blob: 27784946b01b8b045983d3a17da91775553776f7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#define _GNU_SOURCE
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sched.h>
#include <arpa/inet.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <sys/eventfd.h>
#include <linux/err.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/limits.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include "bpf_util.h"
#include "network_helpers.h"
#include "test_progs.h"
#ifdef TRAFFIC_MONITOR
/* Prevent pcap.h from including pcap/bpf.h and causing conflicts */
#define PCAP_DONT_INCLUDE_PCAP_BPF_H 1
#include <pcap/pcap.h>
#include <pcap/dlt.h>
#endif
#ifndef IPPROTO_MPTCP
#define IPPROTO_MPTCP 262
#endif
#define clean_errno() (errno == 0 ? "None" : strerror(errno))
#define log_err(MSG, ...) ({ \
int __save = errno; \
fprintf(stderr, "(%s:%d: errno: %s) " MSG "\n", \
__FILE__, __LINE__, clean_errno(), \
##__VA_ARGS__); \
errno = __save; \
})
struct ipv4_packet pkt_v4 = {
.eth.h_proto = __bpf_constant_htons(ETH_P_IP),
.iph.ihl = 5,
.iph.protocol = IPPROTO_TCP,
.iph.tot_len = __bpf_constant_htons(MAGIC_BYTES),
.tcp.urg_ptr = 123,
.tcp.doff = 5,
};
struct ipv6_packet pkt_v6 = {
.eth.h_proto = __bpf_constant_htons(ETH_P_IPV6),
.iph.nexthdr = IPPROTO_TCP,
.iph.payload_len = __bpf_constant_htons(MAGIC_BYTES),
.tcp.urg_ptr = 123,
.tcp.doff = 5,
};
static const struct network_helper_opts default_opts;
int settimeo(int fd, int timeout_ms)
{
struct timeval timeout = { .tv_sec = 3 };
if (timeout_ms > 0) {
timeout.tv_sec = timeout_ms / 1000;
timeout.tv_usec = (timeout_ms % 1000) * 1000;
}
if (setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, &timeout,
sizeof(timeout))) {
log_err("Failed to set SO_RCVTIMEO");
return -1;
}
if (setsockopt(fd, SOL_SOCKET, SO_SNDTIMEO, &timeout,
sizeof(timeout))) {
log_err("Failed to set SO_SNDTIMEO");
return -1;
}
return 0;
}
#define save_errno_close(fd) ({ int __save = errno; close(fd); errno = __save; })
int start_server_addr(int type, const struct sockaddr_storage *addr, socklen_t addrlen,
const struct network_helper_opts *opts)
{
int fd;
if (!opts)
opts = &default_opts;
fd = socket(addr->ss_family, type, opts->proto);
if (fd < 0) {
log_err("Failed to create server socket");
return -1;
}
if (settimeo(fd, opts->timeout_ms))
goto error_close;
if (opts->post_socket_cb &&
opts->post_socket_cb(fd, opts->cb_opts)) {
log_err("Failed to call post_socket_cb");
goto error_close;
}
if (bind(fd, (struct sockaddr *)addr, addrlen) < 0) {
log_err("Failed to bind socket");
goto error_close;
}
if (type == SOCK_STREAM) {
if (listen(fd, opts->backlog ? MAX(opts->backlog, 0) : 1) < 0) {
log_err("Failed to listed on socket");
goto error_close;
}
}
return fd;
error_close:
save_errno_close(fd);
return -1;
}
int start_server_str(int family, int type, const char *addr_str, __u16 port,
