clp,
struct nfs_server *server)
{
int i;
for (i = 0; i < location->nservers; i++) {
struct nfs4_string *srv_loc = &location->servers[i];
struct sockaddr_storage addr;
size_t addrlen;
struct xprt_create xprt_args = {
.ident = 0,
.net = clp->cl_net,
};
struct nfs4_add_xprt_data xprtdata = {
.clp = clp,
};
struct rpc_add_xprt_test rpcdata = {
.add_xprt_test = clp->cl_mvops->session_trunk,
.data = &xprtdata,
};
char *servername = NULL;
if (!srv_loc->len)
continue;
addrlen = nfs_parse_server_name(srv_loc->data, srv_loc->len,
&addr, sizeof(addr),
clp->cl_net, server->port);
if (!addrlen)
return;
xprt_args.dstaddr = (struct sockaddr *)&addr;
xprt_args.addrlen = addrlen;
servername = kmalloc(srv_loc->len + 1, GFP_KERNEL);
if (!servername)
return;
memcpy(servername, srv_loc->data, srv_loc->len);
servername[srv_loc->len] = '\0';
xprt_args.servername = servername;
xprtdata.cred = nfs4_get_clid_cred(clp);
rpc_clnt_add_xprt(clp->cl_rpcclient, &xprt_args,
rpc_clnt_setup_test_and_add_xprt,
&rpcdata);
if (xprtdata.cred)
put_cred(xprtdata.cred);
kfree(servername);
}
}
static bool _is_same_nfs4_pathname(struct nfs4_pathname *path1,
struct nfs4_pathname *path2)
{
int i;
if (path1->ncomponents != path2->ncomponents)
return false;
for (i = 0; i < path1->ncomponents; i++) {
if (path1->components[i].len != path2->components[i].len)
return false;
if (memcmp(path1->components[i].data, path2->components[i].data,
path1->components[i].len))
return false;
}
return true;
}
static int _nfs4_discover_trunking(struct nfs_server *server,
struct nfs_fh *fhandle)
{
struct nfs4_fs_locations *locations = NULL;
struct page *page;
const struct cred *cred;
struct nfs_client *clp = server->nfs_client;
const struct nfs4_state_maintenance_ops *ops =
clp->cl_mvops->state_renewal_ops;
int status = -ENOMEM, i;
cred = ops->get_state_renewal_cred(clp);
if (cred == NULL) {
cred = nfs4_get_clid_cred(clp);
if (cred == NULL)
return -ENOKEY;
}
page = alloc_page(GFP_KERNEL);
if (!page)
goto out_put_cred;
locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
if (!locations)
goto out_free;
locations->fattr = nfs_alloc_fattr();
if (!locations->fattr)
goto out_free_2;
status = nfs4_proc_get_locations(server, fhandle, locations, page,
cred);
if (status)
goto out_free_3;
for (i = 0; i < locations->nlocations; i++) {
if (!_is_same_nfs4_pathname(&locations->fs_path,
&locations->locations[i].rootpath))
continue;
test_fs_location_for_trunking(&locations->locations[i], clp,
server);
}
out_free_3:
kfree(locations->fattr);
out_free_2:
kfree(locations);
out_free:
__free_page(page);
out_put_cred:
put_cred(cred);
return status;
}
static int nfs4_discover_trunking(struct nfs_server *server,
struct nfs_fh *fhandle)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs_client *clp = server->nfs_client;
int err = 0;
if (!nfs4_has_session(clp))
goto out;
do {
err = nfs4_handle_exception(server,
_nfs4_discover_trunking(server, fhandle),
&exception);
} while (exception.retry);
out:
return err;
}
static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
u32 bitmask[3];
struct nfs4_lookup_root_arg args = {
.bitmask = bitmask,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = info->fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
.rpc_argp = &args,
.rpc_resp = &res,
};
bitmask[0] = nfs4_fattr_bitmap[0];
bitmask[1] = nfs4_fattr_bitmap[1];
/*
* Process the label in the upcoming getfattr
*/
bitmask[2] = nfs4_fattr_bitmap[2] & ~FATTR4_WORD2_SECURITY_LABEL;
nfs_fattr_init(info->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_lookup_root(server, fhandle, info);
trace_nfs4_lookup_root(server, fhandle, info->fattr, err);
switch (err) {
case 0:
case -NFS4ERR_WRONGSEC:
goto out;
default:
err = nfs4_handle_exception(server, err, &exception);
}
} while (exception.retry);
out:
return err;
}
static int nfs4_lookup_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, rpc_authflavor_t flavor)
{
struct rpc_auth_create_args auth_args = {
.pseudoflavor = flavor,
};
struct rpc_auth *auth;
auth = rpcauth_create(&auth_args, server->client);
if (IS_ERR(auth))
return -EACCES;
return nfs4_lookup_root(server, fhandle, info);
}
/*
* Retry pseudoroot lookup with various security flavors. We do this when:
*
* NFSv4.0: the PUTROOTFH operation returns NFS4ERR_WRONGSEC
* NFSv4.1: the server does not support the SECINFO_NO_NAME operation
*
* Returns zero on success, or a negative NFS4ERR value, or a
* negative errno value.
*/
static int nfs4_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
/* Per 3530bis 15.33.5 */
static const rpc_authflavor_t flav_array[] = {
RPC_AUTH_GSS_KRB5P,
RPC_AUTH_GSS_KRB5I,
RPC_AUTH_GSS_KRB5,
RPC_AUTH_UNIX, /* courtesy */
RPC_AUTH_NULL,
};
int status = -EPERM;
size_t i;
if (server->auth_info.flavor_len > 0) {
/* try each flavor specified by user */
for (i = 0; i < server->auth_info.flavor_len; i++) {
status = nfs4_lookup_root_sec(server, fhandle, info,
server->auth_info.flavors[i]);
if (status == -NFS4ERR_WRONGSEC || status == -EACCES)
continue;
break;
}
} else {
/* no flavors specified by user, try default list */
for (i = 0; i < ARRAY_SIZE(flav_array); i++) {
status = nfs4_lookup_root_sec(server, fhandle, info,
flav_array[i]);
if (status == -NFS4ERR_WRONGSEC || status == -EACCES)
continue;
break;
}
}
/*
* -EACCES could mean that the user doesn't have correct permissions
* to access the mount. It could also mean that we tried to mount
* with a gss auth flavor, but rpc.gssd isn't running. Either way,
* existing mount programs don't handle -EACCES very well so it should
* be mapped to -EPERM instead.
*/
if (status == -EACCES)
status = -EPERM;
return status;
}
/**
* nfs4_proc_get_rootfh - get file handle for server's pseudoroot
* @server: initialized nfs_server handle
* @fhandle: we fill in the pseudo-fs root file handle
* @info: we fill in an FSINFO struct
* @auth_probe: probe the auth flavours
*
* Returns zero on success, or a negative errno.
*/
int nfs4_proc_get_rootfh(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info,
bool auth_probe)
{
int status = 0;
if (!auth_probe)
status = nfs4_lookup_root(server, fhandle, info);
if (auth_probe || status == NFS4ERR_WRONGSEC)
status = server->nfs_client->cl_mvops->find_root_sec(server,
fhandle, info);
if (status == 0)
status = nfs4_server_capabilities(server, fhandle);
if (status == 0)
status = nfs4_do_fsinfo(server, fhandle, info);
return nfs4_map_errors(status);
}
static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *mntfh,
struct nfs_fsinfo *info)
{
int error;
struct nfs_fattr *fattr = info->fattr;
error = nfs4_server_capabilities(server, mntfh);
if (error < 0) {
dprintk("nfs4_get_root: getcaps error = %d\n", -error);
return error;
}
error = nfs4_proc_getattr(server, mntfh, fattr, NULL);
if (error < 0) {
dprintk("nfs4_get_root: getattr error = %d\n", -error);
goto out;
}
if (fattr->valid & NFS_ATTR_FATTR_FSID &&
!nfs_fsid_equal(&server->fsid, &fattr->fsid))
memcpy(&server->fsid, &fattr->fsid, sizeof(server->fsid));
out:
return error;
}
/*
* Get locations and (maybe) other attributes of a referral.
* Note that we'll actually follow the referral later when
* we detect fsid mismatch in inode revalidation
*/
static int nfs4_get_referral(struct rpc_clnt *client, struct inode *dir,
const struct qstr *name, struct nfs_fattr *fattr,
struct nfs_fh *fhandle)
{
int status = -ENOMEM;
struct page *page = NULL;
struct nfs4_fs_locations *locations = NULL;
page = alloc_page(GFP_KERNEL);
if (page == NULL)
goto out;
locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
if (locations == NULL)
goto out;
locations->fattr = fattr;
status = nfs4_proc_fs_locations(client, dir, name, locations, page);
if (status != 0)
goto out;
/*
* If the fsid didn't change, this is a migration event, not a
* referral. Cause us to drop into the exception handler, which
* will kick off migration recovery.
*/
if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &fattr->fsid)) {
dprintk("%s: server did not return a different fsid for"
" a referral at %s\n", __func__, name->name);
status = -NFS4ERR_MOVED;
goto out;
}
/* Fixup attributes for the nfs_lookup() call to nfs_fhget() */
nfs_fixup_referral_attributes(fattr);
memset(fhandle, 0, sizeof(struct nfs_fh));
out:
if (page)
__free_page(page);
kfree(locations);
return status;
}
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fattr *fattr, struct inode *inode)
{
__u32 bitmask[NFS4_BITMASK_SZ];
struct nfs4_getattr_arg args = {
.fh = fhandle,
.bitmask = bitmask,
};
struct nfs4_getattr_res res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned short task_flags = 0;
if (nfs4_has_session(server->nfs_client))
task_flags = RPC_TASK_MOVEABLE;
/* Is this is an attribute revalidation, subject to softreval? */
if (inode && (server->flags & NFS_MOUNT_SOFTREVAL))
task_flags |= RPC_TASK_TIMEOUT;
nfs4_bitmap_copy_adjust(bitmask, nfs4_bitmask(server, fattr->label), inode, 0);
nfs_fattr_init(fattr);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
return nfs4_do_call_sync(server->client, server, &msg,
&args.seq_args, &res.seq_res, task_flags);
}
int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fattr *fattr, struct inode *inode)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_getattr(server, fhandle, fattr, inode);
trace_nfs4_getattr(server, fhandle, fattr, err);
err = nfs4_handle_exception(server, err,
&exception);
} while (exception.retry);
return err;
}
/*
* The file is not closed if it is opened due to the a request to change
* the size of the file. The open call will not be needed once the
* VFS layer lookup-intents are implemented.
*
* Close is called when the inode is destroyed.
* If we haven't opened the file for O_WRONLY, we
* need to in the size_change case to obtain a stateid.
*
* Got race?
* Because OPEN is always done by name in nfsv4, it is
* possible that we opened a different file by the same
* name. We can recognize this race condition, but we
* can't do anything about it besides returning an error.
*
* This will be fixed with VFS changes (lookup-intent).
*/
static int
nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
struct iattr *sattr)
{
struct inode *inode = d_inode(dentry);
const struct cred *cred = NULL;
struct nfs_open_context *ctx = NULL;
int status;
if (pnfs_ld_layoutret_on_setattr(inode) &&
sattr->ia_valid & ATTR_SIZE &&
sattr->ia_size < i_size_read(inode))
pnfs_commit_and_return_layout(inode);
nfs_fattr_init(fattr);
/* Deal with open(O_TRUNC) */
if (sattr->ia_valid & ATTR_OPEN)
sattr->ia_valid &= ~(ATTR_MTIME|ATTR_CTIME);
/* Optimization: if the end result is no change, don't RPC */
if ((sattr->ia_valid & ~(ATTR_FILE|ATTR_OPEN)) == 0)
return 0;
/* Search for an existing open(O_WRITE) file */
if (sattr->ia_valid & ATTR_FILE) {
ctx = nfs_file_open_context(sattr->ia_file);
if (ctx)
cred = ctx->cred;
}
/* Return any delegations if we're going to change ACLs */
if ((sattr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0)
nfs4_inode_make_writeable(inode);
status = nfs4_do_setattr(inode, cred, fattr, sattr, ctx, NULL);
if (status == 0) {
nfs_setattr_update_inode(inode, sattr, fattr);
nfs_setsecurity(inode, fattr);
}
return status;
}
static int _nfs4_proc_lookup(struct rpc_clnt *clnt, struct inode *dir,
struct dentry *dentry, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs_server *server = NFS_SERVER(dir);
int status;
struct nfs4_lookup_arg args = {
.bitmask = server->attr_bitmask,
.dir_fh = NFS_FH(dir),
.name = &dentry->d_name,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned short task_flags = 0;
if (nfs_server_capable(dir, NFS_CAP_MOVEABLE))
task_flags = RPC_TASK_MOVEABLE;
/* Is this is an attribute revalidation, subject to softreval? */
if (nfs_lookup_is_soft_revalidate(dentry))
task_flags |= RPC_TASK_TIMEOUT;
args.bitmask = nfs4_bitmask(server, fattr->label);
nfs_fattr_init(fattr);
dprintk("NFS call lookup %pd2\n", dentry);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
status = nfs4_do_call_sync(clnt, server, &msg,
&args.seq_args, &res.seq_res, task_flags);
dprintk("NFS reply lookup: %d\n", status);
return status;
}
static void nfs_fixup_secinfo_attributes(struct nfs_fattr *fattr)
{
fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_MOUNTPOINT;
fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
fattr->nlink = 2;
}
static int nfs4_proc_lookup_common(struct rpc_clnt **clnt, struct inode *dir,
struct dentry *dentry, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct rpc_clnt *client = *clnt;
const struct qstr *name = &dentry->d_name;
int err;
do {
err = _nfs4_proc_lookup(client, dir, dentry, fhandle, fattr);
trace_nfs4_lookup(dir, name, err);
switch (err) {
case -NFS4ERR_BADNAME:
err = -ENOENT;
goto out;
case -NFS4ERR_MOVED:
err = nfs4_get_referral(client, dir, name, fattr, fhandle);
if (err == -NFS4ERR_MOVED)
err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception);
goto out;
case -NFS4ERR_WRONGSEC:
err = -EPERM;
if (client != *clnt)
goto out;
client = nfs4_negotiate_security(client, dir, name);
if (IS_ERR(client))
return PTR_ERR(client);
exception.retry = 1;
break;
default:
err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception);
}
} while (exception.retry);
out:
if (err == 0)
*clnt = client;
else if (client != *clnt)
rpc_shutdown_client(client);
return err;
}
static int nfs4_proc_lookup(struct inode *dir, struct dentry *dentry,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
int status;
struct rpc_clnt *client = NFS_CLIENT(dir);
status = nfs4_proc_lookup_common(&client, dir, dentry, fhandle, fattr);
if (client != NFS_CLIENT(dir)) {
rpc_shutdown_client(client);
nfs_fixup_secinfo_attributes(fattr);
}
return status;
}
struct rpc_clnt *
nfs4_proc_lookup_mountpoint(struct inode *dir, struct dentry *dentry,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct rpc_clnt *client = NFS_CLIENT(dir);
int status;
status = nfs4_proc_lookup_common(&client, dir, dentry, fhandle, fattr);
if (status < 0)
return ERR_PTR(status);
return (client == NFS_CLIENT(dir)) ? rpc_clone_client(client) : client;
}
static int _nfs4_proc_lookupp(struct inode *inode,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct rpc_clnt *clnt = NFS_CLIENT(inode);
struct nfs_server *server = NFS_SERVER(inode);
int status;
struct nfs4_lookupp_arg args = {
.bitmask = server->attr_bitmask,
.fh = NFS_FH(inode),
};
struct nfs4_lookupp_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUPP],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned short task_flags = 0;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
task_flags |= RPC_TASK_TIMEOUT;
args.bitmask = nfs4_bitmask(server, fattr->label);
nfs_fattr_init(fattr);
dprintk("NFS call lookupp ino=0x%lx\n", inode->i_ino);
status = nfs4_call_sync(clnt, server, &msg, &args.seq_args,
&res.seq_res, task_flags);
dprintk("NFS reply lookupp: %d\n", status);
return status;
}
static int nfs4_proc_lookupp(struct inode *inode, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_lookupp(inode, fhandle, fattr);
trace_nfs4_lookupp(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry,
const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_accessargs args = {
.fh = NFS_FH(inode),
.access = entry->mask,
};
struct nfs4_accessres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status = 0;
if (!nfs4_have_delegation(inode, FMODE_READ, 0)) {
res.fattr = nfs_alloc_fattr();
if (res.fattr == NULL)
return -ENOMEM;
args.bitmask = server->cache_consistency_bitmask;
}
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (!status) {
nfs_access_set_mask(entry, res.access);
if (res.fattr)
nfs_refresh_inode(inode, res.fattr);
}
nfs_free_fattr(res.fattr);
return status;
}
static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry,
const struct cred *cred)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_access(inode, entry, cred);
trace_nfs4_access(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
/*
* TODO: For the time being, we don't try to get any attributes
* along with any of the zero-copy operations READ, READDIR,
* READLINK, WRITE.
*
* In the case of the first three, we want to put the GETATTR
* after the read-type operation -- this is because it is hard
* to predict the length of a GETATTR response in v4, and thus
* align the READ data correctly. This means that the GETATTR
* may end up partially falling into the page cache, and we should
* shift it into the 'tail' of the xdr_buf before processing.
* To do this efficiently, we need to know the total length
* of data received, which doesn't seem to be available outside
* of the RPC layer.
*
* In the case of WRITE, we also want to put the GETATTR after
* the operation -- in this case because we want to make sure
* we get the post-operation mtime and size.
*
* Both of these changes to the XDR layer would in fact be quite
* minor, but I decided to leave them for a subsequent patch.
*/
static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_readlink args = {
.fh = NFS_FH(inode),
.pgbase = pgbase,
.pglen = pglen,
.pages = &page,
};
struct nfs4_readlink_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_readlink(inode, page, pgbase, pglen);
trace_nfs4_readlink(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
/*
* This is just for mknod. open(O_CREAT) will always do ->open_context().
