| /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ |
| /* Copyright (c) 2018 Facebook */ |
| /*! \file */ |
| |
| #ifndef __LIBBPF_BTF_H |
| #define __LIBBPF_BTF_H |
| |
| #include <stdarg.h> |
| #include <stdbool.h> |
| #include <linux/btf.h> |
| #include <linux/types.h> |
| |
| #include "libbpf_common.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define BTF_ELF_SEC ".BTF" |
| #define BTF_EXT_ELF_SEC ".BTF.ext" |
| #define BTF_BASE_ELF_SEC ".BTF.base" |
| #define MAPS_ELF_SEC ".maps" |
| |
| struct btf; |
| struct btf_ext; |
| struct btf_type; |
| |
| struct bpf_object; |
| |
| enum btf_endianness { |
| BTF_LITTLE_ENDIAN = 0, |
| BTF_BIG_ENDIAN = 1, |
| }; |
| |
| /** |
| * @brief **btf__free()** frees all data of a BTF object |
| * @param btf BTF object to free |
| */ |
| LIBBPF_API void btf__free(struct btf *btf); |
| |
| /** |
| * @brief **btf__new()** creates a new instance of a BTF object from the raw |
| * bytes of an ELF's BTF section |
| * @param data raw bytes |
| * @param size number of bytes passed in `data` |
| * @return new BTF object instance which has to be eventually freed with |
| * **btf__free()** |
| * |
| * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract |
| * error code from such a pointer `libbpf_get_error()` should be used. If |
| * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is |
| * returned on error instead. In both cases thread-local `errno` variable is |
| * always set to error code as well. |
| */ |
| LIBBPF_API struct btf *btf__new(const void *data, __u32 size); |
| |
| /** |
| * @brief **btf__new_split()** create a new instance of a BTF object from the |
| * provided raw data bytes. It takes another BTF instance, **base_btf**, which |
| * serves as a base BTF, which is extended by types in a newly created BTF |
| * instance |
| * @param data raw bytes |
| * @param size length of raw bytes |
| * @param base_btf the base BTF object |
| * @return new BTF object instance which has to be eventually freed with |
| * **btf__free()** |
| * |
| * If *base_btf* is NULL, `btf__new_split()` is equivalent to `btf__new()` and |
| * creates non-split BTF. |
| * |
| * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract |
| * error code from such a pointer `libbpf_get_error()` should be used. If |
| * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is |
| * returned on error instead. In both cases thread-local `errno` variable is |
| * always set to error code as well. |
| */ |
| LIBBPF_API struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf); |
| |
| /** |
| * @brief **btf__new_empty()** creates an empty BTF object. Use |
| * `btf__add_*()` to populate such BTF object. |
| * @return new BTF object instance which has to be eventually freed with |
| * **btf__free()** |
| * |
| * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract |
| * error code from such a pointer `libbpf_get_error()` should be used. If |
| * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is |
| * returned on error instead. In both cases thread-local `errno` variable is |
| * always set to error code as well. |
| */ |
| LIBBPF_API struct btf *btf__new_empty(void); |
| |
| /** |
| * @brief **btf__new_empty_split()** creates an unpopulated BTF object from an |
| * ELF BTF section except with a base BTF on top of which split BTF should be |
| * based |
| * @return new BTF object instance which has to be eventually freed with |
| * **btf__free()** |
| * |
| * If *base_btf* is NULL, `btf__new_empty_split()` is equivalent to |
| * `btf__new_empty()` and creates non-split BTF. |
| * |
| * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract |
| * error code from such a pointer `libbpf_get_error()` should be used. If |
| * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is |
| * returned on error instead. In both cases thread-local `errno` variable is |
| * always set to error code as well. |
| */ |
| LIBBPF_API struct btf *btf__new_empty_split(struct btf *base_btf); |
| |
| /** |
| * @brief **btf__distill_base()** creates new versions of the split BTF |
| * *src_btf* and its base BTF. The new base BTF will only contain the types |
| * needed to improve robustness of the split BTF to small changes in base BTF. |
| * When that split BTF is loaded against a (possibly changed) base, this |
| * distilled base BTF will help update references to that (possibly changed) |
