| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVMe over Fabrics RDMA host code. |
| * Copyright (c) 2015-2016 HGST, a Western Digital Company. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <rdma/mr_pool.h> |
| #include <linux/err.h> |
| #include <linux/string.h> |
| #include <linux/atomic.h> |
| #include <linux/blk-mq.h> |
| #include <linux/blk-mq-rdma.h> |
| #include <linux/blk-integrity.h> |
| #include <linux/types.h> |
| #include <linux/list.h> |
| #include <linux/mutex.h> |
| #include <linux/scatterlist.h> |
| #include <linux/nvme.h> |
| #include <asm/unaligned.h> |
| |
| #include <rdma/ib_verbs.h> |
| #include <rdma/rdma_cm.h> |
| #include <linux/nvme-rdma.h> |
| |
| #include "nvme.h" |
| #include "fabrics.h" |
| |
| |
| #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ |
| |
| #define NVME_RDMA_MAX_SEGMENTS 256 |
| |
| #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 |
| |
| #define NVME_RDMA_DATA_SGL_SIZE \ |
| (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) |
| #define NVME_RDMA_METADATA_SGL_SIZE \ |
| (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) |
| |
| struct nvme_rdma_device { |
| struct ib_device *dev; |
| struct ib_pd *pd; |
| struct kref ref; |
| struct list_head entry; |
| unsigned int num_inline_segments; |
| }; |
| |
| struct nvme_rdma_qe { |
| struct ib_cqe cqe; |
| void *data; |
| u64 dma; |
| }; |
| |
| struct nvme_rdma_sgl { |
| int nents; |
| struct sg_table sg_table; |
| }; |
| |
| struct nvme_rdma_queue; |
| struct nvme_rdma_request { |
| struct nvme_request req; |
| struct ib_mr *mr; |
| struct nvme_rdma_qe sqe; |
| union nvme_result result; |
| __le16 status; |
| refcount_t ref; |
| struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; |
| u32 num_sge; |
| struct ib_reg_wr reg_wr; |
| struct ib_cqe reg_cqe; |
| struct nvme_rdma_queue *queue; |
| struct nvme_rdma_sgl data_sgl; |
| struct nvme_rdma_sgl *metadata_sgl; |
| bool use_sig_mr; |
| }; |
| |
| enum nvme_rdma_queue_flags { |
| NVME_RDMA_Q_ALLOCATED = 0, |
| NVME_RDMA_Q_LIVE = 1, |
| NVME_RDMA_Q_TR_READY = 2, |
| }; |
| |
| struct nvme_rdma_queue { |
| struct nvme_rdma_qe *rsp_ring; |
| int queue_size; |
| size_t cmnd_capsule_len; |
| struct nvme_rdma_ctrl *ctrl; |
| struct nvme_rdma_device *device; |
| struct ib_cq *ib_cq; |
| struct ib_qp *qp; |
| |
| unsigned long flags; |
| struct rdma_cm_id *cm_id; |
| int cm_error; |
| struct completion cm_done; |
| bool pi_support; |
| int cq_size; |
| struct mutex queue_lock; |
| }; |
| |
| struct nvme_rdma_ctrl { |
| /* read only in the hot path */ |
| struct nvme_rdma_queue *queues; |
| |
| /* other member variables */ |
| struct blk_mq_tag_set tag_set; |
| struct work_struct err_work; |
| |
| struct nvme_rdma_qe async_event_sqe; |
| |
| struct delayed_work reconnect_work; |
| |
| struct list_head list; |
| |
| struct blk_mq_tag_set admin_tag_set; |
| struct nvme_rdma_device *device; |
| |
| u32 max_fr_pages; |
| |
| struct sockaddr_storage addr; |
| struct sockaddr_storage src_addr; |
| |
| struct nvme_ctrl ctrl; |
| bool use_inline_data; |
| u32 io_queues[HCTX_MAX_TYPES]; |
| }; |
| |
| static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) |
| { |
| return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); |
| } |
| |
| static LIST_HEAD(device_list); |
| static DEFINE_MUTEX(device_list_mutex); |
| |
| static LIST_HEAD(nvme_rdma_ctrl_list); |
| static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); |
| |
| /* |
| * Disabling this option makes small I/O goes faster, but is fundamentally |
| * unsafe. With it turned off we will have to register a global rkey that |
| * allows read and write access to all physical memory. |
| */ |
| static bool register_always = true; |
| module_param(register_always, bool, 0444); |
| MODULE_PARM_DESC(register_always, |
| "Use memory registration even for contiguous memory regions"); |
| |
| static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *event); |
| static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); |
| static void nvme_rdma_complete_rq(struct request *rq); |
| |
| static const struct blk_mq_ops nvme_rdma_mq_ops; |
| static const struct blk_mq_ops nvme_rdma_admin_mq_ops; |
| |
| static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) |
| { |
| return queue - queue->ctrl->queues; |
| } |
| |
| static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) |
| { |
| return nvme_rdma_queue_idx(queue) > |
| queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + |
| queue->ctrl->io_queues[HCTX_TYPE_READ]; |
| } |
| |
| static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) |
| { |
| return queue->cmnd_capsule_len - sizeof(struct nvme_command); |
| } |
| |
| static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, |
| size_t capsule_size, enum dma_data_direction dir) |
| { |
| ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); |
| kfree(qe->data); |
| } |
| |
| static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, |
| size_t capsule_size, enum dma_data_direction dir) |
| { |
| qe->data = kzalloc(capsule_size, GFP_KERNEL); |
| if (!qe->data) |
| return -ENOMEM; |
| |
| qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); |
| if (ib_dma_mapping_error(ibdev, qe->dma)) { |
| kfree(qe->data); |
| qe->data = NULL; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_rdma_free_ring(struct ib_device *ibdev, |
| struct nvme_rdma_qe *ring, size_t ib_queue_size, |
| size_t capsule_size, enum dma_data_direction dir) |
| { |
| int i; |
| |
| for (i = 0; i < ib_queue_size; i++) |
| nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); |
| kfree(ring); |
| } |
| |
| static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, |
| size_t ib_queue_size, size_t capsule_size, |
| enum dma_data_direction dir) |
| { |
| struct nvme_rdma_qe *ring; |
| int i; |
| |
| ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); |
| if (!ring) |
| return NULL; |
| |
| /* |
| * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue |
| * lifetime. It's safe, since any chage in the underlying RDMA device |
| * will issue error recovery and queue re-creation. |
| */ |
| for (i = 0; i < ib_queue_size; i++) { |
| if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) |
| goto out_free_ring; |
| } |
| |
| return ring; |
| |
| out_free_ring: |
| nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); |
| return NULL; |
| } |
| |
| static void nvme_rdma_qp_event(struct ib_event *event, void *context) |
| { |
| pr_debug("QP event %s (%d)\n", |
| ib_event_msg(event->event), event->event); |
| |
| } |
| |
| static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) |
| { |
| int ret; |
| |
| ret = wait_for_completion_interruptible_timeout(&queue->cm_done, |
| msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); |
| if (ret < 0) |
| return ret; |
| if (ret == 0) |
| return -ETIMEDOUT; |
| WARN_ON_ONCE(queue->cm_error > 0); |
| return queue->cm_error; |
| } |
| |
| static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) |
| { |
| struct nvme_rdma_device *dev = queue->device; |
| struct ib_qp_init_attr init_attr; |
| int ret; |
| |
| memset(&init_attr, 0, sizeof(init_attr)); |
| init_attr.event_handler = nvme_rdma_qp_event; |
| /* +1 for drain */ |
| init_attr.cap.max_send_wr = factor * queue->queue_size + 1; |
| /* +1 for drain */ |
| init_attr.cap.max_recv_wr = queue->queue_size + 1; |
| init_attr.cap.max_recv_sge = 1; |
| init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; |
| init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| init_attr.qp_type = IB_QPT_RC; |
| init_attr.send_cq = queue->ib_cq; |
| init_attr.recv_cq = queue->ib_cq; |
| if (queue->pi_support) |
| init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; |
| init_attr.qp_context = queue; |
| |
| ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); |
| |
| queue->qp = queue->cm_id->qp; |
| return ret; |
| } |
| |
| static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, |
| struct request *rq, unsigned int hctx_idx) |
| { |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| |
| kfree(req->sqe.data); |
| } |
| |
| static int nvme_rdma_init_request(struct blk_mq_tag_set *set, |
| struct request *rq, unsigned int hctx_idx, |
| unsigned int numa_node) |
| { |
| struct nvme_rdma_ctrl *ctrl = set->driver_data; |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; |
| struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; |
| |
| nvme_req(rq)->ctrl = &ctrl->ctrl; |
| req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); |
| if (!req->sqe.data) |
| return -ENOMEM; |
| |
| /* metadata nvme_rdma_sgl struct is located after command's data SGL */ |
| if (queue->pi_support) |
| req->metadata_sgl = (void *)nvme_req(rq) + |
| sizeof(struct nvme_rdma_request) + |
| NVME_RDMA_DATA_SGL_SIZE; |
| |
| req->queue = queue; |
| nvme_req(rq)->cmd = req->sqe.data; |
| |
| return 0; |
| } |
| |
| static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_rdma_ctrl *ctrl = data; |
| struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; |
| |
| BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); |
| |
| hctx->driver_data = queue; |
| return 0; |
| } |
| |
| static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_rdma_ctrl *ctrl = data; |
| struct nvme_rdma_queue *queue = &ctrl->queues[0]; |
| |
| BUG_ON(hctx_idx != 0); |
| |
| hctx->driver_data = queue; |
| return 0; |
| } |
| |
| static void nvme_rdma_free_dev(struct kref *ref) |
| { |
| struct nvme_rdma_device *ndev = |
| container_of(ref, struct nvme_rdma_device, ref); |
| |
| mutex_lock(&device_list_mutex); |
| list_del(&ndev->entry); |
| mutex_unlock(&device_list_mutex); |
| |
| ib_dealloc_pd(ndev->pd); |
| kfree(ndev); |
| } |
| |
| static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) |
| { |
| kref_put(&dev->ref, nvme_rdma_free_dev); |
| } |
| |
| static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) |
| { |
| return kref_get_unless_zero(&dev->ref); |
| } |
| |
| static struct nvme_rdma_device * |
| nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) |
| { |
| struct nvme_rdma_device *ndev; |
| |
| mutex_lock(&device_list_mutex); |
| list_for_each_entry(ndev, &device_list, entry) { |
| if (ndev->dev->node_guid == cm_id->device->node_guid && |
| nvme_rdma_dev_get(ndev)) |
| goto out_unlock; |
| } |
| |
| ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); |
| if (!ndev) |
| goto out_err; |
| |
| ndev->dev = cm_id->device; |
| kref_init(&ndev->ref); |
| |
| ndev->pd = ib_alloc_pd(ndev->dev, |
| register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); |
| if (IS_ERR(ndev->pd)) |
| goto out_free_dev; |
| |
| if (!(ndev->dev->attrs.device_cap_flags & |
| IB_DEVICE_MEM_MGT_EXTENSIONS)) { |
| dev_err(&ndev->dev->dev, |
| "Memory registrations not supported.\n"); |
| goto out_free_pd; |
| } |
| |
| ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, |
| ndev->dev->attrs.max_send_sge - 1); |
| list_add(&ndev->entry, &device_list); |
| out_unlock: |
| mutex_unlock(&device_list_mutex); |
| return ndev; |
| |
| out_free_pd: |
| ib_dealloc_pd(ndev->pd); |
| out_free_dev: |
| kfree(ndev); |
| out_err: |
| mutex_unlock(&device_list_mutex); |
| return NULL; |
| } |
| |
| static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) |
| { |
| if (nvme_rdma_poll_queue(queue)) |
| ib_free_cq(queue->ib_cq); |
| else |
| ib_cq_pool_put(queue->ib_cq, queue->cq_size); |
| } |
| |
| static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) |
| { |
| struct nvme_rdma_device *dev; |
| struct ib_device *ibdev; |
| |
| if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) |
| return; |
| |
| dev = queue->device; |
| ibdev = dev->dev; |
| |
| if (queue->pi_support) |
| ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); |
| ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); |
| |
| /* |
| * The cm_id object might have been destroyed during RDMA connection |
| * establishment error flow to avoid getting other cma events, thus |
| * the destruction of the QP shouldn't use rdma_cm API. |
| */ |
| ib_destroy_qp(queue->qp); |
| nvme_rdma_free_cq(queue); |
| |
| nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, |
| sizeof(struct nvme_completion), DMA_FROM_DEVICE); |
| |
| nvme_rdma_dev_put(dev); |
| } |
| |
| static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) |
| { |
| u32 max_page_list_len; |
| |
| if (pi_support) |
| max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; |
| else |
| max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; |
| |
| return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); |
| } |
| |
| static int nvme_rdma_create_cq(struct ib_device *ibdev, |
| struct nvme_rdma_queue *queue) |
| { |
| int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); |
| enum ib_poll_context poll_ctx; |
| |
| /* |
| * Spread I/O queues completion vectors according their queue index. |
| * Admin queues can always go on completion vector 0. |
| */ |
| comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; |
| |
| /* Polling queues need direct cq polling context */ |
| if (nvme_rdma_poll_queue(queue)) { |
| poll_ctx = IB_POLL_DIRECT; |
| queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, |
| comp_vector, poll_ctx); |
| } else { |
| poll_ctx = IB_POLL_SOFTIRQ; |
| queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, |
| comp_vector, poll_ctx); |
| } |
| |
| if (IS_ERR(queue->ib_cq)) { |
| ret = PTR_ERR(queue->ib_cq); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) |
| { |
| struct ib_device *ibdev; |
| const int send_wr_factor = 3; /* MR, SEND, INV */ |
| const int cq_factor = send_wr_factor + 1; /* + RECV */ |
| int ret, pages_per_mr; |
| |
| queue->device = nvme_rdma_find_get_device(queue->cm_id); |
| if (!queue->device) { |
| dev_err(queue->cm_id->device->dev.parent, |
| "no client data found!\n"); |
| return -ECONNREFUSED; |
| } |
| ibdev = queue->device->dev; |
| |
| /* +1 for ib_stop_cq */ |
| queue->cq_size = cq_factor * queue->queue_size + 1; |
| |
| ret = nvme_rdma_create_cq(ibdev, queue); |
| if (ret) |
| goto out_put_dev; |
| |
| ret = nvme_rdma_create_qp(queue, send_wr_factor); |
| if (ret) |
| goto out_destroy_ib_cq; |
| |
| queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, |
| sizeof(struct nvme_completion), DMA_FROM_DEVICE); |
| if (!queue->rsp_ring) { |
| ret = -ENOMEM; |
| goto out_destroy_qp; |
| } |
| |
| /* |
| * Currently we don't use SG_GAPS MR's so if the first entry is |
| * misaligned we'll end up using two entries for a single data page, |
| * so one additional entry is required. |
| */ |
| pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; |
| ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, |
| queue->queue_size, |
| IB_MR_TYPE_MEM_REG, |
| pages_per_mr, 0); |
| if (ret) { |
| dev_err(queue->ctrl->ctrl.device, |
| "failed to initialize MR pool sized %d for QID %d\n", |
| queue->queue_size, nvme_rdma_queue_idx(queue)); |
| goto out_destroy_ring; |
| } |
| |
| if (queue->pi_support) { |
| ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, |
| queue->queue_size, IB_MR_TYPE_INTEGRITY, |
| pages_per_mr, pages_per_mr); |
| if (ret) { |
| dev_err(queue->ctrl->ctrl.device, |
| "failed to initialize PI MR pool sized %d for QID %d\n", |
| queue->queue_size, nvme_rdma_queue_idx(queue)); |
| goto out_destroy_mr_pool; |
| } |
| } |
| |
| set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); |
| |
| return 0; |
| |
| out_destroy_mr_pool: |
| ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); |
| out_destroy_ring: |
| nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, |
| sizeof(struct nvme_completion), DMA_FROM_DEVICE); |
| out_destroy_qp: |
| rdma_destroy_qp(queue->cm_id); |
| out_destroy_ib_cq: |
| nvme_rdma_free_cq(queue); |
| out_put_dev: |
| nvme_rdma_dev_put(queue->device); |
| return ret; |
| } |
| |
| static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, |
| int idx, size_t queue_size) |
| { |
| struct nvme_rdma_queue *queue; |
| struct sockaddr *src_addr = NULL; |
| int ret; |
| |
| queue = &ctrl->queues[idx]; |
| mutex_init(&queue->queue_lock); |
| queue->ctrl = ctrl; |
| if (idx && ctrl->ctrl.max_integrity_segments) |
| queue->pi_support = true; |
| else |
| queue->pi_support = false; |
| init_completion(&queue->cm_done); |
| |
| if (idx > 0) |
| queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; |
| else |
| queue->cmnd_capsule_len = sizeof(struct nvme_command); |
| |
| queue->queue_size = queue_size; |
| |
| queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, |
| RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(queue->cm_id)) { |
| dev_info(ctrl->ctrl.device, |
| "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); |
| ret = PTR_ERR(queue->cm_id); |
| goto out_destroy_mutex; |
| } |
| |
| if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) |
| src_addr = (struct sockaddr *)&ctrl->src_addr; |
| |
| queue->cm_error = -ETIMEDOUT; |
| ret = rdma_resolve_addr(queue->cm_id, src_addr, |
| (struct sockaddr *)&ctrl->addr, |
| NVME_RDMA_CONNECT_TIMEOUT_MS); |
| if (ret) { |
| dev_info(ctrl->ctrl.device, |
| "rdma_resolve_addr failed (%d).\n", ret); |
| goto out_destroy_cm_id; |
| } |
| |
| ret = nvme_rdma_wait_for_cm(queue); |
| if (ret) { |
| dev_info(ctrl->ctrl.device, |
| "rdma connection establishment failed (%d)\n", ret); |
| goto out_destroy_cm_id; |
| } |
| |
| set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); |
| |
| return 0; |
| |
| out_destroy_cm_id: |
| rdma_destroy_id(queue->cm_id); |
| nvme_rdma_destroy_queue_ib(queue); |
| out_destroy_mutex: |
| mutex_destroy(&queue->queue_lock); |
| return ret; |
| } |
| |
| static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) |
| { |
| rdma_disconnect(queue->cm_id); |
| ib_drain_qp(queue->qp); |
| } |
| |
| static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) |
| { |
| mutex_lock(&queue->queue_lock); |
