blob: 4894f7ee737b41dd0e81503b5cb7f3fc1182a6e6 [file] [log] [blame]
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/reboot.h>
#define SWSMU_CODE_LAYER_L3
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "smu_v14_0.h"
#include "soc15_common.h"
#include "atom.h"
#include "amdgpu_ras.h"
#include "smu_cmn.h"
#include "asic_reg/mp/mp_14_0_0_offset.h"
#include "asic_reg/mp/mp_14_0_0_sh_mask.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
MODULE_FIRMWARE("amdgpu/smu_14_0_2.bin");
int smu_v14_0_init_microcode(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
char fw_name[30];
char ucode_prefix[15];
int err = 0;
const struct smc_firmware_header_v1_0 *hdr;
const struct common_firmware_header *header;
struct amdgpu_firmware_info *ucode = NULL;
/* doesn't need to load smu firmware in IOV mode */
if (amdgpu_sriov_vf(adev))
return 0;
amdgpu_ucode_ip_version_decode(adev, MP1_HWIP, ucode_prefix, sizeof(ucode_prefix));
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s.bin", ucode_prefix);
err = amdgpu_ucode_request(adev, &adev->pm.fw, fw_name);
if (err)
goto out;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
amdgpu_ucode_print_smc_hdr(&hdr->header);
adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
ucode->fw = adev->pm.fw;
header = (const struct common_firmware_header *)ucode->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
}
out:
if (err)
amdgpu_ucode_release(&adev->pm.fw);
return err;
}
void smu_v14_0_fini_microcode(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
amdgpu_ucode_release(&adev->pm.fw);
adev->pm.fw_version = 0;
}
int smu_v14_0_load_microcode(struct smu_context *smu)
{
#if 0
struct amdgpu_device *adev = smu->adev;
const uint32_t *src;
const struct smc_firmware_header_v1_0 *hdr;
uint32_t addr_start = MP1_SRAM;
uint32_t i;
uint32_t smc_fw_size;
uint32_t mp1_fw_flags;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
src = (const uint32_t *)(adev->pm.fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
smc_fw_size = hdr->header.ucode_size_bytes;
for (i = 1; i < smc_fw_size/4 - 1; i++) {
WREG32_PCIE(addr_start, src[i]);
addr_start += 4;
}
WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
1 & MP1_SMN_PUB_CTRL__LX3_RESET_MASK);
WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
1 & ~MP1_SMN_PUB_CTRL__LX3_RESET_MASK);
for (i = 0; i < adev->usec_timeout; i++) {
mp1_fw_flags = RREG32_PCIE(MP1_Public |
(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
if ((mp1_fw_flags & MP1_CRU1_MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
MP1_CRU1_MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
break;
udelay(1);
}
if (i == adev->usec_timeout)
return -ETIME;
#endif
return 0;
}
int smu_v14_0_init_pptable_microcode(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct amdgpu_firmware_info *ucode = NULL;
uint32_t size = 0, pptable_id = 0;
int ret = 0;
void *table;
/* doesn't need to load smu firmware in IOV mode */
if (amdgpu_sriov_vf(adev))
return 0;
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP)
return 0;
if (!adev->scpm_enabled)
return 0;
/* override pptable_id from driver parameter */
if (amdgpu_smu_pptable_id >= 0) {
pptable_id = amdgpu_smu_pptable_id;
dev_info(adev->dev, "override pptable id %d\n", pptable_id);
} else {
pptable_id = smu->smu_table.boot_values.pp_table_id;
}
/* "pptable_id == 0" means vbios carries the pptable. */
if (!pptable_id)
return 0;
ret = smu_v14_0_get_pptable_from_firmware(smu, &table, &size, pptable_id);
if (ret)
return ret;
smu->pptable_firmware.data = table;
smu->pptable_firmware.size = size;
ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_PPTABLE];
ucode->ucode_id = AMDGPU_UCODE_ID_PPTABLE;
ucode->fw = &smu->pptable_firmware;
adev->firmware.fw_size +=
ALIGN(smu->pptable_firmware.size, PAGE_SIZE);
return 0;
}
int smu_v14_0_check_fw_status(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t mp1_fw_flags;
