blob: 7bc4a96b7503f32ce4f365e458de55761b1530c7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* STM32 ALSA SoC Digital Audio Interface (SAI) driver.
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "stm32_sai.h"
#define SAI_FREE_PROTOCOL 0x0
#define SAI_SPDIF_PROTOCOL 0x1
#define SAI_SLOT_SIZE_AUTO 0x0
#define SAI_SLOT_SIZE_16 0x1
#define SAI_SLOT_SIZE_32 0x2
#define SAI_DATASIZE_8 0x2
#define SAI_DATASIZE_10 0x3
#define SAI_DATASIZE_16 0x4
#define SAI_DATASIZE_20 0x5
#define SAI_DATASIZE_24 0x6
#define SAI_DATASIZE_32 0x7
#define STM_SAI_DAI_NAME_SIZE 15
#define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
#define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
#define STM_SAI_A_ID 0x0
#define STM_SAI_B_ID 0x1
#define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
#define SAI_SYNC_NONE 0x0
#define SAI_SYNC_INTERNAL 0x1
#define SAI_SYNC_EXTERNAL 0x2
#define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif)
#define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf.has_spdif_pdm)
#define STM_SAI_HAS_PDM(x) ((x)->pdata->conf.has_spdif_pdm)
#define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
#define SAI_IEC60958_BLOCK_FRAMES 192
#define SAI_IEC60958_STATUS_BYTES 24
#define SAI_MCLK_NAME_LEN 32
#define SAI_RATE_11K 11025
/**
* struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
* @pdev: device data pointer
* @regmap: SAI register map pointer
* @regmap_config: SAI sub block register map configuration pointer
* @dma_params: dma configuration data for rx or tx channel
* @cpu_dai_drv: DAI driver data pointer
* @cpu_dai: DAI runtime data pointer
* @substream: PCM substream data pointer
* @pdata: SAI block parent data pointer
* @np_sync_provider: synchronization provider node
* @sai_ck: kernel clock feeding the SAI clock generator
* @sai_mclk: master clock from SAI mclk provider
* @phys_addr: SAI registers physical base address
* @mclk_rate: SAI block master clock frequency (Hz). set at init
* @id: SAI sub block id corresponding to sub-block A or B
* @dir: SAI block direction (playback or capture). set at init
* @master: SAI block mode flag. (true=master, false=slave) set at init
* @spdif: SAI S/PDIF iec60958 mode flag. set at init
* @fmt: SAI block format. relevant only for custom protocols. set at init
* @sync: SAI block synchronization mode. (none, internal or external)
* @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
* @synci: SAI block ext sync source (client setting). (SAI sync provider index)
* @fs_length: frame synchronization length. depends on protocol settings
* @slots: rx or tx slot number
* @slot_width: rx or tx slot width in bits
* @slot_mask: rx or tx active slots mask. set at init or at runtime
* @data_size: PCM data width. corresponds to PCM substream width.