| if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) |
| __nvme_rdma_stop_queue(queue); |
| mutex_unlock(&queue->queue_lock); |
| } |
| |
| static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) |
| { |
| if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) |
| return; |
| |
| rdma_destroy_id(queue->cm_id); |
| nvme_rdma_destroy_queue_ib(queue); |
| mutex_destroy(&queue->queue_lock); |
| } |
| |
| static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) |
| { |
| int i; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) |
| nvme_rdma_free_queue(&ctrl->queues[i]); |
| } |
| |
| static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) |
| { |
| int i; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) |
| nvme_rdma_stop_queue(&ctrl->queues[i]); |
| } |
| |
| static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) |
| { |
| struct nvme_rdma_queue *queue = &ctrl->queues[idx]; |
| int ret; |
| |
| if (idx) |
| ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); |
| else |
| ret = nvmf_connect_admin_queue(&ctrl->ctrl); |
| |
| if (!ret) { |
| set_bit(NVME_RDMA_Q_LIVE, &queue->flags); |
| } else { |
| if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) |
| __nvme_rdma_stop_queue(queue); |
| dev_info(ctrl->ctrl.device, |
| "failed to connect queue: %d ret=%d\n", idx, ret); |
| } |
| return ret; |
| } |
| |
| static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) |
| { |
| int i, ret = 0; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) { |
| ret = nvme_rdma_start_queue(ctrl, i); |
| if (ret) |
| goto out_stop_queues; |
| } |
| |
| return 0; |
| |
| out_stop_queues: |
| for (i--; i >= 1; i--) |
| nvme_rdma_stop_queue(&ctrl->queues[i]); |
| return ret; |
| } |
| |
| static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) |
| { |
| struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; |
| struct ib_device *ibdev = ctrl->device->dev; |
| unsigned int nr_io_queues, nr_default_queues; |
| unsigned int nr_read_queues, nr_poll_queues; |
| int i, ret; |
| |
| nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, |
| min(opts->nr_io_queues, num_online_cpus())); |
| nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, |
| min(opts->nr_write_queues, num_online_cpus())); |
| nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); |
| nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; |
| |
| ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); |
| if (ret) |
| return ret; |
| |
| if (nr_io_queues == 0) { |
| dev_err(ctrl->ctrl.device, |
| "unable to set any I/O queues\n"); |
| return -ENOMEM; |
| } |
| |
| ctrl->ctrl.queue_count = nr_io_queues + 1; |
| dev_info(ctrl->ctrl.device, |
| "creating %d I/O queues.\n", nr_io_queues); |
| |
| if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { |
| /* |
| * separate read/write queues |
| * hand out dedicated default queues only after we have |
| * sufficient read queues. |
| */ |
| ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; |
| nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; |
| ctrl->io_queues[HCTX_TYPE_DEFAULT] = |
| min(nr_default_queues, nr_io_queues); |
| nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| } else { |
| /* |
| * shared read/write queues |
| * either no write queues were requested, or we don't have |
| * sufficient queue count to have dedicated default queues. |
| */ |
| ctrl->io_queues[HCTX_TYPE_DEFAULT] = |
| min(nr_read_queues, nr_io_queues); |
| nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| } |
| |
| if (opts->nr_poll_queues && nr_io_queues) { |
| /* map dedicated poll queues only if we have queues left */ |
| ctrl->io_queues[HCTX_TYPE_POLL] = |
| min(nr_poll_queues, nr_io_queues); |
| } |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) { |
| ret = nvme_rdma_alloc_queue(ctrl, i, |
| ctrl->ctrl.sqsize + 1); |
| if (ret) |
| goto out_free_queues; |
| } |
| |
| return 0; |
| |
| out_free_queues: |
| for (i--; i >= 1; i--) |
| nvme_rdma_free_queue(&ctrl->queues[i]); |
| |
| return ret; |
| } |
| |
| static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, |
| bool admin) |
| { |
| struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); |
| struct blk_mq_tag_set *set; |
| int ret; |
| |
| if (admin) { |
| set = &ctrl->admin_tag_set; |
| memset(set, 0, sizeof(*set)); |
| set->ops = &nvme_rdma_admin_mq_ops; |
| set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
| set->reserved_tags = NVMF_RESERVED_TAGS; |
| set->numa_node = nctrl->numa_node; |
| set->cmd_size = sizeof(struct nvme_rdma_request) + |
| NVME_RDMA_DATA_SGL_SIZE; |
| set->driver_data = ctrl; |
| set->nr_hw_queues = 1; |
| set->timeout = NVME_ADMIN_TIMEOUT; |
| set->flags = BLK_MQ_F_NO_SCHED; |
| } else { |
| set = &ctrl->tag_set; |
| memset(set, 0, sizeof(*set)); |
| set->ops = &nvme_rdma_mq_ops; |
| set->queue_depth = nctrl->sqsize + 1; |
| set->reserved_tags = NVMF_RESERVED_TAGS; |
| set->numa_node = nctrl->numa_node; |
| set->flags = BLK_MQ_F_SHOULD_MERGE; |
| set->cmd_size = sizeof(struct nvme_rdma_request) + |
| NVME_RDMA_DATA_SGL_SIZE; |
| if (nctrl->max_integrity_segments) |
| set->cmd_size += sizeof(struct nvme_rdma_sgl) + |
| NVME_RDMA_METADATA_SGL_SIZE; |
| set->driver_data = ctrl; |
| set->nr_hw_queues = nctrl->queue_count - 1; |
| set->timeout = NVME_IO_TIMEOUT; |
| set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; |
| } |
| |
| ret = blk_mq_alloc_tag_set(set); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return set; |
| } |
| |
| static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, |
| bool remove) |
| { |
| if (remove) { |
| blk_cleanup_queue(ctrl->ctrl.admin_q); |
| blk_cleanup_queue(ctrl->ctrl.fabrics_q); |
| blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); |
| } |
| if (ctrl->async_event_sqe.data) { |
| cancel_work_sync(&ctrl->ctrl.async_event_work); |
| nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, |
| sizeof(struct nvme_command), DMA_TO_DEVICE); |
| ctrl->async_event_sqe.data = NULL; |
| } |
| nvme_rdma_free_queue(&ctrl->queues[0]); |
| } |
| |
| static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, |
| bool new) |
| { |
| bool pi_capable = false; |
| int error; |
| |
| error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); |
| if (error) |
| return error; |
| |
| ctrl->device = ctrl->queues[0].device; |
| ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); |
| |
| /* T10-PI support */ |
| if (ctrl->device->dev->attrs.device_cap_flags & |
| IB_DEVICE_INTEGRITY_HANDOVER) |
| pi_capable = true; |
| |
| ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, |
| pi_capable); |
| |
| /* |
| * Bind the async event SQE DMA mapping to the admin queue lifetime. |
| * It's safe, since any chage in the underlying RDMA device will issue |
| * error recovery and queue re-creation. |
| */ |
| error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, |
| sizeof(struct nvme_command), DMA_TO_DEVICE); |
| if (error) |
| goto out_free_queue; |
| |
| if (new) { |
| ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); |
| if (IS_ERR(ctrl->ctrl.admin_tagset)) { |
| error = PTR_ERR(ctrl->ctrl.admin_tagset); |
| goto out_free_async_qe; |
| } |
| |
| ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); |
| if (IS_ERR(ctrl->ctrl.fabrics_q)) { |
| error = PTR_ERR(ctrl->ctrl.fabrics_q); |
| goto out_free_tagset; |
| } |
| |
| ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); |
| if (IS_ERR(ctrl->ctrl.admin_q)) { |
| error = PTR_ERR(ctrl->ctrl.admin_q); |
| goto out_cleanup_fabrics_q; |
| } |
| } |
| |
| error = nvme_rdma_start_queue(ctrl, 0); |
| if (error) |
| goto out_cleanup_queue; |
| |
| error = nvme_enable_ctrl(&ctrl->ctrl); |
| if (error) |
| goto out_stop_queue; |
| |
| ctrl->ctrl.max_segments = ctrl->max_fr_pages; |
| ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); |
| if (pi_capable) |
| ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; |
| else |
| ctrl->ctrl.max_integrity_segments = 0; |
| |
| nvme_start_admin_queue(&ctrl->ctrl); |
| |
| error = nvme_init_ctrl_finish(&ctrl->ctrl); |
| if (error) |
| goto out_quiesce_queue; |
| |
| return 0; |
| |
| out_quiesce_queue: |
| nvme_stop_admin_queue(&ctrl->ctrl); |
| blk_sync_queue(ctrl->ctrl.admin_q); |
| out_stop_queue: |
| nvme_rdma_stop_queue(&ctrl->queues[0]); |
| nvme_cancel_admin_tagset(&ctrl->ctrl); |
| out_cleanup_queue: |
| if (new) |
| blk_cleanup_queue(ctrl->ctrl.admin_q); |
| out_cleanup_fabrics_q: |
| if (new) |
| blk_cleanup_queue(ctrl->ctrl.fabrics_q); |
| out_free_tagset: |
| if (new) |
| blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); |
| out_free_async_qe: |
| if (ctrl->async_event_sqe.data) { |
| nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, |
| sizeof(struct nvme_command), DMA_TO_DEVICE); |
| ctrl->async_event_sqe.data = NULL; |
| } |
| out_free_queue: |
| nvme_rdma_free_queue(&ctrl->queues[0]); |
| return error; |
| } |
| |
| static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, |