const struct network_helper_opts *opts)
{
struct sockaddr_storage addr;
socklen_t addrlen;
if (!opts)
opts = &default_opts;
if (make_sockaddr(family, addr_str, port, &addr, &addrlen))
return -1;
return start_server_addr(type, &addr, addrlen, opts);
}
int start_server(int family, int type, const char *addr_str, __u16 port,
int timeout_ms)
{
struct network_helper_opts opts = {
.timeout_ms = timeout_ms,
};
return start_server_str(family, type, addr_str, port, &opts);
}
static int reuseport_cb(int fd, void *opts)
{
int on = 1;
return setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on));
}
int *start_reuseport_server(int family, int type, const char *addr_str,
__u16 port, int timeout_ms, unsigned int nr_listens)
{
struct network_helper_opts opts = {
.timeout_ms = timeout_ms,
.post_socket_cb = reuseport_cb,
};
struct sockaddr_storage addr;
unsigned int nr_fds = 0;
socklen_t addrlen;
int *fds;
if (!nr_listens)
return NULL;
if (make_sockaddr(family, addr_str, port, &addr, &addrlen))
return NULL;
fds = malloc(sizeof(*fds) * nr_listens);
if (!fds)
return NULL;
fds[0] = start_server_addr(type, &addr, addrlen, &opts);
if (fds[0] == -1)
goto close_fds;
nr_fds = 1;
if (getsockname(fds[0], (struct sockaddr *)&addr, &addrlen))
goto close_fds;
for (; nr_fds < nr_listens; nr_fds++) {
fds[nr_fds] = start_server_addr(type, &addr, addrlen, &opts);
if (fds[nr_fds] == -1)
goto close_fds;
}
return fds;
close_fds:
free_fds(fds, nr_fds);
return NULL;
}
void free_fds(int *fds, unsigned int nr_close_fds)
{
if (fds) {
while (nr_close_fds)
close(fds[--nr_close_fds]);
free(fds);
}
}
int fastopen_connect(int server_fd, const char *data, unsigned int data_len,
int timeout_ms)
{
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
struct sockaddr_in *addr_in;
int fd, ret;
if (getsockname(server_fd, (struct sockaddr *)&addr, &addrlen)) {
log_err("Failed to get server addr");
return -1;
}
addr_in = (struct sockaddr_in *)&addr;
fd = socket(addr_in->sin_family, SOCK_STREAM, 0);
if (fd < 0) {
log_err("Failed to create client socket");
return -1;
}
if (settimeo(fd, timeout_ms))
goto error_close;
ret = sendto(fd, data, data_len, MSG_FASTOPEN, (struct sockaddr *)&addr,
addrlen);
if (ret != data_len) {
log_err("sendto(data, %u) != %d\n", data_len, ret);
goto error_close;
}
return fd;
error_close:
save_errno_close(fd);
return -1;
}
int client_socket(int family, int type,
const struct network_helper_opts *opts)
{
int fd;
if (!opts)
opts = &default_opts;
fd = socket(family, type, opts->proto);
if (fd < 0) {
log_err("Failed to create client socket");
return -1;
}
if (settimeo(fd, opts->timeout_ms))
goto error_close;
if (opts->post_socket_cb &&
opts->post_socket_cb(fd, opts->cb_opts))
goto error_close;
return fd;
error_close:
save_errno_close(fd);
return -1;
}
int connect_to_addr(int type, const struct sockaddr_storage *addr, socklen_t addrlen,