| * base BTF. |
| * |
| * Both the new split and its associated new base BTF must be freed by |
| * the caller. |
| * |
| * If successful, 0 is returned and **new_base_btf** and **new_split_btf** |
| * will point at new base/split BTF. Both the new split and its associated |
| * new base BTF must be freed by the caller. |
| * |
| * A negative value is returned on error and the thread-local `errno` variable |
| * is set to the error code as well. |
| */ |
| LIBBPF_API int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf, |
| struct btf **new_split_btf); |
| |
| LIBBPF_API struct btf *btf__parse(const char *path, struct btf_ext **btf_ext); |
| LIBBPF_API struct btf *btf__parse_split(const char *path, struct btf *base_btf); |
| LIBBPF_API struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext); |
| LIBBPF_API struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf); |
| LIBBPF_API struct btf *btf__parse_raw(const char *path); |
| LIBBPF_API struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf); |
| |
| LIBBPF_API struct btf *btf__load_vmlinux_btf(void); |
| LIBBPF_API struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf); |
| |
| LIBBPF_API struct btf *btf__load_from_kernel_by_id(__u32 id); |
| LIBBPF_API struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf); |
| |
| LIBBPF_API int btf__load_into_kernel(struct btf *btf); |
| LIBBPF_API __s32 btf__find_by_name(const struct btf *btf, |
| const char *type_name); |
| LIBBPF_API __s32 btf__find_by_name_kind(const struct btf *btf, |
| const char *type_name, __u32 kind); |
| LIBBPF_API __u32 btf__type_cnt(const struct btf *btf); |
| LIBBPF_API const struct btf *btf__base_btf(const struct btf *btf); |
| LIBBPF_API const struct btf_type *btf__type_by_id(const struct btf *btf, |
| __u32 id); |
| LIBBPF_API size_t btf__pointer_size(const struct btf *btf); |
| LIBBPF_API int btf__set_pointer_size(struct btf *btf, size_t ptr_sz); |
| LIBBPF_API enum btf_endianness btf__endianness(const struct btf *btf); |
| LIBBPF_API int btf__set_endianness(struct btf *btf, enum btf_endianness endian); |
| LIBBPF_API __s64 btf__resolve_size(const struct btf *btf, __u32 type_id); |
| LIBBPF_API int btf__resolve_type(const struct btf *btf, __u32 type_id); |
| LIBBPF_API int btf__align_of(const struct btf *btf, __u32 id); |
| LIBBPF_API int btf__fd(const struct btf *btf); |
| LIBBPF_API void btf__set_fd(struct btf *btf, int fd); |
| LIBBPF_API const void *btf__raw_data(const struct btf *btf, __u32 *size); |
| LIBBPF_API const char *btf__name_by_offset(const struct btf *btf, __u32 offset); |
| LIBBPF_API const char *btf__str_by_offset(const struct btf *btf, __u32 offset); |
| |
| LIBBPF_API struct btf_ext *btf_ext__new(const __u8 *data, __u32 size); |
| LIBBPF_API void btf_ext__free(struct btf_ext *btf_ext); |
| LIBBPF_API const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size); |
| |
| LIBBPF_API int btf__find_str(struct btf *btf, const char *s); |
| LIBBPF_API int btf__add_str(struct btf *btf, const char *s); |
| LIBBPF_API int btf__add_type(struct btf *btf, const struct btf *src_btf, |
| const struct btf_type *src_type); |
| /** |
| * @brief **btf__add_btf()** appends all the BTF types from *src_btf* into *btf* |
| * @param btf BTF object which all the BTF types and strings are added to |
| * @param src_btf BTF object which all BTF types and referenced strings are copied from |
| * @return BTF type ID of the first appended BTF type, or negative error code |
| * |
| * **btf__add_btf()** can be used to simply and efficiently append the entire |
| * contents of one BTF object to another one. All the BTF type data is copied |
| * over, all referenced type IDs are adjusted by adding a necessary ID offset. |
| * Only strings referenced from BTF types are copied over and deduplicated, so |
| * if there were some unused strings in *src_btf*, those won't be copied over, |
| * which is consistent with the general string deduplication semantics of BTF |
| * writing APIs. |
| * |
| * If any error is encountered during this process, the contents of *btf* is |
| * left intact, which means that **btf__add_btf()** follows the transactional |
| * semantics and the operation as a whole is all-or-nothing. |
| * |
| * *src_btf* has to be non-split BTF, as of now copying types from split BTF |