* @spdif_frm_cnt: S/PDIF playback frame counter
* @iec958: iec958 data
* @ctrl_lock: control lock
* @irq_lock: prevent race condition with IRQ
*/
struct stm32_sai_sub_data {
struct platform_device *pdev;
struct regmap *regmap;
const struct regmap_config *regmap_config;
struct snd_dmaengine_dai_dma_data dma_params;
struct snd_soc_dai_driver cpu_dai_drv;
struct snd_soc_dai *cpu_dai;
struct snd_pcm_substream *substream;
struct stm32_sai_data *pdata;
struct device_node *np_sync_provider;
struct clk *sai_ck;
struct clk *sai_mclk;
dma_addr_t phys_addr;
unsigned int mclk_rate;
unsigned int id;
int dir;
bool master;
bool spdif;
int fmt;
int sync;
int synco;
int synci;
int fs_length;
int slots;
int slot_width;
int slot_mask;
int data_size;
unsigned int spdif_frm_cnt;
struct snd_aes_iec958 iec958;
struct mutex ctrl_lock; /* protect resources accessed by controls */
spinlock_t irq_lock; /* used to prevent race condition with IRQ */
};
enum stm32_sai_fifo_th {
STM_SAI_FIFO_TH_EMPTY,
STM_SAI_FIFO_TH_QUARTER,
STM_SAI_FIFO_TH_HALF,
STM_SAI_FIFO_TH_3_QUARTER,
STM_SAI_FIFO_TH_FULL,
};
static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_CR1_REGX:
case STM_SAI_CR2_REGX:
case STM_SAI_FRCR_REGX:
case STM_SAI_SLOTR_REGX:
case STM_SAI_IMR_REGX:
case STM_SAI_SR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_DR_REGX:
case STM_SAI_SR_REGX:
return true;
default:
return false;
}
}
static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_CR1_REGX:
case STM_SAI_CR2_REGX:
case STM_SAI_FRCR_REGX:
case STM_SAI_SLOTR_REGX:
case STM_SAI_IMR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
unsigned int reg, unsigned int mask,
unsigned int val)
{
int ret;
ret = clk_enable(sai->pdata->pclk);
if (ret < 0)
return ret;
ret = regmap_update_bits(sai->regmap, reg, mask, val);
clk_disable(sai->pdata->pclk);
return ret;
}
static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
unsigned int reg, unsigned int mask,
unsigned int val)
{
int ret;
ret = clk_enable(sai->pdata->pclk);
if (ret < 0)
return ret;
ret = regmap_write_bits(sai->regmap, reg, mask, val);
clk_disable(sai->pdata->pclk);
return ret;
}
static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
unsigned int reg, unsigned int *val)
{
int ret;
ret = clk_enable(sai->pdata->pclk);
if (ret < 0)
return ret;
ret = regmap_read(sai->regmap, reg, val);
clk_disable(sai->pdata->pclk);
return ret;
}
static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_DR_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
.cache_type = REGCACHE_FLAT,
};
static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_PDMLY_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
.cache_type = REGCACHE_FLAT,
};
static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uctl)
{
struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
mutex_lock(&sai->ctrl_lock);
memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
mutex_unlock(&sai->ctrl_lock);
return 0;
}
static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uctl)
{
struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
mutex_lock(&sai->ctrl_lock);
memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
mutex_unlock(&sai->ctrl_lock);
return 0;
}
static const struct snd_kcontrol_new iec958_ctls = {
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_VOLATILE),
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = snd_pcm_iec958_info,
.get = snd_pcm_iec958_get,
.put = snd_pcm_iec958_put,
};
struct stm32_sai_mclk_data {
struct clk_hw hw;
unsigned long freq;
struct stm32_sai_sub_data *sai_data;
};
#define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
#define STM32_SAI_MAX_CLKS 1
static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
unsigned long input_rate,
unsigned long output_rate)
{
int version = sai->pdata->conf.version;
int div;
div = DIV_ROUND_CLOSEST(input_rate, output_rate);
if (div > SAI_XCR1_MCKDIV_MAX(version)) {
dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
return -EINVAL;
}
dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
if (input_rate % div)
dev_dbg(&sai->pdev->dev,
"Rate not accurate. requested (%ld), actual (%ld)\n",
output_rate, input_rate / div);
return div;
}
static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
unsigned int div)
{
int version = sai->pdata->conf.version;
int ret, cr1, mask;
if (div > SAI_XCR1_MCKDIV_MAX(version)) {
dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
return -EINVAL;
}
mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
cr1 = SAI_XCR1_MCKDIV_SET(div);
ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
if (ret < 0)
dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
return ret;
}
static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
unsigned int rate)
{
struct platform_device *pdev = sai->pdev;
struct clk *parent_clk = sai->pdata->clk_x8k;
int ret;
if (!(rate % SAI_RATE_11K))
parent_clk = sai->pdata->clk_x11k;
ret = clk_set_parent(sai->sai_ck, parent_clk);
if (ret)
dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
ret, ret == -EBUSY ?
