| // SPDX-License-Identifier: Apache-2.0 OR MIT |
| |
| //! The `Box<T>` type for heap allocation. |
| //! |
| //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of |
| //! heap allocation in Rust. Boxes provide ownership for this allocation, and |
| //! drop their contents when they go out of scope. Boxes also ensure that they |
| //! never allocate more than `isize::MAX` bytes. |
| //! |
| //! # Examples |
| //! |
| //! Move a value from the stack to the heap by creating a [`Box`]: |
| //! |
| //! ``` |
| //! let val: u8 = 5; |
| //! let boxed: Box<u8> = Box::new(val); |
| //! ``` |
| //! |
| //! Move a value from a [`Box`] back to the stack by [dereferencing]: |
| //! |
| //! ``` |
| //! let boxed: Box<u8> = Box::new(5); |
| //! let val: u8 = *boxed; |
| //! ``` |
| //! |
| //! Creating a recursive data structure: |
| //! |
| //! ``` |
| //! #[derive(Debug)] |
| //! enum List<T> { |
| //! Cons(T, Box<List<T>>), |
| //! Nil, |
| //! } |
| //! |
| //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); |
| //! println!("{list:?}"); |
| //! ``` |
| //! |
| //! This will print `Cons(1, Cons(2, Nil))`. |
| //! |
| //! Recursive structures must be boxed, because if the definition of `Cons` |
| //! looked like this: |
| //! |
| //! ```compile_fail,E0072 |
| //! # enum List<T> { |
| //! Cons(T, List<T>), |
| //! # } |
| //! ``` |
| //! |
| //! It wouldn't work. This is because the size of a `List` depends on how many |
| //! elements are in the list, and so we don't know how much memory to allocate |
| //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how |
| //! big `Cons` needs to be. |
| //! |
| //! # Memory layout |
| //! |
| //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for |
| //! its allocation. It is valid to convert both ways between a [`Box`] and a |
| //! raw pointer allocated with the [`Global`] allocator, given that the |
| //! [`Layout`] used with the allocator is correct for the type. More precisely, |
| //! a `value: *mut T` that has been allocated with the [`Global`] allocator |
| //! with `Layout::for_value(&*value)` may be converted into a box using |
| //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut |
| //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the |
| //! [`Global`] allocator with [`Layout::for_value(&*value)`]. |
| //! |
| //! For zero-sized values, the `Box` pointer still has to be [valid] for reads |
| //! and writes and sufficiently aligned. In particular, casting any aligned |
| //! non-zero integer literal to a raw pointer produces a valid pointer, but a |
| //! pointer pointing into previously allocated memory that since got freed is |
| //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot |
| //! be used is to use [`ptr::NonNull::dangling`]. |
| //! |
| //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented |
| //! as a single pointer and is also ABI-compatible with C pointers |
| //! (i.e. the C type `T*`). This means that if you have extern "C" |
| //! Rust functions that will be called from C, you can define those |
| //! Rust functions using `Box<T>` types, and use `T*` as corresponding |
| //! type on the C side. As an example, consider this C header which |
| //! declares functions that create and destroy some kind of `Foo` |
| //! value: |
| //! |
| //! ```c |
| //! /* C header */ |
| //! |
| //! /* Returns ownership to the caller */ |
| //! struct Foo* foo_new(void); |
| //! |
| //! /* Takes ownership from the caller; no-op when invoked with null */ |
| //! void foo_delete(struct Foo*); |
| //! ``` |
| //! |
| //! These two functions might be implemented in Rust as follows. Here, the |
| //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures |
| //! the ownership constraints. Note also that the nullable argument to |
| //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` |
| //! cannot be null. |
| //! |
| //! ``` |
| //! #[repr(C)] |
| //! pub struct Foo; |
| //! |
| //! #[no_mangle] |
| //! pub extern "C" fn foo_new() -> Box<Foo> { |
| //! Box::new(Foo) |
| //! } |
| //! |
| //! #[no_mangle] |
| //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} |
| //! ``` |
| //! |
| //! Even though `Box<T>` has the same representation and C ABI as a C pointer, |
| //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` |
| //! and expect things to work. `Box<T>` values will always be fully aligned, |
| //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to |
| //! free the value with the global allocator. In general, the best practice |
| //! is to only use `Box<T>` for pointers that originated from the global |
| //! allocator. |
| //! |
| //! **Important.** At least at present, you should avoid using |
| //! `Box<T>` types for functions that are defined in C but invoked |
| //! from Rust. In those cases, you should directly mirror the C types |
| //! as closely as possible. Using types like `Box<T>` where the C |
| //! definition is just using `T*` can lead to undefined behavior, as |
| //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. |
| //! |
| //! # Considerations for unsafe code |
| //! |
| //! **Warning: This section is not normative and is subject to change, possibly |
| //! being relaxed in the future! It is a simplified summary of the rules |
| //! currently implemented in the compiler.** |
| //! |
| //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` |
| //! asserts uniqueness over its content. Using raw pointers derived from a box |
| //! after that box has been mutated through, moved or borrowed as `&mut T` |
| //! is not allowed. For more guidance on working with box from unsafe code, see |
| //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. |
| //! |
| //! |
| //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 |
| //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 |
| //! [dereferencing]: core::ops::Deref |
| //! [`Box::<T>::from_raw(value)`]: Box::from_raw |
| //! [`Global`]: crate::alloc::Global |
| //! [`Layout`]: crate::alloc::Layout |
| //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value |
| //! [valid]: ptr#safety |
| |
| #![stable(feature = "rust1", since = "1.0.0")] |
| |
| use core::any::Any; |
| use core::async_iter::AsyncIterator; |
| use core::borrow; |
| use core::cmp::Ordering; |
| use core::error::Error; |
| use core::fmt; |
| use core::future::Future; |
| use core::hash::{Hash, Hasher}; |
| use core::iter::FusedIterator; |
| use core::marker::Tuple; |
| use core::marker::Unsize; |
| use core::mem; |
| use core::ops::{ |
| CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, |
| }; |
| use core::pin::Pin; |
| use core::ptr::{self, Unique}; |
| use core::task::{Context, Poll}; |
| |
| #[cfg(not(no_global_oom_handling))] |
| use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; |
| use crate::alloc::{AllocError, Allocator, Global, Layout}; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::borrow::Cow; |
| use crate::raw_vec::RawVec; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::str::from_boxed_utf8_unchecked; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::string::String; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::vec::Vec; |
| |
| #[cfg(not(no_thin))] |
| #[unstable(feature = "thin_box", issue = "92791")] |
| pub use thin::ThinBox; |
| |
| #[cfg(not(no_thin))] |
| mod thin; |
| |
| /// A pointer type that uniquely owns a heap allocation of type `T`. |
| /// |
| /// See the [module-level documentation](../../std/boxed/index.html) for more. |
| #[lang = "owned_box"] |
| #[fundamental] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| // The declaration of the `Box` struct must be kept in sync with the |
| // `alloc::alloc::box_free` function or ICEs will happen. See the comment |
| // on `box_free` for more details. |
| pub struct Box< |
| T: ?Sized, |
| #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
| >(Unique<T>, A); |
| |
| impl<T> Box<T> { |
| /// Allocates memory on the heap and then places `x` into it. |
| /// |
| /// This doesn't actually allocate if `T` is zero-sized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let five = Box::new(5); |
| /// ``` |
