blob: 4561667832ed403e2a4ce1847bda97d844a12485 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* pSeries_lpar.c
* Copyright (C) 2001 Todd Inglett, IBM Corporation
*
* pSeries LPAR support.
*/
/* Enables debugging of low-level hash table routines - careful! */
#undef DEBUG
#define pr_fmt(fmt) "lpar: " fmt
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/console.h>
#include <linux/export.h>
#include <linux/jump_label.h>
#include <linux/delay.h>
#include <linux/stop_machine.h>
#include <linux/spinlock.h>
#include <linux/cpuhotplug.h>
#include <linux/workqueue.h>
#include <linux/proc_fs.h>
#include <linux/pgtable.h>
#include <linux/debugfs.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/setup.h>
#include <asm/mmu_context.h>
#include <asm/iommu.h>
#include <asm/tlb.h>
#include <asm/cputable.h>
#include <asm/papr-sysparm.h>
#include <asm/udbg.h>
#include <asm/smp.h>
#include <asm/trace.h>
#include <asm/firmware.h>
#include <asm/plpar_wrappers.h>
#include <asm/kexec.h>
#include <asm/fadump.h>
#include <asm/dtl.h>
#include <asm/vphn.h>
#include "pseries.h"
/* Flag bits for H_BULK_REMOVE */
#define HBR_REQUEST 0x4000000000000000UL
#define HBR_RESPONSE 0x8000000000000000UL
#define HBR_END 0xc000000000000000UL
#define HBR_AVPN 0x0200000000000000UL
#define HBR_ANDCOND 0x0100000000000000UL
/* in hvCall.S */
EXPORT_SYMBOL(plpar_hcall);
EXPORT_SYMBOL(plpar_hcall9);
EXPORT_SYMBOL(plpar_hcall_norets);
#ifdef CONFIG_PPC_64S_HASH_MMU
/*
* H_BLOCK_REMOVE supported block size for this page size in segment who's base
* page size is that page size.
*
* The first index is the segment base page size, the second one is the actual
* page size.
*/
static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
#endif
/*
* Due to the involved complexity, and that the current hypervisor is only
* returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
* buffer size to 8 size block.
*/
#define HBLKRM_SUPPORTED_BLOCK_SIZE 8
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
static u8 dtl_mask = DTL_LOG_PREEMPT;
#else
static u8 dtl_mask;
#endif
void alloc_dtl_buffers(unsigned long *time_limit)
{
int cpu;
struct paca_struct *pp;
struct dtl_entry *dtl;
for_each_possible_cpu(cpu) {
pp = paca_ptrs[cpu];
if (pp->dispatch_log)
continue;
dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
if (!dtl) {
pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
cpu);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
pr_warn("Stolen time statistics will be unreliable\n");
#endif
break;
}
pp->dtl_ridx = 0;
pp->dispatch_log = dtl;
pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
pp->dtl_curr = dtl;
if (time_limit && time_after(jiffies, *time_limit)) {
cond_resched();
*time_limit = jiffies + HZ;
}
}
}
void register_dtl_buffer(int cpu)
{
long ret;
struct paca_struct *pp;
struct dtl_entry *dtl;
int hwcpu = get_hard_smp_processor_id(cpu);
pp = paca_ptrs[cpu];
dtl = pp->dispatch_log;
if (dtl && dtl_mask) {
pp->dtl_ridx = 0;
pp->dtl_curr = dtl;
lppaca_of(cpu).dtl_idx = 0;
/* hypervisor reads buffer length from this field */
dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
ret = register_dtl(hwcpu, __pa(dtl));
if (ret)
pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
cpu, hwcpu, ret);
lppaca_of(cpu).dtl_enable_mask = dtl_mask;
}
}
#ifdef CONFIG_PPC_SPLPAR
struct dtl_worker {
struct delayed_work work;
int cpu;
};
struct vcpu_dispatch_data {
int last_disp_cpu;
int total_disp;
int same_cpu_disp;
int same_chip_disp;
int diff_chip_disp;
int far_chip_disp;
int numa_home_disp;
int numa_remote_disp;
int numa_far_disp;
};
/*
* This represents the number of cpus in the hypervisor. Since there is no
* architected way to discover the number of processors in the host, we
* provision for dealing with NR_CPUS. This is currently 2048 by default, and
* is sufficient for our purposes. This will need to be tweaked if
* CONFIG_NR_CPUS is changed.