"Active stream rates conflict\n" : "\n");
return ret;
}
static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
int div;
div = stm32_sai_get_clk_div(sai, *prate, rate);
if (div < 0)
return div;
mclk->freq = *prate / div;
return mclk->freq;
}
static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
return mclk->freq;
}
static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
int div, ret;
div = stm32_sai_get_clk_div(sai, parent_rate, rate);
if (div < 0)
return div;
ret = stm32_sai_set_clk_div(sai, div);
if (ret)
return ret;
mclk->freq = rate;
return 0;
}
static int stm32_sai_mclk_enable(struct clk_hw *hw)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
dev_dbg(&sai->pdev->dev, "Enable master clock\n");
return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
}
static void stm32_sai_mclk_disable(struct clk_hw *hw)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
dev_dbg(&sai->pdev->dev, "Disable master clock\n");
stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
}
static const struct clk_ops mclk_ops = {
.enable = stm32_sai_mclk_enable,
.disable = stm32_sai_mclk_disable,
.recalc_rate = stm32_sai_mclk_recalc_rate,
.round_rate = stm32_sai_mclk_round_rate,
.set_rate = stm32_sai_mclk_set_rate,
};
static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
{
struct clk_hw *hw;
struct stm32_sai_mclk_data *mclk;
struct device *dev = &sai->pdev->dev;
const char *pname = __clk_get_name(sai->sai_ck);
char *mclk_name, *p, *s = (char *)pname;
int ret, i = 0;
mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
if (!mclk)
return -ENOMEM;
mclk_name = devm_kcalloc(dev, sizeof(char),
SAI_MCLK_NAME_LEN, GFP_KERNEL);
if (!mclk_name)
return -ENOMEM;
/*
* Forge mclk clock name from parent clock name and suffix.
* String after "_" char is stripped in parent name.
*/
p = mclk_name;
while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
*p++ = *s++;
i++;
}
STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
mclk->sai_data = sai;
hw = &mclk->hw;
dev_dbg(dev, "Register master clock %s\n", mclk_name);
ret = devm_clk_hw_register(&sai->pdev->dev, hw);
if (ret) {
dev_err(dev, "mclk register returned %d\n", ret);
return ret;
}
sai->sai_mclk = hw->clk;
/* register mclk provider */
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
}
static irqreturn_t stm32_sai_isr(int irq, void *devid)
{
struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
struct platform_device *pdev = sai->pdev;
unsigned int sr, imr, flags;
snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
flags = sr & imr;
if (!flags)
return IRQ_NONE;
stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
SAI_XCLRFR_MASK);
if (!sai->substream) {
dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
return IRQ_NONE;
}
if (flags & SAI_XIMR_OVRUDRIE) {
dev_err(&pdev->dev, "IRQ %s\n",
STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_MUTEDETIE)
dev_dbg(&pdev->dev, "IRQ mute detected\n");
if (flags & SAI_XIMR_WCKCFGIE) {
dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
status = SNDRV_PCM_STATE_DISCONNECTED;
}
if (flags & SAI_XIMR_CNRDYIE)
dev_err(&pdev->dev, "IRQ Codec not ready\n");
if (flags & SAI_XIMR_AFSDETIE) {
dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_LFSDETIE) {
dev_err(&pdev->dev, "IRQ Late frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
spin_lock(&sai->irq_lock);
if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
snd_pcm_stop_xrun(sai->substream);
spin_unlock(&sai->irq_lock);
return IRQ_HANDLED;
}
static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
SAI_XCR1_NODIV,
freq ? 0 : SAI_XCR1_NODIV);
if (ret < 0)
return ret;
/* Assume shutdown if requested frequency is 0Hz */
if (!freq) {
/* Release mclk rate only if rate was actually set */
if (sai->mclk_rate) {
clk_rate_exclusive_put(sai->sai_mclk);
sai->mclk_rate = 0;
}
return 0;
}
/* If master clock is used, set parent clock now */
ret = stm32_sai_set_parent_clock(sai, freq);
if (ret)
return ret;
ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
if (ret) {
dev_err(cpu_dai->dev,
ret == -EBUSY ?