| bool remove) |
| { |
| if (remove) { |
| blk_cleanup_queue(ctrl->ctrl.connect_q); |
| blk_mq_free_tag_set(ctrl->ctrl.tagset); |
| } |
| nvme_rdma_free_io_queues(ctrl); |
| } |
| |
| static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) |
| { |
| int ret; |
| |
| ret = nvme_rdma_alloc_io_queues(ctrl); |
| if (ret) |
| return ret; |
| |
| if (new) { |
| ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); |
| if (IS_ERR(ctrl->ctrl.tagset)) { |
| ret = PTR_ERR(ctrl->ctrl.tagset); |
| goto out_free_io_queues; |
| } |
| |
| ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); |
| if (IS_ERR(ctrl->ctrl.connect_q)) { |
| ret = PTR_ERR(ctrl->ctrl.connect_q); |
| goto out_free_tag_set; |
| } |
| } |
| |
| ret = nvme_rdma_start_io_queues(ctrl); |
| if (ret) |
| goto out_cleanup_connect_q; |
| |
| if (!new) { |
| nvme_start_queues(&ctrl->ctrl); |
| if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { |
| /* |
| * If we timed out waiting for freeze we are likely to |
| * be stuck. Fail the controller initialization just |
| * to be safe. |
| */ |
| ret = -ENODEV; |
| goto out_wait_freeze_timed_out; |
| } |
| blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, |
| ctrl->ctrl.queue_count - 1); |
| nvme_unfreeze(&ctrl->ctrl); |
| } |
| |
| return 0; |
| |
| out_wait_freeze_timed_out: |
| nvme_stop_queues(&ctrl->ctrl); |
| nvme_sync_io_queues(&ctrl->ctrl); |
| nvme_rdma_stop_io_queues(ctrl); |
| out_cleanup_connect_q: |
| nvme_cancel_tagset(&ctrl->ctrl); |
| if (new) |
| blk_cleanup_queue(ctrl->ctrl.connect_q); |
| out_free_tag_set: |
| if (new) |
| blk_mq_free_tag_set(ctrl->ctrl.tagset); |
| out_free_io_queues: |
| nvme_rdma_free_io_queues(ctrl); |
| return ret; |
| } |
| |
| static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, |
| bool remove) |
| { |
| nvme_stop_admin_queue(&ctrl->ctrl); |
| blk_sync_queue(ctrl->ctrl.admin_q); |
| nvme_rdma_stop_queue(&ctrl->queues[0]); |
| nvme_cancel_admin_tagset(&ctrl->ctrl); |
| if (remove) |
| nvme_start_admin_queue(&ctrl->ctrl); |
| nvme_rdma_destroy_admin_queue(ctrl, remove); |
| } |
| |
| static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, |
| bool remove) |
| { |
| if (ctrl->ctrl.queue_count > 1) { |
| nvme_start_freeze(&ctrl->ctrl); |
| nvme_stop_queues(&ctrl->ctrl); |
| nvme_sync_io_queues(&ctrl->ctrl); |
| nvme_rdma_stop_io_queues(ctrl); |
| nvme_cancel_tagset(&ctrl->ctrl); |
| if (remove) |
| nvme_start_queues(&ctrl->ctrl); |
| nvme_rdma_destroy_io_queues(ctrl, remove); |
| } |
| } |
| |
| static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) |
| { |
| struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); |
| |
| if (list_empty(&ctrl->list)) |
| goto free_ctrl; |
| |
| mutex_lock(&nvme_rdma_ctrl_mutex); |
| list_del(&ctrl->list); |
| mutex_unlock(&nvme_rdma_ctrl_mutex); |
| |
| nvmf_free_options(nctrl->opts); |
| free_ctrl: |
| kfree(ctrl->queues); |
| kfree(ctrl); |
| } |
| |
| static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) |
| { |
| /* If we are resetting/deleting then do nothing */ |
| if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { |
| WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || |
| ctrl->ctrl.state == NVME_CTRL_LIVE); |
| return; |
| } |
| |
| if (nvmf_should_reconnect(&ctrl->ctrl)) { |
| dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", |
| ctrl->ctrl.opts->reconnect_delay); |
| queue_delayed_work(nvme_wq, &ctrl->reconnect_work, |
| ctrl->ctrl.opts->reconnect_delay * HZ); |
| } else { |
| nvme_delete_ctrl(&ctrl->ctrl); |
| } |
| } |
| |
| static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) |
| { |
| int ret; |
| bool changed; |
| |
| ret = nvme_rdma_configure_admin_queue(ctrl, new); |
| if (ret) |
| return ret; |
| |
| if (ctrl->ctrl.icdoff) { |
| ret = -EOPNOTSUPP; |
| dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); |
| goto destroy_admin; |
| } |
| |
| if (!(ctrl->ctrl.sgls & (1 << 2))) { |
| ret = -EOPNOTSUPP; |
| dev_err(ctrl->ctrl.device, |
| "Mandatory keyed sgls are not supported!\n"); |
| goto destroy_admin; |
| } |
| |
| if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { |
| dev_warn(ctrl->ctrl.device, |
| "queue_size %zu > ctrl sqsize %u, clamping down\n", |
| ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); |
| } |
| |
| if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) { |
| dev_warn(ctrl->ctrl.device, |
| "ctrl sqsize %u > max queue size %u, clamping down\n", |
| ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE); |
| ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1; |
| } |
| |
| if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { |
| dev_warn(ctrl->ctrl.device, |
| "sqsize %u > ctrl maxcmd %u, clamping down\n", |
| ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); |
| ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; |
| } |
| |
| if (ctrl->ctrl.sgls & (1 << 20)) |
| ctrl->use_inline_data = true; |
| |
| if (ctrl->ctrl.queue_count > 1) { |
| ret = nvme_rdma_configure_io_queues(ctrl, new); |
| if (ret) |
| goto destroy_admin; |
| } |
| |
| changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); |
| if (!changed) { |
| /* |
| * state change failure is ok if we started ctrl delete, |
| * unless we're during creation of a new controller to |
| * avoid races with teardown flow. |
| */ |
| WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && |
| ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); |
| WARN_ON_ONCE(new); |
| ret = -EINVAL; |
| goto destroy_io; |
| } |
| |
| nvme_start_ctrl(&ctrl->ctrl); |
| return 0; |
| |
| destroy_io: |
| if (ctrl->ctrl.queue_count > 1) { |
| nvme_stop_queues(&ctrl->ctrl); |
| nvme_sync_io_queues(&ctrl->ctrl); |
| nvme_rdma_stop_io_queues(ctrl); |
| nvme_cancel_tagset(&ctrl->ctrl); |
| nvme_rdma_destroy_io_queues(ctrl, new); |
| } |
| destroy_admin: |
| nvme_stop_admin_queue(&ctrl->ctrl); |
| blk_sync_queue(ctrl->ctrl.admin_q); |
| nvme_rdma_stop_queue(&ctrl->queues[0]); |
| nvme_cancel_admin_tagset(&ctrl->ctrl); |
| nvme_rdma_destroy_admin_queue(ctrl, new); |
| return ret; |
| } |
| |
| static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), |
| struct nvme_rdma_ctrl, reconnect_work); |
| |
| ++ctrl->ctrl.nr_reconnects; |
| |
| if (nvme_rdma_setup_ctrl(ctrl, false)) |
| goto requeue; |
| |
| dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", |
| ctrl->ctrl.nr_reconnects); |
| |
| ctrl->ctrl.nr_reconnects = 0; |
| |
| return; |
| |
| requeue: |
| dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", |
| ctrl->ctrl.nr_reconnects); |
| nvme_rdma_reconnect_or_remove(ctrl); |
| } |
| |
| static void nvme_rdma_error_recovery_work(struct work_struct *work) |
| { |
| struct nvme_rdma_ctrl *ctrl = container_of(work, |
| struct nvme_rdma_ctrl, err_work); |
| |
| nvme_stop_keep_alive(&ctrl->ctrl); |
| nvme_rdma_teardown_io_queues(ctrl, false); |
| nvme_start_queues(&ctrl->ctrl); |
| nvme_rdma_teardown_admin_queue(ctrl, false); |
| nvme_start_admin_queue(&ctrl->ctrl); |
| |
| if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { |
| /* state change failure is ok if we started ctrl delete */ |
| WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && |
| ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); |
| return; |
| } |
| |
| nvme_rdma_reconnect_or_remove(ctrl); |
| } |
| |
| static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) |
| { |
| if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) |
| return; |
| |
| dev_warn(ctrl->ctrl.device, "starting error recovery\n"); |
| queue_work(nvme_reset_wq, &ctrl->err_work); |
| } |
| |
| static void nvme_rdma_end_request(struct nvme_rdma_request *req) |
| { |
| struct request *rq = blk_mq_rq_from_pdu(req); |
| |
| if (!refcount_dec_and_test(&req->ref)) |
| return; |
| if (!nvme_try_complete_req(rq, req->status, req->result)) |
| nvme_rdma_complete_rq(rq); |
| } |
| |
| static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, |
| const char *op) |
| { |
| struct nvme_rdma_queue *queue = wc->qp->qp_context; |
| struct nvme_rdma_ctrl *ctrl = queue->ctrl; |
| |
| if (ctrl->ctrl.state == NVME_CTRL_LIVE) |
| dev_info(ctrl->ctrl.device, |
| "%s for CQE 0x%p failed with status %s (%d)\n", |
| op, wc->wr_cqe, |
| ib_wc_status_msg(wc->status), wc->status); |
| nvme_rdma_error_recovery(ctrl); |
| } |
| |
| static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| if (unlikely(wc->status != IB_WC_SUCCESS)) |
| nvme_rdma_wr_error(cq, wc, "MEMREG"); |
| } |
| |
| static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvme_rdma_request *req = |
| container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) |
| nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); |
| else |
| nvme_rdma_end_request(req); |
| } |
| |
| static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_request *req) |
| { |
| struct ib_send_wr wr = { |
| .opcode = IB_WR_LOCAL_INV, |
| .next = NULL, |
| .num_sge = 0, |
| .send_flags = IB_SEND_SIGNALED, |
| .ex.invalidate_rkey = req->mr->rkey, |