*/
static int
nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
int flags)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_label l, *ilabel;
struct nfs_open_context *ctx;
struct nfs4_state *state;
int status = 0;
ctx = alloc_nfs_open_context(dentry, FMODE_READ, NULL);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
ilabel = nfs4_label_init_security(dir, dentry, sattr, &l);
if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
sattr->ia_mode &= ~current_umask();
state = nfs4_do_open(dir, ctx, flags, sattr, ilabel, NULL);
if (IS_ERR(state)) {
status = PTR_ERR(state);
goto out;
}
out:
nfs4_label_release_security(ilabel);
put_nfs_open_context(ctx);
return status;
}
static int
_nfs4_proc_remove(struct inode *dir, const struct qstr *name, u32 ftype)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_removeargs args = {
.fh = NFS_FH(dir),
.name = *name,
};
struct nfs_removeres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned long timestamp = jiffies;
int status;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 1);
if (status == 0) {
spin_lock(&dir->i_lock);
/* Removing a directory decrements nlink in the parent */
if (ftype == NF4DIR && dir->i_nlink > 2)
nfs4_dec_nlink_locked(dir);
nfs4_update_changeattr_locked(dir, &res.cinfo, timestamp,
NFS_INO_INVALID_DATA);
spin_unlock(&dir->i_lock);
}
return status;
}
static int nfs4_proc_remove(struct inode *dir, struct dentry *dentry)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct inode *inode = d_inode(dentry);
int err;
if (inode) {
if (inode->i_nlink == 1)
nfs4_inode_return_delegation(inode);
else
nfs4_inode_make_writeable(inode);
}
do {
err = _nfs4_proc_remove(dir, &dentry->d_name, NF4REG);
trace_nfs4_remove(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_rmdir(struct inode *dir, const struct qstr *name)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_remove(dir, name, NF4DIR);
trace_nfs4_remove(dir, name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
static void nfs4_proc_unlink_setup(struct rpc_message *msg,
struct dentry *dentry,
struct inode *inode)
{
struct nfs_removeargs *args = msg->rpc_argp;
struct nfs_removeres *res = msg->rpc_resp;
res->server = NFS_SB(dentry->d_sb);
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
nfs4_init_sequence(&args->seq_args, &res->seq_res, 1, 0);
nfs_fattr_init(res->dir_attr);
if (inode) {
nfs4_inode_return_delegation(inode);
nfs_d_prune_case_insensitive_aliases(inode);
}
}
static void nfs4_proc_unlink_rpc_prepare(struct rpc_task *task, struct nfs_unlinkdata *data)
{
nfs4_setup_sequence(NFS_SB(data->dentry->d_sb)->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
{
struct nfs_unlinkdata *data = task->tk_calldata;
struct nfs_removeres *res = &data->res;
if (!nfs4_sequence_done(task, &res->seq_res))
return 0;
if (nfs4_async_handle_error(task, res->server, NULL,
&data->timeout) == -EAGAIN)
return 0;
if (task->tk_status == 0)
nfs4_update_changeattr(dir, &res->cinfo,
res->dir_attr->time_start,
NFS_INO_INVALID_DATA);
return 1;
}
static void nfs4_proc_rename_setup(struct rpc_message *msg,
struct dentry *old_dentry,
struct dentry *new_dentry)
{
struct nfs_renameargs *arg = msg->rpc_argp;
struct nfs_renameres *res = msg->rpc_resp;
struct inode *old_inode = d_inode(old_dentry);
struct inode *new_inode = d_inode(new_dentry);
if (old_inode)
nfs4_inode_make_writeable(old_inode);
if (new_inode)
nfs4_inode_return_delegation(new_inode);
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME];
res->server = NFS_SB(old_dentry->d_sb);
nfs4_init_sequence(&arg->seq_args, &res->seq_res, 1, 0);
}
static void nfs4_proc_rename_rpc_prepare(struct rpc_task *task, struct nfs_renamedata *data)
{
nfs4_setup_sequence(NFS_SERVER(data->old_dir)->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static int nfs4_proc_rename_done(struct rpc_task *task, struct inode *old_dir,
struct inode *new_dir)
{
struct nfs_renamedata *data = task->tk_calldata;
struct nfs_renameres *res = &data->res;
if (!nfs4_sequence_done(task, &res->seq_res))
return 0;
if (nfs4_async_handle_error(task, res->server, NULL, &data->timeout) == -EAGAIN)
return 0;
if (task->tk_status == 0) {
nfs_d_prune_case_insensitive_aliases(d_inode(data->old_dentry));
if (new_dir != old_dir) {
/* Note: If we moved a directory, nlink will change */
nfs4_update_changeattr(old_dir, &res->old_cinfo,
res->old_fattr->time_start,
NFS_INO_INVALID_NLINK |
NFS_INO_INVALID_DATA);
nfs4_update_changeattr(new_dir, &res->new_cinfo,
res->new_fattr->time_start,
NFS_INO_INVALID_NLINK |
NFS_INO_INVALID_DATA);
} else
nfs4_update_changeattr(old_dir, &res->old_cinfo,
res->old_fattr->time_start,
NFS_INO_INVALID_DATA);
}
return 1;
}
static int _nfs4_proc_link(struct inode *inode, struct inode *dir, const struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(inode);
__u32 bitmask[NFS4_BITMASK_SZ];
struct nfs4_link_arg arg = {
.fh = NFS_FH(inode),
.dir_fh = NFS_FH(dir),
.name = name,
.bitmask = bitmask,
};
struct nfs4_link_res res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status = -ENOMEM;
res.fattr = nfs_alloc_fattr_with_label(server);
if (res.fattr == NULL)
goto out;
nfs4_inode_make_writeable(inode);
nfs4_bitmap_copy_adjust(bitmask, nfs4_bitmask(server, res.fattr->label),
inode,
NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME);
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (!status) {
nfs4_update_changeattr(dir, &res.cinfo, res.fattr->time_start,
NFS_INO_INVALID_DATA);
nfs4_inc_nlink(inode);
status = nfs_post_op_update_inode(inode, res.fattr);
if (!status)
nfs_setsecurity(inode, res.fattr);
}
out:
nfs_free_fattr(res.fattr);
return status;
}
static int nfs4_proc_link(struct inode *inode, struct inode *dir, const struct qstr *name)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_link(inode, dir, name),
&exception);
} while (exception.retry);
return err;
}
struct nfs4_createdata {
struct rpc_message msg;
struct nfs4_create_arg arg;
struct nfs4_create_res res;
struct nfs_fh fh;
struct nfs_fattr fattr;
};
static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
const struct qstr *name, struct iattr *sattr, u32 ftype)
{
struct nfs4_createdata *data;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data != NULL) {
struct nfs_server *server = NFS_SERVER(dir);
data->fattr.label = nfs4_label_alloc(server, GFP_KERNEL);
if (IS_ERR(data->fattr.label))
goto out_free;
data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
data->msg.rpc_argp = &data->arg;
data->msg.rpc_resp = &data->res;
data->arg.dir_fh = NFS_FH(dir);
data->arg.server = server;
data->arg.name = name;
data->arg.attrs = sattr;
data->arg.ftype = ftype;
data->arg.bitmask = nfs4_bitmask(server, data->fattr.label);
data->arg.umask = current_umask();
data->res.server = server;
data->res.fh = &data->fh;
data->res.fattr = &data->fattr;
nfs_fattr_init(data->res.fattr);
}
return data;
out_free:
kfree(data);
return NULL;
}
static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
{
int status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &data->msg,
&data->arg.seq_args, &data->res.seq_res, 1);
if (status == 0) {
spin_lock(&dir->i_lock);
/* Creating a directory bumps nlink in the parent */
if (data->arg.ftype == NF4DIR)
nfs4_inc_nlink_locked(dir);
nfs4_update_changeattr_locked(dir, &data->res.dir_cinfo,
data->res.fattr->time_start,
NFS_INO_INVALID_DATA);
spin_unlock(&dir->i_lock);
status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
}
return status;
}
static void nfs4_free_createdata(struct nfs4_createdata *data)
{
nfs4_label_free(data->fattr.label);
kfree(data);
}
static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct folio *folio, unsigned int len, struct iattr *sattr,
struct nfs4_label *label)
{
struct page *page = &folio->page;
struct nfs4_createdata *data;
int status = -ENAMETOOLONG;
if (len > NFS4_MAXPATHLEN)
goto out;
status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
if (data == NULL)
goto out;
data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
data->arg.u.symlink.pages = &page;
data->arg.u.symlink.len = len;
data->arg.label = label;
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct folio *folio, unsigned int len, struct iattr *sattr)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_label l, *label;
int err;
label = nfs4_label_init_security(dir, dentry, sattr, &l);
do {
err = _nfs4_proc_symlink(dir, dentry, folio, len, sattr, label);
trace_nfs4_symlink(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
nfs4_label_release_security(label);
return err;
}
static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *label)
{
struct nfs4_createdata *data;
int status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
if (data == NULL)
goto out;
data->arg.label = label;
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_label l, *label;
int err;
label = nfs4_label_init_security(dir, dentry, sattr, &l);
if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
sattr->ia_mode &= ~current_umask();
do {
err = _nfs4_proc_mkdir(dir, dentry, sattr, label);
trace_nfs4_mkdir(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
nfs4_label_release_security(label);
return err;
}
static int _nfs4_proc_readdir(struct nfs_readdir_arg *nr_arg,
struct nfs_readdir_res *nr_res)
{
struct inode *dir = d_inode(nr_arg->dentry);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_readdir_arg args = {
.fh = NFS_FH(dir),
.pages = nr_arg->pages,
.pgbase = 0,
.count = nr_arg->page_len,
.plus = nr_arg->plus,
};
struct nfs4_readdir_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = nr_arg->cred,
};
int status;
dprintk("%s: dentry = %pd2, cookie = %llu\n", __func__,
nr_arg->dentry, (unsigned long long)nr_arg->cookie);
if (!(server->caps & NFS_CAP_SECURITY_LABEL))
args.bitmask = server->attr_bitmask_nl;
else
args.bitmask = server->attr_bitmask;
nfs4_setup_readdir(nr_arg->cookie, nr_arg->verf, nr_arg->dentry, &args);
res.pgbase = args.pgbase;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args,
&res.seq_res, 0);
if (status >= 0) {
memcpy(nr_res->verf, res.verifier.data, NFS4_VERIFIER_SIZE);
status += args.pgbase;
}
nfs_invalidate_atime(dir);
dprintk("%s: returns %d\n", __func__, status);
return status;
}
static int nfs4_proc_readdir(struct nfs_readdir_arg *arg,
struct nfs_readdir_res *res)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_readdir(arg, res);
trace_nfs4_readdir(d_inode(arg->dentry), err);
err = nfs4_handle_exception(NFS_SERVER(d_inode(arg->dentry)),
err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *label, dev_t rdev)
{
struct nfs4_createdata *data;
int mode = sattr->ia_mode;
int status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
if (data == NULL)
goto out;
if (S_ISFIFO(mode))
data->arg.ftype = NF4FIFO;
else if (S_ISBLK(mode)) {
data->arg.ftype = NF4BLK;
data->arg.u.device.specdata1 = MAJOR(rdev);
data->arg.u.device.specdata2 = MINOR(rdev);
}
else if (S_ISCHR(mode)) {
data->arg.ftype = NF4CHR;
data->arg.u.device.specdata1 = MAJOR(rdev);
data->arg.u.device.specdata2 = MINOR(rdev);
} else if (!S_ISSOCK(mode)) {
status = -EINVAL;
goto out_free;
}
data->arg.label = label;
status = nfs4_do_create(dir, dentry, data);
out_free:
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_label l, *label;
int err;
label = nfs4_label_init_security(dir, dentry, sattr, &l);
if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
sattr->ia_mode &= ~current_umask();
do {
err = _nfs4_proc_mknod(dir, dentry, sattr, label, rdev);
trace_nfs4_mknod(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
nfs4_label_release_security(label);
return err;
}
static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsstat *fsstat)
{
struct nfs4_statfs_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_statfs_res res = {
.fsstat = fsstat,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fsstat->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_statfs(server, fhandle, fsstat),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *fsinfo)
{
struct nfs4_fsinfo_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_fsinfo_res res = {
.fsinfo = fsinfo,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_do_fsinfo(server, fhandle, fsinfo);
trace_nfs4_fsinfo(server, fhandle, fsinfo->fattr, err);
if (err == 0) {
nfs4_set_lease_period(server->nfs_client, fsinfo->lease_time * HZ);
break;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
int error;
nfs_fattr_init(fsinfo->fattr);
error = nfs4_do_fsinfo(server, fhandle, fsinfo);
if (error == 0) {
/* block layout checks this! */
server->pnfs_blksize = fsinfo->blksize;
set_pnfs_layoutdriver(server, fhandle, fsinfo);
}
return error;
}
static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_pathconf_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_pathconf_res res = {
.pathconf = pathconf,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
.rpc_argp = &args,
.rpc_resp = &res,
};
/* None of the pathconf attributes are mandatory to implement */
if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
memset(pathconf, 0, sizeof(*pathconf));
return 0;
}
nfs_fattr_init(pathconf->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_pathconf(server, fhandle, pathconf),
&exception);
} while (exception.retry);
return err;
}
int nfs4_set_rw_stateid(nfs4_stateid *stateid,
const struct nfs_open_context *ctx,
const struct nfs_lock_context *l_ctx,
fmode_t fmode)
{
return nfs4_select_rw_stateid(ctx->state, fmode, l_ctx, stateid, NULL);
}
EXPORT_SYMBOL_GPL(nfs4_set_rw_stateid);
static bool nfs4_stateid_is_current(nfs4_stateid *stateid,
const struct nfs_open_context *ctx,
const struct nfs_lock_context *l_ctx,
fmode_t fmode)
{
nfs4_stateid _current_stateid;
/* If the current stateid represents a lost lock, then exit */
if (nfs4_set_rw_stateid(&_current_stateid, ctx, l_ctx, fmode) == -EIO)
return true;
return nfs4_stateid_match(stateid, &_current_stateid);
}
static bool nfs4_error_stateid_expired(int err)
{
switch (err) {
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_OLD_STATEID:
case -NFS4ERR_OPENMODE:
case -NFS4ERR_EXPIRED:
return true;
}
return false;
}
static int nfs4_read_done_cb(struct rpc_task *task, struct nfs_pgio_header *hdr)
{
struct nfs_server *server = NFS_SERVER(hdr->inode);
trace_nfs4_read(hdr, task->tk_status);
if (task->tk_status < 0) {
struct nfs4_exception exception = {
.inode = hdr->inode,
.state = hdr->args.context->state,
.stateid = &hdr->args.stateid,
};
task->tk_status = nfs4_async_handle_exception(task,
server, task->tk_status, &exception);
if (exception.retry) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
}
if (task->tk_status > 0)
renew_lease(server, hdr->timestamp);
return 0;
}
static bool nfs4_read_stateid_changed(struct rpc_task *task,
struct nfs_pgio_args *args)
{
if (!nfs4_error_stateid_expired(task->tk_status) ||
nfs4_stateid_is_current(&args->stateid,
args->context,
args->lock_context,
FMODE_READ))
return false;
rpc_restart_call_prepare(task);
return true;
}
static bool nfs4_read_plus_not_supported(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
struct nfs_server *server = NFS_SERVER(hdr->inode);
struct rpc_message *msg = &task->tk_msg;
if (msg->rpc_proc == &nfs4_procedures[NFSPROC4_CLNT_READ_PLUS] &&
task->tk_status == -ENOTSUPP) {
server->caps &= ~NFS_CAP_READ_PLUS;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
rpc_restart_call_prepare(task);
return true;
}
return false;
}
static int nfs4_read_done(struct rpc_task *task, struct nfs_pgio_header *hdr)
{
if (!nfs4_sequence_done(task, &hdr->res.seq_res))
return -EAGAIN;
if (nfs4_read_stateid_changed(task, &hdr->args))
return -EAGAIN;
if (nfs4_read_plus_not_supported(task, hdr))
return -EAGAIN;
if (task->tk_status > 0)
nfs_invalidate_atime(hdr->inode);
return hdr->pgio_done_cb ? hdr->pgio_done_cb(task, hdr) :
nfs4_read_done_cb(task, hdr);
}
#if defined CONFIG_NFS_V4_2 && defined CONFIG_NFS_V4_2_READ_PLUS
static bool nfs42_read_plus_support(struct nfs_pgio_header *hdr,
struct rpc_message *msg)
{
/* Note: We don't use READ_PLUS with pNFS yet */
if (nfs_server_capable(hdr->inode, NFS_CAP_READ_PLUS) && !hdr->ds_clp) {
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ_PLUS];
return nfs_read_alloc_scratch(hdr, READ_PLUS_SCRATCH_SIZE);
}
return false;
}
#else
static bool nfs42_read_plus_support(struct nfs_pgio_header *hdr,
struct rpc_message *msg)
{
return false;
}
#endif /* CONFIG_NFS_V4_2 */
static void nfs4_proc_read_setup(struct nfs_pgio_header *hdr,
struct rpc_message *msg)
{
hdr->timestamp = jiffies;
if (!hdr->pgio_done_cb)
hdr->pgio_done_cb = nfs4_read_done_cb;
if (!nfs42_read_plus_support(hdr, msg))
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
nfs4_init_sequence(&hdr->args.seq_args, &hdr->res.seq_res, 0, 0);
}
static int nfs4_proc_pgio_rpc_prepare(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
if (nfs4_setup_sequence(NFS_SERVER(hdr->inode)->nfs_client,
&hdr->args.seq_args,
&hdr->res.seq_res,
task))
return 0;
if (nfs4_set_rw_stateid(&hdr->args.stateid, hdr->args.context,
hdr->args.lock_context,
hdr->rw_mode) == -EIO)
return -EIO;
if (unlikely(test_bit(NFS_CONTEXT_BAD, &hdr->args.context->flags)))
return -EIO;
return 0;
}
static int nfs4_write_done_cb(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
struct inode *inode = hdr->inode;
trace_nfs4_write(hdr, task->tk_status);
if (task->tk_status < 0) {
struct nfs4_exception exception = {
.inode = hdr->inode,
.state = hdr->args.context->state,
.stateid = &hdr->args.stateid,
};
task->tk_status = nfs4_async_handle_exception(task,
NFS_SERVER(inode), task->tk_status,
&exception);
if (exception.retry) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
}
if (task->tk_status >= 0) {
renew_lease(NFS_SERVER(inode), hdr->timestamp);
nfs_writeback_update_inode(hdr);
}
return 0;
}
static bool nfs4_write_stateid_changed(struct rpc_task *task,
struct nfs_pgio_args *args)
{
if (!nfs4_error_stateid_expired(task->tk_status) ||
nfs4_stateid_is_current(&args->stateid,
args->context,
args->lock_context,
FMODE_WRITE))
return false;
rpc_restart_call_prepare(task);
return true;
}
static int nfs4_write_done(struct rpc_task *task, struct nfs_pgio_header *hdr)
{
if (!nfs4_sequence_done(task, &hdr->res.seq_res))
return -EAGAIN;
if (nfs4_write_stateid_changed(task, &hdr->args))
return -EAGAIN;
return hdr->pgio_done_cb ? hdr->pgio_done_cb(task, hdr) :
nfs4_write_done_cb(task, hdr);
}
static
bool nfs4_write_need_cache_consistency_data(struct nfs_pgio_header *hdr)
{
/* Don't request attributes for pNFS or O_DIRECT writes */
if (hdr->ds_clp != NULL || hdr->dreq != NULL)
return false;
/* Otherwise, request attributes if and only if we don't hold
* a delegation
*/
return nfs4_have_delegation(hdr->inode, FMODE_READ, 0) == 0;
}
void nfs4_bitmask_set(__u32 bitmask[], const __u32 src[],
struct inode *inode, unsigned long cache_validity)
{
struct nfs_server *server = NFS_SERVER(inode);
unsigned int i;
memcpy(bitmask, src, sizeof(*bitmask) * NFS4_BITMASK_SZ);
cache_validity |= READ_ONCE(NFS_I(inode)->cache_validity);
if (cache_validity & NFS_INO_INVALID_CHANGE)
bitmask[0] |= FATTR4_WORD0_CHANGE;
if (cache_validity & NFS_INO_INVALID_ATIME)
bitmask[1] |= FATTR4_WORD1_TIME_ACCESS;
if (cache_validity & NFS_INO_INVALID_MODE)
bitmask[1] |= FATTR4_WORD1_MODE;
if (cache_validity & NFS_INO_INVALID_OTHER)
bitmask[1] |= FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP;
if (cache_validity & NFS_INO_INVALID_NLINK)
bitmask[1] |= FATTR4_WORD1_NUMLINKS;
if (cache_validity & NFS_INO_INVALID_CTIME)
bitmask[1] |= FATTR4_WORD1_TIME_METADATA;
if (cache_validity & NFS_INO_INVALID_MTIME)
bitmask[1] |= FATTR4_WORD1_TIME_MODIFY;
if (cache_validity & NFS_INO_INVALID_BLOCKS)
bitmask[1] |= FATTR4_WORD1_SPACE_USED;
if (cache_validity & NFS_INO_INVALID_SIZE)
bitmask[0] |= FATTR4_WORD0_SIZE;
for (i = 0; i < NFS4_BITMASK_SZ; i++)
bitmask[i] &= server->attr_bitmask[i];
}
static void nfs4_proc_write_setup(struct nfs_pgio_header *hdr,
struct rpc_message *msg,
struct rpc_clnt **clnt)
{
struct nfs_server *server = NFS_SERVER(hdr->inode);
if (!nfs4_write_need_cache_consistency_data(hdr)) {
hdr->args.bitmask = NULL;
hdr->res.fattr = NULL;
} else {
nfs4_bitmask_set(hdr->args.bitmask_store,
server->cache_consistency_bitmask,
hdr->inode, NFS_INO_INVALID_BLOCKS);
hdr->args.bitmask = hdr->args.bitmask_store;
}
if (!hdr->pgio_done_cb)
hdr->pgio_done_cb = nfs4_write_done_cb;
hdr->res.server = server;
hdr->timestamp = jiffies;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
nfs4_init_sequence(&hdr->args.seq_args, &hdr->res.seq_res, 0, 0);
nfs4_state_protect_write(hdr->ds_clp ? hdr->ds_clp : server->nfs_client, clnt, msg, hdr);
}
static void nfs4_proc_commit_rpc_prepare(struct rpc_task *task, struct nfs_commit_data *data)
{
nfs4_setup_sequence(NFS_SERVER(data->inode)->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static int nfs4_commit_done_cb(struct rpc_task *task, struct nfs_commit_data *data)
{
struct inode *inode = data->inode;
trace_nfs4_commit(data, task->tk_status);
if (nfs4_async_handle_error(task, NFS_SERVER(inode),
NULL, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
return 0;
}
static int nfs4_commit_done(struct rpc_task *task, struct nfs_commit_data *data)
{
if (!nfs4_sequence_done(task, &data->res.seq_res))
return -EAGAIN;
return data->commit_done_cb(task, data);
}
static void nfs4_proc_commit_setup(struct nfs_commit_data *data, struct rpc_message *msg,
struct rpc_clnt **clnt)
{
struct nfs_server *server = NFS_SERVER(data->inode);
if (data->commit_done_cb == NULL)
data->commit_done_cb = nfs4_commit_done_cb;
data->res.server = server;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1, 0);
nfs4_state_protect(data->ds_clp ? data->ds_clp : server->nfs_client,
NFS_SP4_MACH_CRED_COMMIT, clnt, msg);
}
static int _nfs4_proc_commit(struct file *dst, struct nfs_commitargs *args,
struct nfs_commitres *res)
{
struct inode *dst_inode = file_inode(dst);
struct nfs_server *server = NFS_SERVER(dst_inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
.rpc_argp = args,
.rpc_resp = res,
};
args->fh = NFS_FH(dst_inode);
return nfs4_call_sync(server->client, server, &msg,
&args->seq_args, &res->seq_res, 1);
}
int nfs4_proc_commit(struct file *dst, __u64 offset, __u32 count, struct nfs_commitres *res)
{
struct nfs_commitargs args = {
.offset = offset,
.count = count,
};
struct nfs_server *dst_server = NFS_SERVER(file_inode(dst));
struct nfs4_exception exception = { };
int status;
do {
status = _nfs4_proc_commit(dst, &args, res);
status = nfs4_handle_exception(dst_server, status, &exception);
} while (exception.retry);
return status;
}
struct nfs4_renewdata {
struct nfs_client *client;
unsigned long timestamp;
};
/*
* nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
* standalone procedure for queueing an asynchronous RENEW.
*/
static void nfs4_renew_release(void *calldata)
{
struct nfs4_renewdata *data = calldata;
struct nfs_client *clp = data->client;
if (refcount_read(&clp->cl_count) > 1)
nfs4_schedule_state_renewal(clp);
nfs_put_client(clp);
kfree(data);
}
static void nfs4_renew_done(struct rpc_task *task, void *calldata)
{
struct nfs4_renewdata *data = calldata;
struct nfs_client *clp = data->client;
unsigned long timestamp = data->timestamp;
trace_nfs4_renew_async(clp, task->tk_status);
switch (task->tk_status) {
case 0:
break;
case -NFS4ERR_LEASE_MOVED:
nfs4_schedule_lease_moved_recovery(clp);
break;
default:
/* Unless we're shutting down, schedule state recovery! */
if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) == 0)
return;
if (task->tk_status != NFS4ERR_CB_PATH_DOWN) {
nfs4_schedule_lease_recovery(clp);
return;
}
nfs4_schedule_path_down_recovery(clp);
}
do_renew_lease(clp, timestamp);
}
static const struct rpc_call_ops nfs4_renew_ops = {
.rpc_call_done = nfs4_renew_done,
.rpc_release = nfs4_renew_release,
};
static int nfs4_proc_async_renew(struct nfs_client *clp, const struct cred *cred, unsigned renew_flags)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
struct nfs4_renewdata *data;
if (renew_flags == 0)
return 0;
if (!refcount_inc_not_zero(&clp->cl_count))
return -EIO;
data = kmalloc(sizeof(*data), GFP_NOFS);
if (data == NULL) {
nfs_put_client(clp);
return -ENOMEM;
}
data->client = clp;
data->timestamp = jiffies;
return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT,
&nfs4_renew_ops, data);
}
static int nfs4_proc_renew(struct nfs_client *clp, const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (status < 0)
return status;
do_renew_lease(clp, now);
return 0;
}
static bool nfs4_server_supports_acls(const struct nfs_server *server,
enum nfs4_acl_type type)
{
switch (type) {
default:
return server->attr_bitmask[0] & FATTR4_WORD0_ACL;
case NFS4ACL_DACL:
return server->attr_bitmask[1] & FATTR4_WORD1_DACL;
case NFS4ACL_SACL:
return server->attr_bitmask[1] & FATTR4_WORD1_SACL;
}
}
/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_SIZE, and that
* it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_SIZE) bytes on
* the stack.