"Active streams have incompatible rates" :
"Could not set mclk rate\n");
return ret;
}
dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
sai->mclk_rate = freq;
}
return 0;
}
static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slotr_mask, slot_size;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
return 0;
}
dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
tx_mask, rx_mask, slots, slot_width);
switch (slot_width) {
case 16:
slot_size = SAI_SLOT_SIZE_16;
break;
case 32:
slot_size = SAI_SLOT_SIZE_32;
break;
default:
slot_size = SAI_SLOT_SIZE_AUTO;
break;
}
slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
SAI_XSLOTR_NBSLOT_SET(slots - 1);
slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
/* tx/rx mask set in machine init, if slot number defined in DT */
if (STM_SAI_IS_PLAYBACK(sai)) {
sai->slot_mask = tx_mask;
slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
}
if (STM_SAI_IS_CAPTURE(sai)) {
sai->slot_mask = rx_mask;
slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
}
slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
sai->slot_width = slot_width;
sai->slots = slots;
return 0;
}
static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, frcr = 0;
int cr1_mask, frcr_mask = 0;
int ret;
dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
/* Do not generate master by default */
cr1 = SAI_XCR1_NODIV;
cr1_mask = SAI_XCR1_NODIV;
cr1_mask |= SAI_XCR1_PRTCFG_MASK;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
goto conf_update;
}
cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
/* SCK active high for all protocols */
case SND_SOC_DAIFMT_I2S:
cr1 |= SAI_XCR1_CKSTR;
frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
break;
/* Left justified */
case SND_SOC_DAIFMT_MSB:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
break;
/* Right justified */
case SND_SOC_DAIFMT_LSB:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
break;
case SND_SOC_DAIFMT_DSP_A:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
break;
case SND_SOC_DAIFMT_DSP_B:
frcr |= SAI_XFRCR_FSPOL;
break;
default:
dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_CKSTR;
frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
SAI_XFRCR_FSDEF;
/* DAI clock strobing. Invert setting previously set */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
cr1 ^= SAI_XCR1_CKSTR;
break;
case SND_SOC_DAIFMT_NB_IF:
frcr ^= SAI_XFRCR_FSPOL;
break;
case SND_SOC_DAIFMT_IB_IF:
/* Invert fs & sck */
cr1 ^= SAI_XCR1_CKSTR;
frcr ^= SAI_XFRCR_FSPOL;
break;
default:
dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
fmt & SND_SOC_DAIFMT_INV_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_CKSTR;
frcr_mask |= SAI_XFRCR_FSPOL;
stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BC_FC:
/* codec is master */
cr1 |= SAI_XCR1_SLAVE;
sai->master = false;
break;
case SND_SOC_DAIFMT_BP_FP:
sai->master = true;
break;
default:
dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
return -EINVAL;
}
/* Set slave mode if sub-block is synchronized with another SAI */
if (sai->sync) {
dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
cr1 |= SAI_XCR1_SLAVE;
sai->master = false;
}
cr1_mask |= SAI_XCR1_SLAVE;
conf_update:
ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
sai->fmt = fmt;
return 0;
}
static int stm32_sai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int imr, cr2, ret;
unsigned long flags;
spin_lock_irqsave(&sai->irq_lock, flags);
sai->substream = substream;
spin_unlock_irqrestore(&sai->irq_lock, flags);
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
snd_pcm_hw_constraint_mask64(substream->runtime,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_FMTBIT_S32_LE);
snd_pcm_hw_constraint_single(substream->runtime,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}
ret = clk_prepare_enable(sai->sai_ck);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
return ret;
}
/* Enable ITs */
stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
imr = SAI_XIMR_OVRUDRIE;
if (STM_SAI_IS_CAPTURE(sai)) {
stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
if (cr2 & SAI_XCR2_MUTECNT_MASK)
imr |= SAI_XIMR_MUTEDETIE;
}
if (sai->master)
imr |= SAI_XIMR_WCKCFGIE;
else
imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
SAI_XIMR_MASK, imr);
return 0;
}
static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, cr1_mask, ret;
/*
* DMA bursts increment is set to 4 words.
* SAI fifo threshold is set to half fifo, to keep enough space
* for DMA incoming bursts.