*/
#define NR_CPUS_H NR_CPUS
DEFINE_RWLOCK(dtl_access_lock);
static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
static DEFINE_PER_CPU(u64, dtl_entry_ridx);
static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
static enum cpuhp_state dtl_worker_state;
static DEFINE_MUTEX(dtl_enable_mutex);
static int vcpudispatch_stats_on __read_mostly;
static int vcpudispatch_stats_freq = 50;
static __be32 *vcpu_associativity, *pcpu_associativity;
static void free_dtl_buffers(unsigned long *time_limit)
{
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
int cpu;
struct paca_struct *pp;
for_each_possible_cpu(cpu) {
pp = paca_ptrs[cpu];
if (!pp->dispatch_log)
continue;
kmem_cache_free(dtl_cache, pp->dispatch_log);
pp->dtl_ridx = 0;
pp->dispatch_log = NULL;
pp->dispatch_log_end = NULL;
pp->dtl_curr = NULL;
if (time_limit && time_after(jiffies, *time_limit)) {
cond_resched();
*time_limit = jiffies + HZ;
}
}
#endif
}
static int init_cpu_associativity(void)
{
vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
if (!vcpu_associativity || !pcpu_associativity) {
pr_err("error allocating memory for associativity information\n");
return -ENOMEM;
}
return 0;
}
static void destroy_cpu_associativity(void)
{
kfree(vcpu_associativity);
kfree(pcpu_associativity);
vcpu_associativity = pcpu_associativity = NULL;
}
static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
{
__be32 *assoc;
int rc = 0;
assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
if (!assoc[0]) {
rc = hcall_vphn(cpu, flag, &assoc[0]);
if (rc)
return NULL;
}
return assoc;
}
static __be32 *get_pcpu_associativity(int cpu)
{
return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
}
static __be32 *get_vcpu_associativity(int cpu)
{
return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
}
static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
{
__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
return -EINVAL;
last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
return -EIO;
return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
}
static int cpu_home_node_dispatch_distance(int disp_cpu)
{
__be32 *disp_cpu_assoc, *vcpu_assoc;
int vcpu_id = smp_processor_id();
if (disp_cpu >= NR_CPUS_H) {
pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
disp_cpu, NR_CPUS_H);
return -EINVAL;
}
disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
vcpu_assoc = get_vcpu_associativity(vcpu_id);
if (!disp_cpu_assoc || !vcpu_assoc)
return -EIO;
return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
}
static void update_vcpu_disp_stat(int disp_cpu)
{
struct vcpu_dispatch_data *disp;
int distance;
disp = this_cpu_ptr(&vcpu_disp_data);
if (disp->last_disp_cpu == -1) {
disp->last_disp_cpu = disp_cpu;
return;
}
disp->total_disp++;
if (disp->last_disp_cpu == disp_cpu ||
(cpu_first_thread_sibling(disp->last_disp_cpu) ==
cpu_first_thread_sibling(disp_cpu)))
disp->same_cpu_disp++;
else {
distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
disp_cpu);
if (distance < 0)
pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
smp_processor_id());
else {
switch (distance) {
case 0:
disp->same_chip_disp++;
break;
case 1:
disp->diff_chip_disp++;
break;
case 2:
disp->far_chip_disp++;
break;
default:
pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
smp_processor_id(),
disp->last_disp_cpu,
disp_cpu,
distance);
}
}
}
distance = cpu_home_node_dispatch_distance(disp_cpu);
if (distance < 0)
pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
smp_processor_id());
else {
switch (distance) {
case 0:
disp->numa_home_disp++;
break;
case 1:
disp->numa_remote_disp++;
break;
case 2:
disp->numa_far_disp++;
break;
default:
pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
smp_processor_id(),
disp_cpu,
distance);
}
}
disp->last_disp_cpu = disp_cpu;
}
static void process_dtl_buffer(struct work_struct *work)
{
struct dtl_entry dtle;
u64 i = __this_cpu_read(dtl_entry_ridx);
struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
struct lppaca *vpa = local_paca->lppaca_ptr;
struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
if (!local_paca->dispatch_log)
return;
/* if we have been migrated away, we cancel ourself */
if (d->cpu != smp_processor_id()) {
pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
smp_processor_id());
return;
}
if (i == be64_to_cpu(vpa->dtl_idx))
goto out;
while (i < be64_to_cpu(vpa->dtl_idx)) {
dtle = *dtl;
barrier();
if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
/* buffer has overflowed */
pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
d->cpu,
be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
continue;
}
update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
++i;
++dtl;
if (dtl == dtl_end)
dtl = local_paca->dispatch_log;
}
__this_cpu_write(dtl_entry_ridx, i);
out:
schedule_delayed_work_on(d->cpu, to_delayed_work(work),
HZ / vcpudispatch_stats_freq);
}
static int dtl_worker_online(unsigned int cpu)
{
struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
memset(d, 0, sizeof(*d));
INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
d->cpu = cpu;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
per_cpu(dtl_entry_ridx, cpu) = 0;
register_dtl_buffer(cpu);
#else
per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
#endif
schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
return 0;
}
static int dtl_worker_offline(unsigned int cpu)
{
struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
cancel_delayed_work_sync(&d->work);
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
unregister_dtl(get_hard_smp_processor_id(cpu));
#endif
return 0;
}
static void set_global_dtl_mask(u8 mask)
{
int cpu;
dtl_mask = mask;
for_each_present_cpu(cpu)
lppaca_of(cpu).dtl_enable_mask = dtl_mask;
}
static void reset_global_dtl_mask(void)
{