*/
#define NFS4ACL_MAXPAGES DIV_ROUND_UP(XATTR_SIZE_MAX, PAGE_SIZE)
int nfs4_buf_to_pages_noslab(const void *buf, size_t buflen,
struct page **pages)
{
struct page *newpage, **spages;
int rc = 0;
size_t len;
spages = pages;
do {
len = min_t(size_t, PAGE_SIZE, buflen);
newpage = alloc_page(GFP_KERNEL);
if (newpage == NULL)
goto unwind;
memcpy(page_address(newpage), buf, len);
buf += len;
buflen -= len;
*pages++ = newpage;
rc++;
} while (buflen != 0);
return rc;
unwind:
for(; rc > 0; rc--)
__free_page(spages[rc-1]);
return -ENOMEM;
}
struct nfs4_cached_acl {
enum nfs4_acl_type type;
int cached;
size_t len;
char data[];
};
static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
kfree(nfsi->nfs4_acl);
nfsi->nfs4_acl = acl;
spin_unlock(&inode->i_lock);
}
static void nfs4_zap_acl_attr(struct inode *inode)
{
nfs4_set_cached_acl(inode, NULL);
}
static ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_cached_acl *acl;
int ret = -ENOENT;
spin_lock(&inode->i_lock);
acl = nfsi->nfs4_acl;
if (acl == NULL)
goto out;
if (acl->type != type)
goto out;
if (buf == NULL) /* user is just asking for length */
goto out_len;
if (acl->cached == 0)
goto out;
ret = -ERANGE; /* see getxattr(2) man page */
if (acl->len > buflen)
goto out;
memcpy(buf, acl->data, acl->len);
out_len:
ret = acl->len;
out:
spin_unlock(&inode->i_lock);
return ret;
}
static void nfs4_write_cached_acl(struct inode *inode, struct page **pages,
size_t pgbase, size_t acl_len,
enum nfs4_acl_type type)
{
struct nfs4_cached_acl *acl;
size_t buflen = sizeof(*acl) + acl_len;
if (buflen <= PAGE_SIZE) {
acl = kmalloc(buflen, GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 1;
_copy_from_pages(acl->data, pages, pgbase, acl_len);
} else {
acl = kmalloc(sizeof(*acl), GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 0;
}
acl->type = type;
acl->len = acl_len;
out:
nfs4_set_cached_acl(inode, acl);
}
/*
* The getxattr API returns the required buffer length when called with a
* NULL buf. The NFSv4 acl tool then calls getxattr again after allocating
* the required buf. On a NULL buf, we send a page of data to the server
* guessing that the ACL request can be serviced by a page. If so, we cache
* up to the page of ACL data, and the 2nd call to getxattr is serviced by
* the cache. If not so, we throw away the page, and cache the required
* length. The next getxattr call will then produce another round trip to
* the server, this time with the input buf of the required size.
*/
static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct page **pages;
struct nfs_getaclargs args = {
.fh = NFS_FH(inode),
.acl_type = type,
.acl_len = buflen,
};
struct nfs_getaclres res = {
.acl_type = type,
.acl_len = buflen,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned int npages;
int ret = -ENOMEM, i;
struct nfs_server *server = NFS_SERVER(inode);
if (buflen == 0)
buflen = server->rsize;
npages = DIV_ROUND_UP(buflen, PAGE_SIZE) + 1;
pages = kmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
args.acl_pages = pages;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL);
if (!pages[i])
goto out_free;
}
/* for decoding across pages */
res.acl_scratch = alloc_page(GFP_KERNEL);
if (!res.acl_scratch)
goto out_free;
args.acl_len = npages * PAGE_SIZE;
dprintk("%s buf %p buflen %zu npages %d args.acl_len %zu\n",
__func__, buf, buflen, npages, args.acl_len);
ret = nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode),
&msg, &args.seq_args, &res.seq_res, 0);
if (ret)
goto out_free;
/* Handle the case where the passed-in buffer is too short */
if (res.acl_flags & NFS4_ACL_TRUNC) {
/* Did the user only issue a request for the acl length? */
if (buf == NULL)
goto out_ok;
ret = -ERANGE;
goto out_free;
}
nfs4_write_cached_acl(inode, pages, res.acl_data_offset, res.acl_len,
type);
if (buf) {
if (res.acl_len > buflen) {
ret = -ERANGE;
goto out_free;
}
_copy_from_pages(buf, pages, res.acl_data_offset, res.acl_len);
}
out_ok:
ret = res.acl_len;
out_free:
while (--i >= 0)
__free_page(pages[i]);
if (res.acl_scratch)
__free_page(res.acl_scratch);
kfree(pages);
return ret;
}
static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs4_exception exception = {
.interruptible = true,
};
ssize_t ret;
do {
ret = __nfs4_get_acl_uncached(inode, buf, buflen, type);
trace_nfs4_get_acl(inode, ret);
if (ret >= 0)
break;
ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
} while (exception.retry);
return ret;
}
static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen,
enum nfs4_acl_type type)
{
struct nfs_server *server = NFS_SERVER(inode);
int ret;
if (!nfs4_server_supports_acls(server, type))
return -EOPNOTSUPP;
ret = nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE);
if (ret < 0)
return ret;
if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
nfs_zap_acl_cache(inode);
ret = nfs4_read_cached_acl(inode, buf, buflen, type);
if (ret != -ENOENT)
/* -ENOENT is returned if there is no ACL or if there is an ACL
* but no cached acl data, just the acl length */
return ret;
return nfs4_get_acl_uncached(inode, buf, buflen, type);
}
static int __nfs4_proc_set_acl(struct inode *inode, const void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs_server *server = NFS_SERVER(inode);
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_setaclargs arg = {
.fh = NFS_FH(inode),
.acl_type = type,
.acl_len = buflen,
.acl_pages = pages,
};
struct nfs_setaclres res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
.rpc_argp = &arg,
.rpc_resp = &res,
};
unsigned int npages = DIV_ROUND_UP(buflen, PAGE_SIZE);
int ret, i;
/* You can't remove system.nfs4_acl: */
if (buflen == 0)
return -EINVAL;
if (!nfs4_server_supports_acls(server, type))
return -EOPNOTSUPP;
if (npages > ARRAY_SIZE(pages))
return -ERANGE;
i = nfs4_buf_to_pages_noslab(buf, buflen, arg.acl_pages);
if (i < 0)
return i;
nfs4_inode_make_writeable(inode);
ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
/*
* Free each page after tx, so the only ref left is
* held by the network stack
*/
for (; i > 0; i--)
put_page(pages[i-1]);
/*
* Acl update can result in inode attribute update.
* so mark the attribute cache invalid.
*/
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME |
NFS_INO_REVAL_FORCED);
spin_unlock(&inode->i_lock);
nfs_access_zap_cache(inode);
nfs_zap_acl_cache(inode);
return ret;
}
static int nfs4_proc_set_acl(struct inode *inode, const void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs4_exception exception = { };
int err;
do {
err = __nfs4_proc_set_acl(inode, buf, buflen, type);
trace_nfs4_set_acl(inode, err);
if (err == -NFS4ERR_BADOWNER || err == -NFS4ERR_BADNAME) {
/*
* no need to retry since the kernel
* isn't involved in encoding the ACEs.
*/
err = -EINVAL;
break;
}
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static int _nfs4_get_security_label(struct inode *inode, void *buf,
size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_label label = {0, 0, buflen, buf};
u32 bitmask[3] = { 0, 0, FATTR4_WORD2_SECURITY_LABEL };
struct nfs_fattr fattr = {
.label = &label,
};
struct nfs4_getattr_arg arg = {
.fh = NFS_FH(inode),
.bitmask = bitmask,
};
struct nfs4_getattr_res res = {
.fattr = &fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int ret;
nfs_fattr_init(&fattr);
ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 0);
if (ret)
return ret;
if (!(fattr.valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL))
return -ENOENT;
return label.len;
}
static int nfs4_get_security_label(struct inode *inode, void *buf,
size_t buflen)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
if (!nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL))
return -EOPNOTSUPP;
do {
err = _nfs4_get_security_label(inode, buf, buflen);
trace_nfs4_get_security_label(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_set_security_label(struct inode *inode,
struct nfs4_label *ilabel,
struct nfs_fattr *fattr)
{
struct iattr sattr = {0};
struct nfs_server *server = NFS_SERVER(inode);
const u32 bitmask[3] = { 0, 0, FATTR4_WORD2_SECURITY_LABEL };
struct nfs_setattrargs arg = {
.fh = NFS_FH(inode),
.iap = &sattr,
.server = server,
.bitmask = bitmask,
.label = ilabel,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs4_stateid_copy(&arg.stateid, &zero_stateid);
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (status)
dprintk("%s failed: %d\n", __func__, status);
return status;
}
static int nfs4_do_set_security_label(struct inode *inode,
struct nfs4_label *ilabel,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_set_security_label(inode, ilabel, fattr);
trace_nfs4_set_security_label(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
static int
nfs4_set_security_label(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs4_label ilabel = {0, 0, buflen, (char *)buf };
struct nfs_fattr *fattr;
int status;
if (!nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL))
return -EOPNOTSUPP;
fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
if (fattr == NULL)
return -ENOMEM;
status = nfs4_do_set_security_label(inode, &ilabel, fattr);
if (status == 0)
nfs_setsecurity(inode, fattr);
nfs_free_fattr(fattr);
return status;
}
#endif /* CONFIG_NFS_V4_SECURITY_LABEL */
static void nfs4_init_boot_verifier(const struct nfs_client *clp,
nfs4_verifier *bootverf)
{
__be32 verf[2];
if (test_bit(NFS4CLNT_PURGE_STATE, &clp->cl_state)) {
/* An impossible timestamp guarantees this value
* will never match a generated boot time. */
verf[0] = cpu_to_be32(U32_MAX);
verf[1] = cpu_to_be32(U32_MAX);
} else {
struct nfs_net *nn = net_generic(clp->cl_net, nfs_net_id);
u64 ns = ktime_to_ns(nn->boot_time);
verf[0] = cpu_to_be32(ns >> 32);
verf[1] = cpu_to_be32(ns);
}
memcpy(bootverf->data, verf, sizeof(bootverf->data));
}
static size_t
nfs4_get_uniquifier(struct nfs_client *clp, char *buf, size_t buflen)
{
struct nfs_net *nn = net_generic(clp->cl_net, nfs_net_id);
struct nfs_netns_client *nn_clp = nn->nfs_client;
const char *id;
buf[0] = '\0';
if (nn_clp) {
rcu_read_lock();
id = rcu_dereference(nn_clp->identifier);
if (id)
strscpy(buf, id, buflen);
rcu_read_unlock();
}
if (nfs4_client_id_uniquifier[0] != '\0' && buf[0] == '\0')
strscpy(buf, nfs4_client_id_uniquifier, buflen);
return strlen(buf);
}
static int
nfs4_init_nonuniform_client_string(struct nfs_client *clp)
{
char buf[NFS4_CLIENT_ID_UNIQ_LEN];
size_t buflen;
size_t len;
char *str;
if (clp->cl_owner_id != NULL)
return 0;
rcu_read_lock();
len = 14 +
strlen(clp->cl_rpcclient->cl_nodename) +
1 +
strlen(rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR)) +
1;
rcu_read_unlock();
buflen = nfs4_get_uniquifier(clp, buf, sizeof(buf));
if (buflen)
len += buflen + 1;
if (len > NFS4_OPAQUE_LIMIT + 1)
return -EINVAL;
/*
* Since this string is allocated at mount time, and held until the
* nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying
* about a memory-reclaim deadlock.
*/
str = kmalloc(len, GFP_KERNEL);
if (!str)
return -ENOMEM;
rcu_read_lock();
if (buflen)
scnprintf(str, len, "Linux NFSv4.0 %s/%s/%s",
clp->cl_rpcclient->cl_nodename, buf,
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_ADDR));
else
scnprintf(str, len, "Linux NFSv4.0 %s/%s",
clp->cl_rpcclient->cl_nodename,
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_ADDR));
rcu_read_unlock();
clp->cl_owner_id = str;
return 0;
}
static int
nfs4_init_uniform_client_string(struct nfs_client *clp)
{
char buf[NFS4_CLIENT_ID_UNIQ_LEN];
size_t buflen;
size_t len;
char *str;
if (clp->cl_owner_id != NULL)
return 0;
len = 10 + 10 + 1 + 10 + 1 +
strlen(clp->cl_rpcclient->cl_nodename) + 1;
buflen = nfs4_get_uniquifier(clp, buf, sizeof(buf));
if (buflen)
len += buflen + 1;
if (len > NFS4_OPAQUE_LIMIT + 1)
return -EINVAL;
/*
* Since this string is allocated at mount time, and held until the
* nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying
* about a memory-reclaim deadlock.
*/
str = kmalloc(len, GFP_KERNEL);
if (!str)
return -ENOMEM;
if (buflen)
scnprintf(str, len, "Linux NFSv%u.%u %s/%s",
clp->rpc_ops->version, clp->cl_minorversion,
buf, clp->cl_rpcclient->cl_nodename);
else
scnprintf(str, len, "Linux NFSv%u.%u %s",
clp->rpc_ops->version, clp->cl_minorversion,
clp->cl_rpcclient->cl_nodename);
clp->cl_owner_id = str;
return 0;
}
/*
* nfs4_callback_up_net() starts only "tcp" and "tcp6" callback
* services. Advertise one based on the address family of the
* clientaddr.
*/
static unsigned int
nfs4_init_callback_netid(const struct nfs_client *clp, char *buf, size_t len)
{
if (strchr(clp->cl_ipaddr, ':') != NULL)
return scnprintf(buf, len, "tcp6");
else
return scnprintf(buf, len, "tcp");
}
static void nfs4_setclientid_done(struct rpc_task *task, void *calldata)
{
struct nfs4_setclientid *sc = calldata;
if (task->tk_status == 0)
sc->sc_cred = get_rpccred(task->tk_rqstp->rq_cred);
}
static const struct rpc_call_ops nfs4_setclientid_ops = {
.rpc_call_done = nfs4_setclientid_done,
};
/**
* nfs4_proc_setclientid - Negotiate client ID
* @clp: state data structure
* @program: RPC program for NFSv4 callback service
* @port: IP port number for NFS4 callback service
* @cred: credential to use for this call
* @res: where to place the result
*
* Returns zero, a negative errno, or a negative NFS4ERR status code.
*/
int nfs4_proc_setclientid(struct nfs_client *clp, u32 program,
unsigned short port, const struct cred *cred,
struct nfs4_setclientid_res *res)
{
nfs4_verifier sc_verifier;
struct nfs4_setclientid setclientid = {
.sc_verifier = &sc_verifier,
.sc_prog = program,
.sc_clnt = clp,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
.rpc_argp = &setclientid,
.rpc_resp = res,
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_setclientid_ops,
.callback_data = &setclientid,
.flags = RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN,
};
unsigned long now = jiffies;
int status;
/* nfs_client_id4 */
nfs4_init_boot_verifier(clp, &sc_verifier);
if (test_bit(NFS_CS_MIGRATION, &clp->cl_flags))
status = nfs4_init_uniform_client_string(clp);
else
status = nfs4_init_nonuniform_client_string(clp);
if (status)
goto out;
/* cb_client4 */
setclientid.sc_netid_len =
nfs4_init_callback_netid(clp,
setclientid.sc_netid,
sizeof(setclientid.sc_netid));
setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
sizeof(setclientid.sc_uaddr), "%s.%u.%u",
clp->cl_ipaddr, port >> 8, port & 255);
dprintk("NFS call setclientid auth=%s, '%s'\n",
clp->cl_rpcclient->cl_auth->au_ops->au_name,
clp->cl_owner_id);
status = nfs4_call_sync_custom(&task_setup_data);
if (setclientid.sc_cred) {
kfree(clp->cl_acceptor);
clp->cl_acceptor = rpcauth_stringify_acceptor(setclientid.sc_cred);
put_rpccred(setclientid.sc_cred);
}
if (status == 0)
do_renew_lease(clp, now);
out:
trace_nfs4_setclientid(clp, status);
dprintk("NFS reply setclientid: %d\n", status);
return status;
}
/**
* nfs4_proc_setclientid_confirm - Confirm client ID
* @clp: state data structure
* @arg: result of a previous SETCLIENTID
* @cred: credential to use for this call
*
* Returns zero, a negative errno, or a negative NFS4ERR status code.