| }; |
| |
| req->reg_cqe.done = nvme_rdma_inv_rkey_done; |
| wr.wr_cqe = &req->reg_cqe; |
| |
| return ib_post_send(queue->qp, &wr, NULL); |
| } |
| |
| static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, |
| struct request *rq) |
| { |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_rdma_device *dev = queue->device; |
| struct ib_device *ibdev = dev->dev; |
| struct list_head *pool = &queue->qp->rdma_mrs; |
| |
| if (!blk_rq_nr_phys_segments(rq)) |
| return; |
| |
| if (blk_integrity_rq(rq)) { |
| ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, |
| req->metadata_sgl->nents, rq_dma_dir(rq)); |
| sg_free_table_chained(&req->metadata_sgl->sg_table, |
| NVME_INLINE_METADATA_SG_CNT); |
| } |
| |
| if (req->use_sig_mr) |
| pool = &queue->qp->sig_mrs; |
| |
| if (req->mr) { |
| ib_mr_pool_put(queue->qp, pool, req->mr); |
| req->mr = NULL; |
| } |
| |
| ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, |
| rq_dma_dir(rq)); |
| sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); |
| } |
| |
| static int nvme_rdma_set_sg_null(struct nvme_command *c) |
| { |
| struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
| |
| sg->addr = 0; |
| put_unaligned_le24(0, sg->length); |
| put_unaligned_le32(0, sg->key); |
| sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; |
| return 0; |
| } |
| |
| static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_request *req, struct nvme_command *c, |
| int count) |
| { |
| struct nvme_sgl_desc *sg = &c->common.dptr.sgl; |
| struct ib_sge *sge = &req->sge[1]; |
| struct scatterlist *sgl; |
| u32 len = 0; |
| int i; |
| |
| for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { |
| sge->addr = sg_dma_address(sgl); |
| sge->length = sg_dma_len(sgl); |
| sge->lkey = queue->device->pd->local_dma_lkey; |
| len += sge->length; |
| sge++; |
| } |
| |
| sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); |
| sg->length = cpu_to_le32(len); |
| sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; |
| |
| req->num_sge += count; |
| return 0; |
| } |
| |
| static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_request *req, struct nvme_command *c) |
| { |
| struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
| |
| sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); |
| put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); |
| put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); |
| sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; |
| return 0; |
| } |
| |
| static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_request *req, struct nvme_command *c, |
| int count) |
| { |
| struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
| int nr; |
| |
| req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); |
| if (WARN_ON_ONCE(!req->mr)) |
| return -EAGAIN; |
| |
| /* |
| * Align the MR to a 4K page size to match the ctrl page size and |
| * the block virtual boundary. |
| */ |
| nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, |
| SZ_4K); |
| if (unlikely(nr < count)) { |
| ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); |
| req->mr = NULL; |
| if (nr < 0) |
| return nr; |
| return -EINVAL; |
| } |
| |
| ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); |
| |
| req->reg_cqe.done = nvme_rdma_memreg_done; |
| memset(&req->reg_wr, 0, sizeof(req->reg_wr)); |
| req->reg_wr.wr.opcode = IB_WR_REG_MR; |
| req->reg_wr.wr.wr_cqe = &req->reg_cqe; |
| req->reg_wr.wr.num_sge = 0; |
| req->reg_wr.mr = req->mr; |
| req->reg_wr.key = req->mr->rkey; |
| req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_READ | |
| IB_ACCESS_REMOTE_WRITE; |
| |
| sg->addr = cpu_to_le64(req->mr->iova); |
| put_unaligned_le24(req->mr->length, sg->length); |
| put_unaligned_le32(req->mr->rkey, sg->key); |
| sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | |
| NVME_SGL_FMT_INVALIDATE; |
| |
| return 0; |
| } |
| |
| static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, |
| struct nvme_command *cmd, struct ib_sig_domain *domain, |
| u16 control, u8 pi_type) |
| { |
| domain->sig_type = IB_SIG_TYPE_T10_DIF; |
| domain->sig.dif.bg_type = IB_T10DIF_CRC; |
| domain->sig.dif.pi_interval = 1 << bi->interval_exp; |
| domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); |
| if (control & NVME_RW_PRINFO_PRCHK_REF) |
| domain->sig.dif.ref_remap = true; |
| |
| domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); |
| domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); |
| domain->sig.dif.app_escape = true; |
| if (pi_type == NVME_NS_DPS_PI_TYPE3) |
| domain->sig.dif.ref_escape = true; |
| } |
| |
| static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, |
| struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, |
| u8 pi_type) |
| { |
| u16 control = le16_to_cpu(cmd->rw.control); |
| |
| memset(sig_attrs, 0, sizeof(*sig_attrs)); |
| if (control & NVME_RW_PRINFO_PRACT) { |
| /* for WRITE_INSERT/READ_STRIP no memory domain */ |
| sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; |
| nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, |
| pi_type); |
| /* Clear the PRACT bit since HCA will generate/verify the PI */ |
| control &= ~NVME_RW_PRINFO_PRACT; |
| cmd->rw.control = cpu_to_le16(control); |
| } else { |
| /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ |
| nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, |
| pi_type); |
| nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, |
| pi_type); |
| } |
| } |
| |
| static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) |
| { |
| *mask = 0; |
| if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) |
| *mask |= IB_SIG_CHECK_REFTAG; |
| if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) |
| *mask |= IB_SIG_CHECK_GUARD; |
| } |
| |
| static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| if (unlikely(wc->status != IB_WC_SUCCESS)) |
| nvme_rdma_wr_error(cq, wc, "SIG"); |
| } |
| |
| static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_request *req, struct nvme_command *c, |
| int count, int pi_count) |
| { |
| struct nvme_rdma_sgl *sgl = &req->data_sgl; |
| struct ib_reg_wr *wr = &req->reg_wr; |
| struct request *rq = blk_mq_rq_from_pdu(req); |
| struct nvme_ns *ns = rq->q->queuedata; |
| struct bio *bio = rq->bio; |
| struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
| int nr; |
| |
| req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); |
| if (WARN_ON_ONCE(!req->mr)) |
| return -EAGAIN; |
| |
| nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, |
| req->metadata_sgl->sg_table.sgl, pi_count, NULL, |
| SZ_4K); |
| if (unlikely(nr)) |
| goto mr_put; |
| |
| nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c, |
| req->mr->sig_attrs, ns->pi_type); |
| nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); |
| |
| ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); |
| |
| req->reg_cqe.done = nvme_rdma_sig_done; |
| memset(wr, 0, sizeof(*wr)); |
| wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; |
| wr->wr.wr_cqe = &req->reg_cqe; |
| wr->wr.num_sge = 0; |
| wr->wr.send_flags = 0; |
| wr->mr = req->mr; |
| wr->key = req->mr->rkey; |
| wr->access = IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_READ | |
| IB_ACCESS_REMOTE_WRITE; |
| |
| sg->addr = cpu_to_le64(req->mr->iova); |
| put_unaligned_le24(req->mr->length, sg->length); |
| put_unaligned_le32(req->mr->rkey, sg->key); |
| sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; |
| |
| return 0; |
| |
| mr_put: |
| ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); |
| req->mr = NULL; |
| if (nr < 0) |
| return nr; |
| return -EINVAL; |
| } |
| |
| static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, |
| struct request *rq, struct nvme_command *c) |
| { |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_rdma_device *dev = queue->device; |
| struct ib_device *ibdev = dev->dev; |
| int pi_count = 0; |
| int count, ret; |
| |
| req->num_sge = 1; |
| refcount_set(&req->ref, 2); /* send and recv completions */ |
| |
| c->common.flags |= NVME_CMD_SGL_METABUF; |
| |
| if (!blk_rq_nr_phys_segments(rq)) |
| return nvme_rdma_set_sg_null(c); |
| |
| req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); |
| ret = sg_alloc_table_chained(&req->data_sgl.sg_table, |
| blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, |
| NVME_INLINE_SG_CNT); |
| if (ret) |
| return -ENOMEM; |
| |
| req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, |
| req->data_sgl.sg_table.sgl); |
| |
| count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, |
| req->data_sgl.nents, rq_dma_dir(rq)); |
| if (unlikely(count <= 0)) { |
| ret = -EIO; |
| goto out_free_table; |
| } |
| |
| if (blk_integrity_rq(rq)) { |
| req->metadata_sgl->sg_table.sgl = |
| (struct scatterlist *)(req->metadata_sgl + 1); |
| ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, |
| blk_rq_count_integrity_sg(rq->q, rq->bio), |
| req->metadata_sgl->sg_table.sgl, |
| NVME_INLINE_METADATA_SG_CNT); |