int cpu;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
dtl_mask = DTL_LOG_PREEMPT;
#else
dtl_mask = 0;
#endif
for_each_present_cpu(cpu)
lppaca_of(cpu).dtl_enable_mask = dtl_mask;
}
static int dtl_worker_enable(unsigned long *time_limit)
{
int rc = 0, state;
if (!write_trylock(&dtl_access_lock)) {
rc = -EBUSY;
goto out;
}
set_global_dtl_mask(DTL_LOG_ALL);
/* Setup dtl buffers and register those */
alloc_dtl_buffers(time_limit);
state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
dtl_worker_online, dtl_worker_offline);
if (state < 0) {
pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
free_dtl_buffers(time_limit);
reset_global_dtl_mask();
write_unlock(&dtl_access_lock);
rc = -EINVAL;
goto out;
}
dtl_worker_state = state;
out:
return rc;
}
static void dtl_worker_disable(unsigned long *time_limit)
{
cpuhp_remove_state(dtl_worker_state);
free_dtl_buffers(time_limit);
reset_global_dtl_mask();
write_unlock(&dtl_access_lock);
}
static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
size_t count, loff_t *ppos)
{
unsigned long time_limit = jiffies + HZ;
struct vcpu_dispatch_data *disp;
int rc, cmd, cpu;
char buf[16];
if (count > 15)
return -EINVAL;
if (copy_from_user(buf, p, count))
return -EFAULT;
buf[count] = 0;
rc = kstrtoint(buf, 0, &cmd);
if (rc || cmd < 0 || cmd > 1) {
pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
return rc ? rc : -EINVAL;
}
mutex_lock(&dtl_enable_mutex);
if ((cmd == 0 && !vcpudispatch_stats_on) ||
(cmd == 1 && vcpudispatch_stats_on))
goto out;
if (cmd) {
rc = init_cpu_associativity();
if (rc) {
destroy_cpu_associativity();
goto out;
}
for_each_possible_cpu(cpu) {
disp = per_cpu_ptr(&vcpu_disp_data, cpu);
memset(disp, 0, sizeof(*disp));
disp->last_disp_cpu = -1;
}
rc = dtl_worker_enable(&time_limit);
if (rc) {
destroy_cpu_associativity();
goto out;
}
} else {
dtl_worker_disable(&time_limit);
destroy_cpu_associativity();
}
vcpudispatch_stats_on = cmd;
out:
mutex_unlock(&dtl_enable_mutex);
if (rc)
return rc;
return count;
}
static int vcpudispatch_stats_display(struct seq_file *p, void *v)
{
int cpu;
struct vcpu_dispatch_data *disp;
if (!vcpudispatch_stats_on) {
seq_puts(p, "off\n");
return 0;
}
for_each_online_cpu(cpu) {
disp = per_cpu_ptr(&vcpu_disp_data, cpu);
seq_printf(p, "cpu%d", cpu);
seq_put_decimal_ull(p, " ", disp->total_disp);
seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
seq_put_decimal_ull(p, " ", disp->same_chip_disp);
seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
seq_put_decimal_ull(p, " ", disp->far_chip_disp);
seq_put_decimal_ull(p, " ", disp->numa_home_disp);
seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
seq_put_decimal_ull(p, " ", disp->numa_far_disp);
seq_puts(p, "\n");
}
return 0;
}
static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, vcpudispatch_stats_display, NULL);
}
static const struct proc_ops vcpudispatch_stats_proc_ops = {
.proc_open = vcpudispatch_stats_open,
.proc_read = seq_read,
.proc_write = vcpudispatch_stats_write,
.proc_lseek = seq_lseek,
.proc_release = single_release,
};
static ssize_t vcpudispatch_stats_freq_write(struct file *file,
const char __user *p, size_t count, loff_t *ppos)
{
int rc, freq;
char buf[16];
if (count > 15)
return -EINVAL;
if (copy_from_user(buf, p, count))
return -EFAULT;
buf[count] = 0;
rc = kstrtoint(buf, 0, &freq);
if (rc || freq < 1 || freq > HZ) {
pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
HZ);
return rc ? rc : -EINVAL;
}
vcpudispatch_stats_freq = freq;
return count;
}
static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
{
seq_printf(p, "%d\n", vcpudispatch_stats_freq);
return 0;
}
static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
{
return single_open(file, vcpudispatch_stats_freq_display, NULL);
}
static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
.proc_open = vcpudispatch_stats_freq_open,
.proc_read = seq_read,
.proc_write = vcpudispatch_stats_freq_write,
.proc_lseek = seq_lseek,
.proc_release = single_release,
};
static int __init vcpudispatch_stats_procfs_init(void)
{
if (!lppaca_shared_proc())
return 0;
if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
&vcpudispatch_stats_proc_ops))
pr_err("vcpudispatch_stats: error creating procfs file\n");
else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
&vcpudispatch_stats_freq_proc_ops))
pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
return 0;
}
machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
u64 pseries_paravirt_steal_clock(int cpu)
{
struct lppaca *lppaca = &lppaca_of(cpu);
return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) +
be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb));
}
#endif
#endif /* CONFIG_PPC_SPLPAR */
void vpa_init(int cpu)
{
int hwcpu = get_hard_smp_processor_id(cpu);
unsigned long addr;
long ret;
/*
* The spec says it "may be problematic" if CPU x registers the VPA of
* CPU y. We should never do that, but wail if we ever do.
*/
WARN_ON(cpu != smp_processor_id());
if (cpu_has_feature(CPU_FTR_ALTIVEC))
lppaca_of(cpu).vmxregs_in_use = 1;
if (cpu_has_feature(CPU_FTR_ARCH_207S))
lppaca_of(cpu).ebb_regs_in_use = 1;
addr = __pa(&lppaca_of(cpu));
ret = register_vpa(hwcpu, addr);
if (ret) {
pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
"%lx failed with %ld\n", cpu, hwcpu, addr, ret);
return;
}
#ifdef CONFIG_PPC_64S_HASH_MMU
/*
* PAPR says this feature is SLB-Buffer but firmware never
* reports that. All SPLPAR support SLB shadow buffer.
*/
if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
ret = register_slb_shadow(hwcpu, addr);
if (ret)
pr_err("WARNING: SLB shadow buffer registration for "
"cpu %d (hw %d) of area %lx failed with %ld\n",
cpu, hwcpu, addr, ret);
}
#endif /* CONFIG_PPC_64S_HASH_MMU */
/*
* Register dispatch trace log, if one has been allocated.