*/
int nfs4_proc_setclientid_confirm(struct nfs_client *clp,
struct nfs4_setclientid_res *arg,
const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
.rpc_argp = arg,
.rpc_cred = cred,
};
int status;
dprintk("NFS call setclientid_confirm auth=%s, (client ID %llx)\n",
clp->cl_rpcclient->cl_auth->au_ops->au_name,
clp->cl_clientid);
status = rpc_call_sync(clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_setclientid_confirm(clp, status);
dprintk("NFS reply setclientid_confirm: %d\n", status);
return status;
}
struct nfs4_delegreturndata {
struct nfs4_delegreturnargs args;
struct nfs4_delegreturnres res;
struct nfs_fh fh;
nfs4_stateid stateid;
unsigned long timestamp;
struct {
struct nfs4_layoutreturn_args arg;
struct nfs4_layoutreturn_res res;
struct nfs4_xdr_opaque_data ld_private;
u32 roc_barrier;
bool roc;
} lr;
struct nfs4_delegattr sattr;
struct nfs_fattr fattr;
int rpc_status;
struct inode *inode;
};
static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
struct nfs4_exception exception = {
.inode = data->inode,
.stateid = &data->stateid,
.task_is_privileged = data->args.seq_args.sa_privileged,
};
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
trace_nfs4_delegreturn_exit(&data->args, &data->res, task->tk_status);
/* Handle Layoutreturn errors */
if (pnfs_roc_done(task, &data->args.lr_args, &data->res.lr_res,
&data->res.lr_ret) == -EAGAIN)
goto out_restart;
if (data->args.sattr_args && task->tk_status != 0) {
switch(data->res.sattr_ret) {
case 0:
data->args.sattr_args = NULL;
data->res.sattr_res = false;
break;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
/* Let the main handler below do stateid recovery */
break;
case -NFS4ERR_OLD_STATEID:
if (nfs4_refresh_delegation_stateid(&data->stateid,
data->inode))
goto out_restart;
fallthrough;
default:
data->args.sattr_args = NULL;
data->res.sattr_res = false;
goto out_restart;
}
}
switch (task->tk_status) {
case 0:
renew_lease(data->res.server, data->timestamp);
break;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_EXPIRED:
nfs4_free_revoked_stateid(data->res.server,
data->args.stateid,
task->tk_msg.rpc_cred);
fallthrough;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -ETIMEDOUT:
task->tk_status = 0;
break;
case -NFS4ERR_OLD_STATEID:
if (!nfs4_refresh_delegation_stateid(&data->stateid, data->inode))
nfs4_stateid_seqid_inc(&data->stateid);
if (data->args.bitmask) {
data->args.bitmask = NULL;
data->res.fattr = NULL;
}
goto out_restart;
case -NFS4ERR_ACCESS:
if (data->args.bitmask) {
data->args.bitmask = NULL;
data->res.fattr = NULL;
goto out_restart;
}
fallthrough;
default:
task->tk_status = nfs4_async_handle_exception(task,
data->res.server, task->tk_status,
&exception);
if (exception.retry)
goto out_restart;
}
nfs_delegation_mark_returned(data->inode, data->args.stateid);
data->rpc_status = task->tk_status;
return;
out_restart:
task->tk_status = 0;
rpc_restart_call_prepare(task);
}
static void nfs4_delegreturn_release(void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
struct inode *inode = data->inode;
if (data->lr.roc)
pnfs_roc_release(&data->lr.arg, &data->lr.res,
data->res.lr_ret);
if (inode) {
nfs4_fattr_set_prechange(&data->fattr,
inode_peek_iversion_raw(inode));
nfs_refresh_inode(inode, &data->fattr);
nfs_iput_and_deactive(inode);
}
kfree(calldata);
}
static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data)
{
struct nfs4_delegreturndata *d_data;
struct pnfs_layout_hdr *lo;
d_data = data;
if (!d_data->lr.roc && nfs4_wait_on_layoutreturn(d_data->inode, task)) {
nfs4_sequence_done(task, &d_data->res.seq_res);
return;
}
lo = d_data->args.lr_args ? d_data->args.lr_args->layout : NULL;
if (lo && !pnfs_layout_is_valid(lo)) {
d_data->args.lr_args = NULL;
d_data->res.lr_res = NULL;
}
nfs4_setup_sequence(d_data->res.server->nfs_client,
&d_data->args.seq_args,
&d_data->res.seq_res,
task);
}
static const struct rpc_call_ops nfs4_delegreturn_ops = {
.rpc_call_prepare = nfs4_delegreturn_prepare,
.rpc_call_done = nfs4_delegreturn_done,
.rpc_release = nfs4_delegreturn_release,
};
static int _nfs4_proc_delegreturn(struct inode *inode, const struct cred *cred,
const nfs4_stateid *stateid,
struct nfs_delegation *delegation,
int issync)
{
struct nfs4_delegreturndata *data;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_delegreturn_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_TIMEOUT,
};
int status = 0;
if (nfs_server_capable(inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
nfs4_state_protect(server->nfs_client,
NFS_SP4_MACH_CRED_CLEANUP,
&task_setup_data.rpc_client, &msg);
data->args.fhandle = &data->fh;
data->args.stateid = &data->stateid;
nfs4_bitmask_set(data->args.bitmask_store,
server->cache_consistency_bitmask, inode, 0);
data->args.bitmask = data->args.bitmask_store;
nfs_copy_fh(&data->fh, NFS_FH(inode));
nfs4_stateid_copy(&data->stateid, stateid);
data->res.fattr = &data->fattr;
data->res.server = server;
data->res.lr_ret = -NFS4ERR_NOMATCHING_LAYOUT;
data->lr.arg.ld_private = &data->lr.ld_private;
nfs_fattr_init(data->res.fattr);
data->timestamp = jiffies;
data->rpc_status = 0;
data->inode = nfs_igrab_and_active(inode);
if (data->inode || issync) {
data->lr.roc = pnfs_roc(inode, &data->lr.arg, &data->lr.res,
cred);
if (data->lr.roc) {
data->args.lr_args = &data->lr.arg;
data->res.lr_res = &data->lr.res;
}
}
if (delegation &&
test_bit(NFS_DELEGATION_DELEGTIME, &delegation->flags)) {
if (delegation->type & FMODE_READ) {
data->sattr.atime = inode_get_atime(inode);
data->sattr.atime_set = true;
}
if (delegation->type & FMODE_WRITE) {
data->sattr.mtime = inode_get_mtime(inode);
data->sattr.mtime_set = true;
}
data->args.sattr_args = &data->sattr;
data->res.sattr_res = true;
}
if (!data->inode)
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1,
1);
else
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1,
0);
task_setup_data.callback_data = data;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (!issync)
goto out;
status = rpc_wait_for_completion_task(task);
if (status != 0)
goto out;
status = data->rpc_status;
out:
rpc_put_task(task);
return status;
}
int nfs4_proc_delegreturn(struct inode *inode, const struct cred *cred,
const nfs4_stateid *stateid,
struct nfs_delegation *delegation, int issync)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_proc_delegreturn(inode, cred, stateid,
delegation, issync);
trace_nfs4_delegreturn(inode, stateid, err);
switch (err) {
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
case 0:
return 0;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_lockt_args arg = {
.fh = NFS_FH(inode),
.fl = request,
};
struct nfs_lockt_res res = {
.denied = request,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = state->owner->so_cred,
};
struct nfs4_lock_state *lsp;
int status;
arg.lock_owner.clientid = clp->cl_clientid;
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
lsp = request->fl_u.nfs4_fl.owner;
arg.lock_owner.id = lsp->ls_seqid.owner_id;
arg.lock_owner.s_dev = server->s_dev;
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
switch (status) {
case 0:
request->c.flc_type = F_UNLCK;
break;
case -NFS4ERR_DENIED:
status = 0;
}
request->fl_ops->fl_release_private(request);
request->fl_ops = NULL;
out:
return status;
}
static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_getlk(state, cmd, request);
trace_nfs4_get_lock(request, state, cmd, err);
err = nfs4_handle_exception(NFS_SERVER(state->inode), err,
&exception);
} while (exception.retry);
return err;
}
/*
* Update the seqid of a lock stateid after receiving
* NFS4ERR_OLD_STATEID
*/
static bool nfs4_refresh_lock_old_stateid(nfs4_stateid *dst,
struct nfs4_lock_state *lsp)
{
struct nfs4_state *state = lsp->ls_state;
bool ret = false;
spin_lock(&state->state_lock);
if (!nfs4_stateid_match_other(dst, &lsp->ls_stateid))
goto out;
if (!nfs4_stateid_is_newer(&lsp->ls_stateid, dst))
nfs4_stateid_seqid_inc(dst);
else
dst->seqid = lsp->ls_stateid.seqid;
ret = true;
out:
spin_unlock(&state->state_lock);
return ret;
}
static bool nfs4_sync_lock_stateid(nfs4_stateid *dst,
struct nfs4_lock_state *lsp)
{
struct nfs4_state *state = lsp->ls_state;
bool ret;
spin_lock(&state->state_lock);
ret = !nfs4_stateid_match_other(dst, &lsp->ls_stateid);
nfs4_stateid_copy(dst, &lsp->ls_stateid);
spin_unlock(&state->state_lock);
return ret;
}
struct nfs4_unlockdata {
struct nfs_locku_args arg;
struct nfs_locku_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct nfs_lock_context *l_ctx;
struct file_lock fl;
struct nfs_server *server;
unsigned long timestamp;
};
static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *p;
struct nfs4_state *state = lsp->ls_state;
struct inode *inode = state->inode;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.seqid = seqid;
p->res.seqid = seqid;
p->lsp = lsp;
/* Ensure we don't close file until we're done freeing locks! */
p->ctx = get_nfs_open_context(ctx);
p->l_ctx = nfs_get_lock_context(ctx);
locks_init_lock(&p->fl);
locks_copy_lock(&p->fl, fl);
p->server = NFS_SERVER(inode);
spin_lock(&state->state_lock);
nfs4_stateid_copy(&p->arg.stateid, &lsp->ls_stateid);
spin_unlock(&state->state_lock);
return p;
}
static void nfs4_locku_release_calldata(void *data)
{
struct nfs4_unlockdata *calldata = data;
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_lock_state(calldata->lsp);
nfs_put_lock_context(calldata->l_ctx);
put_nfs_open_context(calldata->ctx);
kfree(calldata);
}
static void nfs4_locku_done(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
struct nfs4_exception exception = {
.inode = calldata->lsp->ls_state->inode,
.stateid = &calldata->arg.stateid,
};
if (!nfs4_sequence_done(task, &calldata->res.seq_res))
return;
switch (task->tk_status) {
case 0:
renew_lease(calldata->server, calldata->timestamp);
locks_lock_inode_wait(calldata->lsp->ls_state->inode, &calldata->fl);
if (nfs4_update_lock_stateid(calldata->lsp,
&calldata->res.stateid))
break;
fallthrough;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
nfs4_free_revoked_stateid(calldata->server,
&calldata->arg.stateid,
task->tk_msg.rpc_cred);
fallthrough;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
if (nfs4_sync_lock_stateid(&calldata->arg.stateid,
calldata->lsp))
rpc_restart_call_prepare(task);
break;
case -NFS4ERR_OLD_STATEID:
if (nfs4_refresh_lock_old_stateid(&calldata->arg.stateid,
calldata->lsp))
rpc_restart_call_prepare(task);
break;
default:
task->tk_status = nfs4_async_handle_exception(task,
calldata->server, task->tk_status,
&exception);
if (exception.retry)
rpc_restart_call_prepare(task);
}
nfs_release_seqid(calldata->arg.seqid);
}
static void nfs4_locku_prepare(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
if (test_bit(NFS_CONTEXT_UNLOCK, &calldata->l_ctx->open_context->flags) &&
nfs_async_iocounter_wait(task, calldata->l_ctx))
return;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
goto out_wait;
if (test_bit(NFS_LOCK_INITIALIZED, &calldata->lsp->ls_flags) == 0) {
/* Note: exit _without_ running nfs4_locku_done */
goto out_no_action;
}
calldata->timestamp = jiffies;
if (nfs4_setup_sequence(calldata->server->nfs_client,
&calldata->arg.seq_args,
&calldata->res.seq_res,
task) != 0)
nfs_release_seqid(calldata->arg.seqid);
return;
out_no_action:
task->tk_action = NULL;
out_wait:
nfs4_sequence_done(task, &calldata->res.seq_res);
}
static const struct rpc_call_ops nfs4_locku_ops = {
.rpc_call_prepare = nfs4_locku_prepare,
.rpc_call_done = nfs4_locku_done,
.rpc_release = nfs4_locku_release_calldata,
};
static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *data;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
.rpc_cred = ctx->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_CLIENT(lsp->ls_state->inode),
.rpc_message = &msg,
.callback_ops = &nfs4_locku_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
if (nfs_server_capable(lsp->ls_state->inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
nfs4_state_protect(NFS_SERVER(lsp->ls_state->inode)->nfs_client,
NFS_SP4_MACH_CRED_CLEANUP, &task_setup_data.rpc_client, &msg);
/* Ensure this is an unlock - when canceling a lock, the
* canceled lock is passed in, and it won't be an unlock.
*/
fl->c.flc_type = F_UNLCK;
if (fl->c.flc_flags & FL_CLOSE)
set_bit(NFS_CONTEXT_UNLOCK, &ctx->flags);
data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
if (data == NULL) {
nfs_free_seqid(seqid);
return ERR_PTR(-ENOMEM);
}
nfs4_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1, 0);
msg.rpc_argp = &data->arg;
msg.rpc_resp = &data->res;
task_setup_data.callback_data = data;
return rpc_run_task(&task_setup_data);
}
static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs4_state_owner *sp = state->owner;
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_seqid *seqid;
struct nfs4_lock_state *lsp;
struct rpc_task *task;
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
int status = 0;
unsigned char saved_flags = request->c.flc_flags;
status = nfs4_set_lock_state(state, request);
/* Unlock _before_ we do the RPC call */
request->c.flc_flags |= FL_EXISTS;
/* Exclude nfs_delegation_claim_locks() */
mutex_lock(&sp->so_delegreturn_mutex);
/* Exclude nfs4_reclaim_open_stateid() - note nesting! */
down_read(&nfsi->rwsem);
if (locks_lock_inode_wait(inode, request) == -ENOENT) {
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
goto out;
}
lsp = request->fl_u.nfs4_fl.owner;
set_bit(NFS_LOCK_UNLOCKING, &lsp->ls_flags);
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
if (status != 0)
goto out;
/* Is this a delegated lock? */
if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) == 0)
goto out;
alloc_seqid = NFS_SERVER(inode)->nfs_client->cl_mvops->alloc_seqid;
seqid = alloc_seqid(&lsp->ls_seqid, GFP_KERNEL);
status = -ENOMEM;
if (IS_ERR(seqid))
goto out;
task = nfs4_do_unlck(request,
nfs_file_open_context(request->c.flc_file),
lsp, seqid);
status = PTR_ERR(task);
if (IS_ERR(task))
goto out;
status = rpc_wait_for_completion_task(task);
rpc_put_task(task);
out:
request->c.flc_flags = saved_flags;
trace_nfs4_unlock(request, state, F_SETLK, status);
return status;
}
struct nfs4_lockdata {
struct nfs_lock_args arg;
struct nfs_lock_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct file_lock fl;
unsigned long timestamp;
int rpc_status;
int cancelled;
struct nfs_server *server;
};
static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
struct nfs_open_context *ctx, struct nfs4_lock_state *lsp,
gfp_t gfp_mask)
{
struct nfs4_lockdata *p;
struct inode *inode = lsp->ls_state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
p = kzalloc(sizeof(*p), gfp_mask);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid, gfp_mask);
if (IS_ERR(p->arg.open_seqid))
goto out_free;
alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid;
p->arg.lock_seqid = alloc_seqid(&lsp->ls_seqid, gfp_mask);
if (IS_ERR(p->arg.lock_seqid))
goto out_free_seqid;
p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
p->arg.lock_owner.id = lsp->ls_seqid.owner_id;
p->arg.lock_owner.s_dev = server->s_dev;
p->res.lock_seqid = p->arg.lock_seqid;
p->lsp = lsp;
p->server = server;
p->ctx = get_nfs_open_context(ctx);
locks_init_lock(&p->fl);
locks_copy_lock(&p->fl, fl);
return p;
out_free_seqid:
nfs_free_seqid(p->arg.open_seqid);
out_free:
kfree(p);
return NULL;
}
static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
struct nfs4_state *state = data->lsp->ls_state;
if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
goto out_wait;
/* Do we need to do an open_to_lock_owner? */
if (!test_bit(NFS_LOCK_INITIALIZED, &data->lsp->ls_flags)) {
if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0) {
goto out_release_lock_seqid;
}
nfs4_stateid_copy(&data->arg.open_stateid,
&state->open_stateid);
data->arg.new_lock_owner = 1;
data->res.open_seqid = data->arg.open_seqid;
} else {
data->arg.new_lock_owner = 0;
nfs4_stateid_copy(&data->arg.lock_stateid,
&data->lsp->ls_stateid);
}
if (!nfs4_valid_open_stateid(state)) {
data->rpc_status = -EBADF;
task->tk_action = NULL;
goto out_release_open_seqid;
}
data->timestamp = jiffies;
if (nfs4_setup_sequence(data->server->nfs_client,
&data->arg.seq_args,
&data->res.seq_res,
task) == 0)
return;
out_release_open_seqid:
nfs_release_seqid(data->arg.open_seqid);
out_release_lock_seqid:
nfs_release_seqid(data->arg.lock_seqid);
out_wait:
nfs4_sequence_done(task, &data->res.seq_res);
dprintk("%s: ret = %d\n", __func__, data->rpc_status);
}
static void nfs4_lock_done(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
struct nfs4_lock_state *lsp = data->lsp;
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
data->rpc_status = task->tk_status;
switch (task->tk_status) {
case 0:
renew_lease(NFS_SERVER(d_inode(data->ctx->dentry)),
data->timestamp);
if (data->arg.new_lock && !data->cancelled) {
data->fl.c.flc_flags &= ~(FL_SLEEP | FL_ACCESS);
if (locks_lock_inode_wait(lsp->ls_state->inode, &data->fl) < 0)
goto out_restart;
}
if (data->arg.new_lock_owner != 0) {
nfs_confirm_seqid(&lsp->ls_seqid, 0);
nfs4_stateid_copy(&lsp->ls_stateid, &data->res.stateid);
set_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags);
} else if (!nfs4_update_lock_stateid(lsp, &data->res.stateid))
goto out_restart;
break;
case -NFS4ERR_OLD_STATEID:
if (data->arg.new_lock_owner != 0 &&
nfs4_refresh_open_old_stateid(&data->arg.open_stateid,
lsp->ls_state))
goto out_restart;
if (nfs4_refresh_lock_old_stateid(&data->arg.lock_stateid, lsp))
goto out_restart;
fallthrough;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
if (data->arg.new_lock_owner != 0) {
if (!nfs4_stateid_match(&data->arg.open_stateid,
&lsp->ls_state->open_stateid))
goto out_restart;
} else if (!nfs4_stateid_match(&data->arg.lock_stateid,
&lsp->ls_stateid))
goto out_restart;
}
out_done:
dprintk("%s: ret = %d!\n", __func__, data->rpc_status);
return;
out_restart:
if (!data->cancelled)
rpc_restart_call_prepare(task);
goto out_done;
}
static void nfs4_lock_release(void *calldata)
{
struct nfs4_lockdata *data = calldata;
nfs_free_seqid(data->arg.open_seqid);
if (data->cancelled && data->rpc_status == 0) {
struct rpc_task *task;
task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
data->arg.lock_seqid);
if (!IS_ERR(task))
rpc_put_task_async(task);
dprintk("%s: cancelling lock!\n", __func__);
} else
nfs_free_seqid(data->arg.lock_seqid);
nfs4_put_lock_state(data->lsp);
put_nfs_open_context(data->ctx);
kfree(data);
}
static const struct rpc_call_ops nfs4_lock_ops = {
.rpc_call_prepare = nfs4_lock_prepare,
.rpc_call_done = nfs4_lock_done,
.rpc_release = nfs4_lock_release,
};
static void nfs4_handle_setlk_error(struct nfs_server *server, struct nfs4_lock_state *lsp, int new_lock_owner, int error)
{
switch (error) {
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED;
if (new_lock_owner != 0 ||
test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) != 0)
nfs4_schedule_stateid_recovery(server, lsp->ls_state);
break;
case -NFS4ERR_STALE_STATEID:
lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED;
nfs4_schedule_lease_recovery(server->nfs_client);
}
}
static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int recovery_type)
{
struct nfs4_lockdata *data;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
.rpc_cred = state->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_CLIENT(state->inode),
.rpc_message = &msg,
.callback_ops = &nfs4_lock_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int ret;
if (nfs_server_capable(state->inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
data = nfs4_alloc_lockdata(fl,
nfs_file_open_context(fl->c.flc_file),
fl->fl_u.nfs4_fl.owner, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
if (IS_SETLKW(cmd))
data->arg.block = 1;
nfs4_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1,
recovery_type > NFS_LOCK_NEW);
msg.rpc_argp = &data->arg;
msg.rpc_resp = &data->res;
task_setup_data.callback_data = data;
if (recovery_type > NFS_LOCK_NEW) {
if (recovery_type == NFS_LOCK_RECLAIM)
data->arg.reclaim = NFS_LOCK_RECLAIM;
} else
data->arg.new_lock = 1;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
ret = rpc_wait_for_completion_task(task);
if (ret == 0) {
ret = data->rpc_status;
if (ret)
nfs4_handle_setlk_error(data->server, data->lsp,
data->arg.new_lock_owner, ret);
} else
data->cancelled = true;
trace_nfs4_set_lock(fl, state, &data->res.stateid, cmd, ret);
rpc_put_task(task);
dprintk("%s: ret = %d\n", __func__, ret);
return ret;
}
static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = {
.inode = state->inode,
};
int err;
do {
/* Cache the lock if possible... */
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_RECLAIM);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = {
.inode = state->inode,
};
int err;
err = nfs4_set_lock_state(state, request);
if (err != 0)
return err;
if (!recover_lost_locks) {
set_bit(NFS_LOCK_LOST, &request->fl_u.nfs4_fl.owner->ls_flags);
return 0;
}
do {
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_EXPIRED);
switch (err) {
default:
goto out;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
nfs4_handle_exception(server, err, &exception);
err = 0;
}
} while (exception.retry);
out:
return err;
}
#if defined(CONFIG_NFS_V4_1)
static int nfs41_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs4_lock_state *lsp;
int status;
status = nfs4_set_lock_state(state, request);
if (status != 0)
return status;
lsp = request->fl_u.nfs4_fl.owner;
if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) ||
test_bit(NFS_LOCK_LOST, &lsp->ls_flags))
return 0;
return nfs4_lock_expired(state, request);
}
#endif
static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs4_state_owner *sp = state->owner;
unsigned char flags = request->c.flc_flags;
int status;
request->c.flc_flags |= FL_ACCESS;
status = locks_lock_inode_wait(state->inode, request);
if (status < 0)
goto out;
mutex_lock(&sp->so_delegreturn_mutex);
down_read(&nfsi->rwsem);
if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
/* Yes: cache locks! */
/* ...but avoid races with delegation recall... */
request->c.flc_flags = flags & ~FL_SLEEP;
status = locks_lock_inode_wait(state->inode, request);
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
goto out;
}
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
status = _nfs4_do_setlk(state, cmd, request, NFS_LOCK_NEW);
out:
request->c.flc_flags = flags;
return status;
}
static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = {
.state = state,
.inode = state->inode,
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_setlk(state, cmd, request);
if (err == -NFS4ERR_DENIED)
err = -EAGAIN;
err = nfs4_handle_exception(NFS_SERVER(state->inode),
err, &exception);
} while (exception.retry);
return err;
}
#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
static int
nfs4_retry_setlk_simple(struct nfs4_state *state, int cmd,
struct file_lock *request)
{
int status = -ERESTARTSYS;
unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
while(!signalled()) {
status = nfs4_proc_setlk(state, cmd, request);
if ((status != -EAGAIN) || IS_SETLK(cmd))
break;
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
schedule_timeout(timeout);
timeout *= 2;
timeout = min_t(unsigned long, NFS4_LOCK_MAXTIMEOUT, timeout);
status = -ERESTARTSYS;
}
return status;
}
#ifdef CONFIG_NFS_V4_1
struct nfs4_lock_waiter {
struct inode *inode;
struct nfs_lowner owner;
wait_queue_entry_t wait;
};
static int
nfs4_wake_lock_waiter(wait_queue_entry_t *wait, unsigned int mode, int flags, void *key)
{
struct nfs4_lock_waiter *waiter =
container_of(wait, struct nfs4_lock_waiter, wait);
/* NULL key means to wake up everyone */
if (key) {
struct cb_notify_lock_args *cbnl = key;
struct nfs_lowner *lowner = &cbnl->cbnl_owner,
*wowner = &waiter->owner;
/* Only wake if the callback was for the same owner. */
if (lowner->id != wowner->id || lowner->s_dev != wowner->s_dev)
return 0;
/* Make sure it's for the right inode */
if (nfs_compare_fh(NFS_FH(waiter->inode), &cbnl->cbnl_fh))
return 0;
}
return woken_wake_function(wait, mode, flags, key);
}
static int
nfs4_retry_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_lock_state *lsp = request->fl_u.nfs4_fl.owner;
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs_client *clp = server->nfs_client;
wait_queue_head_t *q = &clp->cl_lock_waitq;
struct nfs4_lock_waiter waiter = {
.inode = state->inode,
.owner = { .clientid = clp->cl_clientid,
.id = lsp->ls_seqid.owner_id,
.s_dev = server->s_dev },
};
int status;
/* Don't bother with waitqueue if we don't expect a callback */
if (!test_bit(NFS_STATE_MAY_NOTIFY_LOCK, &state->flags))
return nfs4_retry_setlk_simple(state, cmd, request);
init_wait(&waiter.wait);
waiter.wait.func = nfs4_wake_lock_waiter;
add_wait_queue(q, &waiter.wait);
do {
status = nfs4_proc_setlk(state, cmd, request);
if (status != -EAGAIN || IS_SETLK(cmd))
break;
status = -ERESTARTSYS;
wait_woken(&waiter.wait, TASK_INTERRUPTIBLE|TASK_FREEZABLE,
NFS4_LOCK_MAXTIMEOUT);
} while (!signalled());
remove_wait_queue(q, &waiter.wait);
return status;
}
#else /* !CONFIG_NFS_V4_1 */
static inline int
nfs4_retry_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
return nfs4_retry_setlk_simple(state, cmd, request);
}
#endif
static int
nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
{
struct nfs_open_context *ctx;
struct nfs4_state *state;
int status;
/* verify open state */
ctx = nfs_file_open_context(filp);
state = ctx->state;
if (IS_GETLK(cmd)) {
if (state != NULL)
return nfs4_proc_getlk(state, F_GETLK, request);
return 0;
}
if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
return -EINVAL;
if (lock_is_unlock(request)) {
if (state != NULL)
return nfs4_proc_unlck(state, cmd, request);
return 0;
}
if (state == NULL)
return -ENOLCK;
if ((request->c.flc_flags & FL_POSIX) &&
!test_bit(NFS_STATE_POSIX_LOCKS, &state->flags))
return -ENOLCK;
/*
* Don't rely on the VFS having checked the file open mode,
* since it won't do this for flock() locks.