mp1_fw_flags = RREG32_PCIE(MP1_Public |
(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
if ((mp1_fw_flags & MP1_CRU1_MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
MP1_CRU1_MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
return 0;
return -EIO;
}
int smu_v14_0_check_fw_version(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t if_version = 0xff, smu_version = 0xff;
uint8_t smu_program, smu_major, smu_minor, smu_debug;
int ret = 0;
ret = smu_cmn_get_smc_version(smu, &if_version, &smu_version);
if (ret)
return ret;
smu_program = (smu_version >> 24) & 0xff;
smu_major = (smu_version >> 16) & 0xff;
smu_minor = (smu_version >> 8) & 0xff;
smu_debug = (smu_version >> 0) & 0xff;
if (smu->is_apu)
adev->pm.fw_version = smu_version;
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(14, 0, 2):
smu->smc_driver_if_version = SMU14_DRIVER_IF_VERSION_SMU_V14_0_2;
break;
case IP_VERSION(14, 0, 0):
if ((smu->smc_fw_version < 0x5d3a00))
dev_warn(smu->adev->dev, "The PMFW version(%x) is behind in this BIOS!\n", smu->smc_fw_version);
smu->smc_driver_if_version = SMU14_DRIVER_IF_VERSION_SMU_V14_0_0;
break;
default:
dev_err(adev->dev, "smu unsupported IP version: 0x%x.\n",
amdgpu_ip_version(adev, MP1_HWIP, 0));
smu->smc_driver_if_version = SMU14_DRIVER_IF_VERSION_INV;
break;
}
if (adev->pm.fw)
dev_dbg(smu->adev->dev, "smu fw reported program %d, version = 0x%08x (%d.%d.%d)\n",
smu_program, smu_version, smu_major, smu_minor, smu_debug);
/*
* 1. if_version mismatch is not critical as our fw is designed
* to be backward compatible.
* 2. New fw usually brings some optimizations. But that's visible
* only on the paired driver.
* Considering above, we just leave user a verbal message instead
* of halt driver loading.
*/
if (if_version != smu->smc_driver_if_version) {
dev_info(adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
"smu fw program = %d, smu fw version = 0x%08x (%d.%d.%d)\n",
smu->smc_driver_if_version, if_version,
smu_program, smu_version, smu_major, smu_minor, smu_debug);
dev_info(adev->dev, "SMU driver if version not matched\n");
}
return ret;
}
static int smu_v14_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
struct amdgpu_device *adev = smu->adev;
uint32_t ppt_offset_bytes;
const struct smc_firmware_header_v2_0 *v2;
v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;
ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
*size = le32_to_cpu(v2->ppt_size_bytes);
*table = (uint8_t *)v2 + ppt_offset_bytes;
return 0;
}
static int smu_v14_0_set_pptable_v2_1(struct smu_context *smu, void **table,
uint32_t *size, uint32_t pptable_id)
{
struct amdgpu_device *adev = smu->adev;
const struct smc_firmware_header_v2_1 *v2_1;
struct smc_soft_pptable_entry *entries;
uint32_t pptable_count = 0;
int i = 0;
v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
entries = (struct smc_soft_pptable_entry *)
((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
pptable_count = le32_to_cpu(v2_1->pptable_count);
for (i = 0; i < pptable_count; i++) {
if (le32_to_cpu(entries[i].id) == pptable_id) {
*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
*size = le32_to_cpu(entries[i].ppt_size_bytes);
break;
}
}
if (i == pptable_count)
return -EINVAL;
return 0;
}
static int smu_v14_0_get_pptable_from_vbios(struct smu_context *smu, void **table, uint32_t *size)
{
struct amdgpu_device *adev = smu->adev;
uint16_t atom_table_size;
uint8_t frev, crev;
int ret, index;
dev_info(adev->dev, "use vbios provided pptable\n");
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
powerplayinfo);
ret = amdgpu_atombios_get_data_table(adev, index, &atom_table_size, &frev, &crev,
(uint8_t **)table);
if (ret)
return ret;
if (size)
*size = atom_table_size;
return 0;
}
int smu_v14_0_get_pptable_from_firmware(struct smu_context *smu,
void **table,
uint32_t *size,
uint32_t pptable_id)
{
const struct smc_firmware_header_v1_0 *hdr;