*/
register_dtl_buffer(cpu);
}
#ifdef CONFIG_PPC_BOOK3S_64
static int __init pseries_lpar_register_process_table(unsigned long base,
unsigned long page_size, unsigned long table_size)
{
long rc;
unsigned long flags = 0;
if (table_size)
flags |= PROC_TABLE_NEW;
if (radix_enabled()) {
flags |= PROC_TABLE_RADIX;
if (mmu_has_feature(MMU_FTR_GTSE))
flags |= PROC_TABLE_GTSE;
} else
flags |= PROC_TABLE_HPT_SLB;
for (;;) {
rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
page_size, table_size);
if (!H_IS_LONG_BUSY(rc))
break;
mdelay(get_longbusy_msecs(rc));
}
if (rc != H_SUCCESS) {
pr_err("Failed to register process table (rc=%ld)\n", rc);
BUG();
}
return rc;
}
#ifdef CONFIG_PPC_64S_HASH_MMU
static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
unsigned long vpn, unsigned long pa,
unsigned long rflags, unsigned long vflags,
int psize, int apsize, int ssize)
{
unsigned long lpar_rc;
unsigned long flags;
unsigned long slot;
unsigned long hpte_v, hpte_r;
if (!(vflags & HPTE_V_BOLTED))
pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
"pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
hpte_group, vpn, pa, rflags, vflags, psize);
hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
if (!(vflags & HPTE_V_BOLTED))
pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
/* Now fill in the actual HPTE */
/* Set CEC cookie to 0 */
/* Zero page = 0 */
/* I-cache Invalidate = 0 */
/* I-cache synchronize = 0 */
/* Exact = 0 */
flags = 0;
if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
flags |= H_COALESCE_CAND;
lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
if (unlikely(lpar_rc == H_PTEG_FULL)) {
pr_devel("Hash table group is full\n");
return -1;
}
/*
* Since we try and ioremap PHBs we don't own, the pte insert
* will fail. However we must catch the failure in hash_page
* or we will loop forever, so return -2 in this case.
*/
if (unlikely(lpar_rc != H_SUCCESS)) {
pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
return -2;
}
if (!(vflags & HPTE_V_BOLTED))
pr_devel(" -> slot: %lu\n", slot & 7);
/* Because of iSeries, we have to pass down the secondary
* bucket bit here as well
*/
return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
}
static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
{
unsigned long slot_offset;
unsigned long lpar_rc;
int i;
unsigned long dummy1, dummy2;
/* pick a random slot to start at */
slot_offset = mftb() & 0x7;
for (i = 0; i < HPTES_PER_GROUP; i++) {
/* don't remove a bolted entry */
lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
HPTE_V_BOLTED, &dummy1, &dummy2);
if (lpar_rc == H_SUCCESS)
return i;
/*
* The test for adjunct partition is performed before the
* ANDCOND test. H_RESOURCE may be returned, so we need to
* check for that as well.
*/
BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
slot_offset++;
slot_offset &= 0x7;
}
return -1;
}
/* Called during kexec sequence with MMU off */
static notrace void manual_hpte_clear_all(void)
{
unsigned long size_bytes = 1UL << ppc64_pft_size;
unsigned long hpte_count = size_bytes >> 4;
struct {
unsigned long pteh;
unsigned long ptel;
} ptes[4];
long lpar_rc;
unsigned long i, j;
/* Read in batches of 4,
* invalidate only valid entries not in the VRMA
* hpte_count will be a multiple of 4
*/
for (i = 0; i < hpte_count; i += 4) {
lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
if (lpar_rc != H_SUCCESS) {
pr_info("Failed to read hash page table at %ld err %ld\n",
i, lpar_rc);
continue;
}
for (j = 0; j < 4; j++){
if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
HPTE_V_VRMA_MASK)
continue;
if (ptes[j].pteh & HPTE_V_VALID)
plpar_pte_remove_raw(0, i + j, 0,
&(ptes[j].pteh), &(ptes[j].ptel));
}
}
}
/* Called during kexec sequence with MMU off */
static notrace int hcall_hpte_clear_all(void)
{
int rc;
do {
rc = plpar_hcall_norets(H_CLEAR_HPT);
} while (rc == H_CONTINUE);
return rc;
}
/* Called during kexec sequence with MMU off */
static notrace void pseries_hpte_clear_all(void)
{
int rc;
rc = hcall_hpte_clear_all();
if (rc != H_SUCCESS)
manual_hpte_clear_all();
#ifdef __LITTLE_ENDIAN__
/*
* Reset exceptions to big endian.
*
* FIXME this is a hack for kexec, we need to reset the exception
* endian before starting the new kernel and this is a convenient place
* to do it.
*
* This is also called on boot when a fadump happens. In that case we
* must not change the exception endian mode.
*/
if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
pseries_big_endian_exceptions();
#endif
}
/*
* NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
* the low 3 bits of flags happen to line up. So no transform is needed.
* We can probably optimize here and assume the high bits of newpp are
* already zero. For now I am paranoid.
*/
static long pSeries_lpar_hpte_updatepp(unsigned long slot,
unsigned long newpp,
unsigned long vpn,
int psize, int apsize,
int ssize, unsigned long inv_flags)
{
unsigned long lpar_rc;
unsigned long flags;
unsigned long want_v;
want_v = hpte_encode_avpn(vpn, psize, ssize);
flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
flags |= (newpp & HPTE_R_KEY_HI) >> 48;
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
/* Move pp0 into bit 8 (IBM 55) */
flags |= (newpp & HPTE_R_PP0) >> 55;
pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
want_v, slot, flags, psize);
lpar_rc = plpar_pte_protect(flags, slot, want_v);
if (lpar_rc == H_NOT_FOUND) {
pr_devel("not found !\n");
return -1;
}
pr_devel("ok\n");
BUG_ON(lpar_rc != H_SUCCESS);
return 0;
}
static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
{
long lpar_rc;
unsigned long i, j;
struct {
unsigned long pteh;
unsigned long ptel;
} ptes[4];
for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
if (lpar_rc != H_SUCCESS) {
pr_info("Failed to read hash page table at %ld err %ld\n",
hpte_group, lpar_rc);
continue;
}
for (j = 0; j < 4; j++) {
if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
(ptes[j].pteh & HPTE_V_VALID))
return i + j;
}
}
return -1;
}
static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
{
long slot;
unsigned long hash;
unsigned long want_v;
unsigned long hpte_group;
hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
want_v = hpte_encode_avpn(vpn, psize, ssize);
/*
* We try to keep bolted entries always in primary hash
* But in some case we can find them in secondary too.
