| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * This is <linux/capability.h> |
| * |
| * Andrew G. Morgan <morgan@kernel.org> |
| * Alexander Kjeldaas <astor@guardian.no> |
| * with help from Aleph1, Roland Buresund and Andrew Main. |
| * |
| * See here for the libcap library ("POSIX draft" compliance): |
| * |
| * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/ |
| */ |
| #ifndef _LINUX_CAPABILITY_H |
| #define _LINUX_CAPABILITY_H |
| |
| #include <uapi/linux/capability.h> |
| #include <linux/uidgid.h> |
| #include <linux/bits.h> |
| |
| #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3 |
| |
| extern int file_caps_enabled; |
| |
| typedef struct { u64 val; } kernel_cap_t; |
| |
| /* same as vfs_ns_cap_data but in cpu endian and always filled completely */ |
| struct cpu_vfs_cap_data { |
| __u32 magic_etc; |
| kuid_t rootid; |
| kernel_cap_t permitted; |
| kernel_cap_t inheritable; |
| }; |
| |
| #define _USER_CAP_HEADER_SIZE (sizeof(struct __user_cap_header_struct)) |
| #define _KERNEL_CAP_T_SIZE (sizeof(kernel_cap_t)) |
| |
| struct file; |
| struct inode; |
| struct dentry; |
| struct task_struct; |
| struct user_namespace; |
| struct mnt_idmap; |
| |
| /* |
| * CAP_FS_MASK and CAP_NFSD_MASKS: |
| * |
| * The fs mask is all the privileges that fsuid==0 historically meant. |
| * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE. |
| * |
| * It has never meant setting security.* and trusted.* xattrs. |
| * |
| * We could also define fsmask as follows: |
| * 1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions |
| * 2. The security.* and trusted.* xattrs are fs-related MAC permissions |
| */ |
| |
| # define CAP_FS_MASK (BIT_ULL(CAP_CHOWN) \ |
| | BIT_ULL(CAP_MKNOD) \ |
| | BIT_ULL(CAP_DAC_OVERRIDE) \ |
| | BIT_ULL(CAP_DAC_READ_SEARCH) \ |
| | BIT_ULL(CAP_FOWNER) \ |
| | BIT_ULL(CAP_FSETID) \ |
| | BIT_ULL(CAP_MAC_OVERRIDE)) |
| #define CAP_VALID_MASK (BIT_ULL(CAP_LAST_CAP+1)-1) |
| |
| # define CAP_EMPTY_SET ((kernel_cap_t) { 0 }) |
| # define CAP_FULL_SET ((kernel_cap_t) { CAP_VALID_MASK }) |
| # define CAP_FS_SET ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_LINUX_IMMUTABLE) }) |
| # define CAP_NFSD_SET ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_SYS_RESOURCE) }) |
| |
| # define cap_clear(c) do { (c).val = 0; } while (0) |
| |
| #define cap_raise(c, flag) ((c).val |= BIT_ULL(flag)) |
| #define cap_lower(c, flag) ((c).val &= ~BIT_ULL(flag)) |
| #define cap_raised(c, flag) (((c).val & BIT_ULL(flag)) != 0) |
| |
| static inline kernel_cap_t cap_combine(const kernel_cap_t a, |
| const kernel_cap_t b) |
| { |
| return (kernel_cap_t) { a.val | b.val }; |
| } |
| |
| static inline kernel_cap_t cap_intersect(const kernel_cap_t a, |
| const kernel_cap_t b) |
| { |
| return (kernel_cap_t) { a.val & b.val }; |
| } |
| |
| static inline kernel_cap_t cap_drop(const kernel_cap_t a, |
| const kernel_cap_t drop) |
| { |
| return (kernel_cap_t) { a.val &~ drop.val }; |
| } |
| |
| static inline bool cap_isclear(const kernel_cap_t a) |
| { |
| return !a.val; |
| } |
| |
| static inline bool cap_isidentical(const kernel_cap_t a, const kernel_cap_t b) |
| { |
| return a.val == b.val; |
| } |
| |
| /* |
| * Check if "a" is a subset of "set". |
| * return true if ALL of the capabilities in "a" are also in "set" |
| * cap_issubset(0101, 1111) will return true |
| * return false if ANY of the capabilities in "a" are not in "set" |
| * cap_issubset(1111, 0101) will return false |
| */ |
| static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set) |
| { |
| return !(a.val & ~set.val); |
| } |
| |
| /* Used to decide between falling back on the old suser() or fsuser(). */ |
| |
| static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a) |
| { |
| return cap_drop(a, CAP_FS_SET); |
| } |
| |
| static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a, |
| const kernel_cap_t permitted) |
| { |
| return cap_combine(a, cap_intersect(permitted, CAP_FS_SET)); |
| } |
| |
| static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a) |
| { |
| return cap_drop(a, CAP_NFSD_SET); |
| } |
| |
| static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a, |
| const kernel_cap_t permitted) |
| { |
| return cap_combine(a, cap_intersect(permitted, CAP_NFSD_SET)); |
| } |
| |
| #ifdef CONFIG_MULTIUSER |
| extern bool has_capability(struct task_struct *t, int cap); |
| extern bool has_ns_capability(struct task_struct *t, |
| struct user_namespace *ns, int cap); |
| extern bool has_capability_noaudit(struct task_struct *t, int cap); |
| extern bool has_ns_capability_noaudit(struct task_struct *t, |
| struct user_namespace *ns, int cap); |
| extern bool capable(int cap); |
| extern bool ns_capable(struct user_namespace *ns, int cap); |
| extern bool ns_capable_noaudit(struct user_namespace *ns, int cap); |
| extern bool ns_capable_setid(struct user_namespace *ns, int cap); |
| #else |
| static inline bool has_capability(struct task_struct *t, int cap) |
| { |
| return true; |
| } |
| static inline bool has_ns_capability(struct task_struct *t, |
| struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool has_capability_noaudit(struct task_struct *t, int cap) |
| { |
| return true; |
| } |
| static inline bool has_ns_capability_noaudit(struct task_struct *t, |
| struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool capable(int cap) |
| { |
| return true; |
| } |
| static inline bool ns_capable(struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool ns_capable_setid(struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| #endif /* CONFIG_MULTIUSER */ |
| bool privileged_wrt_inode_uidgid(struct user_namespace *ns, |
| struct mnt_idmap *idmap, |
| const struct inode *inode); |
| bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap, |
| const struct inode *inode, int cap); |
| extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap); |
| extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns); |
| static inline bool perfmon_capable(void) |
| { |
| return capable(CAP_PERFMON) || capable(CAP_SYS_ADMIN); |
| } |
| |
| static inline bool bpf_capable(void) |
| { |
| return capable(CAP_BPF) || capable(CAP_SYS_ADMIN); |
| } |
| |
| static inline bool checkpoint_restore_ns_capable(struct user_namespace *ns) |
| { |
| return ns_capable(ns, CAP_CHECKPOINT_RESTORE) || |
| ns_capable(ns, CAP_SYS_ADMIN); |
| } |
| |
| /* audit system wants to get cap info from files as well */ |
| int get_vfs_caps_from_disk(struct mnt_idmap *idmap, |
| const struct dentry *dentry, |
| struct cpu_vfs_cap_data *cpu_caps); |
| |
| int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry, |
| const void **ivalue, size_t size); |
| |
| #endif /* !_LINUX_CAPABILITY_H */ |