| #[cfg(all(not(no_global_oom_handling)))] |
| #[inline(always)] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[must_use] |
| #[rustc_diagnostic_item = "box_new"] |
| pub fn new(x: T) -> Self { |
| #[rustc_box] |
| Box::new(x) |
| } |
| |
| /// Constructs a new box with uninitialized contents. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut five = Box::<u32>::new_uninit(); |
| /// |
| /// let five = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5) |
| /// ``` |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| #[inline] |
| pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { |
| Self::new_uninit_in(Global) |
| } |
| |
| /// Constructs a new `Box` with uninitialized contents, with the memory |
| /// being filled with `0` bytes. |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let zero = Box::<u32>::new_zeroed(); |
| /// let zero = unsafe { zero.assume_init() }; |
| /// |
| /// assert_eq!(*zero, 0) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { |
| Self::new_zeroed_in(Global) |
| } |
| |
| /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| /// `x` will be pinned in memory and unable to be moved. |
| /// |
| /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` |
| /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using |
| /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to |
| /// construct a (pinned) `Box` in a different way than with [`Box::new`]. |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "pin", since = "1.33.0")] |
| #[must_use] |
| #[inline(always)] |
| pub fn pin(x: T) -> Pin<Box<T>> { |
| Box::new(x).into() |
| } |
| |
| /// Allocates memory on the heap then places `x` into it, |
| /// returning an error if the allocation fails |
| /// |
| /// This doesn't actually allocate if `T` is zero-sized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// let five = Box::try_new(5)?; |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[inline] |
| pub fn try_new(x: T) -> Result<Self, AllocError> { |
| Self::try_new_in(x, Global) |
| } |
| |
| /// Constructs a new box with uninitialized contents on the heap, |
| /// returning an error if the allocation fails |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// let mut five = Box::<u32>::try_new_uninit()?; |
| /// |
| /// let five = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5); |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
| Box::try_new_uninit_in(Global) |
| } |
| |
| /// Constructs a new `Box` with uninitialized contents, with the memory |
| /// being filled with `0` bytes on the heap |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// let zero = Box::<u32>::try_new_zeroed()?; |
| /// let zero = unsafe { zero.assume_init() }; |
| /// |
| /// assert_eq!(*zero, 0); |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
| Box::try_new_zeroed_in(Global) |
| } |
| } |
| |
| impl<T, A: Allocator> Box<T, A> { |
| /// Allocates memory in the given allocator then places `x` into it. |
| /// |
| /// This doesn't actually allocate if `T` is zero-sized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let five = Box::new_in(5, System); |
| /// ``` |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[must_use] |
| #[inline] |
| pub fn new_in(x: T, alloc: A) -> Self |
| where |
| A: Allocator, |
| { |
| let mut boxed = Self::new_uninit_in(alloc); |
| unsafe { |
| boxed.as_mut_ptr().write(x); |
| boxed.assume_init() |
| } |
| } |
| |
| /// Allocates memory in the given allocator then places `x` into it, |
| /// returning an error if the allocation fails |
| /// |
| /// This doesn't actually allocate if `T` is zero-sized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let five = Box::try_new_in(5, System)?; |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[inline] |
| pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> |
| where |
| A: Allocator, |
| { |
| let mut boxed = Self::try_new_uninit_in(alloc)?; |
| unsafe { |
| boxed.as_mut_ptr().write(x); |
| Ok(boxed.assume_init()) |
| } |
| } |
| |
| /// Constructs a new box with uninitialized contents in the provided allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let mut five = Box::<u32, _>::new_uninit_in(System); |
| /// |
| /// let five = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5) |
| /// ``` |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[cfg(not(no_global_oom_handling))] |
| #[must_use] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
| where |
| A: Allocator, |
| { |
| let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| // That would make code size bigger. |
| match Box::try_new_uninit_in(alloc) { |
| Ok(m) => m, |
| Err(_) => handle_alloc_error(layout), |
| } |
| } |
| |
| /// Constructs a new box with uninitialized contents in the provided allocator, |
| /// returning an error if the allocation fails |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; |
| /// |
| /// let five = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5); |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
| where |
| A: Allocator, |
| { |
| let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| let ptr = alloc.allocate(layout)?.cast(); |
| unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
| } |
| |
| /// Constructs a new `Box` with uninitialized contents, with the memory |
| /// being filled with `0` bytes in the provided allocator. |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let zero = Box::<u32, _>::new_zeroed_in(System); |
| /// let zero = unsafe { zero.assume_init() }; |
| /// |
| /// assert_eq!(*zero, 0) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[cfg(not(no_global_oom_handling))] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
| where |
| A: Allocator, |
| { |
| let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| // That would make code size bigger. |
| match Box::try_new_zeroed_in(alloc) { |
| Ok(m) => m, |
| Err(_) => handle_alloc_error(layout), |
| } |
| } |
| |
| /// Constructs a new `Box` with uninitialized contents, with the memory |
| /// being filled with `0` bytes in the provided allocator, |
| /// returning an error if the allocation fails, |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; |
| /// let zero = unsafe { zero.assume_init() }; |
| /// |
| /// assert_eq!(*zero, 0); |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
| where |
| A: Allocator, |
| { |
| let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| let ptr = alloc.allocate_zeroed(layout)?.cast(); |
| unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
| } |
| |
| /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then |
| /// `x` will be pinned in memory and unable to be moved. |
| /// |
| /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` |
| /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using |
| /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to |
| /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[must_use] |
| #[inline(always)] |
| pub fn pin_in(x: T, alloc: A) -> Pin<Self> |
| where |
| A: 'static + Allocator, |
| { |
| Self::into_pin(Self::new_in(x, alloc)) |
| } |
| |
| /// Converts a `Box<T>` into a `Box<[T]>` |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| #[unstable(feature = "box_into_boxed_slice", issue = "71582")] |
| pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { |
| let (raw, alloc) = Box::into_raw_with_allocator(boxed); |
| unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } |
| } |
| |
| /// Consumes the `Box`, returning the wrapped value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(box_into_inner)] |
| /// |
| /// let c = Box::new(5); |
| /// |
| /// assert_eq!(Box::into_inner(c), 5); |
| /// ``` |
| #[unstable(feature = "box_into_inner", issue = "80437")] |
| #[inline] |
| pub fn into_inner(boxed: Self) -> T { |
| *boxed |
| } |
| } |
| |
| impl<T> Box<[T]> { |
| /// Constructs a new boxed slice with uninitialized contents. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| /// |
| /// let values = unsafe { |
| /// // Deferred initialization: |
| /// values[0].as_mut_ptr().write(1); |
| /// values[1].as_mut_ptr().write(2); |
