blob: e43f77c11c00825aad64ada6ddfb4b0bdce23aff [file] [log] [blame]
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "reg_helper.h"
#include "dcn30_dpp.h"
#include "basics/conversion.h"
#include "dcn30_cm_common.h"
#define REG(reg)\
dpp->tf_regs->reg
#define CTX \
dpp->base.ctx
#undef FN
#define FN(reg_name, field_name) \
dpp->tf_shift->field_name, dpp->tf_mask->field_name
static void dpp3_enable_cm_block(
struct dpp *dpp_base)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
unsigned int cm_bypass_mode = 0;
// debug option: put CM in bypass mode
if (dpp_base->ctx->dc->debug.cm_in_bypass)
cm_bypass_mode = 1;
REG_UPDATE(CM_CONTROL, CM_BYPASS, cm_bypass_mode);
}
static enum dc_lut_mode dpp30_get_gamcor_current(struct dpp *dpp_base)
{
enum dc_lut_mode mode;
uint32_t state_mode;
uint32_t lut_mode;
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_MODE_CURRENT, &state_mode);
if (state_mode == 0)
mode = LUT_BYPASS;
if (state_mode == 2) {//Programmable RAM LUT
REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_SELECT_CURRENT, &lut_mode);
if (lut_mode == 0)
mode = LUT_RAM_A;
else
mode = LUT_RAM_B;
}
return mode;
}
static void dpp3_program_gammcor_lut(
struct dpp *dpp_base,
const struct pwl_result_data *rgb,
uint32_t num,
bool is_ram_a)
{
uint32_t i;
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg;
uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg;
uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg;
/*fill in the LUT with all base values to be used by pwl module
* HW auto increments the LUT index: back-to-back write
*/
if (is_rgb_equal(rgb, num)) {
for (i = 0 ; i < num; i++)
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_red);
} else {
REG_UPDATE(CM_GAMCOR_LUT_CONTROL,
CM_GAMCOR_LUT_WRITE_COLOR_MASK, 4);
for (i = 0 ; i < num; i++)
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_red);
REG_SET(CM_GAMCOR_LUT_INDEX, 0, CM_GAMCOR_LUT_INDEX, 0);
REG_UPDATE(CM_GAMCOR_LUT_CONTROL,
CM_GAMCOR_LUT_WRITE_COLOR_MASK, 2);
for (i = 0 ; i < num; i++)
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_green);
REG_SET(CM_GAMCOR_LUT_INDEX, 0, CM_GAMCOR_LUT_INDEX, 0);
REG_UPDATE(CM_GAMCOR_LUT_CONTROL,
CM_GAMCOR_LUT_WRITE_COLOR_MASK, 1);
for (i = 0 ; i < num; i++)
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_blue);
}
}
static void dpp3_power_on_gamcor_lut(
struct dpp *dpp_base,
bool power_on)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) {
if (power_on) {
REG_UPDATE(CM_MEM_PWR_CTRL, GAMCOR_MEM_PWR_FORCE, 0);
REG_WAIT(CM_MEM_PWR_STATUS, GAMCOR_MEM_PWR_STATE, 0, 1, 5);
} else {
dpp_base->ctx->dc->optimized_required = true;
dpp_base->deferred_reg_writes.bits.disable_gamcor = true;
}
} else
REG_SET(CM_MEM_PWR_CTRL, 0,
GAMCOR_MEM_PWR_DIS, power_on == true ? 0:1);
}
void dpp3_program_cm_dealpha(
struct dpp *dpp_base,
uint32_t enable, uint32_t additive_blending)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
REG_SET_2(CM_DEALPHA, 0,
CM_DEALPHA_EN, enable,
CM_DEALPHA_ABLND, additive_blending);
}
void dpp3_program_cm_bias(
struct dpp *dpp_base,
struct CM_bias_params *bias_params)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
REG_SET(CM_BIAS_CR_R, 0, CM_BIAS_CR_R, bias_params->cm_bias_cr_r);
REG_SET_2(CM_BIAS_Y_G_CB_B, 0,
CM_BIAS_Y_G, bias_params->cm_bias_y_g,
CM_BIAS_CB_B, bias_params->cm_bias_cb_b);
}
static void dpp3_gamcor_reg_field(
struct dcn3_dpp *dpp,
struct dcn3_xfer_func_reg *reg)
{