*/
stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
SAI_XCR2_FFLUSH |
SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
sai->spdif_frm_cnt = 0;
return 0;
}
/* Mode, data format and channel config */
cr1_mask = SAI_XCR1_DS_MASK;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
break;
case SNDRV_PCM_FORMAT_S16_LE:
cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
break;
default:
dev_err(cpu_dai->dev, "Data format not supported\n");
return -EINVAL;
}
cr1_mask |= SAI_XCR1_MONO;
if ((sai->slots == 2) && (params_channels(params) == 1))
cr1 |= SAI_XCR1_MONO;
ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
return 0;
}
static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slot_sz;
stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
/*
* If SLOTSZ is set to auto in SLOTR, align slot width on data size
* By default slot width = data size, if not forced from DT
*/
slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
sai->slot_width = sai->data_size;
if (sai->slot_width < sai->data_size) {
dev_err(cpu_dai->dev,
"Data size %d larger than slot width\n",
sai->data_size);
return -EINVAL;
}
/* Slot number is set to 2, if not specified in DT */
if (!sai->slots)
sai->slots = 2;
/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
SAI_XSLOTR_NBSLOT_MASK,
SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
/* Set default slots mask if not already set from DT */
if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
sai->slot_mask = (1 << sai->slots) - 1;
stm32_sai_sub_reg_up(sai,
STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
}
dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
sai->slots, sai->slot_width);
return 0;
}
static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int fs_active, offset, format;
int frcr, frcr_mask;
format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
sai->fs_length = sai->slot_width * sai->slots;
fs_active = sai->fs_length / 2;
if ((format == SND_SOC_DAIFMT_DSP_A) ||
(format == SND_SOC_DAIFMT_DSP_B))
fs_active = 1;
frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
sai->fs_length, fs_active);
stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
offset = sai->slot_width - sai->data_size;
stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
SAI_XSLOTR_FBOFF_MASK,
SAI_XSLOTR_FBOFF_SET(offset));
}
}
static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
{
unsigned char *cs = sai->iec958.status;
cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
cs[1] = IEC958_AES1_CON_GENERAL;
cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
}
static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
struct snd_pcm_runtime *runtime)
{
if (!runtime)
return;
/* Force the sample rate according to runtime rate */
mutex_lock(&sai->ctrl_lock);
switch (runtime->rate) {
case 22050:
sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
break;
case 44100:
sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
break;
case 88200:
sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
break;
case 176400:
sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
break;
case 24000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
break;
case 48000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
break;
case 96000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
break;
case 192000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
break;
case 32000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
break;
default:
sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
break;
}
mutex_unlock(&sai->ctrl_lock);
}
static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int div = 0, cr1 = 0;
int sai_clk_rate, mclk_ratio, den;
unsigned int rate = params_rate(params);
int ret;
if (!sai->sai_mclk) {
ret = stm32_sai_set_parent_clock(sai, rate);
if (ret)
return ret;
}
sai_clk_rate = clk_get_rate(sai->sai_ck);
if (STM_SAI_IS_F4(sai->pdata)) {
/* mclk on (NODIV=0)
* mclk_rate = 256 * fs
* MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
* MCKDIV = sai_ck / (2 * mclk_rate) otherwise
* mclk off (NODIV=1)
* MCKDIV ignored. sck = sai_ck
*/
if (!sai->mclk_rate)
return 0;
if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
2 * sai->mclk_rate);
if (div < 0)
return div;
}
} else {
/*
* TDM mode :
* mclk on
* MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
* MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
* mclk off
* MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
* Note: NOMCK/NODIV correspond to same bit.