| * is not supported and will result in -ENOTSUP error code returned. |
| */ |
| LIBBPF_API int btf__add_btf(struct btf *btf, const struct btf *src_btf); |
| |
| LIBBPF_API int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding); |
| LIBBPF_API int btf__add_float(struct btf *btf, const char *name, size_t byte_sz); |
| LIBBPF_API int btf__add_ptr(struct btf *btf, int ref_type_id); |
| LIBBPF_API int btf__add_array(struct btf *btf, |
| int index_type_id, int elem_type_id, __u32 nr_elems); |
| /* struct/union construction APIs */ |
| LIBBPF_API int btf__add_struct(struct btf *btf, const char *name, __u32 sz); |
| LIBBPF_API int btf__add_union(struct btf *btf, const char *name, __u32 sz); |
| LIBBPF_API int btf__add_field(struct btf *btf, const char *name, int field_type_id, |
| __u32 bit_offset, __u32 bit_size); |
| |
| /* enum construction APIs */ |
| LIBBPF_API int btf__add_enum(struct btf *btf, const char *name, __u32 bytes_sz); |
| LIBBPF_API int btf__add_enum_value(struct btf *btf, const char *name, __s64 value); |
| LIBBPF_API int btf__add_enum64(struct btf *btf, const char *name, __u32 bytes_sz, bool is_signed); |
| LIBBPF_API int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value); |
| |
| enum btf_fwd_kind { |
| BTF_FWD_STRUCT = 0, |
| BTF_FWD_UNION = 1, |
| BTF_FWD_ENUM = 2, |
| }; |
| |
| LIBBPF_API int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind); |
| LIBBPF_API int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id); |
| LIBBPF_API int btf__add_volatile(struct btf *btf, int ref_type_id); |
| LIBBPF_API int btf__add_const(struct btf *btf, int ref_type_id); |
| LIBBPF_API int btf__add_restrict(struct btf *btf, int ref_type_id); |
| LIBBPF_API int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id); |
| |
| /* func and func_proto construction APIs */ |
| LIBBPF_API int btf__add_func(struct btf *btf, const char *name, |
| enum btf_func_linkage linkage, int proto_type_id); |
| LIBBPF_API int btf__add_func_proto(struct btf *btf, int ret_type_id); |
| LIBBPF_API int btf__add_func_param(struct btf *btf, const char *name, int type_id); |
| |
| /* var & datasec construction APIs */ |
| LIBBPF_API int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id); |
| LIBBPF_API int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz); |
| LIBBPF_API int btf__add_datasec_var_info(struct btf *btf, int var_type_id, |
| __u32 offset, __u32 byte_sz); |
| |
| /* tag construction API */ |
| LIBBPF_API int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, |
| int component_idx); |
| |
| struct btf_dedup_opts { |
| size_t sz; |
| /* optional .BTF.ext info to dedup along the main BTF info */ |
| struct btf_ext *btf_ext; |
| /* force hash collisions (used for testing) */ |
| bool force_collisions; |
| size_t :0; |
| }; |
| #define btf_dedup_opts__last_field force_collisions |
| |
| LIBBPF_API int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts); |
| |
| /** |
| * @brief **btf__relocate()** will check the split BTF *btf* for references |
| * to base BTF kinds, and verify those references are compatible with |
| * *base_btf*; if they are, *btf* is adjusted such that is re-parented to |
| * *base_btf* and type ids and strings are adjusted to accommodate this. |
| * |
| * If successful, 0 is returned and **btf** now has **base_btf** as its |
| * base. |
| * |
| * A negative value is returned on error and the thread-local `errno` variable |
| * is set to the error code as well. |
| */ |
| LIBBPF_API int btf__relocate(struct btf *btf, const struct btf *base_btf); |
| |
| struct btf_dump; |
| |
| struct btf_dump_opts { |
| size_t sz; |
| }; |
| #define btf_dump_opts__last_field sz |
| |
| typedef void (*btf_dump_printf_fn_t)(void *ctx, const char *fmt, va_list args); |
| |
| LIBBPF_API struct btf_dump *btf_dump__new(const struct btf *btf, |
| btf_dump_printf_fn_t printf_fn, |
| void *ctx, |
| const struct btf_dump_opts *opts); |
| |
| LIBBPF_API void btf_dump__free(struct btf_dump *d); |
| |
| LIBBPF_API int btf_dump__dump_type(struct btf_dump *d, __u32 id); |
| |
| struct btf_dump_emit_type_decl_opts { |
| /* size of this struct, for forward/backward compatibility */ |
| size_t sz; |
| /* optional field name for type declaration, e.g.: |
| * - struct my_struct <FNAME> |
| * - void (*<FNAME>)(int) |
| * - char (*<FNAME>)[123] |
| */ |
| const char *field_name; |