reg->shifts.field_region_start_base = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_BASE_B;
reg->masks.field_region_start_base = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_BASE_B;
reg->shifts.field_offset = dpp->tf_shift->CM_GAMCOR_RAMA_OFFSET_B;
reg->masks.field_offset = dpp->tf_mask->CM_GAMCOR_RAMA_OFFSET_B;
reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_END_B;
reg->masks.field_region_end = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_SLOPE_B;
reg->masks.field_region_linear_slope = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_SLOPE_B;
reg->shifts.exp_region_start = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_B;
reg->masks.exp_region_start = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_SEGMENT_B;
}
static void dpp3_configure_gamcor_lut(
struct dpp *dpp_base,
bool is_ram_a)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
REG_UPDATE(CM_GAMCOR_LUT_CONTROL,
CM_GAMCOR_LUT_WRITE_COLOR_MASK, 7);
REG_UPDATE(CM_GAMCOR_LUT_CONTROL,
CM_GAMCOR_LUT_HOST_SEL, is_ram_a == true ? 0:1);
REG_SET(CM_GAMCOR_LUT_INDEX, 0, CM_GAMCOR_LUT_INDEX, 0);
}
bool dpp3_program_gamcor_lut(
struct dpp *dpp_base, const struct pwl_params *params)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
struct dcn3_xfer_func_reg gam_regs;
dpp3_enable_cm_block(dpp_base);
if (params == NULL) { //bypass if we have no pwl data
REG_SET(CM_GAMCOR_CONTROL, 0, CM_GAMCOR_MODE, 0);
if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm)
dpp3_power_on_gamcor_lut(dpp_base, false);
return false;
}
dpp3_power_on_gamcor_lut(dpp_base, true);
REG_SET(CM_GAMCOR_CONTROL, 0, CM_GAMCOR_MODE, 2);
current_mode = dpp30_get_gamcor_current(dpp_base);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
dpp3_power_on_gamcor_lut(dpp_base, true);
dpp3_configure_gamcor_lut(dpp_base, next_mode == LUT_RAM_A);
if (next_mode == LUT_RAM_B) {
gam_regs.start_cntl_b = REG(CM_GAMCOR_RAMB_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_GAMCOR_RAMB_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_GAMCOR_RAMB_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_GAMCOR_RAMB_START_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_GAMCOR_RAMB_START_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_GAMCOR_RAMB_START_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_GAMCOR_RAMB_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_GAMCOR_RAMB_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_GAMCOR_RAMB_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_GAMCOR_RAMB_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_GAMCOR_RAMB_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_GAMCOR_RAMB_END_CNTL2_R);
gam_regs.region_start = REG(CM_GAMCOR_RAMB_REGION_0_1);
gam_regs.region_end = REG(CM_GAMCOR_RAMB_REGION_32_33);
//New registers in DCN3AG/DCN GAMCOR block
gam_regs.offset_b = REG(CM_GAMCOR_RAMB_OFFSET_B);
gam_regs.offset_g = REG(CM_GAMCOR_RAMB_OFFSET_G);
gam_regs.offset_r = REG(CM_GAMCOR_RAMB_OFFSET_R);
gam_regs.start_base_cntl_b = REG(CM_GAMCOR_RAMB_START_BASE_CNTL_B);
gam_regs.start_base_cntl_g = REG(CM_GAMCOR_RAMB_START_BASE_CNTL_G);
gam_regs.start_base_cntl_r = REG(CM_GAMCOR_RAMB_START_BASE_CNTL_R);
} else {