const struct network_helper_opts *opts)
{
int fd;
if (!opts)
opts = &default_opts;
fd = client_socket(addr->ss_family, type, opts);
if (fd < 0) {
log_err("Failed to create client socket");
return -1;
}
if (connect(fd, (const struct sockaddr *)addr, addrlen)) {
log_err("Failed to connect to server");
save_errno_close(fd);
return -1;
}
return fd;
}
int connect_to_addr_str(int family, int type, const char *addr_str, __u16 port,
const struct network_helper_opts *opts)
{
struct sockaddr_storage addr;
socklen_t addrlen;
if (!opts)
opts = &default_opts;
if (make_sockaddr(family, addr_str, port, &addr, &addrlen))
return -1;
return connect_to_addr(type, &addr, addrlen, opts);
}
int connect_to_fd_opts(int server_fd, const struct network_helper_opts *opts)
{
struct sockaddr_storage addr;
socklen_t addrlen, optlen;
int type;
if (!opts)
opts = &default_opts;
optlen = sizeof(type);
if (getsockopt(server_fd, SOL_SOCKET, SO_TYPE, &type, &optlen)) {
log_err("getsockopt(SOL_TYPE)");
return -1;
}
addrlen = sizeof(addr);
if (getsockname(server_fd, (struct sockaddr *)&addr, &addrlen)) {
log_err("Failed to get server addr");
return -1;
}
return connect_to_addr(type, &addr, addrlen, opts);
}
int connect_to_fd(int server_fd, int timeout_ms)
{
struct network_helper_opts opts = {
.timeout_ms = timeout_ms,
};
socklen_t optlen;
int protocol;
optlen = sizeof(protocol);
if (getsockopt(server_fd, SOL_SOCKET, SO_PROTOCOL, &protocol, &optlen)) {
log_err("getsockopt(SOL_PROTOCOL)");
return -1;
}
opts.proto = protocol;
return connect_to_fd_opts(server_fd, &opts);
}
int connect_fd_to_fd(int client_fd, int server_fd, int timeout_ms)
{
struct sockaddr_storage addr;
socklen_t len = sizeof(addr);
if (settimeo(client_fd, timeout_ms))
return -1;
if (getsockname(server_fd, (struct sockaddr *)&addr, &len)) {
log_err("Failed to get server addr");
return -1;
}
if (connect(client_fd, (const struct sockaddr *)&addr, len)) {
log_err("Failed to connect to server");
return -1;
}
return 0;
}
int make_sockaddr(int family, const char *addr_str, __u16 port,
struct sockaddr_storage *addr, socklen_t *len)
{
if (family == AF_INET) {
struct sockaddr_in *sin = (void *)addr;
memset(addr, 0, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
if (addr_str &&
inet_pton(AF_INET, addr_str, &sin->sin_addr) != 1) {
log_err("inet_pton(AF_INET, %s)", addr_str);
return -1;
}
if (len)
*len = sizeof(*sin);
return 0;
} else if (family == AF_INET6) {
struct sockaddr_in6 *sin6 = (void *)addr;
memset(addr, 0, sizeof(*sin6));
sin6->sin6_family = AF_INET6;
sin6->sin6_port = htons(port);
if (addr_str &&
inet_pton(AF_INET6, addr_str, &sin6->sin6_addr) != 1) {
log_err("inet_pton(AF_INET6, %s)", addr_str);
return -1;
}
if (len)
*len = sizeof(*sin6);
return 0;
} else if (family == AF_UNIX) {
/* Note that we always use abstract unix sockets to avoid having
* to clean up leftover files.