*/
hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
if (slot < 0) {
/* Try in secondary */
hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
if (slot < 0)
return -1;
}
return hpte_group + slot;
}
static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
unsigned long ea,
int psize, int ssize)
{
unsigned long vpn;
unsigned long lpar_rc, slot, vsid, flags;
vsid = get_kernel_vsid(ea, ssize);
vpn = hpt_vpn(ea, vsid, ssize);
slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
BUG_ON(slot == -1);
flags = newpp & (HPTE_R_PP | HPTE_R_N);
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
/* Move pp0 into bit 8 (IBM 55) */
flags |= (newpp & HPTE_R_PP0) >> 55;
flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
lpar_rc = plpar_pte_protect(flags, slot, 0);
BUG_ON(lpar_rc != H_SUCCESS);
}
static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
int psize, int apsize,
int ssize, int local)
{
unsigned long want_v;
unsigned long lpar_rc;
unsigned long dummy1, dummy2;
pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
slot, vpn, psize, local);
want_v = hpte_encode_avpn(vpn, psize, ssize);
lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
if (lpar_rc == H_NOT_FOUND)
return;
BUG_ON(lpar_rc != H_SUCCESS);
}
/*
* As defined in the PAPR's section 14.5.4.1.8
* The control mask doesn't include the returned reference and change bit from
* the processed PTE.
*/
#define HBLKR_AVPN 0x0100000000000000UL
#define HBLKR_CTRL_MASK 0xf800000000000000UL
#define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
#define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
#define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
/*
* Returned true if we are supporting this block size for the specified segment
* base page size and actual page size.
*
* Currently, we only support 8 size block.
*/
static inline bool is_supported_hlbkrm(int bpsize, int psize)
{
return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
}
/**
* H_BLOCK_REMOVE caller.
* @idx should point to the latest @param entry set with a PTEX.
* If PTE cannot be processed because another CPUs has already locked that
* group, those entries are put back in @param starting at index 1.
* If entries has to be retried and @retry_busy is set to true, these entries
* are retried until success. If @retry_busy is set to false, the returned
* is the number of entries yet to process.
*/
static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
bool retry_busy)
{
unsigned long i, rc, new_idx;
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
if (idx < 2) {
pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
return 0;
}
again:
new_idx = 0;
if (idx > PLPAR_HCALL9_BUFSIZE) {
pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
idx = PLPAR_HCALL9_BUFSIZE;
} else if (idx < PLPAR_HCALL9_BUFSIZE)
param[idx] = HBR_END;
rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
param[0], /* AVA */
param[1], param[2], param[3], param[4], /* TS0-7 */
param[5], param[6], param[7], param[8]);
if (rc == H_SUCCESS)
return 0;
BUG_ON(rc != H_PARTIAL);
/* Check that the unprocessed entries were 'not found' or 'busy' */
for (i = 0; i < idx-1; i++) {
unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
if (ctrl == HBLKR_CTRL_ERRBUSY) {
param[++new_idx] = param[i+1];
continue;
}
BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
&& ctrl != HBLKR_CTRL_ERRNOTFOUND);
}
/*
* If there were entries found busy, retry these entries if requested,
* of if all the entries have to be retried.
*/
if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
idx = new_idx + 1;
goto again;
}
return new_idx;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
* to make sure that we avoid bouncing the hypervisor tlbie lock.
*/
#define PPC64_HUGE_HPTE_BATCH 12
static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
int count, int psize, int ssize)
{
unsigned long param[PLPAR_HCALL9_BUFSIZE];
unsigned long shift, current_vpgb, vpgb;
int i, pix = 0;
shift = mmu_psize_defs[psize].shift;
for (i = 0; i < count; i++) {
/*
* Shifting 3 bits more on the right to get a
* 8 pages aligned virtual addresse.
*/
vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
if (!pix || vpgb != current_vpgb) {
/*
* Need to start a new 8 pages block, flush
* the current one if needed.
*/
if (pix)
(void)call_block_remove(pix, param, true);
current_vpgb = vpgb;
param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
pix = 1;
}
param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
if (pix == PLPAR_HCALL9_BUFSIZE) {
pix = call_block_remove(pix, param, false);
/*
* pix = 0 means that all the entries were
* removed, we can start a new block.
* Otherwise, this means that there are entries
* to retry, and pix points to latest one, so
* we should increment it and try to continue
* the same block.