| if (unlikely(ret)) { |
| ret = -ENOMEM; |
| goto out_unmap_sg; |
| } |
| |
| req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, |
| rq->bio, req->metadata_sgl->sg_table.sgl); |
| pi_count = ib_dma_map_sg(ibdev, |
| req->metadata_sgl->sg_table.sgl, |
| req->metadata_sgl->nents, |
| rq_dma_dir(rq)); |
| if (unlikely(pi_count <= 0)) { |
| ret = -EIO; |
| goto out_free_pi_table; |
| } |
| } |
| |
| if (req->use_sig_mr) { |
| ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); |
| goto out; |
| } |
| |
| if (count <= dev->num_inline_segments) { |
| if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && |
| queue->ctrl->use_inline_data && |
| blk_rq_payload_bytes(rq) <= |
| nvme_rdma_inline_data_size(queue)) { |
| ret = nvme_rdma_map_sg_inline(queue, req, c, count); |
| goto out; |
| } |
| |
| if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { |
| ret = nvme_rdma_map_sg_single(queue, req, c); |
| goto out; |
| } |
| } |
| |
| ret = nvme_rdma_map_sg_fr(queue, req, c, count); |
| out: |
| if (unlikely(ret)) |
| goto out_unmap_pi_sg; |
| |
| return 0; |
| |
| out_unmap_pi_sg: |
| if (blk_integrity_rq(rq)) |
| ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, |
| req->metadata_sgl->nents, rq_dma_dir(rq)); |
| out_free_pi_table: |
| if (blk_integrity_rq(rq)) |
| sg_free_table_chained(&req->metadata_sgl->sg_table, |
| NVME_INLINE_METADATA_SG_CNT); |
| out_unmap_sg: |
| ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, |
| rq_dma_dir(rq)); |
| out_free_table: |
| sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); |
| return ret; |
| } |
| |
| static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvme_rdma_qe *qe = |
| container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); |
| struct nvme_rdma_request *req = |
| container_of(qe, struct nvme_rdma_request, sqe); |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) |
| nvme_rdma_wr_error(cq, wc, "SEND"); |
| else |
| nvme_rdma_end_request(req); |
| } |
| |
| static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, |
| struct ib_send_wr *first) |
| { |
| struct ib_send_wr wr; |
| int ret; |
| |
| sge->addr = qe->dma; |
| sge->length = sizeof(struct nvme_command); |
| sge->lkey = queue->device->pd->local_dma_lkey; |
| |
| wr.next = NULL; |
| wr.wr_cqe = &qe->cqe; |
| wr.sg_list = sge; |
| wr.num_sge = num_sge; |
| wr.opcode = IB_WR_SEND; |
| wr.send_flags = IB_SEND_SIGNALED; |
| |
| if (first) |
| first->next = ≀ |
| else |
| first = ≀ |
| |
| ret = ib_post_send(queue->qp, first, NULL); |
| if (unlikely(ret)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "%s failed with error code %d\n", __func__, ret); |
| } |
| return ret; |
| } |
| |
| static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, |
| struct nvme_rdma_qe *qe) |
| { |
| struct ib_recv_wr wr; |
| struct ib_sge list; |
| int ret; |
| |
| list.addr = qe->dma; |
| list.length = sizeof(struct nvme_completion); |
| list.lkey = queue->device->pd->local_dma_lkey; |
| |
| qe->cqe.done = nvme_rdma_recv_done; |
| |
| wr.next = NULL; |
| wr.wr_cqe = &qe->cqe; |
| wr.sg_list = &list; |
| wr.num_sge = 1; |
| |
| ret = ib_post_recv(queue->qp, &wr, NULL); |
| if (unlikely(ret)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "%s failed with error code %d\n", __func__, ret); |
| } |
| return ret; |
| } |
| |
| static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) |
| { |
| u32 queue_idx = nvme_rdma_queue_idx(queue); |
| |
| if (queue_idx == 0) |
| return queue->ctrl->admin_tag_set.tags[queue_idx]; |
| return queue->ctrl->tag_set.tags[queue_idx - 1]; |
| } |
| |
| static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| if (unlikely(wc->status != IB_WC_SUCCESS)) |
| nvme_rdma_wr_error(cq, wc, "ASYNC"); |
| } |
| |
| static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) |
| { |
| struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); |
| struct nvme_rdma_queue *queue = &ctrl->queues[0]; |
| struct ib_device *dev = queue->device->dev; |
| struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; |
| struct nvme_command *cmd = sqe->data; |
| struct ib_sge sge; |
| int ret; |
| |
| ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| cmd->common.opcode = nvme_admin_async_event; |
| cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; |
| cmd->common.flags |= NVME_CMD_SGL_METABUF; |
| nvme_rdma_set_sg_null(cmd); |
| |
| sqe->cqe.done = nvme_rdma_async_done; |
| |
| ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), |
| DMA_TO_DEVICE); |
| |
| ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); |
| WARN_ON_ONCE(ret); |
| } |
| |
| static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, |
| struct nvme_completion *cqe, struct ib_wc *wc) |
| { |
| struct request *rq; |
| struct nvme_rdma_request *req; |
| |
| rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id); |
| if (!rq) { |
| dev_err(queue->ctrl->ctrl.device, |
| "got bad command_id %#x on QP %#x\n", |
| cqe->command_id, queue->qp->qp_num); |
| nvme_rdma_error_recovery(queue->ctrl); |
| return; |
| } |
| req = blk_mq_rq_to_pdu(rq); |
| |
| req->status = cqe->status; |
| req->result = cqe->result; |
| |
| if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { |
| if (unlikely(!req->mr || |
| wc->ex.invalidate_rkey != req->mr->rkey)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "Bogus remote invalidation for rkey %#x\n", |
| req->mr ? req->mr->rkey : 0); |
| nvme_rdma_error_recovery(queue->ctrl); |
| } |
| } else if (req->mr) { |
| int ret; |
| |
| ret = nvme_rdma_inv_rkey(queue, req); |
| if (unlikely(ret < 0)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "Queueing INV WR for rkey %#x failed (%d)\n", |
| req->mr->rkey, ret); |
| nvme_rdma_error_recovery(queue->ctrl); |
| } |
| /* the local invalidation completion will end the request */ |
| return; |
| } |
| |
| nvme_rdma_end_request(req); |
| } |
| |
| static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct nvme_rdma_qe *qe = |
| container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); |
| struct nvme_rdma_queue *queue = wc->qp->qp_context; |
| struct ib_device *ibdev = queue->device->dev; |
| struct nvme_completion *cqe = qe->data; |
| const size_t len = sizeof(struct nvme_completion); |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| nvme_rdma_wr_error(cq, wc, "RECV"); |
| return; |
| } |
| |
| /* sanity checking for received data length */ |
| if (unlikely(wc->byte_len < len)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "Unexpected nvme completion length(%d)\n", wc->byte_len); |
| nvme_rdma_error_recovery(queue->ctrl); |
| return; |
| } |
| |
| ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); |
| /* |
| * AEN requests are special as they don't time out and can |
| * survive any kind of queue freeze and often don't respond to |
| * aborts. We don't even bother to allocate a struct request |
| * for them but rather special case them here. |
| */ |
| if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), |
| cqe->command_id))) |
| nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, |
| &cqe->result); |
| else |
| nvme_rdma_process_nvme_rsp(queue, cqe, wc); |
| ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); |
| |
| nvme_rdma_post_recv(queue, qe); |
| } |
| |
| static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) |
| { |
| int ret, i; |
| |
| for (i = 0; i < queue->queue_size; i++) { |
| ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, |
| struct rdma_cm_event *ev) |
| { |
| struct rdma_cm_id *cm_id = queue->cm_id; |
| int status = ev->status; |
| const char *rej_msg; |
| const struct nvme_rdma_cm_rej *rej_data; |
| u8 rej_data_len; |
| |
| rej_msg = rdma_reject_msg(cm_id, status); |
| rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); |
| |
| if (rej_data && rej_data_len >= sizeof(u16)) { |
| u16 sts = le16_to_cpu(rej_data->sts); |
| |
| dev_err(queue->ctrl->ctrl.device, |
| "Connect rejected: status %d (%s) nvme status %d (%s).\n", |
| status, rej_msg, sts, nvme_rdma_cm_msg(sts)); |
| } else { |
| dev_err(queue->ctrl->ctrl.device, |
| "Connect rejected: status %d (%s).\n", status, rej_msg); |
| } |
| |
| return -ECONNRESET; |
| } |
| |
| static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) |
| { |
| struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; |
| int ret; |
| |
| ret = nvme_rdma_create_queue_ib(queue); |
| if (ret) |
| return ret; |
| |
| if (ctrl->opts->tos >= 0) |
| rdma_set_service_type(queue->cm_id, ctrl->opts->tos); |
| ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); |
| if (ret) { |
| dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", |
| queue->cm_error); |
| goto out_destroy_queue; |
| } |
| |
| return 0; |
| |
| out_destroy_queue: |
| nvme_rdma_destroy_queue_ib(queue); |
| return ret; |
| } |
| |
| static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) |
| { |
| struct nvme_rdma_ctrl *ctrl = queue->ctrl; |
| struct rdma_conn_param param = { }; |