*/
struct sockaddr_un *sun = (void *)addr;
memset(addr, 0, sizeof(*sun));
sun->sun_family = family;
sun->sun_path[0] = 0;
strcpy(sun->sun_path + 1, addr_str);
if (len)
*len = offsetof(struct sockaddr_un, sun_path) + 1 + strlen(addr_str);
return 0;
}
return -1;
}
char *ping_command(int family)
{
if (family == AF_INET6) {
/* On some systems 'ping' doesn't support IPv6, so use ping6 if it is present. */
if (!system("which ping6 >/dev/null 2>&1"))
return "ping6";
else
return "ping -6";
}
return "ping";
}
int remove_netns(const char *name)
{
char *cmd;
int r;
r = asprintf(&cmd, "ip netns del %s >/dev/null 2>&1", name);
if (r < 0) {
log_err("Failed to malloc cmd");
return -1;
}
r = system(cmd);
free(cmd);
return r;
}
int make_netns(const char *name)
{
char *cmd;
int r;
r = asprintf(&cmd, "ip netns add %s", name);
if (r < 0) {
log_err("Failed to malloc cmd");
return -1;
}
r = system(cmd);
free(cmd);
if (r)
return r;
r = asprintf(&cmd, "ip -n %s link set lo up", name);
if (r < 0) {
log_err("Failed to malloc cmd for setting up lo");
remove_netns(name);
return -1;
}
r = system(cmd);
free(cmd);
return r;
}
struct nstoken {
int orig_netns_fd;
};
struct nstoken *open_netns(const char *name)
{
int nsfd;
char nspath[PATH_MAX];
int err;
struct nstoken *token;
token = calloc(1, sizeof(struct nstoken));
if (!token) {
log_err("Failed to malloc token");
return NULL;
}
token->orig_netns_fd = open("/proc/self/ns/net", O_RDONLY);
if (token->orig_netns_fd == -1) {
log_err("Failed to open(/proc/self/ns/net)");
goto fail;
}
snprintf(nspath, sizeof(nspath), "%s/%s", "/var/run/netns", name);
nsfd = open(nspath, O_RDONLY | O_CLOEXEC);
if (nsfd == -1) {
log_err("Failed to open(%s)", nspath);
goto fail;
}
err = setns(nsfd, CLONE_NEWNET);
close(nsfd);
if (err) {
log_err("Failed to setns(nsfd)");
goto fail;
}
return token;
fail:
if (token->orig_netns_fd != -1)
close(token->orig_netns_fd);
free(token);
return NULL;
}
void close_netns(struct nstoken *token)
{
if (!token)
return;
if (setns(token->orig_netns_fd, CLONE_NEWNET))
log_err("Failed to setns(orig_netns_fd)");
close(token->orig_netns_fd);
free(token);
}
int get_socket_local_port(int sock_fd)
{
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
int err;
err = getsockname(sock_fd, (struct sockaddr *)&addr, &addrlen);
if (err < 0)
return err;
if (addr.ss_family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in *)&addr;
return sin->sin_port;
} else if (addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin = (struct sockaddr_in6 *)&addr;
return sin->sin6_port;
}
return -1;
}
int get_hw_ring_size(char *ifname, struct ethtool_ringparam *ring_param)
{
struct ifreq ifr = {0};
int sockfd, err;
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd < 0)
return -errno;
memcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
ring_param->cmd = ETHTOOL_GRINGPARAM;
ifr.ifr_data = (char *)ring_param;
if (ioctl(sockfd, SIOCETHTOOL, &ifr) < 0) {
err = errno;
close(sockfd);
return -err;
}
close(sockfd);
return 0;
}
int set_hw_ring_size(char *ifname, struct ethtool_ringparam *ring_param)
{
struct ifreq ifr = {0};
int sockfd, err;
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd < 0)
return -errno;
memcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
ring_param->cmd = ETHTOOL_SRINGPARAM;
ifr.ifr_data = (char *)ring_param;
if (ioctl(sockfd, SIOCETHTOOL, &ifr) < 0) {