*/
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
rate * 128);
if (div < 0)
return div;
} else {
if (sai->mclk_rate) {
mclk_ratio = sai->mclk_rate / rate;
if (mclk_ratio == 512) {
cr1 = SAI_XCR1_OSR;
} else if (mclk_ratio != 256) {
dev_err(cpu_dai->dev,
"Wrong mclk ratio %d\n",
mclk_ratio);
return -EINVAL;
}
stm32_sai_sub_reg_up(sai,
STM_SAI_CR1_REGX,
SAI_XCR1_OSR, cr1);
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
sai->mclk_rate);
if (div < 0)
return div;
} else {
/* mclk-fs not set, master clock not active */
den = sai->fs_length * params_rate(params);
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
den);
if (div < 0)
return div;
}
}
}
return stm32_sai_set_clk_div(sai, div);
}
static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
sai->data_size = params_width(params);
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
/* Rate not already set in runtime structure */
substream->runtime->rate = params_rate(params);
stm32_sai_set_iec958_status(sai, substream->runtime);
} else {
ret = stm32_sai_set_slots(cpu_dai);
if (ret < 0)
return ret;
stm32_sai_set_frame(cpu_dai);
}
ret = stm32_sai_set_config(cpu_dai, substream, params);
if (ret)
return ret;
if (sai->master)
ret = stm32_sai_configure_clock(cpu_dai, params);
return ret;
}
static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
/* Enable SAI */
ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_STOP:
dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
SAI_XIMR_MASK, 0);
stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN,
(unsigned int)~SAI_XCR1_SAIEN);
ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN,
(unsigned int)~SAI_XCR1_DMAEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
sai->spdif_frm_cnt = 0;
break;
default:
return -EINVAL;
}
return ret;
}
static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
unsigned long flags;
stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
clk_disable_unprepare(sai->sai_ck);
spin_lock_irqsave(&sai->irq_lock, flags);
sai->substream = NULL;
spin_unlock_irqrestore(&sai->irq_lock, flags);
}
static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
struct snd_kcontrol_new knew = iec958_ctls;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
knew.device = rtd->pcm->device;
return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
}
return 0;
}
static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
int cr1 = 0, cr1_mask, ret;
sai->cpu_dai = cpu_dai;
sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
/*
* DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
* as it allows bytes, half-word and words transfers. (See DMA fifos
* constraints).
*/
sai->dma_params.maxburst = 4;
if (sai->pdata->conf.fifo_size < 8)
sai->dma_params.maxburst = 1;
/* Buswidth will be set by framework at runtime */
sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
if (STM_SAI_IS_PLAYBACK(sai))
snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
else
snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
/* Next settings are not relevant for spdif mode */
if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
return 0;
cr1_mask = SAI_XCR1_RX_TX;
if (STM_SAI_IS_CAPTURE(sai))
cr1 |= SAI_XCR1_RX_TX;
/* Configure synchronization */
if (sai->sync == SAI_SYNC_EXTERNAL) {
/* Configure synchro client and provider */
ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
sai->synco, sai->synci);
if (ret)
return ret;
}
cr1_mask |= SAI_XCR1_SYNCEN_MASK;
cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
}
static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
.probe = stm32_sai_dai_probe,
.set_sysclk = stm32_sai_set_sysclk,
.set_fmt = stm32_sai_set_dai_fmt,
.set_tdm_slot = stm32_sai_set_dai_tdm_slot,
.startup = stm32_sai_startup,
.hw_params = stm32_sai_hw_params,
.trigger = stm32_sai_trigger,
.shutdown = stm32_sai_shutdown,
.pcm_new = stm32_sai_pcm_new,
};
static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
.probe = stm32_sai_dai_probe,
.set_sysclk = stm32_sai_set_sysclk,
.set_fmt = stm32_sai_set_dai_fmt,
.set_tdm_slot = stm32_sai_set_dai_tdm_slot,
.startup = stm32_sai_startup,
.hw_params = stm32_sai_hw_params,
.trigger = stm32_sai_trigger,
.shutdown = stm32_sai_shutdown,
};
static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