| struct nvme_rdma_cm_req priv = { }; |
| int ret; |
| |
| param.qp_num = queue->qp->qp_num; |
| param.flow_control = 1; |
| |
| param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; |
| /* maximum retry count */ |
| param.retry_count = 7; |
| param.rnr_retry_count = 7; |
| param.private_data = &priv; |
| param.private_data_len = sizeof(priv); |
| |
| priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); |
| priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); |
| /* |
| * set the admin queue depth to the minimum size |
| * specified by the Fabrics standard. |
| */ |
| if (priv.qid == 0) { |
| priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); |
| priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); |
| } else { |
| /* |
| * current interpretation of the fabrics spec |
| * is at minimum you make hrqsize sqsize+1, or a |
| * 1's based representation of sqsize. |
| */ |
| priv.hrqsize = cpu_to_le16(queue->queue_size); |
| priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); |
| } |
| |
| ret = rdma_connect_locked(queue->cm_id, ¶m); |
| if (ret) { |
| dev_err(ctrl->ctrl.device, |
| "rdma_connect_locked failed (%d).\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *ev) |
| { |
| struct nvme_rdma_queue *queue = cm_id->context; |
| int cm_error = 0; |
| |
| dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", |
| rdma_event_msg(ev->event), ev->event, |
| ev->status, cm_id); |
| |
| switch (ev->event) { |
| case RDMA_CM_EVENT_ADDR_RESOLVED: |
| cm_error = nvme_rdma_addr_resolved(queue); |
| break; |
| case RDMA_CM_EVENT_ROUTE_RESOLVED: |
| cm_error = nvme_rdma_route_resolved(queue); |
| break; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| queue->cm_error = nvme_rdma_conn_established(queue); |
| /* complete cm_done regardless of success/failure */ |
| complete(&queue->cm_done); |
| return 0; |
| case RDMA_CM_EVENT_REJECTED: |
| cm_error = nvme_rdma_conn_rejected(queue, ev); |
| break; |
| case RDMA_CM_EVENT_ROUTE_ERROR: |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| case RDMA_CM_EVENT_UNREACHABLE: |
| case RDMA_CM_EVENT_ADDR_ERROR: |
| dev_dbg(queue->ctrl->ctrl.device, |
| "CM error event %d\n", ev->event); |
| cm_error = -ECONNRESET; |
| break; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| case RDMA_CM_EVENT_ADDR_CHANGE: |
| case RDMA_CM_EVENT_TIMEWAIT_EXIT: |
| dev_dbg(queue->ctrl->ctrl.device, |
| "disconnect received - connection closed\n"); |
| nvme_rdma_error_recovery(queue->ctrl); |
| break; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| /* device removal is handled via the ib_client API */ |
| break; |
| default: |
| dev_err(queue->ctrl->ctrl.device, |
| "Unexpected RDMA CM event (%d)\n", ev->event); |
| nvme_rdma_error_recovery(queue->ctrl); |
| break; |
| } |
| |
| if (cm_error) { |
| queue->cm_error = cm_error; |
| complete(&queue->cm_done); |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_rdma_complete_timed_out(struct request *rq) |
| { |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_rdma_queue *queue = req->queue; |
| |
| nvme_rdma_stop_queue(queue); |
| if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { |
| nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; |
| blk_mq_complete_request(rq); |
| } |
| } |
| |
| static enum blk_eh_timer_return |
| nvme_rdma_timeout(struct request *rq, bool reserved) |
| { |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_rdma_queue *queue = req->queue; |
| struct nvme_rdma_ctrl *ctrl = queue->ctrl; |
| |
| dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", |
| rq->tag, nvme_rdma_queue_idx(queue)); |
| |
| if (ctrl->ctrl.state != NVME_CTRL_LIVE) { |
| /* |
| * If we are resetting, connecting or deleting we should |
| * complete immediately because we may block controller |
| * teardown or setup sequence |
| * - ctrl disable/shutdown fabrics requests |
| * - connect requests |
| * - initialization admin requests |
| * - I/O requests that entered after unquiescing and |
| * the controller stopped responding |
| * |
| * All other requests should be cancelled by the error |
| * recovery work, so it's fine that we fail it here. |
| */ |
| nvme_rdma_complete_timed_out(rq); |
| return BLK_EH_DONE; |
| } |
| |
| /* |
| * LIVE state should trigger the normal error recovery which will |
| * handle completing this request. |
| */ |
| nvme_rdma_error_recovery(ctrl); |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, |
| const struct blk_mq_queue_data *bd) |
| { |
| struct nvme_ns *ns = hctx->queue->queuedata; |
| struct nvme_rdma_queue *queue = hctx->driver_data; |
| struct request *rq = bd->rq; |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_rdma_qe *sqe = &req->sqe; |
| struct nvme_command *c = nvme_req(rq)->cmd; |
| struct ib_device *dev; |
| bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); |
| blk_status_t ret; |
| int err; |
| |
| WARN_ON_ONCE(rq->tag < 0); |
| |
| if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) |
| return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); |
| |
| dev = queue->device->dev; |
| |
| req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, |
| sizeof(struct nvme_command), |
| DMA_TO_DEVICE); |
| err = ib_dma_mapping_error(dev, req->sqe.dma); |
| if (unlikely(err)) |
| return BLK_STS_RESOURCE; |
| |
| ib_dma_sync_single_for_cpu(dev, sqe->dma, |
| sizeof(struct nvme_command), DMA_TO_DEVICE); |
| |
| ret = nvme_setup_cmd(ns, rq); |
| if (ret) |
| goto unmap_qe; |
| |
| blk_mq_start_request(rq); |
| |
| if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && |
| queue->pi_support && |
| (c->common.opcode == nvme_cmd_write || |
| c->common.opcode == nvme_cmd_read) && |
| nvme_ns_has_pi(ns)) |
| req->use_sig_mr = true; |
| else |
| req->use_sig_mr = false; |
| |
| err = nvme_rdma_map_data(queue, rq, c); |
| if (unlikely(err < 0)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "Failed to map data (%d)\n", err); |
| goto err; |
| } |
| |
| sqe->cqe.done = nvme_rdma_send_done; |
| |
| ib_dma_sync_single_for_device(dev, sqe->dma, |
| sizeof(struct nvme_command), DMA_TO_DEVICE); |
| |
| err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, |
| req->mr ? &req->reg_wr.wr : NULL); |
| if (unlikely(err)) |
| goto err_unmap; |
| |
| return BLK_STS_OK; |
| |
| err_unmap: |
| nvme_rdma_unmap_data(queue, rq); |
| err: |
| if (err == -EIO) |
| ret = nvme_host_path_error(rq); |
| else if (err == -ENOMEM || err == -EAGAIN) |
| ret = BLK_STS_RESOURCE; |
| else |
| ret = BLK_STS_IOERR; |
| nvme_cleanup_cmd(rq); |
| unmap_qe: |
| ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), |
| DMA_TO_DEVICE); |
| return ret; |
| } |
| |
| static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) |
| { |
| struct nvme_rdma_queue *queue = hctx->driver_data; |
| |
| return ib_process_cq_direct(queue->ib_cq, -1); |
| } |
| |
| static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) |
| { |
| struct request *rq = blk_mq_rq_from_pdu(req); |
| struct ib_mr_status mr_status; |
| int ret; |
| |
| ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); |
| if (ret) { |
| pr_err("ib_check_mr_status failed, ret %d\n", ret); |
| nvme_req(rq)->status = NVME_SC_INVALID_PI; |
| return; |
| } |
| |
| if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { |
| switch (mr_status.sig_err.err_type) { |
| case IB_SIG_BAD_GUARD: |
| nvme_req(rq)->status = NVME_SC_GUARD_CHECK; |
| break; |
| case IB_SIG_BAD_REFTAG: |
| nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; |
| break; |
| case IB_SIG_BAD_APPTAG: |
| nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; |
| break; |
| } |
| pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", |
| mr_status.sig_err.err_type, mr_status.sig_err.expected, |
| mr_status.sig_err.actual); |
| } |
| } |
| |
| static void nvme_rdma_complete_rq(struct request *rq) |
| { |
| struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_rdma_queue *queue = req->queue; |
| struct ib_device *ibdev = queue->device->dev; |
| |
| if (req->use_sig_mr) |
| nvme_rdma_check_pi_status(req); |
| |
| nvme_rdma_unmap_data(queue, rq); |
| ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), |
| DMA_TO_DEVICE); |
| nvme_complete_rq(rq); |
| } |
| |
| static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) |
| { |
| struct nvme_rdma_ctrl *ctrl = set->driver_data; |
| struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; |
| |
| if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { |
| /* separate read/write queues */ |
| set->map[HCTX_TYPE_DEFAULT].nr_queues = |
| ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; |
| set->map[HCTX_TYPE_READ].nr_queues = |
| ctrl->io_queues[HCTX_TYPE_READ]; |
| set->map[HCTX_TYPE_READ].queue_offset = |
| ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| } else { |
| /* shared read/write queues */ |
| set->map[HCTX_TYPE_DEFAULT].nr_queues = |
| ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; |