| /// values[2].as_mut_ptr().write(3); |
| /// |
| /// values.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*values, [1, 2, 3]) |
| /// ``` |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| unsafe { RawVec::with_capacity(len).into_box(len) } |
| } |
| |
| /// Constructs a new boxed slice with uninitialized contents, with the memory |
| /// being filled with `0` bytes. |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let values = Box::<[u32]>::new_zeroed_slice(3); |
| /// let values = unsafe { values.assume_init() }; |
| /// |
| /// assert_eq!(*values, [0, 0, 0]) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } |
| } |
| |
| /// Constructs a new boxed slice with uninitialized contents. Returns an error if |
| /// the allocation fails |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; |
| /// let values = unsafe { |
| /// // Deferred initialization: |
| /// values[0].as_mut_ptr().write(1); |
| /// values[1].as_mut_ptr().write(2); |
| /// values[2].as_mut_ptr().write(3); |
| /// values.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*values, [1, 2, 3]); |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[inline] |
| pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
| unsafe { |
| let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| Ok(l) => l, |
| Err(_) => return Err(AllocError), |
| }; |
| let ptr = Global.allocate(layout)?; |
| Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) |
| } |
| } |
| |
| /// Constructs a new boxed slice with uninitialized contents, with the memory |
| /// being filled with `0` bytes. Returns an error if the allocation fails |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; |
| /// let values = unsafe { values.assume_init() }; |
| /// |
| /// assert_eq!(*values, [0, 0, 0]); |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[inline] |
| pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
| unsafe { |
| let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| Ok(l) => l, |
| Err(_) => return Err(AllocError), |
| }; |
| let ptr = Global.allocate_zeroed(layout)?; |
| Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) |
| } |
| } |
| } |
| |
| impl<T, A: Allocator> Box<[T], A> { |
| /// Constructs a new boxed slice with uninitialized contents in the provided allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); |
| /// |
| /// let values = unsafe { |
| /// // Deferred initialization: |
| /// values[0].as_mut_ptr().write(1); |
| /// values[1].as_mut_ptr().write(2); |
| /// values[2].as_mut_ptr().write(3); |
| /// |
| /// values.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*values, [1, 2, 3]) |
| /// ``` |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
| unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } |
| } |
| |
| /// Constructs a new boxed slice with uninitialized contents in the provided allocator, |
| /// with the memory being filled with `0` bytes. |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api, new_uninit)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); |
| /// let values = unsafe { values.assume_init() }; |
| /// |
| /// assert_eq!(*values, [0, 0, 0]) |
| /// ``` |
| /// |
| /// [zeroed]: mem::MaybeUninit::zeroed |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| // #[unstable(feature = "new_uninit", issue = "63291")] |
| #[must_use] |
| pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
| unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } |
| } |
| } |
| |
| impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { |
| /// Converts to `Box<T, A>`. |
| /// |
| /// # Safety |
| /// |
| /// As with [`MaybeUninit::assume_init`], |
| /// it is up to the caller to guarantee that the value |
| /// really is in an initialized state. |
| /// Calling this when the content is not yet fully initialized |
| /// causes immediate undefined behavior. |
| /// |
| /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut five = Box::<u32>::new_uninit(); |
| /// |
| /// let five: Box<u32> = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5) |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub unsafe fn assume_init(self) -> Box<T, A> { |
| let (raw, alloc) = Box::into_raw_with_allocator(self); |
| unsafe { Box::from_raw_in(raw as *mut T, alloc) } |
| } |
| |
| /// Writes the value and converts to `Box<T, A>`. |
| /// |
| /// This method converts the box similarly to [`Box::assume_init`] but |
| /// writes `value` into it before conversion thus guaranteeing safety. |
| /// In some scenarios use of this method may improve performance because |
| /// the compiler may be able to optimize copying from stack. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let big_box = Box::<[usize; 1024]>::new_uninit(); |
| /// |
| /// let mut array = [0; 1024]; |
| /// for (i, place) in array.iter_mut().enumerate() { |
| /// *place = i; |
| /// } |
| /// |
| /// // The optimizer may be able to elide this copy, so previous code writes |
| /// // to heap directly. |
| /// let big_box = Box::write(big_box, array); |
| /// |
| /// for (i, x) in big_box.iter().enumerate() { |
| /// assert_eq!(*x, i); |
| /// } |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub fn write(mut boxed: Self, value: T) -> Box<T, A> { |
| unsafe { |
| (*boxed).write(value); |
| boxed.assume_init() |
| } |
| } |
| } |
| |
| impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { |
| /// Converts to `Box<[T], A>`. |
| /// |
| /// # Safety |
| /// |
| /// As with [`MaybeUninit::assume_init`], |
| /// it is up to the caller to guarantee that the values |
| /// really are in an initialized state. |
| /// Calling this when the content is not yet fully initialized |
| /// causes immediate undefined behavior. |
| /// |
| /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| /// |
| /// let values = unsafe { |
| /// // Deferred initialization: |
| /// values[0].as_mut_ptr().write(1); |
| /// values[1].as_mut_ptr().write(2); |
| /// values[2].as_mut_ptr().write(3); |
| /// |
| /// values.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*values, [1, 2, 3]) |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub unsafe fn assume_init(self) -> Box<[T], A> { |
| let (raw, alloc) = Box::into_raw_with_allocator(self); |
| unsafe { Box::from_raw_in(raw as *mut [T], alloc) } |
| } |
| } |
| |
| impl<T: ?Sized> Box<T> { |
| /// Constructs a box from a raw pointer. |
| /// |
| /// After calling this function, the raw pointer is owned by the |
| /// resulting `Box`. Specifically, the `Box` destructor will call |
| /// the destructor of `T` and free the allocated memory. For this |
| /// to be safe, the memory must have been allocated in accordance |
| /// with the [memory layout] used by `Box` . |
| /// |
| /// # Safety |
| /// |
| /// This function is unsafe because improper use may lead to |
| /// memory problems. For example, a double-free may occur if the |
| /// function is called twice on the same raw pointer. |
| /// |
| /// The safety conditions are described in the [memory layout] section. |
| /// |
| /// # Examples |
| /// |
| /// Recreate a `Box` which was previously converted to a raw pointer |
| /// using [`Box::into_raw`]: |
| /// ``` |
| /// let x = Box::new(5); |
| /// let ptr = Box::into_raw(x); |
| /// let x = unsafe { Box::from_raw(ptr) }; |
| /// ``` |
| /// Manually create a `Box` from scratch by using the global allocator: |
| /// ``` |
| /// use std::alloc::{alloc, Layout}; |
| /// |
| /// unsafe { |
| /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; |
| /// // In general .write is required to avoid attempting to destruct |
| /// // the (uninitialized) previous contents of `ptr`, though for this |
| /// // simple example `*ptr = 5` would have worked as well. |
| /// ptr.write(5); |
| /// let x = Box::from_raw(ptr); |
| /// } |
| /// ``` |
| /// |
| /// [memory layout]: self#memory-layout |
| /// [`Layout`]: crate::Layout |
| #[stable(feature = "box_raw", since = "1.4.0")] |
| #[inline] |
| #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"] |
| pub unsafe fn from_raw(raw: *mut T) -> Self { |
| unsafe { Self::from_raw_in(raw, Global) } |