*/
switch (request->c.flc_type) {
case F_RDLCK:
if (!(filp->f_mode & FMODE_READ))
return -EBADF;
break;
case F_WRLCK:
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
}
status = nfs4_set_lock_state(state, request);
if (status != 0)
return status;
return nfs4_retry_setlk(state, cmd, request);
}
static int nfs4_delete_lease(struct file *file, void **priv)
{
return generic_setlease(file, F_UNLCK, NULL, priv);
}
static int nfs4_add_lease(struct file *file, int arg, struct file_lease **lease,
void **priv)
{
struct inode *inode = file_inode(file);
fmode_t type = arg == F_RDLCK ? FMODE_READ : FMODE_WRITE;
int ret;
/* No delegation, no lease */
if (!nfs4_have_delegation(inode, type, 0))
return -EAGAIN;
ret = generic_setlease(file, arg, lease, priv);
if (ret || nfs4_have_delegation(inode, type, 0))
return ret;
/* We raced with a delegation return */
nfs4_delete_lease(file, priv);
return -EAGAIN;
}
int nfs4_proc_setlease(struct file *file, int arg, struct file_lease **lease,
void **priv)
{
switch (arg) {
case F_RDLCK:
case F_WRLCK:
return nfs4_add_lease(file, arg, lease, priv);
case F_UNLCK:
return nfs4_delete_lease(file, priv);
default:
return -EINVAL;
}
}
int nfs4_lock_delegation_recall(struct file_lock *fl, struct nfs4_state *state, const nfs4_stateid *stateid)
{
struct nfs_server *server = NFS_SERVER(state->inode);
int err;
err = nfs4_set_lock_state(state, fl);
if (err != 0)
return err;
do {
err = _nfs4_do_setlk(state, F_SETLK, fl, NFS_LOCK_NEW);
if (err != -NFS4ERR_DELAY)
break;
ssleep(1);
} while (err == -NFS4ERR_DELAY);
return nfs4_handle_delegation_recall_error(server, state, stateid, fl, err);
}
struct nfs_release_lockowner_data {
struct nfs4_lock_state *lsp;
struct nfs_server *server;
struct nfs_release_lockowner_args args;
struct nfs_release_lockowner_res res;
unsigned long timestamp;
};
static void nfs4_release_lockowner_prepare(struct rpc_task *task, void *calldata)
{
struct nfs_release_lockowner_data *data = calldata;
struct nfs_server *server = data->server;
nfs4_setup_sequence(server->nfs_client, &data->args.seq_args,
&data->res.seq_res, task);
data->args.lock_owner.clientid = server->nfs_client->cl_clientid;
data->timestamp = jiffies;
}
static void nfs4_release_lockowner_done(struct rpc_task *task, void *calldata)
{
struct nfs_release_lockowner_data *data = calldata;
struct nfs_server *server = data->server;
nfs40_sequence_done(task, &data->res.seq_res);
switch (task->tk_status) {
case 0:
renew_lease(server, data->timestamp);
break;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_lease_recovery(server->nfs_client);
break;
case -NFS4ERR_LEASE_MOVED:
case -NFS4ERR_DELAY:
if (nfs4_async_handle_error(task, server,
NULL, NULL) == -EAGAIN)
rpc_restart_call_prepare(task);
}
}
static void nfs4_release_lockowner_release(void *calldata)
{
struct nfs_release_lockowner_data *data = calldata;
nfs4_free_lock_state(data->server, data->lsp);
kfree(calldata);
}
static const struct rpc_call_ops nfs4_release_lockowner_ops = {
.rpc_call_prepare = nfs4_release_lockowner_prepare,
.rpc_call_done = nfs4_release_lockowner_done,
.rpc_release = nfs4_release_lockowner_release,
};
static void
nfs4_release_lockowner(struct nfs_server *server, struct nfs4_lock_state *lsp)
{
struct nfs_release_lockowner_data *data;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RELEASE_LOCKOWNER],
};
if (server->nfs_client->cl_mvops->minor_version != 0)
return;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return;
data->lsp = lsp;
data->server = server;
data->args.lock_owner.clientid = server->nfs_client->cl_clientid;
data->args.lock_owner.id = lsp->ls_seqid.owner_id;
data->args.lock_owner.s_dev = server->s_dev;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0, 0);
rpc_call_async(server->client, &msg, 0, &nfs4_release_lockowner_ops, data);
}
#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
static int nfs4_xattr_set_nfs4_acl(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
return nfs4_proc_set_acl(inode, buf, buflen, NFS4ACL_ACL);
}
static int nfs4_xattr_get_nfs4_acl(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
return nfs4_proc_get_acl(inode, buf, buflen, NFS4ACL_ACL);
}
static bool nfs4_xattr_list_nfs4_acl(struct dentry *dentry)
{
return nfs4_server_supports_acls(NFS_SB(dentry->d_sb), NFS4ACL_ACL);
}
#if defined(CONFIG_NFS_V4_1)
#define XATTR_NAME_NFSV4_DACL "system.nfs4_dacl"
static int nfs4_xattr_set_nfs4_dacl(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
return nfs4_proc_set_acl(inode, buf, buflen, NFS4ACL_DACL);
}
static int nfs4_xattr_get_nfs4_dacl(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
return nfs4_proc_get_acl(inode, buf, buflen, NFS4ACL_DACL);
}
static bool nfs4_xattr_list_nfs4_dacl(struct dentry *dentry)
{
return nfs4_server_supports_acls(NFS_SB(dentry->d_sb), NFS4ACL_DACL);
}
#define XATTR_NAME_NFSV4_SACL "system.nfs4_sacl"
static int nfs4_xattr_set_nfs4_sacl(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
return nfs4_proc_set_acl(inode, buf, buflen, NFS4ACL_SACL);
}
static int nfs4_xattr_get_nfs4_sacl(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
return nfs4_proc_get_acl(inode, buf, buflen, NFS4ACL_SACL);
}
static bool nfs4_xattr_list_nfs4_sacl(struct dentry *dentry)
{
return nfs4_server_supports_acls(NFS_SB(dentry->d_sb), NFS4ACL_SACL);
}
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static int nfs4_xattr_set_nfs4_label(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
if (security_ismaclabel(key))
return nfs4_set_security_label(inode, buf, buflen);
return -EOPNOTSUPP;
}
static int nfs4_xattr_get_nfs4_label(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
if (security_ismaclabel(key))
return nfs4_get_security_label(inode, buf, buflen);
return -EOPNOTSUPP;
}
static ssize_t
nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len)
{
int len = 0;
if (nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL)) {
len = security_inode_listsecurity(inode, list, list_len);
if (len >= 0 && list_len && len > list_len)
return -ERANGE;
}
return len;
}
static const struct xattr_handler nfs4_xattr_nfs4_label_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = nfs4_xattr_get_nfs4_label,
.set = nfs4_xattr_set_nfs4_label,
};
#else
static ssize_t
nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len)
{
return 0;
}
#endif
#ifdef CONFIG_NFS_V4_2
static int nfs4_xattr_set_nfs4_user(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
u32 mask;
int ret;
if (!nfs_server_capable(inode, NFS_CAP_XATTR))
return -EOPNOTSUPP;
/*
* There is no mapping from the MAY_* flags to the NFS_ACCESS_XA*
* flags right now. Handling of xattr operations use the normal
* file read/write permissions.
*
* Just in case the server has other ideas (which RFC 8276 allows),
* do a cached access check for the XA* flags to possibly avoid
* doing an RPC and getting EACCES back.
*/
if (!nfs_access_get_cached(inode, current_cred(), &mask, true)) {
if (!(mask & NFS_ACCESS_XAWRITE))
return -EACCES;
}
if (buf == NULL) {
ret = nfs42_proc_removexattr(inode, key);
if (!ret)
nfs4_xattr_cache_remove(inode, key);
} else {
ret = nfs42_proc_setxattr(inode, key, buf, buflen, flags);
if (!ret)
nfs4_xattr_cache_add(inode, key, buf, NULL, buflen);
}
return ret;
}
static int nfs4_xattr_get_nfs4_user(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
u32 mask;
ssize_t ret;
if (!nfs_server_capable(inode, NFS_CAP_XATTR))
return -EOPNOTSUPP;
if (!nfs_access_get_cached(inode, current_cred(), &mask, true)) {
if (!(mask & NFS_ACCESS_XAREAD))
return -EACCES;
}
ret = nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE);
if (ret)
return ret;
ret = nfs4_xattr_cache_get(inode, key, buf, buflen);
if (ret >= 0 || (ret < 0 && ret != -ENOENT))
return ret;
ret = nfs42_proc_getxattr(inode, key, buf, buflen);
return ret;
}
static ssize_t
nfs4_listxattr_nfs4_user(struct inode *inode, char *list, size_t list_len)
{
u64 cookie;
bool eof;
ssize_t ret, size;
char *buf;
size_t buflen;
u32 mask;
if (!nfs_server_capable(inode, NFS_CAP_XATTR))
return 0;
if (!nfs_access_get_cached(inode, current_cred(), &mask, true)) {
if (!(mask & NFS_ACCESS_XALIST))
return 0;
}
ret = nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE);
if (ret)
return ret;
ret = nfs4_xattr_cache_list(inode, list, list_len);
if (ret >= 0 || (ret < 0 && ret != -ENOENT))
return ret;
cookie = 0;
eof = false;
buflen = list_len ? list_len : XATTR_LIST_MAX;
buf = list_len ? list : NULL;
size = 0;
while (!eof) {
ret = nfs42_proc_listxattrs(inode, buf, buflen,
&cookie, &eof);
if (ret < 0)
return ret;
if (list_len) {
buf += ret;
buflen -= ret;
}
size += ret;
}
if (list_len)
nfs4_xattr_cache_set_list(inode, list, size);
return size;
}
#else
static ssize_t
nfs4_listxattr_nfs4_user(struct inode *inode, char *list, size_t list_len)
{
return 0;
}
#endif /* CONFIG_NFS_V4_2 */
/*
* nfs_fhget will use either the mounted_on_fileid or the fileid
*/
static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr)
{
if (!(((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) ||
(fattr->valid & NFS_ATTR_FATTR_FILEID)) &&
(fattr->valid & NFS_ATTR_FATTR_FSID) &&
(fattr->valid & NFS_ATTR_FATTR_V4_LOCATIONS)))
return;
fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_V4_REFERRAL;
fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
fattr->nlink = 2;
}
static int _nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir,
const struct qstr *name,
struct nfs4_fs_locations *fs_locations,
struct page *page)
{
struct nfs_server *server = NFS_SERVER(dir);
u32 bitmask[3];
struct nfs4_fs_locations_arg args = {
.dir_fh = NFS_FH(dir),
.name = name,
.page = page,
.bitmask = bitmask,
};
struct nfs4_fs_locations_res res = {
.fs_locations = fs_locations,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
dprintk("%s: start\n", __func__);
bitmask[0] = nfs4_fattr_bitmap[0] | FATTR4_WORD0_FS_LOCATIONS;
bitmask[1] = nfs4_fattr_bitmap[1];
/* Ask for the fileid of the absent filesystem if mounted_on_fileid
* is not supported */
if (NFS_SERVER(dir)->attr_bitmask[1] & FATTR4_WORD1_MOUNTED_ON_FILEID)
bitmask[0] &= ~FATTR4_WORD0_FILEID;
else
bitmask[1] &= ~FATTR4_WORD1_MOUNTED_ON_FILEID;
nfs_fattr_init(fs_locations->fattr);
fs_locations->server = server;
fs_locations->nlocations = 0;
status = nfs4_call_sync(client, server, &msg, &args.seq_args, &res.seq_res, 0);
dprintk("%s: returned status = %d\n", __func__, status);
return status;
}
int nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir,
const struct qstr *name,
struct nfs4_fs_locations *fs_locations,
struct page *page)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_fs_locations(client, dir, name,
fs_locations, page);
trace_nfs4_get_fs_locations(dir, name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
/*
* This operation also signals the server that this client is
* performing migration recovery. The server can stop returning
* NFS4ERR_LEASE_MOVED to this client. A RENEW operation is
* appended to this compound to identify the client ID which is
* performing recovery.
*/
static int _nfs40_proc_get_locations(struct nfs_server *server,
struct nfs_fh *fhandle,
struct nfs4_fs_locations *locations,
struct page *page, const struct cred *cred)
{
struct rpc_clnt *clnt = server->client;
u32 bitmask[2] = {
[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
};
struct nfs4_fs_locations_arg args = {
.clientid = server->nfs_client->cl_clientid,
.fh = fhandle,
.page = page,
.bitmask = bitmask,
.migration = 1, /* skip LOOKUP */
.renew = 1, /* append RENEW */
};
struct nfs4_fs_locations_res res = {
.fs_locations = locations,
.migration = 1,
.renew = 1,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
nfs_fattr_init(locations->fattr);
locations->server = server;
locations->nlocations = 0;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(clnt, server, &msg,
&args.seq_args, &res.seq_res);
if (status)
return status;
renew_lease(server, now);
return 0;
}
#ifdef CONFIG_NFS_V4_1
/*
* This operation also signals the server that this client is
* performing migration recovery. The server can stop asserting
* SEQ4_STATUS_LEASE_MOVED for this client. The client ID
* performing this operation is identified in the SEQUENCE
* operation in this compound.
*
* When the client supports GETATTR(fs_locations_info), it can
* be plumbed in here.
*/
static int _nfs41_proc_get_locations(struct nfs_server *server,
struct nfs_fh *fhandle,
struct nfs4_fs_locations *locations,
struct page *page, const struct cred *cred)
{
struct rpc_clnt *clnt = server->client;
u32 bitmask[2] = {
[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
};
struct nfs4_fs_locations_arg args = {
.fh = fhandle,
.page = page,
.bitmask = bitmask,
.migration = 1, /* skip LOOKUP */
};
struct nfs4_fs_locations_res res = {
.fs_locations = locations,
.migration = 1,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
struct nfs4_call_sync_data data = {
.seq_server = server,
.seq_args = &args.seq_args,
.seq_res = &res.seq_res,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_message = &msg,
.callback_ops = server->nfs_client->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
int status;
nfs_fattr_init(locations->fattr);
locations->server = server;
locations->nlocations = 0;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_custom(&task_setup_data);
if (status == NFS4_OK &&
res.seq_res.sr_status_flags & SEQ4_STATUS_LEASE_MOVED)
status = -NFS4ERR_LEASE_MOVED;
return status;
}
#endif /* CONFIG_NFS_V4_1 */
/**
* nfs4_proc_get_locations - discover locations for a migrated FSID
* @server: pointer to nfs_server to process
* @fhandle: pointer to the kernel NFS client file handle
* @locations: result of query
* @page: buffer
* @cred: credential to use for this operation
*
* Returns NFS4_OK on success, a negative NFS4ERR status code if the
* operation failed, or a negative errno if a local error occurred.
*
* On success, "locations" is filled in, but if the server has
* no locations information, NFS_ATTR_FATTR_V4_LOCATIONS is not
* asserted.
*
* -NFS4ERR_LEASE_MOVED is returned if the server still has leases
* from this client that require migration recovery.
*/
int nfs4_proc_get_locations(struct nfs_server *server,
struct nfs_fh *fhandle,
struct nfs4_fs_locations *locations,
struct page *page, const struct cred *cred)
{
struct nfs_client *clp = server->nfs_client;
const struct nfs4_mig_recovery_ops *ops =
clp->cl_mvops->mig_recovery_ops;
struct nfs4_exception exception = {
.interruptible = true,
};
int status;
dprintk("%s: FSID %llx:%llx on \"%s\"\n", __func__,
(unsigned long long)server->fsid.major,
(unsigned long long)server->fsid.minor,
clp->cl_hostname);
nfs_display_fhandle(fhandle, __func__);
do {
status = ops->get_locations(server, fhandle, locations, page,
cred);
if (status != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, status, &exception);
} while (exception.retry);
return status;
}
/*
* This operation also signals the server that this client is
* performing "lease moved" recovery. The server can stop
* returning NFS4ERR_LEASE_MOVED to this client. A RENEW operation
* is appended to this compound to identify the client ID which is
* performing recovery.
*/
static int _nfs40_proc_fsid_present(struct inode *inode, const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = NFS_SERVER(inode)->nfs_client;
struct rpc_clnt *clnt = server->client;
struct nfs4_fsid_present_arg args = {
.fh = NFS_FH(inode),
.clientid = clp->cl_clientid,
.renew = 1, /* append RENEW */
};
struct nfs4_fsid_present_res res = {
.renew = 1,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSID_PRESENT],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
res.fh = nfs_alloc_fhandle();
if (res.fh == NULL)
return -ENOMEM;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(clnt, server, &msg,
&args.seq_args, &res.seq_res);
nfs_free_fhandle(res.fh);
if (status)
return status;
do_renew_lease(clp, now);
return 0;
}
#ifdef CONFIG_NFS_V4_1
/*
* This operation also signals the server that this client is
* performing "lease moved" recovery. The server can stop asserting
* SEQ4_STATUS_LEASE_MOVED for this client. The client ID performing
* this operation is identified in the SEQUENCE operation in this
* compound.
*/
static int _nfs41_proc_fsid_present(struct inode *inode, const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_clnt *clnt = server->client;
struct nfs4_fsid_present_arg args = {
.fh = NFS_FH(inode),
};
struct nfs4_fsid_present_res res = {
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSID_PRESENT],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
res.fh = nfs_alloc_fhandle();
if (res.fh == NULL)
return -ENOMEM;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(clnt, server, &msg,
&args.seq_args, &res.seq_res);
nfs_free_fhandle(res.fh);
if (status == NFS4_OK &&
res.seq_res.sr_status_flags & SEQ4_STATUS_LEASE_MOVED)
status = -NFS4ERR_LEASE_MOVED;
return status;
}
#endif /* CONFIG_NFS_V4_1 */
/**
* nfs4_proc_fsid_present - Is this FSID present or absent on server?
* @inode: inode on FSID to check
* @cred: credential to use for this operation
*
* Server indicates whether the FSID is present, moved, or not
* recognized. This operation is necessary to clear a LEASE_MOVED
* condition for this client ID.
*
* Returns NFS4_OK if the FSID is present on this server,
* -NFS4ERR_MOVED if the FSID is no longer present, a negative
* NFS4ERR code if some error occurred on the server, or a
* negative errno if a local failure occurred.
*/
int nfs4_proc_fsid_present(struct inode *inode, const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
const struct nfs4_mig_recovery_ops *ops =
clp->cl_mvops->mig_recovery_ops;
struct nfs4_exception exception = {
.interruptible = true,
};
int status;
dprintk("%s: FSID %llx:%llx on \"%s\"\n", __func__,
(unsigned long long)server->fsid.major,
(unsigned long long)server->fsid.minor,
clp->cl_hostname);
nfs_display_fhandle(NFS_FH(inode), __func__);
do {
status = ops->fsid_present(inode, cred);
if (status != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, status, &exception);
} while (exception.retry);
return status;
}
/*
* If 'use_integrity' is true and the state managment nfs_client
* cl_rpcclient is using krb5i/p, use the integrity protected cl_rpcclient
* and the machine credential as per RFC3530bis and RFC5661 Security
* Considerations sections. Otherwise, just use the user cred with the
* filesystem's rpc_client.
*/
static int _nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors, bool use_integrity)
{
int status;
struct rpc_clnt *clnt = NFS_SERVER(dir)->client;
struct nfs_client *clp = NFS_SERVER(dir)->nfs_client;
struct nfs4_secinfo_arg args = {
.dir_fh = NFS_FH(dir),
.name = name,
};
struct nfs4_secinfo_res res = {
.flavors = flavors,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct nfs4_call_sync_data data = {
.seq_server = NFS_SERVER(dir),
.seq_args = &args.seq_args,
.seq_res = &res.seq_res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clnt,
.rpc_message = &msg,
.callback_ops = clp->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
const struct cred *cred = NULL;
if (use_integrity) {
clnt = clp->cl_rpcclient;
task_setup.rpc_client = clnt;
cred = nfs4_get_clid_cred(clp);
msg.rpc_cred = cred;
}
dprintk("NFS call secinfo %s\n", name->name);
nfs4_state_protect(clp, NFS_SP4_MACH_CRED_SECINFO, &clnt, &msg);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
status = nfs4_call_sync_custom(&task_setup);
dprintk("NFS reply secinfo: %d\n", status);
put_cred(cred);
return status;
}
int nfs4_proc_secinfo(struct inode *dir, const struct qstr *name,
struct nfs4_secinfo_flavors *flavors)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = -NFS4ERR_WRONGSEC;
/* try to use integrity protection with machine cred */
if (_nfs4_is_integrity_protected(NFS_SERVER(dir)->nfs_client))
err = _nfs4_proc_secinfo(dir, name, flavors, true);
/*
* if unable to use integrity protection, or SECINFO with
* integrity protection returns NFS4ERR_WRONGSEC (which is
* disallowed by spec, but exists in deployed servers) use
* the current filesystem's rpc_client and the user cred.
*/
if (err == -NFS4ERR_WRONGSEC)
err = _nfs4_proc_secinfo(dir, name, flavors, false);
trace_nfs4_secinfo(dir, name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
#ifdef CONFIG_NFS_V4_1
/*
* Check the exchange flags returned by the server for invalid flags, having
* both PNFS and NON_PNFS flags set, and not having one of NON_PNFS, PNFS, or
* DS flags set.
*/
static int nfs4_check_cl_exchange_flags(u32 flags, u32 version)
{
if (version >= 2 && (flags & ~EXCHGID4_2_FLAG_MASK_R))
goto out_inval;
else if (version < 2 && (flags & ~EXCHGID4_FLAG_MASK_R))
goto out_inval;
if ((flags & EXCHGID4_FLAG_USE_PNFS_MDS) &&
(flags & EXCHGID4_FLAG_USE_NON_PNFS))
goto out_inval;
if (!(flags & (EXCHGID4_FLAG_MASK_PNFS)))
goto out_inval;
return NFS_OK;
out_inval:
return -NFS4ERR_INVAL;
}
static bool
nfs41_same_server_scope(struct nfs41_server_scope *a,
struct nfs41_server_scope *b)
{
if (a->server_scope_sz != b->server_scope_sz)
return false;
return memcmp(a->server_scope, b->server_scope, a->server_scope_sz) == 0;
}
static void
nfs4_bind_one_conn_to_session_done(struct rpc_task *task, void *calldata)
{
struct nfs41_bind_conn_to_session_args *args = task->tk_msg.rpc_argp;
struct nfs41_bind_conn_to_session_res *res = task->tk_msg.rpc_resp;
struct nfs_client *clp = args->client;
switch (task->tk_status) {
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
nfs4_schedule_session_recovery(clp->cl_session,
task->tk_status);
return;
}
if (args->dir == NFS4_CDFC4_FORE_OR_BOTH &&
res->dir != NFS4_CDFS4_BOTH) {
rpc_task_close_connection(task);
if (args->retries++ < MAX_BIND_CONN_TO_SESSION_RETRIES)
rpc_restart_call(task);
}
}
static const struct rpc_call_ops nfs4_bind_one_conn_to_session_ops = {
.rpc_call_done = nfs4_bind_one_conn_to_session_done,
};
/*
* nfs4_proc_bind_one_conn_to_session()
*
* The 4.1 client currently uses the same TCP connection for the
* fore and backchannel.