gam_regs.start_cntl_b = REG(CM_GAMCOR_RAMA_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_GAMCOR_RAMA_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_GAMCOR_RAMA_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_GAMCOR_RAMA_START_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_GAMCOR_RAMA_START_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_GAMCOR_RAMA_START_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_GAMCOR_RAMA_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_GAMCOR_RAMA_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_GAMCOR_RAMA_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_GAMCOR_RAMA_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_GAMCOR_RAMA_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_GAMCOR_RAMA_END_CNTL2_R);
gam_regs.region_start = REG(CM_GAMCOR_RAMA_REGION_0_1);
gam_regs.region_end = REG(CM_GAMCOR_RAMA_REGION_32_33);
//New registers in DCN3AG/DCN GAMCOR block
gam_regs.offset_b = REG(CM_GAMCOR_RAMA_OFFSET_B);
gam_regs.offset_g = REG(CM_GAMCOR_RAMA_OFFSET_G);
gam_regs.offset_r = REG(CM_GAMCOR_RAMA_OFFSET_R);
gam_regs.start_base_cntl_b = REG(CM_GAMCOR_RAMA_START_BASE_CNTL_B);
gam_regs.start_base_cntl_g = REG(CM_GAMCOR_RAMA_START_BASE_CNTL_G);
gam_regs.start_base_cntl_r = REG(CM_GAMCOR_RAMA_START_BASE_CNTL_R);
}
//get register fields
dpp3_gamcor_reg_field(dpp, &gam_regs);
//program register set for LUTA/LUTB
cm_helper_program_gamcor_xfer_func(dpp_base->ctx, params, &gam_regs);
dpp3_program_gammcor_lut(dpp_base, params->rgb_resulted, params->hw_points_num,
next_mode == LUT_RAM_A);
//select Gamma LUT to use for next frame
REG_UPDATE(CM_GAMCOR_CONTROL, CM_GAMCOR_SELECT, next_mode == LUT_RAM_A ? 0:1);
return true;
}
void dpp3_set_hdr_multiplier(
struct dpp *dpp_base,
uint32_t multiplier)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);
}
static void program_gamut_remap(
struct dcn3_dpp *dpp,
const uint16_t *regval,
int select)
{
uint16_t selection = 0;
struct color_matrices_reg gam_regs;
if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, 0);
return;
}
switch (select) {
case GAMUT_REMAP_COEFF:
selection = 1;
break;
/*this corresponds to GAMUT_REMAP coefficients set B
*we don't have common coefficient sets in dcn3ag/dcn3
*/
case GAMUT_REMAP_COMA_COEFF:
selection = 2;
break;
default:
break;
}
gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11;
gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
if (select == GAMUT_REMAP_COEFF) {
gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
} else if (select == GAMUT_REMAP_COMA_COEFF) {
gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_B_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_B_C33_C34);
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
}
//select coefficient set to use
REG_SET(
CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, selection);
}
void dpp3_cm_set_gamut_remap(
struct dpp *dpp_base,
const struct dpp_grph_csc_adjustment *adjust)
{
struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base);
int i = 0;
int gamut_mode;
if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
/* Bypass if type is bypass or hw */
program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
else {
struct fixed31_32 arr_matrix[12];
uint16_t arr_reg_val[12];
for (i = 0; i < 12; i++)
arr_matrix[i] = adjust->temperature_matrix[i];
convert_float_matrix(
arr_reg_val, arr_matrix, 12);
//current coefficient set in use
REG_GET(CM_GAMUT_REMAP_CONTROL, CM_GAMUT_REMAP_MODE_CURRENT, &gamut_mode);
if (gamut_mode == 0)
gamut_mode = 1; //use coefficient set A
else if (gamut_mode == 1)
gamut_mode = 2;
else
gamut_mode = 1;
//follow dcn2 approach for now - using only coefficient set A
program_gamut_remap(dpp, arr_reg_val, gamut_mode);
}
}