err = errno;
close(sockfd);
return -err;
}
close(sockfd);
return 0;
}
struct send_recv_arg {
int fd;
uint32_t bytes;
int stop;
};
static void *send_recv_server(void *arg)
{
struct send_recv_arg *a = (struct send_recv_arg *)arg;
ssize_t nr_sent = 0, bytes = 0;
char batch[1500];
int err = 0, fd;
fd = accept(a->fd, NULL, NULL);
while (fd == -1) {
if (errno == EINTR)
continue;
err = -errno;
goto done;
}
if (settimeo(fd, 0)) {
err = -errno;
goto done;
}
while (bytes < a->bytes && !READ_ONCE(a->stop)) {
nr_sent = send(fd, &batch,
MIN(a->bytes - bytes, sizeof(batch)), 0);
if (nr_sent == -1 && errno == EINTR)
continue;
if (nr_sent == -1) {
err = -errno;
break;
}
bytes += nr_sent;
}
if (bytes != a->bytes) {
log_err("send %zd expected %u", bytes, a->bytes);
if (!err)
err = bytes > a->bytes ? -E2BIG : -EINTR;
}
done:
if (fd >= 0)
close(fd);
if (err) {
WRITE_ONCE(a->stop, 1);
return ERR_PTR(err);
}
return NULL;
}
int send_recv_data(int lfd, int fd, uint32_t total_bytes)
{
ssize_t nr_recv = 0, bytes = 0;
struct send_recv_arg arg = {
.fd = lfd,
.bytes = total_bytes,
.stop = 0,
};
pthread_t srv_thread;
void *thread_ret;
char batch[1500];
int err = 0;
err = pthread_create(&srv_thread, NULL, send_recv_server, (void *)&arg);
if (err) {
log_err("Failed to pthread_create");
return err;
}
/* recv total_bytes */
while (bytes < total_bytes && !READ_ONCE(arg.stop)) {
nr_recv = recv(fd, &batch,
MIN(total_bytes - bytes, sizeof(batch)), 0);
if (nr_recv == -1 && errno == EINTR)
continue;
if (nr_recv == -1) {
err = -errno;
break;
}
bytes += nr_recv;
}
if (bytes != total_bytes) {
log_err("recv %zd expected %u", bytes, total_bytes);
if (!err)
err = bytes > total_bytes ? -E2BIG : -EINTR;
}
WRITE_ONCE(arg.stop, 1);
pthread_join(srv_thread, &thread_ret);
if (IS_ERR(thread_ret)) {
log_err("Failed in thread_ret %ld", PTR_ERR(thread_ret));
err = err ? : PTR_ERR(thread_ret);
}
return err;
}
#ifdef TRAFFIC_MONITOR
struct tmonitor_ctx {
pcap_t *pcap;
pcap_dumper_t *dumper;
pthread_t thread;
int wake_fd;
volatile bool done;
char pkt_fname[PATH_MAX];
int pcap_fd;
};
/* Is this packet captured with a Ethernet protocol type? */
static bool is_ethernet(const u_char *packet)
{
u16 arphdr_type;
memcpy(&arphdr_type, packet + 8, 2);
arphdr_type = ntohs(arphdr_type);
/* Except the following cases, the protocol type contains the
* Ethernet protocol type for the packet.
*
* https://www.tcpdump.org/linktypes/LINKTYPE_LINUX_SLL2.html
*/
switch (arphdr_type) {
case 770: /* ARPHRD_FRAD */
case 778: /* ARPHDR_IPGRE */
case 803: /* ARPHRD_IEEE80211_RADIOTAP */
printf("Packet captured: arphdr_type=%d\n", arphdr_type);
return false;
}
return true;
}
static const char * const pkt_types[] = {
"In",
"B", /* Broadcast */
"M", /* Multicast */
"C", /* Captured with the promiscuous mode */
"Out",
};
static const char *pkt_type_str(u16 pkt_type)
{
if (pkt_type < ARRAY_SIZE(pkt_types))
return pkt_types[pkt_type];
return "Unknown";
}
/* Show the information of the transport layer in the packet */
static void show_transport(const u_char *packet, u16 len, u32 ifindex,
const char *src_addr, const char *dst_addr,
u16 proto, bool ipv6, u8 pkt_type)
{
char *ifname, _ifname[IF_NAMESIZE];
const char *transport_str;
u16 src_port, dst_port;
struct udphdr *udp;
struct tcphdr *tcp;
ifname = if_indextoname(ifindex, _ifname);
if (!ifname) {
snprintf(_ifname, sizeof(_ifname), "unknown(%d)", ifindex);