| /* extra indentation level (in number of tabs) to emit for multi-line |
| * type declarations (e.g., anonymous struct); applies for lines |
| * starting from the second one (first line is assumed to have |
| * necessary indentation already |
| */ |
| int indent_level; |
| /* strip all the const/volatile/restrict mods */ |
| bool strip_mods; |
| size_t :0; |
| }; |
| #define btf_dump_emit_type_decl_opts__last_field strip_mods |
| |
| LIBBPF_API int |
| btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, |
| const struct btf_dump_emit_type_decl_opts *opts); |
| |
| |
| struct btf_dump_type_data_opts { |
| /* size of this struct, for forward/backward compatibility */ |
| size_t sz; |
| const char *indent_str; |
| int indent_level; |
| /* below match "show" flags for bpf_show_snprintf() */ |
| bool compact; /* no newlines/indentation */ |
| bool skip_names; /* skip member/type names */ |
| bool emit_zeroes; /* show 0-valued fields */ |
| size_t :0; |
| }; |
| #define btf_dump_type_data_opts__last_field emit_zeroes |
| |
| LIBBPF_API int |
| btf_dump__dump_type_data(struct btf_dump *d, __u32 id, |
| const void *data, size_t data_sz, |
| const struct btf_dump_type_data_opts *opts); |
| |
| /* |
| * A set of helpers for easier BTF types handling. |
| * |
| * The inline functions below rely on constants from the kernel headers which |
| * may not be available for applications including this header file. To avoid |
| * compilation errors, we define all the constants here that were added after |
| * the initial introduction of the BTF_KIND* constants. |
| */ |
| #ifndef BTF_KIND_FUNC |
| #define BTF_KIND_FUNC 12 /* Function */ |
| #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */ |
| #endif |
| #ifndef BTF_KIND_VAR |
| #define BTF_KIND_VAR 14 /* Variable */ |
| #define BTF_KIND_DATASEC 15 /* Section */ |
| #endif |
| #ifndef BTF_KIND_FLOAT |
| #define BTF_KIND_FLOAT 16 /* Floating point */ |
| #endif |
| /* The kernel header switched to enums, so the following were never #defined */ |
| #define BTF_KIND_DECL_TAG 17 /* Decl Tag */ |
| #define BTF_KIND_TYPE_TAG 18 /* Type Tag */ |
| #define BTF_KIND_ENUM64 19 /* Enum for up-to 64bit values */ |
| |
| static inline __u16 btf_kind(const struct btf_type *t) |
| { |
| return BTF_INFO_KIND(t->info); |
| } |
| |
| static inline __u16 btf_vlen(const struct btf_type *t) |
| { |
| return BTF_INFO_VLEN(t->info); |
| } |
| |
| static inline bool btf_kflag(const struct btf_type *t) |
| { |
| return BTF_INFO_KFLAG(t->info); |
| } |
| |
| static inline bool btf_is_void(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_UNKN; |
| } |
| |
| static inline bool btf_is_int(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_INT; |
| } |
| |
| static inline bool btf_is_ptr(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_PTR; |
| } |
| |
| static inline bool btf_is_array(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_ARRAY; |
| } |
| |
| static inline bool btf_is_struct(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_STRUCT; |
| } |
| |
| static inline bool btf_is_union(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_UNION; |
| } |
| |
| static inline bool btf_is_composite(const struct btf_type *t) |
| { |
| __u16 kind = btf_kind(t); |
| |
| return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; |
| } |
| |
| static inline bool btf_is_enum(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_ENUM; |
| } |
| |
| static inline bool btf_is_enum64(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_ENUM64; |
| } |
| |
| static inline bool btf_is_fwd(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_FWD; |
| } |
| |
| static inline bool btf_is_typedef(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_TYPEDEF; |
| } |
| |
| static inline bool btf_is_volatile(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_VOLATILE; |
| } |
| |
| static inline bool btf_is_const(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_CONST; |
| } |
| |
| static inline bool btf_is_restrict(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_RESTRICT; |
| } |
| |
| static inline bool btf_is_mod(const struct btf_type *t) |
| { |
| __u16 kind = btf_kind(t); |
| |
| return kind == BTF_KIND_VOLATILE || |
| kind == BTF_KIND_CONST || |
| kind == BTF_KIND_RESTRICT || |
| kind == BTF_KIND_TYPE_TAG; |
| } |
| |