struct amdgpu_device *adev = smu->adev;
uint16_t version_major, version_minor;
int ret;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
if (!hdr)
return -EINVAL;
dev_info(adev->dev, "use driver provided pptable %d\n", pptable_id);
version_major = le16_to_cpu(hdr->header.header_version_major);
version_minor = le16_to_cpu(hdr->header.header_version_minor);
if (version_major != 2) {
dev_err(adev->dev, "Unsupported smu firmware version %d.%d\n",
version_major, version_minor);
return -EINVAL;
}
switch (version_minor) {
case 0:
ret = smu_v14_0_set_pptable_v2_0(smu, table, size);
break;
case 1:
ret = smu_v14_0_set_pptable_v2_1(smu, table, size, pptable_id);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
int smu_v14_0_setup_pptable(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t size = 0, pptable_id = 0;
void *table;
int ret = 0;
/* override pptable_id from driver parameter */
if (amdgpu_smu_pptable_id >= 0) {
pptable_id = amdgpu_smu_pptable_id;
dev_info(adev->dev, "override pptable id %d\n", pptable_id);
} else {
pptable_id = smu->smu_table.boot_values.pp_table_id;
}
/* force using vbios pptable in sriov mode */
if ((amdgpu_sriov_vf(adev) || !pptable_id) && (amdgpu_emu_mode != 1))
ret = smu_v14_0_get_pptable_from_vbios(smu, &table, &size);
else
ret = smu_v14_0_get_pptable_from_firmware(smu, &table, &size, pptable_id);
if (ret)
return ret;
if (!smu->smu_table.power_play_table)
smu->smu_table.power_play_table = table;
if (!smu->smu_table.power_play_table_size)
smu->smu_table.power_play_table_size = size;
return 0;
}
int smu_v14_0_init_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
int ret = 0;
smu_table->driver_pptable =
kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL);
if (!smu_table->driver_pptable) {
ret = -ENOMEM;
goto err0_out;
}
smu_table->max_sustainable_clocks =
kzalloc(sizeof(struct smu_14_0_max_sustainable_clocks), GFP_KERNEL);
if (!smu_table->max_sustainable_clocks) {
ret = -ENOMEM;
goto err1_out;
}
if (tables[SMU_TABLE_OVERDRIVE].size) {
smu_table->overdrive_table =
kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
if (!smu_table->overdrive_table) {
ret = -ENOMEM;
goto err2_out;
}
smu_table->boot_overdrive_table =
kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
if (!smu_table->boot_overdrive_table) {
ret = -ENOMEM;
goto err3_out;
}
}
smu_table->combo_pptable =
kzalloc(tables[SMU_TABLE_COMBO_PPTABLE].size, GFP_KERNEL);
if (!smu_table->combo_pptable) {
ret = -ENOMEM;
goto err4_out;
}
return 0;
err4_out:
kfree(smu_table->boot_overdrive_table);
err3_out:
kfree(smu_table->overdrive_table);
err2_out:
kfree(smu_table->max_sustainable_clocks);
err1_out:
kfree(smu_table->driver_pptable);
err0_out:
return ret;
}
int smu_v14_0_fini_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
kfree(smu_table->gpu_metrics_table);
kfree(smu_table->combo_pptable);
kfree(smu_table->boot_overdrive_table);
kfree(smu_table->overdrive_table);
kfree(smu_table->max_sustainable_clocks);
kfree(smu_table->driver_pptable);
smu_table->gpu_metrics_table = NULL;
smu_table->combo_pptable = NULL;
smu_table->boot_overdrive_table = NULL;
smu_table->overdrive_table = NULL;
smu_table->max_sustainable_clocks = NULL;
smu_table->driver_pptable = NULL;
kfree(smu_table->hardcode_pptable);
smu_table->hardcode_pptable = NULL;
kfree(smu_table->ecc_table);
kfree(smu_table->metrics_table);
kfree(smu_table->watermarks_table);
smu_table->ecc_table = NULL;
smu_table->metrics_table = NULL;
smu_table->watermarks_table = NULL;
smu_table->metrics_time = 0;
kfree(smu_dpm->dpm_context);
kfree(smu_dpm->golden_dpm_context);
kfree(smu_dpm->dpm_current_power_state);
kfree(smu_dpm->dpm_request_power_state);
smu_dpm->dpm_context = NULL;
smu_dpm->golden_dpm_context = NULL;
smu_dpm->dpm_context_size = 0;
smu_dpm->dpm_current_power_state = NULL;
smu_dpm->dpm_request_power_state = NULL;
return 0;
}
int smu_v14_0_init_power(struct smu_context *smu)
{