*/
static
int nfs4_proc_bind_one_conn_to_session(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
struct nfs_client *clp,
const struct cred *cred)
{
int status;
struct nfs41_bind_conn_to_session_args args = {
.client = clp,
.dir = NFS4_CDFC4_FORE_OR_BOTH,
.retries = 0,
};
struct nfs41_bind_conn_to_session_res res;
struct rpc_message msg = {
.rpc_proc =
&nfs4_procedures[NFSPROC4_CLNT_BIND_CONN_TO_SESSION],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_xprt = xprt,
.callback_ops = &nfs4_bind_one_conn_to_session_ops,
.rpc_message = &msg,
.flags = RPC_TASK_TIMEOUT,
};
struct rpc_task *task;
nfs4_copy_sessionid(&args.sessionid, &clp->cl_session->sess_id);
if (!(clp->cl_session->flags & SESSION4_BACK_CHAN))
args.dir = NFS4_CDFC4_FORE;
/* Do not set the backchannel flag unless this is clnt->cl_xprt */
if (xprt != rcu_access_pointer(clnt->cl_xprt))
args.dir = NFS4_CDFC4_FORE;
task = rpc_run_task(&task_setup_data);
if (!IS_ERR(task)) {
status = task->tk_status;
rpc_put_task(task);
} else
status = PTR_ERR(task);
trace_nfs4_bind_conn_to_session(clp, status);
if (status == 0) {
if (memcmp(res.sessionid.data,
clp->cl_session->sess_id.data, NFS4_MAX_SESSIONID_LEN)) {
dprintk("NFS: %s: Session ID mismatch\n", __func__);
return -EIO;
}
if ((res.dir & args.dir) != res.dir || res.dir == 0) {
dprintk("NFS: %s: Unexpected direction from server\n",
__func__);
return -EIO;
}
if (res.use_conn_in_rdma_mode != args.use_conn_in_rdma_mode) {
dprintk("NFS: %s: Server returned RDMA mode = true\n",
__func__);
return -EIO;
}
}
return status;
}
struct rpc_bind_conn_calldata {
struct nfs_client *clp;
const struct cred *cred;
};
static int
nfs4_proc_bind_conn_to_session_callback(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *calldata)
{
struct rpc_bind_conn_calldata *p = calldata;
return nfs4_proc_bind_one_conn_to_session(clnt, xprt, p->clp, p->cred);
}
int nfs4_proc_bind_conn_to_session(struct nfs_client *clp, const struct cred *cred)
{
struct rpc_bind_conn_calldata data = {
.clp = clp,
.cred = cred,
};
return rpc_clnt_iterate_for_each_xprt(clp->cl_rpcclient,
nfs4_proc_bind_conn_to_session_callback, &data);
}
/*
* Minimum set of SP4_MACH_CRED operations from RFC 5661 in the enforce map
* and operations we'd like to see to enable certain features in the allow map
*/
static const struct nfs41_state_protection nfs4_sp4_mach_cred_request = {
.how = SP4_MACH_CRED,
.enforce.u.words = {
[1] = 1 << (OP_BIND_CONN_TO_SESSION - 32) |
1 << (OP_EXCHANGE_ID - 32) |
1 << (OP_CREATE_SESSION - 32) |
1 << (OP_DESTROY_SESSION - 32) |
1 << (OP_DESTROY_CLIENTID - 32)
},
.allow.u.words = {
[0] = 1 << (OP_CLOSE) |
1 << (OP_OPEN_DOWNGRADE) |
1 << (OP_LOCKU) |
1 << (OP_DELEGRETURN) |
1 << (OP_COMMIT),
[1] = 1 << (OP_SECINFO - 32) |
1 << (OP_SECINFO_NO_NAME - 32) |
1 << (OP_LAYOUTRETURN - 32) |
1 << (OP_TEST_STATEID - 32) |
1 << (OP_FREE_STATEID - 32) |
1 << (OP_WRITE - 32)
}
};
/*
* Select the state protection mode for client `clp' given the server results
* from exchange_id in `sp'.
*
* Returns 0 on success, negative errno otherwise.
*/
static int nfs4_sp4_select_mode(struct nfs_client *clp,
struct nfs41_state_protection *sp)
{
static const u32 supported_enforce[NFS4_OP_MAP_NUM_WORDS] = {
[1] = 1 << (OP_BIND_CONN_TO_SESSION - 32) |
1 << (OP_EXCHANGE_ID - 32) |
1 << (OP_CREATE_SESSION - 32) |
1 << (OP_DESTROY_SESSION - 32) |
1 << (OP_DESTROY_CLIENTID - 32)
};
unsigned long flags = 0;
unsigned int i;
int ret = 0;
if (sp->how == SP4_MACH_CRED) {
/* Print state protect result */
dfprintk(MOUNT, "Server SP4_MACH_CRED support:\n");
for (i = 0; i <= LAST_NFS4_OP; i++) {
if (test_bit(i, sp->enforce.u.longs))
dfprintk(MOUNT, " enforce op %d\n", i);
if (test_bit(i, sp->allow.u.longs))
dfprintk(MOUNT, " allow op %d\n", i);
}
/* make sure nothing is on enforce list that isn't supported */
for (i = 0; i < NFS4_OP_MAP_NUM_WORDS; i++) {
if (sp->enforce.u.words[i] & ~supported_enforce[i]) {
dfprintk(MOUNT, "sp4_mach_cred: disabled\n");
ret = -EINVAL;
goto out;
}
}
/*
* Minimal mode - state operations are allowed to use machine
* credential. Note this already happens by default, so the
* client doesn't have to do anything more than the negotiation.
*
* NOTE: we don't care if EXCHANGE_ID is in the list -
* we're already using the machine cred for exchange_id
* and will never use a different cred.
*/
if (test_bit(OP_BIND_CONN_TO_SESSION, sp->enforce.u.longs) &&
test_bit(OP_CREATE_SESSION, sp->enforce.u.longs) &&
test_bit(OP_DESTROY_SESSION, sp->enforce.u.longs) &&
test_bit(OP_DESTROY_CLIENTID, sp->enforce.u.longs)) {
dfprintk(MOUNT, "sp4_mach_cred:\n");
dfprintk(MOUNT, " minimal mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_MINIMAL, &flags);
} else {
dfprintk(MOUNT, "sp4_mach_cred: disabled\n");
ret = -EINVAL;
goto out;
}
if (test_bit(OP_CLOSE, sp->allow.u.longs) &&
test_bit(OP_OPEN_DOWNGRADE, sp->allow.u.longs) &&
test_bit(OP_DELEGRETURN, sp->allow.u.longs) &&
test_bit(OP_LOCKU, sp->allow.u.longs)) {
dfprintk(MOUNT, " cleanup mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_CLEANUP, &flags);
}
if (test_bit(OP_LAYOUTRETURN, sp->allow.u.longs)) {
dfprintk(MOUNT, " pnfs cleanup mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_PNFS_CLEANUP, &flags);
}
if (test_bit(OP_SECINFO, sp->allow.u.longs) &&
test_bit(OP_SECINFO_NO_NAME, sp->allow.u.longs)) {
dfprintk(MOUNT, " secinfo mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_SECINFO, &flags);
}
if (test_bit(OP_TEST_STATEID, sp->allow.u.longs) &&
test_bit(OP_FREE_STATEID, sp->allow.u.longs)) {
dfprintk(MOUNT, " stateid mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_STATEID, &flags);
}
if (test_bit(OP_WRITE, sp->allow.u.longs)) {
dfprintk(MOUNT, " write mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_WRITE, &flags);
}
if (test_bit(OP_COMMIT, sp->allow.u.longs)) {
dfprintk(MOUNT, " commit mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_COMMIT, &flags);
}
}
out:
clp->cl_sp4_flags = flags;
return ret;
}
struct nfs41_exchange_id_data {
struct nfs41_exchange_id_res res;
struct nfs41_exchange_id_args args;
};
static void nfs4_exchange_id_release(void *data)
{
struct nfs41_exchange_id_data *cdata =
(struct nfs41_exchange_id_data *)data;
nfs_put_client(cdata->args.client);
kfree(cdata->res.impl_id);
kfree(cdata->res.server_scope);
kfree(cdata->res.server_owner);
kfree(cdata);
}
static const struct rpc_call_ops nfs4_exchange_id_call_ops = {
.rpc_release = nfs4_exchange_id_release,
};
/*
* _nfs4_proc_exchange_id()
*
* Wrapper for EXCHANGE_ID operation.
*/
static struct rpc_task *
nfs4_run_exchange_id(struct nfs_client *clp, const struct cred *cred,
u32 sp4_how, struct rpc_xprt *xprt)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.callback_ops = &nfs4_exchange_id_call_ops,
.rpc_message = &msg,
.flags = RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN,
};
struct nfs41_exchange_id_data *calldata;
int status;
if (!refcount_inc_not_zero(&clp->cl_count))
return ERR_PTR(-EIO);
status = -ENOMEM;
calldata = kzalloc(sizeof(*calldata), GFP_NOFS);
if (!calldata)
goto out;
nfs4_init_boot_verifier(clp, &calldata->args.verifier);
status = nfs4_init_uniform_client_string(clp);
if (status)
goto out_calldata;
calldata->res.server_owner = kzalloc(sizeof(struct nfs41_server_owner),
GFP_NOFS);
status = -ENOMEM;
if (unlikely(calldata->res.server_owner == NULL))
goto out_calldata;
calldata->res.server_scope = kzalloc(sizeof(struct nfs41_server_scope),
GFP_NOFS);
if (unlikely(calldata->res.server_scope == NULL))
goto out_server_owner;
calldata->res.impl_id = kzalloc(sizeof(struct nfs41_impl_id), GFP_NOFS);
if (unlikely(calldata->res.impl_id == NULL))
goto out_server_scope;
switch (sp4_how) {
case SP4_NONE:
calldata->args.state_protect.how = SP4_NONE;
break;
case SP4_MACH_CRED:
calldata->args.state_protect = nfs4_sp4_mach_cred_request;
break;
default:
/* unsupported! */
WARN_ON_ONCE(1);
status = -EINVAL;
goto out_impl_id;
}
if (xprt) {
task_setup_data.rpc_xprt = xprt;
task_setup_data.flags |= RPC_TASK_SOFTCONN;
memcpy(calldata->args.verifier.data, clp->cl_confirm.data,
sizeof(calldata->args.verifier.data));
}
calldata->args.client = clp;
calldata->args.flags = EXCHGID4_FLAG_SUPP_MOVED_REFER |
EXCHGID4_FLAG_BIND_PRINC_STATEID;
#ifdef CONFIG_NFS_V4_1_MIGRATION
calldata->args.flags |= EXCHGID4_FLAG_SUPP_MOVED_MIGR;
#endif
if (test_bit(NFS_CS_PNFS, &clp->cl_flags))
calldata->args.flags |= EXCHGID4_FLAG_USE_PNFS_DS;
msg.rpc_argp = &calldata->args;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
return rpc_run_task(&task_setup_data);
out_impl_id:
kfree(calldata->res.impl_id);
out_server_scope:
kfree(calldata->res.server_scope);
out_server_owner:
kfree(calldata->res.server_owner);
out_calldata:
kfree(calldata);
out:
nfs_put_client(clp);
return ERR_PTR(status);
}
/*
* _nfs4_proc_exchange_id()
*
* Wrapper for EXCHANGE_ID operation.
*/
static int _nfs4_proc_exchange_id(struct nfs_client *clp, const struct cred *cred,
u32 sp4_how)
{
struct rpc_task *task;
struct nfs41_exchange_id_args *argp;
struct nfs41_exchange_id_res *resp;
unsigned long now = jiffies;
int status;
task = nfs4_run_exchange_id(clp, cred, sp4_how, NULL);
if (IS_ERR(task))
return PTR_ERR(task);
argp = task->tk_msg.rpc_argp;
resp = task->tk_msg.rpc_resp;
status = task->tk_status;
if (status != 0)
goto out;
status = nfs4_check_cl_exchange_flags(resp->flags,
clp->cl_mvops->minor_version);
if (status != 0)
goto out;
status = nfs4_sp4_select_mode(clp, &resp->state_protect);
if (status != 0)
goto out;
do_renew_lease(clp, now);
clp->cl_clientid = resp->clientid;
clp->cl_exchange_flags = resp->flags;
clp->cl_seqid = resp->seqid;
/* Client ID is not confirmed */
if (!(resp->flags & EXCHGID4_FLAG_CONFIRMED_R))
clear_bit(NFS4_SESSION_ESTABLISHED,
&clp->cl_session->session_state);
if (clp->cl_serverscope != NULL &&
!nfs41_same_server_scope(clp->cl_serverscope,
resp->server_scope)) {
dprintk("%s: server_scope mismatch detected\n",
__func__);
set_bit(NFS4CLNT_SERVER_SCOPE_MISMATCH, &clp->cl_state);
}
swap(clp->cl_serverowner, resp->server_owner);
swap(clp->cl_serverscope, resp->server_scope);
swap(clp->cl_implid, resp->impl_id);
/* Save the EXCHANGE_ID verifier session trunk tests */
memcpy(clp->cl_confirm.data, argp->verifier.data,
sizeof(clp->cl_confirm.data));
out:
trace_nfs4_exchange_id(clp, status);
rpc_put_task(task);
return status;
}
/*
* nfs4_proc_exchange_id()
*
* Returns zero, a negative errno, or a negative NFS4ERR status code.
*
* Since the clientid has expired, all compounds using sessions
* associated with the stale clientid will be returning
* NFS4ERR_BADSESSION in the sequence operation, and will therefore
* be in some phase of session reset.
*
* Will attempt to negotiate SP4_MACH_CRED if krb5i / krb5p auth is used.
*/
int nfs4_proc_exchange_id(struct nfs_client *clp, const struct cred *cred)
{
rpc_authflavor_t authflavor = clp->cl_rpcclient->cl_auth->au_flavor;
int status;
/* try SP4_MACH_CRED if krb5i/p */
if (authflavor == RPC_AUTH_GSS_KRB5I ||
authflavor == RPC_AUTH_GSS_KRB5P) {
status = _nfs4_proc_exchange_id(clp, cred, SP4_MACH_CRED);
if (!status)
return 0;
}
/* try SP4_NONE */
return _nfs4_proc_exchange_id(clp, cred, SP4_NONE);
}
/**
* nfs4_test_session_trunk
*
* This is an add_xprt_test() test function called from
* rpc_clnt_setup_test_and_add_xprt.
*
* The rpc_xprt_switch is referrenced by rpc_clnt_setup_test_and_add_xprt
* and is dereferrenced in nfs4_exchange_id_release
*
* Upon success, add the new transport to the rpc_clnt
*
* @clnt: struct rpc_clnt to get new transport
* @xprt: the rpc_xprt to test
* @data: call data for _nfs4_proc_exchange_id.
*/
void nfs4_test_session_trunk(struct rpc_clnt *clnt, struct rpc_xprt *xprt,
void *data)
{
struct nfs4_add_xprt_data *adata = data;
struct rpc_task *task;
int status;
u32 sp4_how;
dprintk("--> %s try %s\n", __func__,
xprt->address_strings[RPC_DISPLAY_ADDR]);
sp4_how = (adata->clp->cl_sp4_flags == 0 ? SP4_NONE : SP4_MACH_CRED);
try_again:
/* Test connection for session trunking. Async exchange_id call */
task = nfs4_run_exchange_id(adata->clp, adata->cred, sp4_how, xprt);
if (IS_ERR(task))
return;
status = task->tk_status;
if (status == 0) {
status = nfs4_detect_session_trunking(adata->clp,
task->tk_msg.rpc_resp, xprt);
trace_nfs4_trunked_exchange_id(adata->clp,
xprt->address_strings[RPC_DISPLAY_ADDR], status);
}
if (status == 0)
rpc_clnt_xprt_switch_add_xprt(clnt, xprt);
else if (status != -NFS4ERR_DELAY && rpc_clnt_xprt_switch_has_addr(clnt,
(struct sockaddr *)&xprt->addr))
rpc_clnt_xprt_switch_remove_xprt(clnt, xprt);
rpc_put_task(task);
if (status == -NFS4ERR_DELAY) {
ssleep(1);
goto try_again;
}
}
EXPORT_SYMBOL_GPL(nfs4_test_session_trunk);
static int _nfs4_proc_destroy_clientid(struct nfs_client *clp,
const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_CLIENTID],
.rpc_argp = clp,
.rpc_cred = cred,
};
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_destroy_clientid(clp, status);
if (status)
dprintk("NFS: Got error %d from the server %s on "
"DESTROY_CLIENTID.", status, clp->cl_hostname);
return status;
}
static int nfs4_proc_destroy_clientid(struct nfs_client *clp,
const struct cred *cred)
{
unsigned int loop;
int ret;
for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) {
ret = _nfs4_proc_destroy_clientid(clp, cred);
switch (ret) {
case -NFS4ERR_DELAY:
case -NFS4ERR_CLIENTID_BUSY:
ssleep(1);
break;
default:
return ret;
}
}
return 0;
}
int nfs4_destroy_clientid(struct nfs_client *clp)
{
const struct cred *cred;
int ret = 0;
if (clp->cl_mvops->minor_version < 1)
goto out;
if (clp->cl_exchange_flags == 0)
goto out;
if (clp->cl_preserve_clid)
goto out;
cred = nfs4_get_clid_cred(clp);
ret = nfs4_proc_destroy_clientid(clp, cred);
put_cred(cred);
switch (ret) {
case 0:
case -NFS4ERR_STALE_CLIENTID:
clp->cl_exchange_flags = 0;
}
out:
return ret;
}
#endif /* CONFIG_NFS_V4_1 */
struct nfs4_get_lease_time_data {
struct nfs4_get_lease_time_args *args;
struct nfs4_get_lease_time_res *res;
struct nfs_client *clp;
};
static void nfs4_get_lease_time_prepare(struct rpc_task *task,
void *calldata)
{
struct nfs4_get_lease_time_data *data =
(struct nfs4_get_lease_time_data *)calldata;
/* just setup sequence, do not trigger session recovery
since we're invoked within one */
nfs4_setup_sequence(data->clp,
&data->args->la_seq_args,
&data->res->lr_seq_res,
task);
}
/*
* Called from nfs4_state_manager thread for session setup, so don't recover
* from sequence operation or clientid errors.
*/
static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata)
{
struct nfs4_get_lease_time_data *data =
(struct nfs4_get_lease_time_data *)calldata;
if (!nfs4_sequence_done(task, &data->res->lr_seq_res))
return;
switch (task->tk_status) {
case -NFS4ERR_DELAY:
case -NFS4ERR_GRACE:
rpc_delay(task, NFS4_POLL_RETRY_MIN);
task->tk_status = 0;
fallthrough;
case -NFS4ERR_RETRY_UNCACHED_REP:
rpc_restart_call_prepare(task);
return;
}
}
static const struct rpc_call_ops nfs4_get_lease_time_ops = {
.rpc_call_prepare = nfs4_get_lease_time_prepare,
.rpc_call_done = nfs4_get_lease_time_done,
};
int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo)
{
struct nfs4_get_lease_time_args args;
struct nfs4_get_lease_time_res res = {
.lr_fsinfo = fsinfo,
};
struct nfs4_get_lease_time_data data = {
.args = &args,
.res = &res,
.clp = clp,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_get_lease_time_ops,
.callback_data = &data,
.flags = RPC_TASK_TIMEOUT,
};
nfs4_init_sequence(&args.la_seq_args, &res.lr_seq_res, 0, 1);
return nfs4_call_sync_custom(&task_setup);
}
#ifdef CONFIG_NFS_V4_1
/*
* Initialize the values to be used by the client in CREATE_SESSION
* If nfs4_init_session set the fore channel request and response sizes,
* use them.
*
* Set the back channel max_resp_sz_cached to zero to force the client to
* always set csa_cachethis to FALSE because the current implementation
* of the back channel DRC only supports caching the CB_SEQUENCE operation.
*/
static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args,
struct rpc_clnt *clnt)
{
unsigned int max_rqst_sz, max_resp_sz;
unsigned int max_bc_payload = rpc_max_bc_payload(clnt);
unsigned int max_bc_slots = rpc_num_bc_slots(clnt);
max_rqst_sz = NFS_MAX_FILE_IO_SIZE + nfs41_maxwrite_overhead;
max_resp_sz = NFS_MAX_FILE_IO_SIZE + nfs41_maxread_overhead;
/* Fore channel attributes */
args->fc_attrs.max_rqst_sz = max_rqst_sz;
args->fc_attrs.max_resp_sz = max_resp_sz;
args->fc_attrs.max_ops = NFS4_MAX_OPS;
args->fc_attrs.max_reqs = max_session_slots;
dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u "
"max_ops=%u max_reqs=%u\n",
__func__,
args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz,
args->fc_attrs.max_ops, args->fc_attrs.max_reqs);
/* Back channel attributes */
args->bc_attrs.max_rqst_sz = max_bc_payload;
args->bc_attrs.max_resp_sz = max_bc_payload;
args->bc_attrs.max_resp_sz_cached = 0;
args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS;
args->bc_attrs.max_reqs = max_t(unsigned short, max_session_cb_slots, 1);
if (args->bc_attrs.max_reqs > max_bc_slots)
args->bc_attrs.max_reqs = max_bc_slots;
dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u "
"max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n",
__func__,
args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz,
args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops,
args->bc_attrs.max_reqs);
}
static int nfs4_verify_fore_channel_attrs(struct nfs41_create_session_args *args,
struct nfs41_create_session_res *res)
{
struct nfs4_channel_attrs *sent = &args->fc_attrs;
struct nfs4_channel_attrs *rcvd = &res->fc_attrs;
if (rcvd->max_resp_sz > sent->max_resp_sz)
return -EINVAL;
/*
* Our requested max_ops is the minimum we need; we're not
* prepared to break up compounds into smaller pieces than that.