*/
if (pix)
pix++;
}
}
if (pix)
(void)call_block_remove(pix, param, true);
}
static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
int count, int psize, int ssize)
{
unsigned long param[PLPAR_HCALL9_BUFSIZE];
int i = 0, pix = 0, rc;
for (i = 0; i < count; i++) {
if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
ssize, 0);
} else {
param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
pix += 2;
if (pix == 8) {
rc = plpar_hcall9(H_BULK_REMOVE, param,
param[0], param[1], param[2],
param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
pix = 0;
}
}
}
if (pix) {
param[pix] = HBR_END;
rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
param[2], param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
}
}
static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
unsigned long *vpn,
int count, int psize,
int ssize)
{
unsigned long flags = 0;
int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
if (lock_tlbie)
spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
/* Assuming THP size is 16M */
if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
hugepage_block_invalidate(slot, vpn, count, psize, ssize);
else
hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
if (lock_tlbie)
spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
}
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local)
{
int i, index = 0;
unsigned long s_addr = addr;
unsigned int max_hpte_count, valid;
unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
unsigned long shift, hidx, vpn = 0, hash, slot;
shift = mmu_psize_defs[psize].shift;
max_hpte_count = 1U << (PMD_SHIFT - shift);
for (i = 0; i < max_hpte_count; i++) {
valid = hpte_valid(hpte_slot_array, i);
if (!valid)
continue;
hidx = hpte_hash_index(hpte_slot_array, i);
/* get the vpn */
addr = s_addr + (i * (1ul << shift));
vpn = hpt_vpn(addr, vsid, ssize);
hash = hpt_hash(vpn, shift, ssize);
if (hidx & _PTEIDX_SECONDARY)
hash = ~hash;
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot += hidx & _PTEIDX_GROUP_IX;
slot_array[index] = slot;
vpn_array[index] = vpn;
if (index == PPC64_HUGE_HPTE_BATCH - 1) {
/*
* Now do a bluk invalidate
*/
__pSeries_lpar_hugepage_invalidate(slot_array,
vpn_array,
PPC64_HUGE_HPTE_BATCH,
psize, ssize);
index = 0;
} else
index++;
}
if (index)
__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
index, psize, ssize);
}
#else
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local)
{
WARN(1, "%s called without THP support\n", __func__);
}
#endif
static int pSeries_lpar_hpte_removebolted(unsigned long ea,
int psize, int ssize)
{
unsigned long vpn;
unsigned long slot, vsid;
vsid = get_kernel_vsid(ea, ssize);
vpn = hpt_vpn(ea, vsid, ssize);
slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
if (slot == -1)
return -ENOENT;
/*
* lpar doesn't use the passed actual page size
*/
pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
return 0;
}
static inline unsigned long compute_slot(real_pte_t pte,
unsigned long vpn,
unsigned long index,
unsigned long shift,
int ssize)
{
unsigned long slot, hash, hidx;
hash = hpt_hash(vpn, shift, ssize);
hidx = __rpte_to_hidx(pte, index);
if (hidx & _PTEIDX_SECONDARY)
hash = ~hash;
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot += hidx & _PTEIDX_GROUP_IX;
return slot;
}
/**
* The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
* "all within the same naturally aligned 8 page virtual address block".
*/
static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
unsigned long *param)
{
unsigned long vpn;
unsigned long i, pix = 0;
unsigned long index, shift, slot, current_vpgb, vpgb;
real_pte_t pte;
int psize, ssize;
psize = batch->psize;
ssize = batch->ssize;
for (i = 0; i < number; i++) {
vpn = batch->vpn[i];
pte = batch->pte[i];
pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
/*
* Shifting 3 bits more on the right to get a
* 8 pages aligned virtual addresse.
*/
vpgb = (vpn >> (shift - VPN_SHIFT + 3));
if (!pix || vpgb != current_vpgb) {
/*
* Need to start a new 8 pages block, flush
* the current one if needed.
*/
if (pix)
(void)call_block_remove(pix, param,
true);
current_vpgb = vpgb;
param[0] = hpte_encode_avpn(vpn, psize,
ssize);
pix = 1;
}
slot = compute_slot(pte, vpn, index, shift, ssize);
param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
if (pix == PLPAR_HCALL9_BUFSIZE) {
pix = call_block_remove(pix, param, false);
/*
* pix = 0 means that all the entries were
* removed, we can start a new block.
* Otherwise, this means that there are entries
* to retry, and pix points to latest one, so
* we should increment it and try to continue
* the same block.
*/
if (pix)
pix++;
}
} pte_iterate_hashed_end();
}
if (pix)
(void)call_block_remove(pix, param, true);
}
/*
* TLB Block Invalidate Characteristics
*
* These characteristics define the size of the block the hcall H_BLOCK_REMOVE
* is able to process for each couple segment base page size, actual page size.
*
* The ibm,get-system-parameter properties is returning a buffer with the
* following layout:
*
* [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
* -----------------
* TLB Block Invalidate Specifiers:
* [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
* [ 1 byte Number of page sizes (N) that are supported for the specified
* TLB invalidate block size ]
* [ 1 byte Encoded segment base page size and actual page size
* MSB=0 means 4k segment base page size and actual page size
* MSB=1 the penc value in mmu_psize_def ]
* ...
* -----------------
* Next TLB Block Invalidate Specifiers...
* -----------------
* [ 0 ]
*/
static inline void set_hblkrm_bloc_size(int bpsize, int psize,
unsigned int block_size)
{
if (block_size > hblkrm_size[bpsize][psize])
hblkrm_size[bpsize][psize] = block_size;
}
/*
* Decode the Encoded segment base page size and actual page size.
* PAPR specifies:
* - bit 7 is the L bit
* - bits 0-5 are the penc value
* If the L bit is 0, this means 4K segment base page size and actual page size
* otherwise the penc value should be read.
*/
#define HBLKRM_L_MASK 0x80
#define HBLKRM_PENC_MASK 0x3f
static inline void __init check_lp_set_hblkrm(unsigned int lp,
unsigned int block_size)
{
unsigned int bpsize, psize;
/* First, check the L bit, if not set, this means 4K */
if ((lp & HBLKRM_L_MASK) == 0) {
set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
return;
}
lp &= HBLKRM_PENC_MASK;
for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
if (def->penc[psize] == lp) {
set_hblkrm_bloc_size(bpsize, psize, block_size);
return;
}
}
}
}
/*
* The size of the TLB Block Invalidate Characteristics is variable. But at the
* maximum it will be the number of possible page sizes *2 + 10 bytes.
* Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
* (128 bytes) for the buffer to get plenty of space.
*/
#define SPLPAR_TLB_BIC_MAXLENGTH 128
void __init pseries_lpar_read_hblkrm_characteristics(void)
{
static struct papr_sysparm_buf buf __initdata;
int len, idx, bpsize;
if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
return;
if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf))
return;
len = be16_to_cpu(buf.len);
if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
pr_warn("%s too large returned buffer %d", __func__, len);
return;
}
idx = 0;
while (idx < len) {
u8 block_shift = buf.val[idx++];
u32 block_size;
unsigned int npsize;
if (!block_shift)
break;
block_size = 1 << block_shift;
for (npsize = buf.val[idx++];
npsize > 0 && idx < len; npsize--)
check_lp_set_hblkrm((unsigned int)buf.val[idx++],
block_size);
}
for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
if (hblkrm_size[bpsize][idx])
pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
bpsize, idx, hblkrm_size[bpsize][idx]);
}
/*
* Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
* lock.