| } |
| } |
| |
| impl<T: ?Sized, A: Allocator> Box<T, A> { |
| /// Constructs a box from a raw pointer in the given allocator. |
| /// |
| /// After calling this function, the raw pointer is owned by the |
| /// resulting `Box`. Specifically, the `Box` destructor will call |
| /// the destructor of `T` and free the allocated memory. For this |
| /// to be safe, the memory must have been allocated in accordance |
| /// with the [memory layout] used by `Box` . |
| /// |
| /// # Safety |
| /// |
| /// This function is unsafe because improper use may lead to |
| /// memory problems. For example, a double-free may occur if the |
| /// function is called twice on the same raw pointer. |
| /// |
| /// |
| /// # Examples |
| /// |
| /// Recreate a `Box` which was previously converted to a raw pointer |
| /// using [`Box::into_raw_with_allocator`]: |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let x = Box::new_in(5, System); |
| /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
| /// ``` |
| /// Manually create a `Box` from scratch by using the system allocator: |
| /// ``` |
| /// #![feature(allocator_api, slice_ptr_get)] |
| /// |
| /// use std::alloc::{Allocator, Layout, System}; |
| /// |
| /// unsafe { |
| /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; |
| /// // In general .write is required to avoid attempting to destruct |
| /// // the (uninitialized) previous contents of `ptr`, though for this |
| /// // simple example `*ptr = 5` would have worked as well. |
| /// ptr.write(5); |
| /// let x = Box::from_raw_in(ptr, System); |
| /// } |
| /// # Ok::<(), std::alloc::AllocError>(()) |
| /// ``` |
| /// |
| /// [memory layout]: self#memory-layout |
| /// [`Layout`]: crate::Layout |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")] |
| #[inline] |
| pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { |
| Box(unsafe { Unique::new_unchecked(raw) }, alloc) |
| } |
| |
| /// Consumes the `Box`, returning a wrapped raw pointer. |
| /// |
| /// The pointer will be properly aligned and non-null. |
| /// |
| /// After calling this function, the caller is responsible for the |
| /// memory previously managed by the `Box`. In particular, the |
| /// caller should properly destroy `T` and release the memory, taking |
| /// into account the [memory layout] used by `Box`. The easiest way to |
| /// do this is to convert the raw pointer back into a `Box` with the |
| /// [`Box::from_raw`] function, allowing the `Box` destructor to perform |
| /// the cleanup. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| /// |
| /// # Examples |
| /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] |
| /// for automatic cleanup: |
| /// ``` |
| /// let x = Box::new(String::from("Hello")); |
| /// let ptr = Box::into_raw(x); |
| /// let x = unsafe { Box::from_raw(ptr) }; |
| /// ``` |
| /// Manual cleanup by explicitly running the destructor and deallocating |
| /// the memory: |
| /// ``` |
| /// use std::alloc::{dealloc, Layout}; |
| /// use std::ptr; |
| /// |
| /// let x = Box::new(String::from("Hello")); |
| /// let p = Box::into_raw(x); |
| /// unsafe { |
| /// ptr::drop_in_place(p); |
| /// dealloc(p as *mut u8, Layout::new::<String>()); |
| /// } |
| /// ``` |
| /// |
| /// [memory layout]: self#memory-layout |
| #[stable(feature = "box_raw", since = "1.4.0")] |
| #[inline] |
| pub fn into_raw(b: Self) -> *mut T { |
| Self::into_raw_with_allocator(b).0 |
| } |
| |
| /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. |
| /// |
| /// The pointer will be properly aligned and non-null. |
| /// |
| /// After calling this function, the caller is responsible for the |
| /// memory previously managed by the `Box`. In particular, the |
| /// caller should properly destroy `T` and release the memory, taking |
| /// into account the [memory layout] used by `Box`. The easiest way to |
| /// do this is to convert the raw pointer back into a `Box` with the |
| /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform |
| /// the cleanup. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| /// |
| /// # Examples |
| /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] |
| /// for automatic cleanup: |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let x = Box::new_in(String::from("Hello"), System); |
| /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
| /// ``` |
| /// Manual cleanup by explicitly running the destructor and deallocating |
| /// the memory: |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// use std::alloc::{Allocator, Layout, System}; |
| /// use std::ptr::{self, NonNull}; |
| /// |
| /// let x = Box::new_in(String::from("Hello"), System); |
| /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| /// unsafe { |
| /// ptr::drop_in_place(ptr); |
| /// let non_null = NonNull::new_unchecked(ptr); |
| /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); |
| /// } |
| /// ``` |
| /// |
| /// [memory layout]: self#memory-layout |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[inline] |
| pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { |
| let (leaked, alloc) = Box::into_unique(b); |
| (leaked.as_ptr(), alloc) |
| } |
| |
| #[unstable( |
| feature = "ptr_internals", |
| issue = "none", |
| reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" |
| )] |
| #[inline] |
| #[doc(hidden)] |
| pub fn into_unique(b: Self) -> (Unique<T>, A) { |
| // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a |
| // raw pointer for the type system. Turning it directly into a raw pointer would not be |
| // recognized as "releasing" the unique pointer to permit aliased raw accesses, |
| // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer |
| // behaves correctly. |
| let alloc = unsafe { ptr::read(&b.1) }; |
| (Unique::from(Box::leak(b)), alloc) |
| } |
| |
| /// Returns a reference to the underlying allocator. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")] |
| #[inline] |
| pub const fn allocator(b: &Self) -> &A { |
| &b.1 |
| } |
| |
| /// Consumes and leaks the `Box`, returning a mutable reference, |
| /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime |
| /// `'a`. If the type has only static references, or none at all, then this |
| /// may be chosen to be `'static`. |
| /// |
| /// This function is mainly useful for data that lives for the remainder of |
| /// the program's life. Dropping the returned reference will cause a memory |
| /// leak. If this is not acceptable, the reference should first be wrapped |
| /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can |
| /// then be dropped which will properly destroy `T` and release the |
| /// allocated memory. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::leak(b)` instead of `b.leak()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| /// |
| /// # Examples |
| /// |
| /// Simple usage: |
| /// |
| /// ``` |
| /// let x = Box::new(41); |
| /// let static_ref: &'static mut usize = Box::leak(x); |
| /// *static_ref += 1; |
| /// assert_eq!(*static_ref, 42); |
| /// ``` |
| /// |
| /// Unsized data: |
| /// |
| /// ``` |
| /// let x = vec![1, 2, 3].into_boxed_slice(); |
| /// let static_ref = Box::leak(x); |
| /// static_ref[0] = 4; |
| /// assert_eq!(*static_ref, [4, 2, 3]); |
| /// ``` |
| #[stable(feature = "box_leak", since = "1.26.0")] |
| #[inline] |
| pub fn leak<'a>(b: Self) -> &'a mut T |
| where |
| A: 'a, |
| { |
| unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } |
| } |
| |
| /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| /// `*boxed` will be pinned in memory and unable to be moved. |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| /// |
| /// This is also available via [`From`]. |
| /// |
| /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> |
| /// can also be written more concisely using <code>[Box::pin]\(x)</code>. |
| /// This `into_pin` method is useful if you already have a `Box<T>`, or you are |
| /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. |
| /// |
| /// # Notes |
| /// |
| /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, |
| /// as it'll introduce an ambiguity when calling `Pin::from`. |