ifname = _ifname;
}
if (proto == IPPROTO_UDP) {
udp = (struct udphdr *)packet;
src_port = ntohs(udp->source);
dst_port = ntohs(udp->dest);
transport_str = "UDP";
} else if (proto == IPPROTO_TCP) {
tcp = (struct tcphdr *)packet;
src_port = ntohs(tcp->source);
dst_port = ntohs(tcp->dest);
transport_str = "TCP";
} else if (proto == IPPROTO_ICMP) {
printf("%-7s %-3s IPv4 %s > %s: ICMP, length %d, type %d, code %d\n",
ifname, pkt_type_str(pkt_type), src_addr, dst_addr, len,
packet[0], packet[1]);
return;
} else if (proto == IPPROTO_ICMPV6) {
printf("%-7s %-3s IPv6 %s > %s: ICMPv6, length %d, type %d, code %d\n",
ifname, pkt_type_str(pkt_type), src_addr, dst_addr, len,
packet[0], packet[1]);
return;
} else {
printf("%-7s %-3s %s %s > %s: protocol %d\n",
ifname, pkt_type_str(pkt_type), ipv6 ? "IPv6" : "IPv4",
src_addr, dst_addr, proto);
return;
}
/* TCP or UDP*/
flockfile(stdout);
if (ipv6)
printf("%-7s %-3s IPv6 %s.%d > %s.%d: %s, length %d",
ifname, pkt_type_str(pkt_type), src_addr, src_port,
dst_addr, dst_port, transport_str, len);
else
printf("%-7s %-3s IPv4 %s:%d > %s:%d: %s, length %d",
ifname, pkt_type_str(pkt_type), src_addr, src_port,
dst_addr, dst_port, transport_str, len);
if (proto == IPPROTO_TCP) {
if (tcp->fin)
printf(", FIN");
if (tcp->syn)
printf(", SYN");
if (tcp->rst)
printf(", RST");
if (tcp->ack)
printf(", ACK");
}
printf("\n");
funlockfile(stdout);
}
static void show_ipv6_packet(const u_char *packet, u32 ifindex, u8 pkt_type)
{
char src_buf[INET6_ADDRSTRLEN], dst_buf[INET6_ADDRSTRLEN];
struct ipv6hdr *pkt = (struct ipv6hdr *)packet;
const char *src, *dst;
u_char proto;
src = inet_ntop(AF_INET6, &pkt->saddr, src_buf, sizeof(src_buf));
if (!src)
src = "<invalid>";
dst = inet_ntop(AF_INET6, &pkt->daddr, dst_buf, sizeof(dst_buf));
if (!dst)
dst = "<invalid>";
proto = pkt->nexthdr;
show_transport(packet + sizeof(struct ipv6hdr),
ntohs(pkt->payload_len),
ifindex, src, dst, proto, true, pkt_type);
}
static void show_ipv4_packet(const u_char *packet, u32 ifindex, u8 pkt_type)
{
char src_buf[INET_ADDRSTRLEN], dst_buf[INET_ADDRSTRLEN];
struct iphdr *pkt = (struct iphdr *)packet;
const char *src, *dst;
u_char proto;
src = inet_ntop(AF_INET, &pkt->saddr, src_buf, sizeof(src_buf));
if (!src)
src = "<invalid>";
dst = inet_ntop(AF_INET, &pkt->daddr, dst_buf, sizeof(dst_buf));
if (!dst)
dst = "<invalid>";
proto = pkt->protocol;
show_transport(packet + sizeof(struct iphdr),
ntohs(pkt->tot_len),
ifindex, src, dst, proto, false, pkt_type);
}
static void *traffic_monitor_thread(void *arg)
{
char *ifname, _ifname[IF_NAMESIZE];
const u_char *packet, *payload;
struct tmonitor_ctx *ctx = arg;
pcap_dumper_t *dumper = ctx->dumper;
int fd = ctx->pcap_fd, nfds, r;
int wake_fd = ctx->wake_fd;
struct pcap_pkthdr header;
pcap_t *pcap = ctx->pcap;
u32 ifindex;
fd_set fds;
u16 proto;
u8 ptype;
nfds = (fd > wake_fd ? fd : wake_fd) + 1;
FD_ZERO(&fds);
while (!ctx->done) {
FD_SET(fd, &fds);
FD_SET(wake_fd, &fds);
r = select(nfds, &fds, NULL, NULL, NULL);
if (!r)
continue;
if (r < 0) {
if (errno == EINTR)
continue;
log_err("Fail to select on pcap fd and wake fd");
break;
}
/* This instance of pcap is non-blocking */
packet = pcap_next(pcap, &header);
if (!packet)
continue;
/* According to the man page of pcap_dump(), first argument
* is the pcap_dumper_t pointer even it's argument type is
* u_char *.