*/
static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
{
unsigned long vpn;
unsigned long i, pix, rc;
unsigned long flags = 0;
struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
unsigned long param[PLPAR_HCALL9_BUFSIZE];
unsigned long index, shift, slot;
real_pte_t pte;
int psize, ssize;
if (lock_tlbie)
spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
if (is_supported_hlbkrm(batch->psize, batch->psize)) {
do_block_remove(number, batch, param);
goto out;
}
psize = batch->psize;
ssize = batch->ssize;
pix = 0;
for (i = 0; i < number; i++) {
vpn = batch->vpn[i];
pte = batch->pte[i];
pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
slot = compute_slot(pte, vpn, index, shift, ssize);
if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
/*
* lpar doesn't use the passed actual page size
*/
pSeries_lpar_hpte_invalidate(slot, vpn, psize,
0, ssize, local);
} else {
param[pix] = HBR_REQUEST | HBR_AVPN | slot;
param[pix+1] = hpte_encode_avpn(vpn, psize,
ssize);
pix += 2;
if (pix == 8) {
rc = plpar_hcall9(H_BULK_REMOVE, param,
param[0], param[1], param[2],
param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
pix = 0;
}
}
} pte_iterate_hashed_end();
}
if (pix) {
param[pix] = HBR_END;
rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
param[2], param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
}
out:
if (lock_tlbie)
spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
}
static int __init disable_bulk_remove(char *str)
{
if (strcmp(str, "off") == 0 &&
firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
pr_info("Disabling BULK_REMOVE firmware feature");
powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
}
return 1;
}
__setup("bulk_remove=", disable_bulk_remove);
#define HPT_RESIZE_TIMEOUT 10000 /* ms */
struct hpt_resize_state {
unsigned long shift;
int commit_rc;
};
static int pseries_lpar_resize_hpt_commit(void *data)
{
struct hpt_resize_state *state = data;
state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
if (state->commit_rc != H_SUCCESS)
return -EIO;
/* Hypervisor has transitioned the HTAB, update our globals */
ppc64_pft_size = state->shift;
htab_size_bytes = 1UL << ppc64_pft_size;
htab_hash_mask = (htab_size_bytes >> 7) - 1;
return 0;
}
/*
* Must be called in process context. The caller must hold the
* cpus_lock.
*/
static int pseries_lpar_resize_hpt(unsigned long shift)
{
struct hpt_resize_state state = {
.shift = shift,
.commit_rc = H_FUNCTION,
};
unsigned int delay, total_delay = 0;
int rc;
ktime_t t0, t1, t2;
might_sleep();
if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
return -ENODEV;
pr_info("Attempting to resize HPT to shift %lu\n", shift);
t0 = ktime_get();
rc = plpar_resize_hpt_prepare(0, shift);
while (H_IS_LONG_BUSY(rc)) {
delay = get_longbusy_msecs(rc);
total_delay += delay;
if (total_delay > HPT_RESIZE_TIMEOUT) {
/* prepare with shift==0 cancels an in-progress resize */
rc = plpar_resize_hpt_prepare(0, 0);
if (rc != H_SUCCESS)
pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
rc);
return -ETIMEDOUT;
}
msleep(delay);
rc = plpar_resize_hpt_prepare(0, shift);
}
switch (rc) {
case H_SUCCESS:
/* Continue on */
break;
case H_PARAMETER:
pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
return -EINVAL;
case H_RESOURCE:
pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
return -EPERM;
default:
pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
return -EIO;
}
t1 = ktime_get();
rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
&state, NULL);
t2 = ktime_get();
if (rc != 0) {
switch (state.commit_rc) {
case H_PTEG_FULL:
return -ENOSPC;
default:
pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
state.commit_rc);
return -EIO;
};
}
pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
shift, (long long) ktime_ms_delta(t1, t0),
(long long) ktime_ms_delta(t2, t1));
return 0;
}
void __init hpte_init_pseries(void)
{
mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
/*
* On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
* to inform the hypervisor that we wish to use the HPT.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300))
pseries_lpar_register_process_table(0, 0, 0);
}
#endif /* CONFIG_PPC_64S_HASH_MMU */
#ifdef CONFIG_PPC_RADIX_MMU
void __init radix_init_pseries(void)
{
pr_info("Using radix MMU under hypervisor\n");
pseries_lpar_register_process_table(__pa(process_tb),
0, PRTB_SIZE_SHIFT - 12);
}
#endif
#ifdef CONFIG_PPC_SMLPAR
#define CMO_FREE_HINT_DEFAULT 1
static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
static int __init cmo_free_hint(char *str)
{
char *parm;
parm = strstrip(str);
if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
pr_info("%s: CMO free page hinting is not active.\n", __func__);
cmo_free_hint_flag = 0;
return 1;
}
cmo_free_hint_flag = 1;
pr_info("%s: CMO free page hinting is active.\n", __func__);
if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
return 1;
return 0;
}
__setup("cmo_free_hint=", cmo_free_hint);
static void pSeries_set_page_state(struct page *page, int order,
unsigned long state)
{
int i, j;
unsigned long cmo_page_sz, addr;
cmo_page_sz = cmo_get_page_size();
addr = __pa((unsigned long)page_address(page));
for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
}
}
void arch_free_page(struct page *page, int order)
{
if (radix_enabled())
return;
if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
return;
pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
}
EXPORT_SYMBOL(arch_free_page);
#endif /* CONFIG_PPC_SMLPAR */
#endif /* CONFIG_PPC_BOOK3S_64 */
#ifdef CONFIG_TRACEPOINTS
#ifdef CONFIG_JUMP_LABEL
struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
int hcall_tracepoint_regfunc(void)
{
static_key_slow_inc(&hcall_tracepoint_key);
return 0;
}
void hcall_tracepoint_unregfunc(void)
{
static_key_slow_dec(&hcall_tracepoint_key);
}
#else
/*
* We optimise our hcall path by placing hcall_tracepoint_refcount
* directly in the TOC so we can check if the hcall tracepoints are
* enabled via a single load.