| /// A demonstration of such a poor impl is shown below. |
| /// |
| /// ```compile_fail |
| /// # use std::pin::Pin; |
| /// struct Foo; // A type defined in this crate. |
| /// impl From<Box<()>> for Pin<Foo> { |
| /// fn from(_: Box<()>) -> Pin<Foo> { |
| /// Pin::new(Foo) |
| /// } |
| /// } |
| /// |
| /// let foo = Box::new(()); |
| /// let bar = Pin::from(foo); |
| /// ``` |
| #[stable(feature = "box_into_pin", since = "1.63.0")] |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")] |
| pub const fn into_pin(boxed: Self) -> Pin<Self> |
| where |
| A: 'static, |
| { |
| // It's not possible to move or replace the insides of a `Pin<Box<T>>` |
| // when `T: !Unpin`, so it's safe to pin it directly without any |
| // additional requirements. |
| unsafe { Pin::new_unchecked(boxed) } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { |
| fn drop(&mut self) { |
| // FIXME: Do nothing, drop is currently performed by compiler. |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: Default> Default for Box<T> { |
| /// Creates a `Box<T>`, with the `Default` value for T. |
| #[inline] |
| fn default() -> Self { |
| Box::new(T::default()) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T> Default for Box<[T]> { |
| #[inline] |
| fn default() -> Self { |
| let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); |
| Box(ptr, Global) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "default_box_extra", since = "1.17.0")] |
| impl Default for Box<str> { |
| #[inline] |
| fn default() -> Self { |
| // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. |
| let ptr: Unique<str> = unsafe { |
| let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); |
| Unique::new_unchecked(bytes.as_ptr() as *mut str) |
| }; |
| Box(ptr, Global) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { |
| /// Returns a new box with a `clone()` of this box's contents. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let x = Box::new(5); |
| /// let y = x.clone(); |
| /// |
| /// // The value is the same |
| /// assert_eq!(x, y); |
| /// |
| /// // But they are unique objects |
| /// assert_ne!(&*x as *const i32, &*y as *const i32); |
| /// ``` |
| #[inline] |
| fn clone(&self) -> Self { |
| // Pre-allocate memory to allow writing the cloned value directly. |
| let mut boxed = Self::new_uninit_in(self.1.clone()); |
| unsafe { |
| (**self).write_clone_into_raw(boxed.as_mut_ptr()); |
| boxed.assume_init() |
| } |
| } |
| |
| /// Copies `source`'s contents into `self` without creating a new allocation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let x = Box::new(5); |
| /// let mut y = Box::new(10); |
| /// let yp: *const i32 = &*y; |
| /// |
| /// y.clone_from(&x); |
| /// |
| /// // The value is the same |
| /// assert_eq!(x, y); |
| /// |
| /// // And no allocation occurred |
| /// assert_eq!(yp, &*y); |
| /// ``` |
| #[inline] |
| fn clone_from(&mut self, source: &Self) { |
| (**self).clone_from(&(**source)); |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_slice_clone", since = "1.3.0")] |
| impl Clone for Box<str> { |
| fn clone(&self) -> Self { |
| // this makes a copy of the data |
| let buf: Box<[u8]> = self.as_bytes().into(); |
| unsafe { from_boxed_utf8_unchecked(buf) } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| PartialEq::eq(&**self, &**other) |
| } |
| #[inline] |
| fn ne(&self, other: &Self) -> bool { |
| PartialEq::ne(&**self, &**other) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { |
| #[inline] |
| fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| PartialOrd::partial_cmp(&**self, &**other) |
| } |
| #[inline] |
| fn lt(&self, other: &Self) -> bool { |
| PartialOrd::lt(&**self, &**other) |
| } |
| #[inline] |
| fn le(&self, other: &Self) -> bool { |
| PartialOrd::le(&**self, &**other) |
| } |
| #[inline] |
| fn ge(&self, other: &Self) -> bool { |
| PartialOrd::ge(&**self, &**other) |
| } |
| #[inline] |
| fn gt(&self, other: &Self) -> bool { |
| PartialOrd::gt(&**self, &**other) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { |
| #[inline] |
| fn cmp(&self, other: &Self) -> Ordering { |
| Ord::cmp(&**self, &**other) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| (**self).hash(state); |
| } |
| } |
| |
| #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] |
| impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { |
| fn finish(&self) -> u64 { |
| (**self).finish() |
| } |
| fn write(&mut self, bytes: &[u8]) { |
| (**self).write(bytes) |
| } |
| fn write_u8(&mut self, i: u8) { |
| (**self).write_u8(i) |
| } |
| fn write_u16(&mut self, i: u16) { |
| (**self).write_u16(i) |
| } |
| fn write_u32(&mut self, i: u32) { |
| (**self).write_u32(i) |
| } |
| fn write_u64(&mut self, i: u64) { |
| (**self).write_u64(i) |
| } |
| fn write_u128(&mut self, i: u128) { |
| (**self).write_u128(i) |
| } |
| fn write_usize(&mut self, i: usize) { |
| (**self).write_usize(i) |
| } |
| fn write_i8(&mut self, i: i8) { |
| (**self).write_i8(i) |
| } |
| fn write_i16(&mut self, i: i16) { |
| (**self).write_i16(i) |
| } |
| fn write_i32(&mut self, i: i32) { |
| (**self).write_i32(i) |
| } |
| fn write_i64(&mut self, i: i64) { |
| (**self).write_i64(i) |
| } |
| fn write_i128(&mut self, i: i128) { |
| (**self).write_i128(i) |
| } |
| fn write_isize(&mut self, i: isize) { |
| (**self).write_isize(i) |
| } |
| fn write_length_prefix(&mut self, len: usize) { |
| (**self).write_length_prefix(len) |
| } |
| fn write_str(&mut self, s: &str) { |
| (**self).write_str(s) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "from_for_ptrs", since = "1.6.0")] |
| impl<T> From<T> for Box<T> { |
| /// Converts a `T` into a `Box<T>` |
| /// |
| /// The conversion allocates on the heap and moves `t` |
| /// from the stack into it. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// let x = 5; |
| /// let boxed = Box::new(5); |
| /// |
| /// assert_eq!(Box::from(x), boxed); |
| /// ``` |
| fn from(t: T) -> Self { |
| Box::new(t) |
| } |
| } |
| |
| #[stable(feature = "pin", since = "1.33.0")] |
| impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>> |
| where |
| A: 'static, |
| { |
| /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| /// `*boxed` will be pinned in memory and unable to be moved. |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| /// |
| /// This is also available via [`Box::into_pin`]. |
| /// |
| /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> |
| /// can also be written more concisely using <code>[Box::pin]\(x)</code>. |
| /// This `From` implementation is useful if you already have a `Box<T>`, or you are |
| /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. |
| fn from(boxed: Box<T, A>) -> Self { |
| Box::into_pin(boxed) |
| } |
| } |
| |
| /// Specialization trait used for `From<&[T]>`. |
| #[cfg(not(no_global_oom_handling))] |
| trait BoxFromSlice<T> { |
| fn from_slice(slice: &[T]) -> Self; |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| impl<T: Clone> BoxFromSlice<T> for Box<[T]> { |
| #[inline] |
| default fn from_slice(slice: &[T]) -> Self { |
| slice.to_vec().into_boxed_slice() |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| impl<T: Copy> BoxFromSlice<T> for Box<[T]> { |
| #[inline] |
| fn from_slice(slice: &[T]) -> Self { |
| let len = slice.len(); |
| let buf = RawVec::with_capacity(len); |
| unsafe { |
| ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); |
| buf.into_box(slice.len()).assume_init() |
| } |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_from_slice", since = "1.17.0")] |
| impl<T: Clone> From<&[T]> for Box<[T]> { |
| /// Converts a `&[T]` into a `Box<[T]>` |
| /// |
| /// This conversion allocates on the heap |
| /// and performs a copy of `slice` and its contents. |
| /// |
| /// # Examples |
| /// ```rust |
| /// // create a &[u8] which will be used to create a Box<[u8]> |
| /// let slice: &[u8] = &[104, 101, 108, 108, 111]; |
| /// let boxed_slice: Box<[u8]> = Box::from(slice); |
| /// |
| /// println!("{boxed_slice:?}"); |
| /// ``` |
| #[inline] |
| fn from(slice: &[T]) -> Box<[T]> { |