unsigned long bytes)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
int *ptr = (int *)(runtime->dma_area + hwoff +
channel * (runtime->dma_bytes / runtime->channels));
ssize_t cnt = bytes_to_samples(runtime, bytes);
unsigned int frm_cnt = sai->spdif_frm_cnt;
unsigned int byte;
unsigned int mask;
do {
*ptr = ((*ptr >> 8) & 0x00ffffff);
/* Set channel status bit */
byte = frm_cnt >> 3;
mask = 1 << (frm_cnt - (byte << 3));
if (sai->iec958.status[byte] & mask)
*ptr |= 0x04000000;
ptr++;
if (!(cnt % 2))
frm_cnt++;
if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
frm_cnt = 0;
} while (--cnt);
sai->spdif_frm_cnt = frm_cnt;
return 0;
}
/* No support of mmap in S/PDIF mode */
static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
.info = SNDRV_PCM_INFO_INTERLEAVED,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_min = 1024,
.period_bytes_max = PAGE_SIZE,
.periods_min = 2,
.periods_max = 8,
};
static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_min = 1024, /* 5ms at 48kHz */
.period_bytes_max = PAGE_SIZE,
.periods_min = 2,
.periods_max = 8,
};
static struct snd_soc_dai_driver stm32_sai_playback_dai = {
.id = 1, /* avoid call to fmt_single_name() */
.playback = {
.channels_min = 1,
.channels_max = 16,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
/* DMA does not support 24 bits transfers */
.formats =
SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &stm32_sai_pcm_dai_ops,
};
static struct snd_soc_dai_driver stm32_sai_capture_dai = {
.id = 1, /* avoid call to fmt_single_name() */
.capture = {
.channels_min = 1,
.channels_max = 16,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
/* DMA does not support 24 bits transfers */
.formats =
SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &stm32_sai_pcm_dai_ops2,
};
static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
.pcm_hardware = &stm32_sai_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
.pcm_hardware = &stm32_sai_pcm_hw_spdif,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
.process = stm32_sai_pcm_process_spdif,
};
static const struct snd_soc_component_driver stm32_component = {
.name = "stm32-sai",
.legacy_dai_naming = 1,
};
static const struct of_device_id stm32_sai_sub_ids[] = {
{ .compatible = "st,stm32-sai-sub-a",
.data = (void *)STM_SAI_A_ID},
{ .compatible = "st,stm32-sai-sub-b",
.data = (void *)STM_SAI_B_ID},
{}
};
MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
static int stm32_sai_sub_parse_of(struct platform_device *pdev,
struct stm32_sai_sub_data *sai)
{
struct device_node *np = pdev->dev.of_node;
struct resource *res;
void __iomem *base;
struct of_phandle_args args;
int ret;
if (!np)
return -ENODEV;
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(base))
return PTR_ERR(base);
sai->phys_addr = res->start;
sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
/* Note: PDM registers not available for sub-block B */
if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
/*
* Do not manage peripheral clock through regmap framework as this
* can lead to circular locking issue with sai master clock provider.
* Manage peripheral clock directly in driver instead.
*/
sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
sai->regmap_config);
if (IS_ERR(sai->regmap))
return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
"Regmap init error\n");
/* Get direction property */
if (of_property_match_string(np, "dma-names", "tx") >= 0) {
sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
sai->dir = SNDRV_PCM_STREAM_CAPTURE;
} else {
dev_err(&pdev->dev, "Unsupported direction\n");
return -EINVAL;
}
/* Get spdif iec60958 property */
sai->spdif = false;
if (of_property_present(np, "st,iec60958")) {
if (!STM_SAI_HAS_SPDIF(sai) ||
sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
return -EINVAL;
}
stm32_sai_init_iec958_status(sai);
sai->spdif = true;
sai->master = true;
}
/* Get synchronization property */
args.np = NULL;
ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
if (ret < 0 && ret != -ENOENT) {
dev_err(&pdev->dev, "Failed to get st,sync property\n");
return ret;
}
sai->sync = SAI_SYNC_NONE;
if (args.np) {
if (args.np == np) {
dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
of_node_put(args.np);
return -EINVAL;
}