*/
pcap_dump((u_char *)dumper, &header, packet);
/* Not sure what other types of packets look like. Here, we
* parse only Ethernet and compatible packets.
*/
if (!is_ethernet(packet))
continue;
/* Skip SLL2 header
* https://www.tcpdump.org/linktypes/LINKTYPE_LINUX_SLL2.html
*
* Although the document doesn't mention that, the payload
* doesn't include the Ethernet header. The payload starts
* from the first byte of the network layer header.
*/
payload = packet + 20;
memcpy(&proto, packet, 2);
proto = ntohs(proto);
memcpy(&ifindex, packet + 4, 4);
ifindex = ntohl(ifindex);
ptype = packet[10];
if (proto == ETH_P_IPV6) {
show_ipv6_packet(payload, ifindex, ptype);
} else if (proto == ETH_P_IP) {
show_ipv4_packet(payload, ifindex, ptype);
} else {
ifname = if_indextoname(ifindex, _ifname);
if (!ifname) {
snprintf(_ifname, sizeof(_ifname), "unknown(%d)", ifindex);
ifname = _ifname;
}
printf("%-7s %-3s Unknown network protocol type 0x%x\n",
ifname, pkt_type_str(ptype), proto);
}
}
return NULL;
}
/* Prepare the pcap handle to capture packets.
*
* This pcap is non-blocking and immediate mode is enabled to receive
* captured packets as soon as possible. The snaplen is set to 1024 bytes
* to limit the size of captured content. The format of the link-layer
* header is set to DLT_LINUX_SLL2 to enable handling various link-layer
* technologies.
*/
static pcap_t *traffic_monitor_prepare_pcap(void)
{
char errbuf[PCAP_ERRBUF_SIZE];
pcap_t *pcap;
int r;
/* Listen on all NICs in the namespace */
pcap = pcap_create("any", errbuf);
if (!pcap) {
log_err("Failed to open pcap: %s", errbuf);
return NULL;
}
/* Limit the size of the packet (first N bytes) */
r = pcap_set_snaplen(pcap, 1024);
if (r) {
log_err("Failed to set snaplen: %s", pcap_geterr(pcap));
goto error;
}
/* To receive packets as fast as possible */
r = pcap_set_immediate_mode(pcap, 1);
if (r) {
log_err("Failed to set immediate mode: %s", pcap_geterr(pcap));
goto error;
}
r = pcap_setnonblock(pcap, 1, errbuf);
if (r) {
log_err("Failed to set nonblock: %s", errbuf);
goto error;
}
r = pcap_activate(pcap);
if (r) {
log_err("Failed to activate pcap: %s", pcap_geterr(pcap));
goto error;
}
/* Determine the format of the link-layer header */
r = pcap_set_datalink(pcap, DLT_LINUX_SLL2);
if (r) {
log_err("Failed to set datalink: %s", pcap_geterr(pcap));
goto error;
}
return pcap;
error:
pcap_close(pcap);
return NULL;
}
static void encode_test_name(char *buf, size_t len, const char *test_name, const char *subtest_name)
{
char *p;
if (subtest_name)
snprintf(buf, len, "%s__%s", test_name, subtest_name);
else
snprintf(buf, len, "%s", test_name);
while ((p = strchr(buf, '/')))
*p = '_';
while ((p = strchr(buf, ' ')))
*p = '_';
}
#define PCAP_DIR "/tmp/tmon_pcap"
/* Start to monitor the network traffic in the given network namespace.