| <Self as BoxFromSlice<T>>::from_slice(slice) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_from_cow", since = "1.45.0")] |
| impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> { |
| /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` |
| /// |
| /// When `cow` is the `Cow::Borrowed` variant, this |
| /// conversion allocates on the heap and copies the |
| /// underlying slice. Otherwise, it will try to reuse the owned |
| /// `Vec`'s allocation. |
| #[inline] |
| fn from(cow: Cow<'_, [T]>) -> Box<[T]> { |
| match cow { |
| Cow::Borrowed(slice) => Box::from(slice), |
| Cow::Owned(slice) => Box::from(slice), |
| } |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_from_slice", since = "1.17.0")] |
| impl From<&str> for Box<str> { |
| /// Converts a `&str` into a `Box<str>` |
| /// |
| /// This conversion allocates on the heap |
| /// and performs a copy of `s`. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// let boxed: Box<str> = Box::from("hello"); |
| /// println!("{boxed}"); |
| /// ``` |
| #[inline] |
| fn from(s: &str) -> Box<str> { |
| unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_from_cow", since = "1.45.0")] |
| impl From<Cow<'_, str>> for Box<str> { |
| /// Converts a `Cow<'_, str>` into a `Box<str>` |
| /// |
| /// When `cow` is the `Cow::Borrowed` variant, this |
| /// conversion allocates on the heap and copies the |
| /// underlying `str`. Otherwise, it will try to reuse the owned |
| /// `String`'s allocation. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use std::borrow::Cow; |
| /// |
| /// let unboxed = Cow::Borrowed("hello"); |
| /// let boxed: Box<str> = Box::from(unboxed); |
| /// println!("{boxed}"); |
| /// ``` |
| /// |
| /// ```rust |
| /// # use std::borrow::Cow; |
| /// let unboxed = Cow::Owned("hello".to_string()); |
| /// let boxed: Box<str> = Box::from(unboxed); |
| /// println!("{boxed}"); |
| /// ``` |
| #[inline] |
| fn from(cow: Cow<'_, str>) -> Box<str> { |
| match cow { |
| Cow::Borrowed(s) => Box::from(s), |
| Cow::Owned(s) => Box::from(s), |
| } |
| } |
| } |
| |
| #[stable(feature = "boxed_str_conv", since = "1.19.0")] |
| impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { |
| /// Converts a `Box<str>` into a `Box<[u8]>` |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| /// |
| /// # Examples |
| /// ```rust |
| /// // create a Box<str> which will be used to create a Box<[u8]> |
| /// let boxed: Box<str> = Box::from("hello"); |
| /// let boxed_str: Box<[u8]> = Box::from(boxed); |
| /// |
| /// // create a &[u8] which will be used to create a Box<[u8]> |
| /// let slice: &[u8] = &[104, 101, 108, 108, 111]; |
| /// let boxed_slice = Box::from(slice); |
| /// |
| /// assert_eq!(boxed_slice, boxed_str); |
| /// ``` |
| #[inline] |
| fn from(s: Box<str, A>) -> Self { |
| let (raw, alloc) = Box::into_raw_with_allocator(s); |
| unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_from_array", since = "1.45.0")] |
| impl<T, const N: usize> From<[T; N]> for Box<[T]> { |
| /// Converts a `[T; N]` into a `Box<[T]>` |
| /// |
| /// This conversion moves the array to newly heap-allocated memory. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// let boxed: Box<[u8]> = Box::from([4, 2]); |
| /// println!("{boxed:?}"); |
| /// ``` |
| fn from(array: [T; N]) -> Box<[T]> { |
| Box::new(array) |
| } |
| } |
| |
| /// Casts a boxed slice to a boxed array. |
| /// |
| /// # Safety |
| /// |
| /// `boxed_slice.len()` must be exactly `N`. |
| unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( |
| boxed_slice: Box<[T], A>, |
| ) -> Box<[T; N], A> { |
| debug_assert_eq!(boxed_slice.len(), N); |
| |
| let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); |
| // SAFETY: Pointer and allocator came from an existing box, |
| // and our safety condition requires that the length is exactly `N` |
| unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) } |
| } |
| |
| #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] |
| impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { |
| type Error = Box<[T]>; |
| |
| /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. |
| /// |
| /// The conversion occurs in-place and does not require a |
| /// new memory allocation. |
| /// |
| /// # Errors |
| /// |
| /// Returns the old `Box<[T]>` in the `Err` variant if |
| /// `boxed_slice.len()` does not equal `N`. |
| fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { |
| if boxed_slice.len() == N { |
| Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) |
| } else { |
| Err(boxed_slice) |
| } |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")] |
| impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> { |
| type Error = Vec<T>; |
| |
| /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`. |
| /// |
| /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`, |
| /// but will require a reallocation otherwise. |
| /// |
| /// # Errors |
| /// |
| /// Returns the original `Vec<T>` in the `Err` variant if |
| /// `boxed_slice.len()` does not equal `N`. |
| /// |
| /// # Examples |
| /// |
| /// This can be used with [`vec!`] to create an array on the heap: |
| /// |
| /// ``` |
| /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap(); |
| /// assert_eq!(state.len(), 100); |
| /// ``` |
| fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> { |
| if vec.len() == N { |
| let boxed_slice = vec.into_boxed_slice(); |
| Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) |
| } else { |
| Err(vec) |
| } |
| } |
| } |
| |
| impl<A: Allocator> Box<dyn Any, A> { |
| /// Attempt to downcast the box to a concrete type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::any::Any; |
| /// |
| /// fn print_if_string(value: Box<dyn Any>) { |
| /// if let Ok(string) = value.downcast::<String>() { |
| /// println!("String ({}): {}", string.len(), string); |
| /// } |
| /// } |
| /// |
| /// let my_string = "Hello World".to_string(); |
| /// print_if_string(Box::new(my_string)); |
| /// print_if_string(Box::new(0i8)); |
| /// ``` |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { |
| if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } |
| } |
| |
| /// Downcasts the box to a concrete type. |
| /// |
| /// For a safe alternative see [`downcast`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(downcast_unchecked)] |
| /// |
| /// use std::any::Any; |
| /// |
| /// let x: Box<dyn Any> = Box::new(1_usize); |
| /// |
| /// unsafe { |
| /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
| /// } |
| /// ``` |
| /// |
| /// # Safety |
| /// |
| /// The contained value must be of type `T`. Calling this method |
| /// with the incorrect type is *undefined behavior*. |
| /// |
| /// [`downcast`]: Self::downcast |
| #[inline] |
| #[unstable(feature = "downcast_unchecked", issue = "90850")] |
| pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { |
| debug_assert!(self.is::<T>()); |
| unsafe { |
| let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); |
| Box::from_raw_in(raw as *mut T, alloc) |
| } |
| } |
| } |
| |
| impl<A: Allocator> Box<dyn Any + Send, A> { |
| /// Attempt to downcast the box to a concrete type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::any::Any; |
| /// |
| /// fn print_if_string(value: Box<dyn Any + Send>) { |
| /// if let Ok(string) = value.downcast::<String>() { |
| /// println!("String ({}): {}", string.len(), string); |
| /// } |
| /// } |
| /// |
| /// let my_string = "Hello World".to_string(); |
| /// print_if_string(Box::new(my_string)); |
| /// print_if_string(Box::new(0i8)); |
| /// ``` |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { |
| if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } |
| } |
| |
| /// Downcasts the box to a concrete type. |
| /// |
| /// For a safe alternative see [`downcast`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(downcast_unchecked)] |
| /// |
| /// use std::any::Any; |
| /// |
| /// let x: Box<dyn Any + Send> = Box::new(1_usize); |
| /// |
| /// unsafe { |
| /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
| /// } |
| /// ``` |
| /// |
| /// # Safety |
| /// |
| /// The contained value must be of type `T`. Calling this method |