| set->map[HCTX_TYPE_READ].nr_queues = |
| ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| set->map[HCTX_TYPE_READ].queue_offset = 0; |
| } |
| blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], |
| ctrl->device->dev, 0); |
| blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], |
| ctrl->device->dev, 0); |
| |
| if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { |
| /* map dedicated poll queues only if we have queues left */ |
| set->map[HCTX_TYPE_POLL].nr_queues = |
| ctrl->io_queues[HCTX_TYPE_POLL]; |
| set->map[HCTX_TYPE_POLL].queue_offset = |
| ctrl->io_queues[HCTX_TYPE_DEFAULT] + |
| ctrl->io_queues[HCTX_TYPE_READ]; |
| blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); |
| } |
| |
| dev_info(ctrl->ctrl.device, |
| "mapped %d/%d/%d default/read/poll queues.\n", |
| ctrl->io_queues[HCTX_TYPE_DEFAULT], |
| ctrl->io_queues[HCTX_TYPE_READ], |
| ctrl->io_queues[HCTX_TYPE_POLL]); |
| |
| return 0; |
| } |
| |
| static const struct blk_mq_ops nvme_rdma_mq_ops = { |
| .queue_rq = nvme_rdma_queue_rq, |
| .complete = nvme_rdma_complete_rq, |
| .init_request = nvme_rdma_init_request, |
| .exit_request = nvme_rdma_exit_request, |
| .init_hctx = nvme_rdma_init_hctx, |
| .timeout = nvme_rdma_timeout, |
| .map_queues = nvme_rdma_map_queues, |
| .poll = nvme_rdma_poll, |
| }; |
| |
| static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { |
| .queue_rq = nvme_rdma_queue_rq, |
| .complete = nvme_rdma_complete_rq, |
| .init_request = nvme_rdma_init_request, |
| .exit_request = nvme_rdma_exit_request, |
| .init_hctx = nvme_rdma_init_admin_hctx, |
| .timeout = nvme_rdma_timeout, |
| }; |
| |
| static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) |
| { |
| cancel_work_sync(&ctrl->err_work); |
| cancel_delayed_work_sync(&ctrl->reconnect_work); |
| |
| nvme_rdma_teardown_io_queues(ctrl, shutdown); |
| nvme_stop_admin_queue(&ctrl->ctrl); |
| if (shutdown) |
| nvme_shutdown_ctrl(&ctrl->ctrl); |
| else |
| nvme_disable_ctrl(&ctrl->ctrl); |
| nvme_rdma_teardown_admin_queue(ctrl, shutdown); |
| } |
| |
| static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) |
| { |
| nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); |
| } |
| |
| static void nvme_rdma_reset_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_rdma_ctrl *ctrl = |
| container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); |
| |
| nvme_stop_ctrl(&ctrl->ctrl); |
| nvme_rdma_shutdown_ctrl(ctrl, false); |
| |
| if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { |
| /* state change failure should never happen */ |
| WARN_ON_ONCE(1); |
| return; |
| } |
| |
| if (nvme_rdma_setup_ctrl(ctrl, false)) |
| goto out_fail; |
| |
| return; |
| |
| out_fail: |
| ++ctrl->ctrl.nr_reconnects; |
| nvme_rdma_reconnect_or_remove(ctrl); |
| } |
| |
| static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { |
| .name = "rdma", |
| .module = THIS_MODULE, |
| .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, |
| .reg_read32 = nvmf_reg_read32, |
| .reg_read64 = nvmf_reg_read64, |
| .reg_write32 = nvmf_reg_write32, |
| .free_ctrl = nvme_rdma_free_ctrl, |
| .submit_async_event = nvme_rdma_submit_async_event, |
| .delete_ctrl = nvme_rdma_delete_ctrl, |
| .get_address = nvmf_get_address, |
| }; |
| |
| /* |
| * Fails a connection request if it matches an existing controller |
| * (association) with the same tuple: |
| * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> |
| * |
| * if local address is not specified in the request, it will match an |
| * existing controller with all the other parameters the same and no |
| * local port address specified as well. |
| * |
| * The ports don't need to be compared as they are intrinsically |
| * already matched by the port pointers supplied. |
| */ |
| static bool |
| nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_rdma_ctrl *ctrl; |
| bool found = false; |
| |
| mutex_lock(&nvme_rdma_ctrl_mutex); |
| list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { |
| found = nvmf_ip_options_match(&ctrl->ctrl, opts); |
| if (found) |
| break; |
| } |
| mutex_unlock(&nvme_rdma_ctrl_mutex); |
| |
| return found; |
| } |
| |
| static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, |
| struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_rdma_ctrl *ctrl; |
| int ret; |
| bool changed; |
| |
| ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); |
| if (!ctrl) |
| return ERR_PTR(-ENOMEM); |
| ctrl->ctrl.opts = opts; |
| INIT_LIST_HEAD(&ctrl->list); |
| |
| if (!(opts->mask & NVMF_OPT_TRSVCID)) { |
| opts->trsvcid = |
| kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); |
| if (!opts->trsvcid) { |
| ret = -ENOMEM; |
| goto out_free_ctrl; |
| } |
| opts->mask |= NVMF_OPT_TRSVCID; |
| } |
| |
| ret = inet_pton_with_scope(&init_net, AF_UNSPEC, |
| opts->traddr, opts->trsvcid, &ctrl->addr); |
| if (ret) { |
| pr_err("malformed address passed: %s:%s\n", |
| opts->traddr, opts->trsvcid); |
| goto out_free_ctrl; |
| } |
| |
| if (opts->mask & NVMF_OPT_HOST_TRADDR) { |
| ret = inet_pton_with_scope(&init_net, AF_UNSPEC, |
| opts->host_traddr, NULL, &ctrl->src_addr); |
| if (ret) { |
| pr_err("malformed src address passed: %s\n", |
| opts->host_traddr); |
| goto out_free_ctrl; |
| } |
| } |
| |
| if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { |
| ret = -EALREADY; |
| goto out_free_ctrl; |
| } |
| |
| INIT_DELAYED_WORK(&ctrl->reconnect_work, |
| nvme_rdma_reconnect_ctrl_work); |
| INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); |
| INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); |
| |
| ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + |
| opts->nr_poll_queues + 1; |
| ctrl->ctrl.sqsize = opts->queue_size - 1; |
| ctrl->ctrl.kato = opts->kato; |
| |
| ret = -ENOMEM; |
| ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), |
| GFP_KERNEL); |
| if (!ctrl->queues) |
| goto out_free_ctrl; |
| |
| ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, |
| 0 /* no quirks, we're perfect! */); |
| if (ret) |
| goto out_kfree_queues; |
| |
| changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); |
| WARN_ON_ONCE(!changed); |
| |
| ret = nvme_rdma_setup_ctrl(ctrl, true); |
| if (ret) |
| goto out_uninit_ctrl; |
| |
| dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", |
| nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); |
| |
| mutex_lock(&nvme_rdma_ctrl_mutex); |
| list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); |
| mutex_unlock(&nvme_rdma_ctrl_mutex); |
| |
| return &ctrl->ctrl; |
| |
| out_uninit_ctrl: |
| nvme_uninit_ctrl(&ctrl->ctrl); |
| nvme_put_ctrl(&ctrl->ctrl); |
| if (ret > 0) |
| ret = -EIO; |
| return ERR_PTR(ret); |
| out_kfree_queues: |
| kfree(ctrl->queues); |
| out_free_ctrl: |
| kfree(ctrl); |
| return ERR_PTR(ret); |
| } |
| |
| static struct nvmf_transport_ops nvme_rdma_transport = { |
| .name = "rdma", |
| .module = THIS_MODULE, |
| .required_opts = NVMF_OPT_TRADDR, |
| .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | |
| NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | |
| NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | |
| NVMF_OPT_TOS, |
| .create_ctrl = nvme_rdma_create_ctrl, |
| }; |
| |
| static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) |
| { |
| struct nvme_rdma_ctrl *ctrl; |
| struct nvme_rdma_device *ndev; |
| bool found = false; |
| |
| mutex_lock(&device_list_mutex); |
| list_for_each_entry(ndev, &device_list, entry) { |
| if (ndev->dev == ib_device) { |
| found = true; |
| break; |
| } |
| } |
| mutex_unlock(&device_list_mutex); |
| |
| if (!found) |
| return; |
| |
| /* Delete all controllers using this device */ |
| mutex_lock(&nvme_rdma_ctrl_mutex); |
| list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { |
| if (ctrl->device->dev != ib_device) |
| continue; |
| nvme_delete_ctrl(&ctrl->ctrl); |
| } |
| mutex_unlock(&nvme_rdma_ctrl_mutex); |
| |
| flush_workqueue(nvme_delete_wq); |
| } |
| |
| static struct ib_client nvme_rdma_ib_client = { |
| .name = "nvme_rdma", |
| .remove = nvme_rdma_remove_one |
| }; |
| |
| static int __init nvme_rdma_init_module(void) |
| { |
| int ret; |
| |
| ret = ib_register_client(&nvme_rdma_ib_client); |
| if (ret) |
| return ret; |
| |
| ret = nvmf_register_transport(&nvme_rdma_transport); |
| if (ret) |
| goto err_unreg_client; |
| |
| return 0; |
| |
| err_unreg_client: |
| ib_unregister_client(&nvme_rdma_ib_client); |
| return ret; |
| } |
| |
| static void __exit nvme_rdma_cleanup_module(void) |
| { |
| struct nvme_rdma_ctrl *ctrl; |
| |
| nvmf_unregister_transport(&nvme_rdma_transport); |
| ib_unregister_client(&nvme_rdma_ib_client); |
| |
| mutex_lock(&nvme_rdma_ctrl_mutex); |
| list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) |
| nvme_delete_ctrl(&ctrl->ctrl); |
| mutex_unlock(&nvme_rdma_ctrl_mutex); |
| flush_workqueue(nvme_delete_wq); |
| } |
| |
| module_init(nvme_rdma_init_module); |
| module_exit(nvme_rdma_cleanup_module); |
| |
| MODULE_LICENSE("GPL v2"); |