struct smu_power_context *smu_power = &smu->smu_power;
if (smu_power->power_context || smu_power->power_context_size != 0)
return -EINVAL;
smu_power->power_context = kzalloc(sizeof(struct smu_14_0_dpm_context),
GFP_KERNEL);
if (!smu_power->power_context)
return -ENOMEM;
smu_power->power_context_size = sizeof(struct smu_14_0_dpm_context);
return 0;
}
int smu_v14_0_fini_power(struct smu_context *smu)
{
struct smu_power_context *smu_power = &smu->smu_power;
if (!smu_power->power_context || smu_power->power_context_size == 0)
return -EINVAL;
kfree(smu_power->power_context);
smu_power->power_context = NULL;
smu_power->power_context_size = 0;
return 0;
}
int smu_v14_0_get_vbios_bootup_values(struct smu_context *smu)
{
int ret, index;
uint16_t size;
uint8_t frev, crev;
struct atom_common_table_header *header;
struct atom_firmware_info_v3_4 *v_3_4;
struct atom_firmware_info_v3_3 *v_3_3;
struct atom_firmware_info_v3_1 *v_3_1;
struct atom_smu_info_v3_6 *smu_info_v3_6;
struct atom_smu_info_v4_0 *smu_info_v4_0;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
ret = amdgpu_atombios_get_data_table(smu->adev, index, &size, &frev, &crev,
(uint8_t **)&header);
if (ret)
return ret;
if (header->format_revision != 3) {
dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu14\n");
return -EINVAL;
}
switch (header->content_revision) {
case 0:
case 1:
case 2:
v_3_1 = (struct atom_firmware_info_v3_1 *)header;
smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = 0;
break;
case 3:
v_3_3 = (struct atom_firmware_info_v3_3 *)header;
smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
break;
case 4:
default:
v_3_4 = (struct atom_firmware_info_v3_4 *)header;
smu->smu_table.boot_values.revision = v_3_4->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_4->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_4->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_4->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_4->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_4->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_4->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_4->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = v_3_4->pplib_pptable_id;
break;
}
smu->smu_table.boot_values.format_revision = header->format_revision;
smu->smu_table.boot_values.content_revision = header->content_revision;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smu_info);
if (!amdgpu_atombios_get_data_table(smu->adev, index, &size, &frev, &crev,
(uint8_t **)&header)) {
if ((frev == 3) && (crev == 6)) {
smu_info_v3_6 = (struct atom_smu_info_v3_6 *)header;
smu->smu_table.boot_values.socclk = smu_info_v3_6->bootup_socclk_10khz;
smu->smu_table.boot_values.vclk = smu_info_v3_6->bootup_vclk_10khz;
smu->smu_table.boot_values.dclk = smu_info_v3_6->bootup_dclk_10khz;
smu->smu_table.boot_values.fclk = smu_info_v3_6->bootup_fclk_10khz;
} else if ((frev == 3) && (crev == 1)) {
return 0;
} else if ((frev == 4) && (crev == 0)) {
smu_info_v4_0 = (struct atom_smu_info_v4_0 *)header;
smu->smu_table.boot_values.socclk = smu_info_v4_0->bootup_socclk_10khz;
smu->smu_table.boot_values.dcefclk = smu_info_v4_0->bootup_dcefclk_10khz;
smu->smu_table.boot_values.vclk = smu_info_v4_0->bootup_vclk0_10khz;
smu->smu_table.boot_values.dclk = smu_info_v4_0->bootup_dclk0_10khz;
smu->smu_table.boot_values.fclk = smu_info_v4_0->bootup_fclk_10khz;
} else {
dev_warn(smu->adev->dev, "Unexpected and unhandled version: %d.%d\n",
(uint32_t)frev, (uint32_t)crev);
}
}
return 0;
}
int smu_v14_0_notify_memory_pool_location(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
int ret = 0;
uint64_t address;
uint32_t address_low, address_high;
if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
return ret;
address = memory_pool->mc_address;
address_high = (uint32_t)upper_32_bits(address);
address_low = (uint32_t)lower_32_bits(address);
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