| /// with the incorrect type is *undefined behavior*. |
| /// |
| /// [`downcast`]: Self::downcast |
| #[inline] |
| #[unstable(feature = "downcast_unchecked", issue = "90850")] |
| pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { |
| debug_assert!(self.is::<T>()); |
| unsafe { |
| let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); |
| Box::from_raw_in(raw as *mut T, alloc) |
| } |
| } |
| } |
| |
| impl<A: Allocator> Box<dyn Any + Send + Sync, A> { |
| /// Attempt to downcast the box to a concrete type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::any::Any; |
| /// |
| /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { |
| /// if let Ok(string) = value.downcast::<String>() { |
| /// println!("String ({}): {}", string.len(), string); |
| /// } |
| /// } |
| /// |
| /// let my_string = "Hello World".to_string(); |
| /// print_if_string(Box::new(my_string)); |
| /// print_if_string(Box::new(0i8)); |
| /// ``` |
| #[inline] |
| #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] |
| pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { |
| if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } |
| } |
| |
| /// Downcasts the box to a concrete type. |
| /// |
| /// For a safe alternative see [`downcast`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(downcast_unchecked)] |
| /// |
| /// use std::any::Any; |
| /// |
| /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); |
| /// |
| /// unsafe { |
| /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
| /// } |
| /// ``` |
| /// |
| /// # Safety |
| /// |
| /// The contained value must be of type `T`. Calling this method |
| /// with the incorrect type is *undefined behavior*. |
| /// |
| /// [`downcast`]: Self::downcast |
| #[inline] |
| #[unstable(feature = "downcast_unchecked", issue = "90850")] |
| pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { |
| debug_assert!(self.is::<T>()); |
| unsafe { |
| let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = |
| Box::into_raw_with_allocator(self); |
| Box::from_raw_in(raw as *mut T, alloc) |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&**self, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Debug::fmt(&**self, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // It's not possible to extract the inner Uniq directly from the Box, |
| // instead we cast it to a *const which aliases the Unique |
| let ptr: *const T = &**self; |
| fmt::Pointer::fmt(&ptr, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { |
| type Target = T; |
| |
| fn deref(&self) -> &T { |
| &**self |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { |
| fn deref_mut(&mut self) -> &mut T { |
| &mut **self |
| } |
| } |
| |
| #[unstable(feature = "receiver_trait", issue = "none")] |
| impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { |
| type Item = I::Item; |
| fn next(&mut self) -> Option<I::Item> { |
| (**self).next() |
| } |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (**self).size_hint() |
| } |
| fn nth(&mut self, n: usize) -> Option<I::Item> { |
| (**self).nth(n) |
| } |
| fn last(self) -> Option<I::Item> { |
| BoxIter::last(self) |
| } |
| } |
| |
| trait BoxIter { |
| type Item; |
| fn last(self) -> Option<Self::Item>; |
| } |
| |
| impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { |
| type Item = I::Item; |
| default fn last(self) -> Option<I::Item> { |
| #[inline] |
| fn some<T>(_: Option<T>, x: T) -> Option<T> { |
| Some(x) |
| } |
| |
| self.fold(None, some) |
| } |
| } |
| |
| /// Specialization for sized `I`s that uses `I`s implementation of `last()` |
| /// instead of the default. |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { |
| fn last(self) -> Option<I::Item> { |
| (*self).last() |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { |
| fn next_back(&mut self) -> Option<I::Item> { |
| (**self).next_back() |
| } |
| fn nth_back(&mut self, n: usize) -> Option<I::Item> { |
| (**self).nth_back(n) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { |
| fn len(&self) -> usize { |
| (**self).len() |
| } |
| fn is_empty(&self) -> bool { |
| (**self).is_empty() |
| } |
| } |
| |
| #[stable(feature = "fused", since = "1.26.0")] |
| impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} |
| |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")] |
| impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { |
| type Output = <F as FnOnce<Args>>::Output; |
| |
| extern "rust-call" fn call_once(self, args: Args) -> Self::Output { |
| <F as FnOnce<Args>>::call_once(*self, args) |
| } |
| } |
| |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")] |
| impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { |
| extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { |
| <F as FnMut<Args>>::call_mut(self, args) |
| } |
| } |
| |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")] |
| impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { |
| extern "rust-call" fn call(&self, args: Args) -> Self::Output { |
| <F as Fn<Args>>::call(self, args) |
| } |
| } |
| |
| #[unstable(feature = "coerce_unsized", issue = "18598")] |
| impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} |
| |
| #[unstable(feature = "dispatch_from_dyn", issue = "none")] |
| impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] |
| impl<I> FromIterator<I> for Box<[I]> { |
| fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { |
| iter.into_iter().collect::<Vec<_>>().into_boxed_slice() |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "box_slice_clone", since = "1.3.0")] |
| impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { |
| fn clone(&self) -> Self { |
| let alloc = Box::allocator(self).clone(); |
| self.to_vec_in(alloc).into_boxed_slice() |
| } |
| |
| fn clone_from(&mut self, other: &Self) { |
| if self.len() == other.len() { |
| self.clone_from_slice(&other); |
| } else { |
| *self = other.clone(); |
| } |
| } |
| } |
| |
| #[stable(feature = "box_borrow", since = "1.1.0")] |
| impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { |
| fn borrow(&self) -> &T { |
| &**self |
| } |
| } |
| |
| #[stable(feature = "box_borrow", since = "1.1.0")] |
| impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { |
| fn borrow_mut(&mut self) -> &mut T { |
| &mut **self |
| } |
| } |
| |
| #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] |
| impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { |
| fn as_ref(&self) -> &T { |
| &**self |
| } |
| } |
| |
| #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] |
| impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { |
| fn as_mut(&mut self) -> &mut T { |
| &mut **self |
| } |
| } |
| |
| /* Nota bene |
| * |
| * We could have chosen not to add this impl, and instead have written a |
| * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, |
| * because Box<T> implements Unpin even when T does not, as a result of |
| * this impl. |
| * |
| * We chose this API instead of the alternative for a few reasons: |
| * - Logically, it is helpful to understand pinning in regard to the |
| * memory region being pointed to. For this reason none of the |
| * standard library pointer types support projecting through a pin |
| * (Box<T> is the only pointer type in std for which this would be |
| * safe.) |
| * - It is in practice very useful to have Box<T> be unconditionally |
| * Unpin because of trait objects, for which the structural auto |
| * trait functionality does not apply (e.g., Box<dyn Foo> would |
| * otherwise not be Unpin). |
| * |
| * Another type with the same semantics as Box but only a conditional |
| * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and |
| * could have a method to project a Pin<T> from it. |
| */ |
| #[stable(feature = "pin", since = "1.33.0")] |
| impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} |
| |
| #[unstable(feature = "generator_trait", issue = "43122")] |
| impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> |
| where |
| A: 'static, |
| { |
| type Yield = G::Yield; |
| type Return = G::Return; |
| |
| fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { |
| G::resume(Pin::new(&mut *self), arg) |
| } |
| } |
| |
| #[unstable(feature = "generator_trait", issue = "43122")] |
| impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>> |
| where |
| A: 'static, |
| { |
| type Yield = G::Yield; |
| type Return = G::Return; |
| |
| fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { |
| G::resume((*self).as_mut(), arg) |
| } |
| } |
| |
| #[stable(feature = "futures_api", since = "1.36.0")] |
| impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> |
| where |
| A: 'static, |
| { |
| type Output = F::Output; |
| |
| fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
| F::poll(Pin::new(&mut *self), cx) |
| } |
| } |
| |
| #[unstable(feature = "async_iterator", issue = "79024")] |
| impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { |
| type Item = S::Item; |
| |
| fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { |
| Pin::new(&mut **self).poll_next(cx) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (**self).size_hint() |
| } |
| } |
| |
| impl dyn Error { |
| #[inline] |
| #[stable(feature = "error_downcast", since = "1.3.0")] |
| #[rustc_allow_incoherent_impl] |
| /// Attempts to downcast the box to a concrete type. |
| pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> { |
| if self.is::<T>() { |
| unsafe { |
| let raw: *mut dyn Error = Box::into_raw(self); |
| Ok(Box::from_raw(raw as *mut T)) |
| } |
| } else { |
| Err(self) |
| } |
| } |
| } |
| |
| impl dyn Error + Send { |
| #[inline] |
| #[stable(feature = "error_downcast", since = "1.3.0")] |
| #[rustc_allow_incoherent_impl] |
| /// Attempts to downcast the box to a concrete type. |
| pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> { |
| let err: Box<dyn Error> = self; |
| <dyn Error>::downcast(err).map_err(|s| unsafe { |
| // Reapply the `Send` marker. |
| mem::transmute::<Box<dyn Error>, Box<dyn Error + Send>>(s) |
| }) |
| } |
| } |
| |
| impl dyn Error + Send + Sync { |
| #[inline] |
| #[stable(feature = "error_downcast", since = "1.3.0")] |
| #[rustc_allow_incoherent_impl] |
| /// Attempts to downcast the box to a concrete type. |
| pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { |
| let err: Box<dyn Error> = self; |
| <dyn Error>::downcast(err).map_err(|s| unsafe { |
| // Reapply the `Send + Sync` marker. |
| mem::transmute::<Box<dyn Error>, Box<dyn Error + Send + Sync>>(s) |
| }) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { |
| /// Converts a type of [`Error`] into a box of dyn [`Error`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::fmt; |
| /// use std::mem; |
| /// |
| /// #[derive(Debug)] |
| /// struct AnError; |
| /// |
| /// impl fmt::Display for AnError { |
| /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| /// write!(f, "An error") |
| /// } |
| /// } |
| /// |
| /// impl Error for AnError {} |
| /// |
| /// let an_error = AnError; |
| /// assert!(0 == mem::size_of_val(&an_error)); |
| /// let a_boxed_error = Box::<dyn Error>::from(an_error); |
| /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| fn from(err: E) -> Box<dyn Error + 'a> { |
| Box::new(err) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { |
| /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of |
| /// dyn [`Error`] + [`Send`] + [`Sync`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::fmt; |
| /// use std::mem; |
| /// |
| /// #[derive(Debug)] |
| /// struct AnError; |
| /// |
| /// impl fmt::Display for AnError { |
| /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| /// write!(f, "An error") |
| /// } |
| /// } |
| /// |
| /// impl Error for AnError {} |
| /// |
| /// unsafe impl Send for AnError {} |
| /// |
| /// unsafe impl Sync for AnError {} |
| /// |
| /// let an_error = AnError; |
| /// assert!(0 == mem::size_of_val(&an_error)); |
| /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); |
| /// assert!( |
| /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { |
| Box::new(err) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl From<String> for Box<dyn Error + Send + Sync> { |
| /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::mem; |
| /// |
| /// let a_string_error = "a string error".to_string(); |
| /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error); |
| /// assert!( |
| /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| #[inline] |
| fn from(err: String) -> Box<dyn Error + Send + Sync> { |
| struct StringError(String); |
| |
| impl Error for StringError { |
| #[allow(deprecated)] |
| fn description(&self) -> &str { |
| &self.0 |
| } |
| } |
| |
| impl fmt::Display for StringError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.0, f) |
| } |
| } |
| |
| // Purposefully skip printing "StringError(..)" |
| impl fmt::Debug for StringError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Debug::fmt(&self.0, f) |
| } |
| } |
| |
| Box::new(StringError(err)) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "string_box_error", since = "1.6.0")] |
| impl From<String> for Box<dyn Error> { |
| /// Converts a [`String`] into a box of dyn [`Error`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::mem; |
| /// |
| /// let a_string_error = "a string error".to_string(); |
| /// let a_boxed_error = Box::<dyn Error>::from(a_string_error); |
| /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| fn from(str_err: String) -> Box<dyn Error> { |
| let err1: Box<dyn Error + Send + Sync> = From::from(str_err); |
| let err2: Box<dyn Error> = err1; |
| err2 |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> { |
| /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. |
| /// |
| /// [`str`]: prim@str |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::mem; |
| /// |
| /// let a_str_error = "a str error"; |
| /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error); |
| /// assert!( |
| /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| #[inline] |
| fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> { |
| From::from(String::from(err)) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "string_box_error", since = "1.6.0")] |
| impl From<&str> for Box<dyn Error> { |
| /// Converts a [`str`] into a box of dyn [`Error`]. |
| /// |
| /// [`str`]: prim@str |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::mem; |
| /// |
| /// let a_str_error = "a str error"; |
| /// let a_boxed_error = Box::<dyn Error>::from(a_str_error); |
| /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| fn from(err: &str) -> Box<dyn Error> { |
| From::from(String::from(err)) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "cow_box_error", since = "1.22.0")] |
| impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> { |
| /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::mem; |
| /// use std::borrow::Cow; |
| /// |
| /// let a_cow_str_error = Cow::from("a str error"); |
| /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); |
| /// assert!( |
| /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> { |
| From::from(String::from(err)) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "cow_box_error", since = "1.22.0")] |
| impl<'a> From<Cow<'a, str>> for Box<dyn Error> { |
| /// Converts a [`Cow`] into a box of dyn [`Error`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::error::Error; |
| /// use std::mem; |
| /// use std::borrow::Cow; |
| /// |
| /// let a_cow_str_error = Cow::from("a str error"); |
| /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error); |
| /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) |
| /// ``` |
| fn from(err: Cow<'a, str>) -> Box<dyn Error> { |
| From::from(String::from(err)) |
| } |
| } |
| |
| #[stable(feature = "box_error", since = "1.8.0")] |
| impl<T: core::error::Error> core::error::Error for Box<T> { |
| #[allow(deprecated, deprecated_in_future)] |
| fn description(&self) -> &str { |
| core::error::Error::description(&**self) |
| } |
| |
| #[allow(deprecated)] |
| fn cause(&self) -> Option<&dyn core::error::Error> { |
| core::error::Error::cause(&**self) |
| } |
| |
| fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { |
| core::error::Error::source(&**self) |
| } |
| } |