sai->np_sync_provider = of_get_parent(args.np);
if (!sai->np_sync_provider) {
dev_err(&pdev->dev, "%pOFn parent node not found\n",
np);
of_node_put(args.np);
return -ENODEV;
}
sai->sync = SAI_SYNC_INTERNAL;
if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
if (!STM_SAI_HAS_EXT_SYNC(sai)) {
dev_err(&pdev->dev,
"External synchro not supported\n");
of_node_put(args.np);
return -EINVAL;
}
sai->sync = SAI_SYNC_EXTERNAL;
sai->synci = args.args[0];
if (sai->synci < 1 ||
(sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
dev_err(&pdev->dev, "Wrong SAI index\n");
of_node_put(args.np);
return -EINVAL;
}
if (of_property_match_string(args.np, "compatible",
"st,stm32-sai-sub-a") >= 0)
sai->synco = STM_SAI_SYNC_OUT_A;
if (of_property_match_string(args.np, "compatible",
"st,stm32-sai-sub-b") >= 0)
sai->synco = STM_SAI_SYNC_OUT_B;
if (!sai->synco) {
dev_err(&pdev->dev, "Unknown SAI sub-block\n");
of_node_put(args.np);
return -EINVAL;
}
}
dev_dbg(&pdev->dev, "%s synchronized with %s\n",
pdev->name, args.np->full_name);
}
of_node_put(args.np);
sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
if (IS_ERR(sai->sai_ck))
return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
"Missing kernel clock sai_ck\n");
ret = clk_prepare(sai->pdata->pclk);
if (ret < 0)
return ret;
if (STM_SAI_IS_F4(sai->pdata))
return 0;
/* Register mclk provider if requested */
if (of_property_present(np, "#clock-cells")) {
ret = stm32_sai_add_mclk_provider(sai);
if (ret < 0)
return ret;
} else {
sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
if (IS_ERR(sai->sai_mclk))
return PTR_ERR(sai->sai_mclk);
}
return 0;
}
static int stm32_sai_sub_probe(struct platform_device *pdev)
{
struct stm32_sai_sub_data *sai;
const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
int ret;
sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
if (!sai)
return -ENOMEM;
sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
sai->pdev = pdev;
mutex_init(&sai->ctrl_lock);
spin_lock_init(&sai->irq_lock);
platform_set_drvdata(pdev, sai);
sai->pdata = dev_get_drvdata(pdev->dev.parent);
if (!sai->pdata) {
dev_err(&pdev->dev, "Parent device data not available\n");
return -EINVAL;
}
ret = stm32_sai_sub_parse_of(pdev, sai);
if (ret)
return ret;
if (STM_SAI_IS_PLAYBACK(sai))
sai->cpu_dai_drv = stm32_sai_playback_dai;
else
sai->cpu_dai_drv = stm32_sai_capture_dai;
sai->cpu_dai_drv.name = dev_name(&pdev->dev);
ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
IRQF_SHARED, dev_name(&pdev->dev), sai);
if (ret) {
dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
return ret;
}
if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
conf = &stm32_sai_pcm_config_spdif;
ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
ret = snd_soc_register_component(&pdev->dev, &stm32_component,
&sai->cpu_dai_drv, 1);
if (ret) {
snd_dmaengine_pcm_unregister(&pdev->dev);
return ret;
}
pm_runtime_enable(&pdev->dev);
return 0;
}
static void stm32_sai_sub_remove(struct platform_device *pdev)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
clk_unprepare(sai->pdata->pclk);
snd_dmaengine_pcm_unregister(&pdev->dev);
snd_soc_unregister_component(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
#ifdef CONFIG_PM_SLEEP
static int stm32_sai_sub_suspend(struct device *dev)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
int ret;
ret = clk_enable(sai->pdata->pclk);
if (ret < 0)
return ret;
regcache_cache_only(sai->regmap, true);
regcache_mark_dirty(sai->regmap);
clk_disable(sai->pdata->pclk);
return 0;
}
static int stm32_sai_sub_resume(struct device *dev)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
int ret;
ret = clk_enable(sai->pdata->pclk);
if (ret < 0)
return ret;
regcache_cache_only(sai->regmap, false);
ret = regcache_sync(sai->regmap);
clk_disable(sai->pdata->pclk);
return ret;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
};
static struct platform_driver stm32_sai_sub_driver = {
.driver = {
.name = "st,stm32-sai-sub",
.of_match_table = stm32_sai_sub_ids,
.pm = &stm32_sai_sub_pm_ops,
},
.probe = stm32_sai_sub_probe,
.remove = stm32_sai_sub_remove,
};
module_platform_driver(stm32_sai_sub_driver);
MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
MODULE_ALIAS("platform:st,stm32-sai-sub");
MODULE_LICENSE("GPL v2");