*
* netns: the name of the network namespace to monitor. If NULL, the
* current network namespace is monitored.
* test_name: the name of the running test.
* subtest_name: the name of the running subtest if there is. It should be
* NULL if it is not a subtest.
*
* This function will start a thread to capture packets going through NICs
* in the give network namespace.
*/
struct tmonitor_ctx *traffic_monitor_start(const char *netns, const char *test_name,
const char *subtest_name)
{
struct nstoken *nstoken = NULL;
struct tmonitor_ctx *ctx;
char test_name_buf[64];
static int tmon_seq;
int r;
if (netns) {
nstoken = open_netns(netns);
if (!nstoken)
return NULL;
}
ctx = malloc(sizeof(*ctx));
if (!ctx) {
log_err("Failed to malloc ctx");
goto fail_ctx;
}
memset(ctx, 0, sizeof(*ctx));
encode_test_name(test_name_buf, sizeof(test_name_buf), test_name, subtest_name);
snprintf(ctx->pkt_fname, sizeof(ctx->pkt_fname),
PCAP_DIR "/packets-%d-%d-%s-%s.log", getpid(), tmon_seq++,
test_name_buf, netns ? netns : "unknown");
r = mkdir(PCAP_DIR, 0755);
if (r && errno != EEXIST) {
log_err("Failed to create " PCAP_DIR);
goto fail_pcap;
}
ctx->pcap = traffic_monitor_prepare_pcap();
if (!ctx->pcap)
goto fail_pcap;
ctx->pcap_fd = pcap_get_selectable_fd(ctx->pcap);
if (ctx->pcap_fd < 0) {
log_err("Failed to get pcap fd");
goto fail_dumper;
}
/* Create a packet file */
ctx->dumper = pcap_dump_open(ctx->pcap, ctx->pkt_fname);
if (!ctx->dumper) {
log_err("Failed to open pcap dump: %s", ctx->pkt_fname);
goto fail_dumper;
}
/* Create an eventfd to wake up the monitor thread */
ctx->wake_fd = eventfd(0, 0);
if (ctx->wake_fd < 0) {
log_err("Failed to create eventfd");
goto fail_eventfd;
}
r = pthread_create(&ctx->thread, NULL, traffic_monitor_thread, ctx);
if (r) {
log_err("Failed to create thread");
goto fail;
}
close_netns(nstoken);
return ctx;
fail:
close(ctx->wake_fd);
fail_eventfd:
pcap_dump_close(ctx->dumper);
unlink(ctx->pkt_fname);
fail_dumper:
pcap_close(ctx->pcap);
fail_pcap:
free(ctx);
fail_ctx:
close_netns(nstoken);
return NULL;
}
static void traffic_monitor_release(struct tmonitor_ctx *ctx)
{
pcap_close(ctx->pcap);
pcap_dump_close(ctx->dumper);
close(ctx->wake_fd);
free(ctx);
}
/* Stop the network traffic monitor.
*
* ctx: the context returned by traffic_monitor_start()
*/
void traffic_monitor_stop(struct tmonitor_ctx *ctx)
{
__u64 w = 1;
if (!ctx)
return;
/* Stop the monitor thread */
ctx->done = true;
/* Wake up the background thread. */
write(ctx->wake_fd, &w, sizeof(w));
pthread_join(ctx->thread, NULL);
printf("Packet file: %s\n", strrchr(ctx->pkt_fname, '/') + 1);
traffic_monitor_release(ctx);
}
#endif /* TRAFFIC_MONITOR */