* So, no point even trying to continue if the server won't
* cooperate:
*/
if (rcvd->max_ops < sent->max_ops)
return -EINVAL;
if (rcvd->max_reqs == 0)
return -EINVAL;
if (rcvd->max_reqs > NFS4_MAX_SLOT_TABLE)
rcvd->max_reqs = NFS4_MAX_SLOT_TABLE;
return 0;
}
static int nfs4_verify_back_channel_attrs(struct nfs41_create_session_args *args,
struct nfs41_create_session_res *res)
{
struct nfs4_channel_attrs *sent = &args->bc_attrs;
struct nfs4_channel_attrs *rcvd = &res->bc_attrs;
if (!(res->flags & SESSION4_BACK_CHAN))
goto out;
if (rcvd->max_rqst_sz > sent->max_rqst_sz)
return -EINVAL;
if (rcvd->max_resp_sz < sent->max_resp_sz)
return -EINVAL;
if (rcvd->max_resp_sz_cached > sent->max_resp_sz_cached)
return -EINVAL;
if (rcvd->max_ops > sent->max_ops)
return -EINVAL;
if (rcvd->max_reqs > sent->max_reqs)
return -EINVAL;
out:
return 0;
}
static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args,
struct nfs41_create_session_res *res)
{
int ret;
ret = nfs4_verify_fore_channel_attrs(args, res);
if (ret)
return ret;
return nfs4_verify_back_channel_attrs(args, res);
}
static void nfs4_update_session(struct nfs4_session *session,
struct nfs41_create_session_res *res)
{
nfs4_copy_sessionid(&session->sess_id, &res->sessionid);
/* Mark client id and session as being confirmed */
session->clp->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R;
set_bit(NFS4_SESSION_ESTABLISHED, &session->session_state);
session->flags = res->flags;
memcpy(&session->fc_attrs, &res->fc_attrs, sizeof(session->fc_attrs));
if (res->flags & SESSION4_BACK_CHAN)
memcpy(&session->bc_attrs, &res->bc_attrs,
sizeof(session->bc_attrs));
}
static int _nfs4_proc_create_session(struct nfs_client *clp,
const struct cred *cred)
{
struct nfs4_session *session = clp->cl_session;
struct nfs41_create_session_args args = {
.client = clp,
.clientid = clp->cl_clientid,
.seqid = clp->cl_seqid,
.cb_program = NFS4_CALLBACK,
};
struct nfs41_create_session_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
nfs4_init_channel_attrs(&args, clp->cl_rpcclient);
args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN);
status = rpc_call_sync(session->clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_create_session(clp, status);
switch (status) {
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_DELAY:
case -ETIMEDOUT:
case -EACCES:
case -EAGAIN:
goto out;
}
clp->cl_seqid++;
if (!status) {
/* Verify the session's negotiated channel_attrs values */
status = nfs4_verify_channel_attrs(&args, &res);
/* Increment the clientid slot sequence id */
if (status)
goto out;
nfs4_update_session(session, &res);
}
out:
return status;
}
/*
* Issues a CREATE_SESSION operation to the server.
* It is the responsibility of the caller to verify the session is
* expired before calling this routine.
*/
int nfs4_proc_create_session(struct nfs_client *clp, const struct cred *cred)
{
int status;
unsigned *ptr;
struct nfs4_session *session = clp->cl_session;
struct nfs4_add_xprt_data xprtdata = {
.clp = clp,
};
struct rpc_add_xprt_test rpcdata = {
.add_xprt_test = clp->cl_mvops->session_trunk,
.data = &xprtdata,
};
dprintk("--> %s clp=%p session=%p\n", __func__, clp, session);
status = _nfs4_proc_create_session(clp, cred);
if (status)
goto out;
/* Init or reset the session slot tables */
status = nfs4_setup_session_slot_tables(session);
dprintk("slot table setup returned %d\n", status);
if (status)
goto out;
ptr = (unsigned *)&session->sess_id.data[0];
dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__,
clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]);
rpc_clnt_probe_trunked_xprts(clp->cl_rpcclient, &rpcdata);
out:
return status;
}
/*
* Issue the over-the-wire RPC DESTROY_SESSION.
* The caller must serialize access to this routine.
*/
int nfs4_proc_destroy_session(struct nfs4_session *session,
const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION],
.rpc_argp = session,
.rpc_cred = cred,
};
int status = 0;
/* session is still being setup */
if (!test_and_clear_bit(NFS4_SESSION_ESTABLISHED, &session->session_state))
return 0;
status = rpc_call_sync(session->clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_destroy_session(session->clp, status);
if (status)
dprintk("NFS: Got error %d from the server on DESTROY_SESSION. "
"Session has been destroyed regardless...\n", status);
rpc_clnt_manage_trunked_xprts(session->clp->cl_rpcclient);
return status;
}
/*
* Renew the cl_session lease.
*/
struct nfs4_sequence_data {
struct nfs_client *clp;
struct nfs4_sequence_args args;
struct nfs4_sequence_res res;
};
static void nfs41_sequence_release(void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
if (refcount_read(&clp->cl_count) > 1)
nfs4_schedule_state_renewal(clp);
nfs_put_client(clp);
kfree(calldata);
}
static int nfs41_sequence_handle_errors(struct rpc_task *task, struct nfs_client *clp)
{
switch(task->tk_status) {
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
return -EAGAIN;
default:
nfs4_schedule_lease_recovery(clp);
}
return 0;
}
static void nfs41_sequence_call_done(struct rpc_task *task, void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
if (!nfs41_sequence_done(task, task->tk_msg.rpc_resp))
return;
trace_nfs4_sequence(clp, task->tk_status);
if (task->tk_status < 0 && !task->tk_client->cl_shutdown) {
dprintk("%s ERROR %d\n", __func__, task->tk_status);
if (refcount_read(&clp->cl_count) == 1)
return;
if (nfs41_sequence_handle_errors(task, clp) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred);
}
static void nfs41_sequence_prepare(struct rpc_task *task, void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
struct nfs4_sequence_args *args;
struct nfs4_sequence_res *res;
args = task->tk_msg.rpc_argp;
res = task->tk_msg.rpc_resp;
nfs4_setup_sequence(clp, args, res, task);
}
static const struct rpc_call_ops nfs41_sequence_ops = {
.rpc_call_done = nfs41_sequence_call_done,
.rpc_call_prepare = nfs41_sequence_prepare,
.rpc_release = nfs41_sequence_release,
};
static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp,
const struct cred *cred,
struct nfs4_slot *slot,
bool is_privileged)
{
struct nfs4_sequence_data *calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs41_sequence_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_TIMEOUT | RPC_TASK_MOVEABLE,
};
struct rpc_task *ret;
ret = ERR_PTR(-EIO);
if (!refcount_inc_not_zero(&clp->cl_count))
goto out_err;
ret = ERR_PTR(-ENOMEM);
calldata = kzalloc(sizeof(*calldata), GFP_KERNEL);
if (calldata == NULL)
goto out_put_clp;
nfs4_init_sequence(&calldata->args, &calldata->res, 0, is_privileged);
nfs4_sequence_attach_slot(&calldata->args, &calldata->res, slot);
msg.rpc_argp = &calldata->args;
msg.rpc_resp = &calldata->res;
calldata->clp = clp;
task_setup_data.callback_data = calldata;
ret = rpc_run_task(&task_setup_data);
if (IS_ERR(ret))
goto out_err;
return ret;
out_put_clp:
nfs_put_client(clp);
out_err:
nfs41_release_slot(slot);
return ret;
}
static int nfs41_proc_async_sequence(struct nfs_client *clp, const struct cred *cred, unsigned renew_flags)
{
struct rpc_task *task;
int ret = 0;
if ((renew_flags & NFS4_RENEW_TIMEOUT) == 0)
return -EAGAIN;
task = _nfs41_proc_sequence(clp, cred, NULL, false);
if (IS_ERR(task))
ret = PTR_ERR(task);
else
rpc_put_task_async(task);
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
static int nfs4_proc_sequence(struct nfs_client *clp, const struct cred *cred)
{
struct rpc_task *task;
int ret;
task = _nfs41_proc_sequence(clp, cred, NULL, true);
if (IS_ERR(task)) {
ret = PTR_ERR(task);
goto out;
}
ret = rpc_wait_for_completion_task(task);
if (!ret)
ret = task->tk_status;
rpc_put_task(task);
out:
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
struct nfs4_reclaim_complete_data {
struct nfs_client *clp;
struct nfs41_reclaim_complete_args arg;
struct nfs41_reclaim_complete_res res;
};
static void nfs4_reclaim_complete_prepare(struct rpc_task *task, void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
nfs4_setup_sequence(calldata->clp,
&calldata->arg.seq_args,
&calldata->res.seq_res,
task);
}
static int nfs41_reclaim_complete_handle_errors(struct rpc_task *task, struct nfs_client *clp)
{
switch(task->tk_status) {
case 0:
wake_up_all(&clp->cl_lock_waitq);
fallthrough;
case -NFS4ERR_COMPLETE_ALREADY:
case -NFS4ERR_WRONG_CRED: /* What to do here? */
break;
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
fallthrough;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -EACCES:
dprintk("%s: failed to reclaim complete error %d for server %s, retrying\n",
__func__, task->tk_status, clp->cl_hostname);
return -EAGAIN;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
break;
default:
nfs4_schedule_lease_recovery(clp);
}
return 0;
}
static void nfs4_reclaim_complete_done(struct rpc_task *task, void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
struct nfs_client *clp = calldata->clp;
struct nfs4_sequence_res *res = &calldata->res.seq_res;
if (!nfs41_sequence_done(task, res))
return;
trace_nfs4_reclaim_complete(clp, task->tk_status);
if (nfs41_reclaim_complete_handle_errors(task, clp) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
static void nfs4_free_reclaim_complete_data(void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
kfree(calldata);
}
static const struct rpc_call_ops nfs4_reclaim_complete_call_ops = {
.rpc_call_prepare = nfs4_reclaim_complete_prepare,
.rpc_call_done = nfs4_reclaim_complete_done,
.rpc_release = nfs4_free_reclaim_complete_data,
};
/*
* Issue a global reclaim complete.
*/
static int nfs41_proc_reclaim_complete(struct nfs_client *clp,
const struct cred *cred)
{
struct nfs4_reclaim_complete_data *calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RECLAIM_COMPLETE],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_reclaim_complete_call_ops,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
int status = -ENOMEM;
calldata = kzalloc(sizeof(*calldata), GFP_NOFS);
if (calldata == NULL)
goto out;
calldata->clp = clp;
calldata->arg.one_fs = 0;
nfs4_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 0, 1);
msg.rpc_argp = &calldata->arg;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
status = nfs4_call_sync_custom(&task_setup_data);
out:
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
static void
nfs4_layoutget_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
struct nfs_server *server = NFS_SERVER(lgp->args.inode);
nfs4_setup_sequence(server->nfs_client, &lgp->args.seq_args,
&lgp->res.seq_res, task);
}
static void nfs4_layoutget_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
nfs41_sequence_process(task, &lgp->res.seq_res);
}
static int
nfs4_layoutget_handle_exception(struct rpc_task *task,
struct nfs4_layoutget *lgp, struct nfs4_exception *exception)
{
struct inode *inode = lgp->args.inode;
struct nfs_server *server = NFS_SERVER(inode);
struct pnfs_layout_hdr *lo = lgp->lo;
int nfs4err = task->tk_status;
int err, status = 0;
LIST_HEAD(head);
dprintk("--> %s tk_status => %d\n", __func__, -task->tk_status);
nfs4_sequence_free_slot(&lgp->res.seq_res);
exception->state = NULL;
exception->stateid = NULL;
switch (nfs4err) {
case 0:
goto out;
/*
* NFS4ERR_LAYOUTUNAVAILABLE means we are not supposed to use pnfs
* on the file. set tk_status to -ENODATA to tell upper layer to
* retry go inband.
*/
case -NFS4ERR_LAYOUTUNAVAILABLE:
status = -ENODATA;
goto out;
/*
* NFS4ERR_BADLAYOUT means the MDS cannot return a layout of
* length lgp->args.minlength != 0 (see RFC5661 section 18.43.3).
*/
case -NFS4ERR_BADLAYOUT:
status = -EOVERFLOW;
goto out;
/*
* NFS4ERR_LAYOUTTRYLATER is a conflict with another client
* (or clients) writing to the same RAID stripe except when
* the minlength argument is 0 (see RFC5661 section 18.43.3).
*
* Treat it like we would RECALLCONFLICT -- we retry for a little
* while, and then eventually give up.
*/
case -NFS4ERR_LAYOUTTRYLATER:
if (lgp->args.minlength == 0) {
status = -EOVERFLOW;
goto out;
}
status = -EBUSY;
break;
case -NFS4ERR_RECALLCONFLICT:
case -NFS4ERR_RETURNCONFLICT:
status = -ERECALLCONFLICT;
break;
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
exception->timeout = 0;
spin_lock(&inode->i_lock);
/* If the open stateid was bad, then recover it. */
if (!lo || test_bit(NFS_LAYOUT_INVALID_STID, &lo->plh_flags) ||
!nfs4_stateid_match_other(&lgp->args.stateid, &lo->plh_stateid)) {
spin_unlock(&inode->i_lock);
exception->state = lgp->args.ctx->state;
exception->stateid = &lgp->args.stateid;
break;
}
/*
* Mark the bad layout state as invalid, then retry
*/
pnfs_mark_layout_stateid_invalid(lo, &head);
spin_unlock(&inode->i_lock);
nfs_commit_inode(inode, 0);
pnfs_free_lseg_list(&head);
status = -EAGAIN;
goto out;
}
err = nfs4_handle_exception(server, nfs4err, exception);
if (!status) {
if (exception->retry)
status = -EAGAIN;
else
status = err;
}
out:
return status;
}
size_t max_response_pages(struct nfs_server *server)
{
u32 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
return nfs_page_array_len(0, max_resp_sz);
}
static void nfs4_layoutget_release(void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
nfs4_sequence_free_slot(&lgp->res.seq_res);
pnfs_layoutget_free(lgp);
}
static const struct rpc_call_ops nfs4_layoutget_call_ops = {
.rpc_call_prepare = nfs4_layoutget_prepare,
.rpc_call_done = nfs4_layoutget_done,
.rpc_release = nfs4_layoutget_release,
};
struct pnfs_layout_segment *
nfs4_proc_layoutget(struct nfs4_layoutget *lgp,
struct nfs4_exception *exception)
{
struct inode *inode = lgp->args.inode;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTGET],
.rpc_argp = &lgp->args,
.rpc_resp = &lgp->res,
.rpc_cred = lgp->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_layoutget_call_ops,
.callback_data = lgp,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF |
RPC_TASK_MOVEABLE,
};
struct pnfs_layout_segment *lseg = NULL;
int status = 0;
nfs4_init_sequence(&lgp->args.seq_args, &lgp->res.seq_res, 0, 0);
exception->retry = 0;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return ERR_CAST(task);
status = rpc_wait_for_completion_task(task);
if (status != 0)
goto out;
if (task->tk_status < 0) {
exception->retry = 1;
status = nfs4_layoutget_handle_exception(task, lgp, exception);
} else if (lgp->res.layoutp->len == 0) {
exception->retry = 1;
status = -EAGAIN;
nfs4_update_delay(&exception->timeout);
} else
lseg = pnfs_layout_process(lgp);
out:
trace_nfs4_layoutget(lgp->args.ctx,
&lgp->args.range,
&lgp->res.range,
&lgp->res.stateid,
status);
rpc_put_task(task);
dprintk("<-- %s status=%d\n", __func__, status);
if (status)
return ERR_PTR(status);
return lseg;
}
static void
nfs4_layoutreturn_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
nfs4_setup_sequence(lrp->clp,
&lrp->args.seq_args,
&lrp->res.seq_res,
task);
if (!pnfs_layout_is_valid(lrp->args.layout))
rpc_exit(task, 0);
}
static void nfs4_layoutreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
struct nfs_server *server;
if (!nfs41_sequence_process(task, &lrp->res.seq_res))
return;
if (task->tk_rpc_status == -ETIMEDOUT) {
lrp->rpc_status = -EAGAIN;
lrp->res.lrs_present = 0;
return;
}
/*
* Was there an RPC level error? Assume the call succeeded,
* and that we need to release the layout
*/
if (task->tk_rpc_status != 0 && RPC_WAS_SENT(task)) {
lrp->res.lrs_present = 0;
return;
}
server = NFS_SERVER(lrp->args.inode);
switch (task->tk_status) {
case -NFS4ERR_OLD_STATEID:
if (nfs4_layout_refresh_old_stateid(&lrp->args.stateid,
&lrp->args.range,
lrp->args.inode))
goto out_restart;
fallthrough;
default:
task->tk_status = 0;
lrp->res.lrs_present = 0;
fallthrough;
case 0:
break;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
nfs4_schedule_session_recovery(server->nfs_client->cl_session,
task->tk_status);
lrp->res.lrs_present = 0;
lrp->rpc_status = -EAGAIN;
task->tk_status = 0;
break;
case -NFS4ERR_DELAY:
if (nfs4_async_handle_error(task, server, NULL, NULL) ==
-EAGAIN)
goto out_restart;
lrp->res.lrs_present = 0;
break;
}
return;
out_restart:
task->tk_status = 0;
nfs4_sequence_free_slot(&lrp->res.seq_res);
rpc_restart_call_prepare(task);
}
static void nfs4_layoutreturn_release(void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
struct pnfs_layout_hdr *lo = lrp->args.layout;
if (lrp->rpc_status == 0 || !lrp->inode)
pnfs_layoutreturn_free_lsegs(
lo, &lrp->args.stateid, &lrp->args.range,
lrp->res.lrs_present ? &lrp->res.stateid : NULL);
else
pnfs_layoutreturn_retry_later(lo, &lrp->args.stateid,
&lrp->args.range);
nfs4_sequence_free_slot(&lrp->res.seq_res);
if (lrp->ld_private.ops && lrp->ld_private.ops->free)
lrp->ld_private.ops->free(&lrp->ld_private);
pnfs_put_layout_hdr(lrp->args.layout);
nfs_iput_and_deactive(lrp->inode);
put_cred(lrp->cred);
kfree(calldata);
}
static const struct rpc_call_ops nfs4_layoutreturn_call_ops = {
.rpc_call_prepare = nfs4_layoutreturn_prepare,
.rpc_call_done = nfs4_layoutreturn_done,
.rpc_release = nfs4_layoutreturn_release,
};
int nfs4_proc_layoutreturn(struct nfs4_layoutreturn *lrp, unsigned int flags)
{
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTRETURN],
.rpc_argp = &lrp->args,
.rpc_resp = &lrp->res,
.rpc_cred = lrp->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_SERVER(lrp->args.inode)->client,
.rpc_message = &msg,
.callback_ops = &nfs4_layoutreturn_call_ops,
.callback_data = lrp,
.flags = RPC_TASK_MOVEABLE,
};
int status = 0;
nfs4_state_protect(NFS_SERVER(lrp->args.inode)->nfs_client,
NFS_SP4_MACH_CRED_PNFS_CLEANUP,
&task_setup_data.rpc_client, &msg);
lrp->inode = nfs_igrab_and_active(lrp->args.inode);
if (flags & PNFS_FL_LAYOUTRETURN_ASYNC) {
if (!lrp->inode) {
nfs4_layoutreturn_release(lrp);
return -EAGAIN;
}
task_setup_data.flags |= RPC_TASK_ASYNC;
}
if (!lrp->inode)
flags |= PNFS_FL_LAYOUTRETURN_PRIVILEGED;
if (flags & PNFS_FL_LAYOUTRETURN_PRIVILEGED)
nfs4_init_sequence(&lrp->args.seq_args, &lrp->res.seq_res, 1,
1);
else
nfs4_init_sequence(&lrp->args.seq_args, &lrp->res.seq_res, 1,
0);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (!(flags & PNFS_FL_LAYOUTRETURN_ASYNC))
status = task->tk_status;
trace_nfs4_layoutreturn(lrp->args.inode, &lrp->args.stateid, status);
dprintk("<-- %s status=%d\n", __func__, status);
rpc_put_task(task);
return status;
}
static int
_nfs4_proc_getdeviceinfo(struct nfs_server *server,
struct pnfs_device *pdev,
const struct cred *cred)
{
struct nfs4_getdeviceinfo_args args = {
.pdev = pdev,
.notify_types = NOTIFY_DEVICEID4_CHANGE |
NOTIFY_DEVICEID4_DELETE,
};
struct nfs4_getdeviceinfo_res res = {
.pdev = pdev,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICEINFO],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (res.notification & ~args.notify_types)
dprintk("%s: unsupported notification\n", __func__);
if (res.notification != args.notify_types)
pdev->nocache = 1;
trace_nfs4_getdeviceinfo(server, &pdev->dev_id, status);
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
int nfs4_proc_getdeviceinfo(struct nfs_server *server,
struct pnfs_device *pdev,
const struct cred *cred)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_getdeviceinfo(server, pdev, cred),
&exception);
} while (exception.retry);
return err;
}
EXPORT_SYMBOL_GPL(nfs4_proc_getdeviceinfo);
static void nfs4_layoutcommit_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct nfs_server *server = NFS_SERVER(data->args.inode);
nfs4_setup_sequence(server->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static void
nfs4_layoutcommit_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct nfs_server *server = NFS_SERVER(data->args.inode);
if (!nfs41_sequence_done(task, &data->res.seq_res))
return;
switch (task->tk_status) { /* Just ignore these failures */
case -NFS4ERR_DELEG_REVOKED: /* layout was recalled */
case -NFS4ERR_BADIOMODE: /* no IOMODE_RW layout for range */
case -NFS4ERR_BADLAYOUT: /* no layout */
case -NFS4ERR_GRACE: /* loca_recalim always false */
task->tk_status = 0;
break;
case 0:
break;
default:
if (nfs4_async_handle_error(task, server, NULL, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
}
static void nfs4_layoutcommit_release(void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
pnfs_cleanup_layoutcommit(data);
nfs_post_op_update_inode_force_wcc(data->args.inode,
data->res.fattr);
put_cred(data->cred);
nfs_iput_and_deactive(data->inode);
kfree(data);
}
static const struct rpc_call_ops nfs4_layoutcommit_ops = {
.rpc_call_prepare = nfs4_layoutcommit_prepare,
.rpc_call_done = nfs4_layoutcommit_done,
.rpc_release = nfs4_layoutcommit_release,
};
int
nfs4_proc_layoutcommit(struct nfs4_layoutcommit_data *data, bool sync)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTCOMMIT],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct rpc_task_setup task_setup_data = {
.task = &data->task,
.rpc_client = NFS_CLIENT(data->args.inode),
.rpc_message = &msg,
.callback_ops = &nfs4_layoutcommit_ops,
.callback_data = data,
.flags = RPC_TASK_MOVEABLE,
};
struct rpc_task *task;
int status = 0;
dprintk("NFS: initiating layoutcommit call. sync %d "
"lbw: %llu inode %lu\n", sync,
data->args.lastbytewritten,
data->args.inode->i_ino);
if (!sync) {
data->inode = nfs_igrab_and_active(data->args.inode);
if (data->inode == NULL) {
nfs4_layoutcommit_release(data);
return -EAGAIN;
}
task_setup_data.flags = RPC_TASK_ASYNC;
}
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1, 0);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (sync)
status = task->tk_status;
trace_nfs4_layoutcommit(data->args.inode, &data->args.stateid, status);
dprintk("%s: status %d\n", __func__, status);
rpc_put_task(task);
return status;
}
/*
* Use the state managment nfs_client cl_rpcclient, which uses krb5i (if
* possible) as per RFC3530bis and RFC5661 Security Considerations sections
*/
static int
_nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info,
struct nfs4_secinfo_flavors *flavors, bool use_integrity)
{
struct nfs41_secinfo_no_name_args args = {
.style = SECINFO_STYLE_CURRENT_FH,
};
struct nfs4_secinfo_res res = {
.flavors = flavors,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO_NO_NAME],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct nfs4_call_sync_data data = {
.seq_server = server,
.seq_args = &args.seq_args,
.seq_res = &res.seq_res,
};
struct rpc_task_setup task_setup = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = server->nfs_client->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
const struct cred *cred = NULL;
int status;
if (use_integrity) {
task_setup.rpc_client = server->nfs_client->cl_rpcclient;
cred = nfs4_get_clid_cred(server->nfs_client);
msg.rpc_cred = cred;
}
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
status = nfs4_call_sync_custom(&task_setup);
dprintk("<-- %s status=%d\n", __func__, status);
put_cred(cred);
return status;
}
static int
nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
/* first try using integrity protection */
err = -NFS4ERR_WRONGSEC;
/* try to use integrity protection with machine cred */
if (_nfs4_is_integrity_protected(server->nfs_client))
err = _nfs41_proc_secinfo_no_name(server, fhandle, info,
flavors, true);
/*
* if unable to use integrity protection, or SECINFO with
* integrity protection returns NFS4ERR_WRONGSEC (which is
* disallowed by spec, but exists in deployed servers) use
* the current filesystem's rpc_client and the user cred.