| static inline bool btf_is_func(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_FUNC; |
| } |
| |
| static inline bool btf_is_func_proto(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_FUNC_PROTO; |
| } |
| |
| static inline bool btf_is_var(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_VAR; |
| } |
| |
| static inline bool btf_is_datasec(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_DATASEC; |
| } |
| |
| static inline bool btf_is_float(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_FLOAT; |
| } |
| |
| static inline bool btf_is_decl_tag(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_DECL_TAG; |
| } |
| |
| static inline bool btf_is_type_tag(const struct btf_type *t) |
| { |
| return btf_kind(t) == BTF_KIND_TYPE_TAG; |
| } |
| |
| static inline bool btf_is_any_enum(const struct btf_type *t) |
| { |
| return btf_is_enum(t) || btf_is_enum64(t); |
| } |
| |
| static inline bool btf_kind_core_compat(const struct btf_type *t1, |
| const struct btf_type *t2) |
| { |
| return btf_kind(t1) == btf_kind(t2) || |
| (btf_is_any_enum(t1) && btf_is_any_enum(t2)); |
| } |
| |
| static inline __u8 btf_int_encoding(const struct btf_type *t) |
| { |
| return BTF_INT_ENCODING(*(__u32 *)(t + 1)); |
| } |
| |
| static inline __u8 btf_int_offset(const struct btf_type *t) |
| { |
| return BTF_INT_OFFSET(*(__u32 *)(t + 1)); |
| } |
| |
| static inline __u8 btf_int_bits(const struct btf_type *t) |
| { |
| return BTF_INT_BITS(*(__u32 *)(t + 1)); |
| } |
| |
| static inline struct btf_array *btf_array(const struct btf_type *t) |
| { |
| return (struct btf_array *)(t + 1); |
| } |
| |
| static inline struct btf_enum *btf_enum(const struct btf_type *t) |
| { |
| return (struct btf_enum *)(t + 1); |
| } |
| |
| struct btf_enum64; |
| |
| static inline struct btf_enum64 *btf_enum64(const struct btf_type *t) |
| { |
| return (struct btf_enum64 *)(t + 1); |
| } |
| |
| static inline __u64 btf_enum64_value(const struct btf_enum64 *e) |
| { |
| /* struct btf_enum64 is introduced in Linux 6.0, which is very |
| * bleeding-edge. Here we are avoiding relying on struct btf_enum64 |
| * definition coming from kernel UAPI headers to support wider range |
| * of system-wide kernel headers. |
| * |
| * Given this header can be also included from C++ applications, that |
| * further restricts C tricks we can use (like using compatible |
| * anonymous struct). So just treat struct btf_enum64 as |
| * a three-element array of u32 and access second (lo32) and third |
| * (hi32) elements directly. |
| * |
| * For reference, here is a struct btf_enum64 definition: |
| * |
| * const struct btf_enum64 { |
| * __u32 name_off; |
| * __u32 val_lo32; |
| * __u32 val_hi32; |
| * }; |
| */ |
| const __u32 *e64 = (const __u32 *)e; |
| |
| return ((__u64)e64[2] << 32) | e64[1]; |
| } |
| |
| static inline struct btf_member *btf_members(const struct btf_type *t) |
| { |
| return (struct btf_member *)(t + 1); |
| } |
| |
| /* Get bit offset of a member with specified index. */ |
| static inline __u32 btf_member_bit_offset(const struct btf_type *t, |
| __u32 member_idx) |
| { |
| const struct btf_member *m = btf_members(t) + member_idx; |
| bool kflag = btf_kflag(t); |
| |
| return kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset; |
| } |
| /* |
| * Get bitfield size of a member, assuming t is BTF_KIND_STRUCT or |
| * BTF_KIND_UNION. If member is not a bitfield, zero is returned. |
| */ |
| static inline __u32 btf_member_bitfield_size(const struct btf_type *t, |
| __u32 member_idx) |
| { |
| const struct btf_member *m = btf_members(t) + member_idx; |
| bool kflag = btf_kflag(t); |
| |
| return kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0; |
| } |
| |
| static inline struct btf_param *btf_params(const struct btf_type *t) |
| { |
| return (struct btf_param *)(t + 1); |
| } |
| |
| static inline struct btf_var *btf_var(const struct btf_type *t) |
| { |
| return (struct btf_var *)(t + 1); |
| } |
| |
| static inline struct btf_var_secinfo * |
| btf_var_secinfos(const struct btf_type *t) |
| { |
| return (struct btf_var_secinfo *)(t + 1); |
| } |
| |
| struct btf_decl_tag; |
| static inline struct btf_decl_tag *btf_decl_tag(const struct btf_type *t) |
| { |
| return (struct btf_decl_tag *)(t + 1); |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| #endif /* __LIBBPF_BTF_H */ |