*/
/* NB: reg/unreg are called while guarded with the tracepoints_mutex */
extern long hcall_tracepoint_refcount;
int hcall_tracepoint_regfunc(void)
{
hcall_tracepoint_refcount++;
return 0;
}
void hcall_tracepoint_unregfunc(void)
{
hcall_tracepoint_refcount--;
}
#endif
/*
* Keep track of hcall tracing depth and prevent recursion. Warn if any is
* detected because it may indicate a problem. This will not catch all
* problems with tracing code making hcalls, because the tracing might have
* been invoked from a non-hcall, so the first hcall could recurse into it
* without warning here, but this better than nothing.
*
* Hcalls with specific problems being traced should use the _notrace
* plpar_hcall variants.
*/
static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
{
unsigned long flags;
unsigned int *depth;
local_irq_save(flags);
depth = this_cpu_ptr(&hcall_trace_depth);
if (WARN_ON_ONCE(*depth))
goto out;
(*depth)++;
preempt_disable();
trace_hcall_entry(opcode, args);
(*depth)--;
out:
local_irq_restore(flags);
}
notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
{
unsigned long flags;
unsigned int *depth;
local_irq_save(flags);
depth = this_cpu_ptr(&hcall_trace_depth);
if (*depth) /* Don't warn again on the way out */
goto out;
(*depth)++;
trace_hcall_exit(opcode, retval, retbuf);
preempt_enable();
(*depth)--;
out:
local_irq_restore(flags);
}
#endif
/**
* h_get_mpp
* H_GET_MPP hcall returns info in 7 parms
*/
int h_get_mpp(struct hvcall_mpp_data *mpp_data)
{
int rc;
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
rc = plpar_hcall9(H_GET_MPP, retbuf);
mpp_data->entitled_mem = retbuf[0];
mpp_data->mapped_mem = retbuf[1];
mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
mpp_data->pool_num = retbuf[2] & 0xffff;
mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
mpp_data->pool_size = retbuf[4];
mpp_data->loan_request = retbuf[5];
mpp_data->backing_mem = retbuf[6];
return rc;
}
EXPORT_SYMBOL(h_get_mpp);
int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
{
int rc;
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
rc = plpar_hcall9(H_GET_MPP_X, retbuf);
mpp_x_data->coalesced_bytes = retbuf[0];
mpp_x_data->pool_coalesced_bytes = retbuf[1];
mpp_x_data->pool_purr_cycles = retbuf[2];
mpp_x_data->pool_spurr_cycles = retbuf[3];
return rc;
}
#ifdef CONFIG_PPC_64S_HASH_MMU
static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
{
unsigned long protovsid;
unsigned long va_bits = VA_BITS;
unsigned long modinv, vsid_modulus;
unsigned long max_mod_inv, tmp_modinv;
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
va_bits = 65;
if (ssize == MMU_SEGSIZE_256M) {
modinv = VSID_MULINV_256M;
vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
} else {
modinv = VSID_MULINV_1T;
vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
}
/*
* vsid outside our range.
*/
if (vsid >= vsid_modulus)
return 0;
/*
* If modinv is the modular multiplicate inverse of (x % vsid_modulus)
* and vsid = (protovsid * x) % vsid_modulus, then we say:
* protovsid = (vsid * modinv) % vsid_modulus
*/
/* Check if (vsid * modinv) overflow (63 bits) */
max_mod_inv = 0x7fffffffffffffffull / vsid;
if (modinv < max_mod_inv)
return (vsid * modinv) % vsid_modulus;
tmp_modinv = modinv/max_mod_inv;
modinv %= max_mod_inv;
protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
protovsid = (protovsid + vsid * modinv) % vsid_modulus;
return protovsid;
}
static int __init reserve_vrma_context_id(void)
{
unsigned long protovsid;
/*
* Reserve context ids which map to reserved virtual addresses. For now
* we only reserve the context id which maps to the VRMA VSID. We ignore
* the addresses in "ibm,adjunct-virtual-addresses" because we don't
* enable adjunct support via the "ibm,client-architecture-support"
* interface.
*/
protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
hash__reserve_context_id(protovsid >> ESID_BITS_1T);
return 0;
}
machine_device_initcall(pseries, reserve_vrma_context_id);
#endif
#ifdef CONFIG_DEBUG_FS
/* debugfs file interface for vpa data */
static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
loff_t *pos)
{
int cpu = (long)filp->private_data;
struct lppaca *lppaca = &lppaca_of(cpu);
return simple_read_from_buffer(buf, len, pos, lppaca,
sizeof(struct lppaca));
}
static const struct file_operations vpa_fops = {
.open = simple_open,
.read = vpa_file_read,
.llseek = default_llseek,
};
static int __init vpa_debugfs_init(void)
{
char name[16];
long i;
struct dentry *vpa_dir;
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
return 0;
vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
/* set up the per-cpu vpa file*/
for_each_possible_cpu(i) {
sprintf(name, "cpu-%ld", i);
debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
}
return 0;
}
machine_arch_initcall(pseries, vpa_debugfs_init);
#endif /* CONFIG_DEBUG_FS */