*/
if (err == -NFS4ERR_WRONGSEC)
err = _nfs41_proc_secinfo_no_name(server, fhandle, info,
flavors, false);
switch (err) {
case 0:
case -NFS4ERR_WRONGSEC:
case -ENOTSUPP:
goto out;
default:
err = nfs4_handle_exception(server, err, &exception);
}
} while (exception.retry);
out:
return err;
}
static int
nfs41_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
int err;
struct page *page;
rpc_authflavor_t flavor = RPC_AUTH_MAXFLAVOR;
struct nfs4_secinfo_flavors *flavors;
struct nfs4_secinfo4 *secinfo;
int i;
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto out;
}
flavors = page_address(page);
err = nfs41_proc_secinfo_no_name(server, fhandle, info, flavors);
/*
* Fall back on "guess and check" method if
* the server doesn't support SECINFO_NO_NAME
*/
if (err == -NFS4ERR_WRONGSEC || err == -ENOTSUPP) {
err = nfs4_find_root_sec(server, fhandle, info);
goto out_freepage;
}
if (err)
goto out_freepage;
for (i = 0; i < flavors->num_flavors; i++) {
secinfo = &flavors->flavors[i];
switch (secinfo->flavor) {
case RPC_AUTH_NULL:
case RPC_AUTH_UNIX:
case RPC_AUTH_GSS:
flavor = rpcauth_get_pseudoflavor(secinfo->flavor,
&secinfo->flavor_info);
break;
default:
flavor = RPC_AUTH_MAXFLAVOR;
break;
}
if (!nfs_auth_info_match(&server->auth_info, flavor))
flavor = RPC_AUTH_MAXFLAVOR;
if (flavor != RPC_AUTH_MAXFLAVOR) {
err = nfs4_lookup_root_sec(server, fhandle,
info, flavor);
if (!err)
break;
}
}
if (flavor == RPC_AUTH_MAXFLAVOR)
err = -EPERM;
out_freepage:
put_page(page);
if (err == -EACCES)
return -EPERM;
out:
return err;
}
static int _nfs41_test_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred)
{
int status;
struct nfs41_test_stateid_args args = {
.stateid = *stateid,
};
struct nfs41_test_stateid_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_TEST_STATEID],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
struct rpc_clnt *rpc_client = server->client;
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_STATEID,
&rpc_client, &msg);
dprintk("NFS call test_stateid %p\n", stateid);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(rpc_client, server, &msg,
&args.seq_args, &res.seq_res);
if (status != NFS_OK) {
dprintk("NFS reply test_stateid: failed, %d\n", status);
return status;
}
dprintk("NFS reply test_stateid: succeeded, %d\n", -res.status);
return -res.status;
}
static void nfs4_handle_delay_or_session_error(struct nfs_server *server,
int err, struct nfs4_exception *exception)
{
exception->retry = 0;
switch(err) {
case -NFS4ERR_DELAY:
case -NFS4ERR_RETRY_UNCACHED_REP:
nfs4_handle_exception(server, err, exception);
break;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
nfs4_do_handle_exception(server, err, exception);
}
}
/**
* nfs41_test_stateid - perform a TEST_STATEID operation
*
* @server: server / transport on which to perform the operation
* @stateid: state ID to test
* @cred: credential
*
* Returns NFS_OK if the server recognizes that "stateid" is valid.
* Otherwise a negative NFS4ERR value is returned if the operation
* failed or the state ID is not currently valid.
*/
static int nfs41_test_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs41_test_stateid(server, stateid, cred);
nfs4_handle_delay_or_session_error(server, err, &exception);
} while (exception.retry);
return err;
}
struct nfs_free_stateid_data {
struct nfs_server *server;
struct nfs41_free_stateid_args args;
struct nfs41_free_stateid_res res;
};
static void nfs41_free_stateid_prepare(struct rpc_task *task, void *calldata)
{
struct nfs_free_stateid_data *data = calldata;
nfs4_setup_sequence(data->server->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static void nfs41_free_stateid_done(struct rpc_task *task, void *calldata)
{
struct nfs_free_stateid_data *data = calldata;
nfs41_sequence_done(task, &data->res.seq_res);
switch (task->tk_status) {
case -NFS4ERR_DELAY:
if (nfs4_async_handle_error(task, data->server, NULL, NULL) == -EAGAIN)
rpc_restart_call_prepare(task);
}
}
static void nfs41_free_stateid_release(void *calldata)
{
struct nfs_free_stateid_data *data = calldata;
struct nfs_client *clp = data->server->nfs_client;
nfs_put_client(clp);
kfree(calldata);
}
static const struct rpc_call_ops nfs41_free_stateid_ops = {
.rpc_call_prepare = nfs41_free_stateid_prepare,
.rpc_call_done = nfs41_free_stateid_done,
.rpc_release = nfs41_free_stateid_release,
};
/**
* nfs41_free_stateid - perform a FREE_STATEID operation
*
* @server: server / transport on which to perform the operation
* @stateid: state ID to release
* @cred: credential
* @privileged: set to true if this call needs to be privileged
*
* Note: this function is always asynchronous.
*/
static int nfs41_free_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred,
bool privileged)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FREE_STATEID],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs41_free_stateid_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_MOVEABLE,
};
struct nfs_free_stateid_data *data;
struct rpc_task *task;
struct nfs_client *clp = server->nfs_client;
if (!refcount_inc_not_zero(&clp->cl_count))
return -EIO;
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_STATEID,
&task_setup.rpc_client, &msg);
dprintk("NFS call free_stateid %p\n", stateid);
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->server = server;
nfs4_stateid_copy(&data->args.stateid, stateid);
task_setup.callback_data = data;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1, privileged);
task = rpc_run_task(&task_setup);
if (IS_ERR(task))
return PTR_ERR(task);
rpc_put_task(task);
return 0;
}
static void
nfs41_free_lock_state(struct nfs_server *server, struct nfs4_lock_state *lsp)
{
const struct cred *cred = lsp->ls_state->owner->so_cred;
nfs41_free_stateid(server, &lsp->ls_stateid, cred, false);
nfs4_free_lock_state(server, lsp);
}
static bool nfs41_match_stateid(const nfs4_stateid *s1,
const nfs4_stateid *s2)
{
if (s1->type != s2->type)
return false;
if (memcmp(s1->other, s2->other, sizeof(s1->other)) != 0)
return false;
if (s1->seqid == s2->seqid)
return true;
return s1->seqid == 0 || s2->seqid == 0;
}
#endif /* CONFIG_NFS_V4_1 */
static bool nfs4_match_stateid(const nfs4_stateid *s1,
const nfs4_stateid *s2)
{
return nfs4_stateid_match(s1, s2);
}
static const struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
.state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
.establish_clid = nfs4_init_clientid,
.detect_trunking = nfs40_discover_server_trunking,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
.state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
.establish_clid = nfs41_init_clientid,
.reclaim_complete = nfs41_proc_reclaim_complete,
.detect_trunking = nfs41_discover_server_trunking,
};
#endif /* CONFIG_NFS_V4_1 */
static const struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
.state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
.recover_open = nfs40_open_expired,
.recover_lock = nfs4_lock_expired,
.establish_clid = nfs4_init_clientid,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
.state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
.recover_open = nfs41_open_expired,
.recover_lock = nfs41_lock_expired,
.establish_clid = nfs41_init_clientid,
};
#endif /* CONFIG_NFS_V4_1 */
static const struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = {
.sched_state_renewal = nfs4_proc_async_renew,
.get_state_renewal_cred = nfs4_get_renew_cred,
.renew_lease = nfs4_proc_renew,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = {
.sched_state_renewal = nfs41_proc_async_sequence,
.get_state_renewal_cred = nfs4_get_machine_cred,
.renew_lease = nfs4_proc_sequence,
};
#endif
static const struct nfs4_mig_recovery_ops nfs40_mig_recovery_ops = {
.get_locations = _nfs40_proc_get_locations,
.fsid_present = _nfs40_proc_fsid_present,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_mig_recovery_ops nfs41_mig_recovery_ops = {
.get_locations = _nfs41_proc_get_locations,
.fsid_present = _nfs41_proc_fsid_present,
};
#endif /* CONFIG_NFS_V4_1 */
static const struct nfs4_minor_version_ops nfs_v4_0_minor_ops = {
.minor_version = 0,
.init_caps = NFS_CAP_READDIRPLUS
| NFS_CAP_ATOMIC_OPEN
| NFS_CAP_POSIX_LOCK,
.init_client = nfs40_init_client,
.shutdown_client = nfs40_shutdown_client,
.match_stateid = nfs4_match_stateid,
.find_root_sec = nfs4_find_root_sec,
.free_lock_state = nfs4_release_lockowner,
.test_and_free_expired = nfs40_test_and_free_expired_stateid,
.alloc_seqid = nfs_alloc_seqid,
.call_sync_ops = &nfs40_call_sync_ops,
.reboot_recovery_ops = &nfs40_reboot_recovery_ops,
.nograce_recovery_ops = &nfs40_nograce_recovery_ops,
.state_renewal_ops = &nfs40_state_renewal_ops,
.mig_recovery_ops = &nfs40_mig_recovery_ops,
};
#if defined(CONFIG_NFS_V4_1)
static struct nfs_seqid *
nfs_alloc_no_seqid(struct nfs_seqid_counter *arg1, gfp_t arg2)
{
return NULL;
}
static const struct nfs4_minor_version_ops nfs_v4_1_minor_ops = {
.minor_version = 1,
.init_caps = NFS_CAP_READDIRPLUS
| NFS_CAP_ATOMIC_OPEN
| NFS_CAP_POSIX_LOCK
| NFS_CAP_STATEID_NFSV41
| NFS_CAP_ATOMIC_OPEN_V1
| NFS_CAP_LGOPEN
| NFS_CAP_MOVEABLE,
.init_client = nfs41_init_client,
.shutdown_client = nfs41_shutdown_client,
.match_stateid = nfs41_match_stateid,
.find_root_sec = nfs41_find_root_sec,
.free_lock_state = nfs41_free_lock_state,
.test_and_free_expired = nfs41_test_and_free_expired_stateid,
.alloc_seqid = nfs_alloc_no_seqid,
.session_trunk = nfs4_test_session_trunk,
.call_sync_ops = &nfs41_call_sync_ops,
.reboot_recovery_ops = &nfs41_reboot_recovery_ops,
.nograce_recovery_ops = &nfs41_nograce_recovery_ops,
.state_renewal_ops = &nfs41_state_renewal_ops,
.mig_recovery_ops = &nfs41_mig_recovery_ops,
};
#endif
#if defined(CONFIG_NFS_V4_2)
static const struct nfs4_minor_version_ops nfs_v4_2_minor_ops = {
.minor_version = 2,
.init_caps = NFS_CAP_READDIRPLUS
| NFS_CAP_ATOMIC_OPEN
| NFS_CAP_POSIX_LOCK
| NFS_CAP_STATEID_NFSV41
| NFS_CAP_ATOMIC_OPEN_V1
| NFS_CAP_LGOPEN
| NFS_CAP_ALLOCATE
| NFS_CAP_COPY
| NFS_CAP_OFFLOAD_CANCEL
| NFS_CAP_COPY_NOTIFY
| NFS_CAP_DEALLOCATE
| NFS_CAP_SEEK
| NFS_CAP_LAYOUTSTATS
| NFS_CAP_CLONE
| NFS_CAP_LAYOUTERROR
| NFS_CAP_READ_PLUS
| NFS_CAP_MOVEABLE,
.init_client = nfs41_init_client,
.shutdown_client = nfs41_shutdown_client,
.match_stateid = nfs41_match_stateid,
.find_root_sec = nfs41_find_root_sec,
.free_lock_state = nfs41_free_lock_state,
.call_sync_ops = &nfs41_call_sync_ops,
.test_and_free_expired = nfs41_test_and_free_expired_stateid,
.alloc_seqid = nfs_alloc_no_seqid,
.session_trunk = nfs4_test_session_trunk,
.reboot_recovery_ops = &nfs41_reboot_recovery_ops,
.nograce_recovery_ops = &nfs41_nograce_recovery_ops,
.state_renewal_ops = &nfs41_state_renewal_ops,
.mig_recovery_ops = &nfs41_mig_recovery_ops,
};
#endif
const struct nfs4_minor_version_ops *nfs_v4_minor_ops[] = {
[0] = &nfs_v4_0_minor_ops,
#if defined(CONFIG_NFS_V4_1)
[1] = &nfs_v4_1_minor_ops,
#endif
#if defined(CONFIG_NFS_V4_2)
[2] = &nfs_v4_2_minor_ops,
#endif
};
static ssize_t nfs4_listxattr(struct dentry *dentry, char *list, size_t size)
{
ssize_t error, error2, error3;
size_t left = size;
error = generic_listxattr(dentry, list, left);
if (error < 0)
return error;
if (list) {
list += error;
left -= error;
}
error2 = nfs4_listxattr_nfs4_label(d_inode(dentry), list, left);
if (error2 < 0)
return error2;
if (list) {
list += error2;
left -= error2;
}
error3 = nfs4_listxattr_nfs4_user(d_inode(dentry), list, left);
if (error3 < 0)
return error3;
error += error2 + error3;
if (size && error > size)
return -ERANGE;
return error;
}
static void nfs4_enable_swap(struct inode *inode)
{
/* The state manager thread must always be running.
* It will notice the client is a swapper, and stay put.
*/
struct nfs_client *clp = NFS_SERVER(inode)->nfs_client;
nfs4_schedule_state_manager(clp);
}
static void nfs4_disable_swap(struct inode *inode)
{
/* The state manager thread will now exit once it is
* woken.
*/
struct nfs_client *clp = NFS_SERVER(inode)->nfs_client;
set_bit(NFS4CLNT_RUN_MANAGER, &clp->cl_state);
clear_bit(NFS4CLNT_MANAGER_AVAILABLE, &clp->cl_state);
wake_up_var(&clp->cl_state);
}
static const struct inode_operations nfs4_dir_inode_operations = {
.create = nfs_create,
.lookup = nfs_lookup,
.atomic_open = nfs_atomic_open,
.link = nfs_link,
.unlink = nfs_unlink,
.symlink = nfs_symlink,
.mkdir = nfs_mkdir,
.rmdir = nfs_rmdir,
.mknod = nfs_mknod,
.rename = nfs_rename,
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.listxattr = nfs4_listxattr,
};
static const struct inode_operations nfs4_file_inode_operations = {
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.listxattr = nfs4_listxattr,
};
const struct nfs_rpc_ops nfs_v4_clientops = {
.version = 4, /* protocol version */
.dentry_ops = &nfs4_dentry_operations,
.dir_inode_ops = &nfs4_dir_inode_operations,
.file_inode_ops = &nfs4_file_inode_operations,
.file_ops = &nfs4_file_operations,
.getroot = nfs4_proc_get_root,
.submount = nfs4_submount,
.try_get_tree = nfs4_try_get_tree,
.getattr = nfs4_proc_getattr,
.setattr = nfs4_proc_setattr,
.lookup = nfs4_proc_lookup,
.lookupp = nfs4_proc_lookupp,
.access = nfs4_proc_access,
.readlink = nfs4_proc_readlink,
.create = nfs4_proc_create,
.remove = nfs4_proc_remove,
.unlink_setup = nfs4_proc_unlink_setup,
.unlink_rpc_prepare = nfs4_proc_unlink_rpc_prepare,
.unlink_done = nfs4_proc_unlink_done,
.rename_setup = nfs4_proc_rename_setup,
.rename_rpc_prepare = nfs4_proc_rename_rpc_prepare,
.rename_done = nfs4_proc_rename_done,
.link = nfs4_proc_link,
.symlink = nfs4_proc_symlink,
.mkdir = nfs4_proc_mkdir,
.rmdir = nfs4_proc_rmdir,
.readdir = nfs4_proc_readdir,
.mknod = nfs4_proc_mknod,
.statfs = nfs4_proc_statfs,
.fsinfo = nfs4_proc_fsinfo,
.pathconf = nfs4_proc_pathconf,
.set_capabilities = nfs4_server_capabilities,
.decode_dirent = nfs4_decode_dirent,
.pgio_rpc_prepare = nfs4_proc_pgio_rpc_prepare,
.read_setup = nfs4_proc_read_setup,
.read_done = nfs4_read_done,
.write_setup = nfs4_proc_write_setup,
.write_done = nfs4_write_done,
.commit_setup = nfs4_proc_commit_setup,
.commit_rpc_prepare = nfs4_proc_commit_rpc_prepare,
.commit_done = nfs4_commit_done,
.lock = nfs4_proc_lock,
.clear_acl_cache = nfs4_zap_acl_attr,
.close_context = nfs4_close_context,
.open_context = nfs4_atomic_open,
.have_delegation = nfs4_have_delegation,
.return_delegation = nfs4_inode_return_delegation,
.alloc_client = nfs4_alloc_client,
.init_client = nfs4_init_client,
.free_client = nfs4_free_client,
.create_server = nfs4_create_server,
.clone_server = nfs_clone_server,
.discover_trunking = nfs4_discover_trunking,
.enable_swap = nfs4_enable_swap,
.disable_swap = nfs4_disable_swap,
};
static const struct xattr_handler nfs4_xattr_nfs4_acl_handler = {
.name = XATTR_NAME_NFSV4_ACL,
.list = nfs4_xattr_list_nfs4_acl,
.get = nfs4_xattr_get_nfs4_acl,
.set = nfs4_xattr_set_nfs4_acl,
};
#if defined(CONFIG_NFS_V4_1)
static const struct xattr_handler nfs4_xattr_nfs4_dacl_handler = {
.name = XATTR_NAME_NFSV4_DACL,
.list = nfs4_xattr_list_nfs4_dacl,
.get = nfs4_xattr_get_nfs4_dacl,
.set = nfs4_xattr_set_nfs4_dacl,
};
static const struct xattr_handler nfs4_xattr_nfs4_sacl_handler = {
.name = XATTR_NAME_NFSV4_SACL,
.list = nfs4_xattr_list_nfs4_sacl,
.get = nfs4_xattr_get_nfs4_sacl,
.set = nfs4_xattr_set_nfs4_sacl,
};
#endif
#ifdef CONFIG_NFS_V4_2
static const struct xattr_handler nfs4_xattr_nfs4_user_handler = {
.prefix = XATTR_USER_PREFIX,
.get = nfs4_xattr_get_nfs4_user,
.set = nfs4_xattr_set_nfs4_user,
};
#endif
const struct xattr_handler * const nfs4_xattr_handlers[] = {
&nfs4_xattr_nfs4_acl_handler,
#if defined(CONFIG_NFS_V4_1)
&nfs4_xattr_nfs4_dacl_handler,
&nfs4_xattr_nfs4_sacl_handler,
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
&nfs4_xattr_nfs4_label_handler,
#endif
#ifdef CONFIG_NFS_V4_2
&nfs4_xattr_nfs4_user_handler,
#endif
NULL
};