address_high, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
address_low, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
(uint32_t)memory_pool->size, NULL);
if (ret)
return ret;
return ret;
}
int smu_v14_0_set_driver_table_location(struct smu_context *smu)
{
struct smu_table *driver_table = &smu->smu_table.driver_table;
int ret = 0;
if (driver_table->mc_address) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetDriverDramAddrHigh,
upper_32_bits(driver_table->mc_address),
NULL);
if (!ret)
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetDriverDramAddrLow,
lower_32_bits(driver_table->mc_address),
NULL);
}
return ret;
}
int smu_v14_0_set_tool_table_location(struct smu_context *smu)
{
int ret = 0;
struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
if (tool_table->mc_address) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetToolsDramAddrHigh,
upper_32_bits(tool_table->mc_address),
NULL);
if (!ret)
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetToolsDramAddrLow,
lower_32_bits(tool_table->mc_address),
NULL);
}
return ret;
}
int smu_v14_0_set_allowed_mask(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
int ret = 0;
uint32_t feature_mask[2];
if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) ||
feature->feature_num < 64)
return -EINVAL;
bitmap_to_arr32(feature_mask, feature->allowed, 64);
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
feature_mask[1], NULL);
if (ret)
return ret;
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetAllowedFeaturesMaskLow,
feature_mask[0],
NULL);
}
int smu_v14_0_gfx_off_control(struct smu_context *smu, bool enable)
{
int ret = 0;
struct amdgpu_device *adev = smu->adev;
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(14, 0, 2):
case IP_VERSION(14, 0, 0):
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return 0;
if (enable)
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
else
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
break;
default:
break;
}
return ret;
}
int smu_v14_0_system_features_control(struct smu_context *smu,
bool en)
{
return smu_cmn_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
SMU_MSG_DisableAllSmuFeatures), NULL);
}
int smu_v14_0_notify_display_change(struct smu_context *smu)
{
int ret = 0;
if (!smu->pm_enabled)
return ret;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
return ret;
}
int smu_v14_0_get_current_power_limit(struct smu_context *smu,
uint32_t *power_limit)
{
int power_src;
int ret = 0;
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
return -EINVAL;
power_src = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_PWR,
smu->adev->pm.ac_power ?
SMU_POWER_SOURCE_AC :
SMU_POWER_SOURCE_DC);
if (power_src < 0)
return -EINVAL;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetPptLimit,
power_src << 16,
power_limit);
if (ret)
dev_err(smu->adev->dev, "[%s] get PPT limit failed!", __func__);
return ret;
}
int smu_v14_0_set_power_limit(struct smu_context *smu,
enum smu_ppt_limit_type limit_type,
uint32_t limit)
{
int ret = 0;
if (limit_type != SMU_DEFAULT_PPT_LIMIT)
return -EINVAL;
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
dev_err(smu->adev->dev, "Setting new power limit is not supported!\n");
return -EOPNOTSUPP;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, limit, NULL);
if (ret) {
dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__);
return ret;
}
smu->current_power_limit = limit;
return 0;
}
static int smu_v14_0_set_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned tyep,
enum amdgpu_interrupt_state state)
{
uint32_t val = 0;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
/* For THM irqs */
// TODO
/* For MP1 SW irqs */
val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL);
val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1);
WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val);
break;
case AMDGPU_IRQ_STATE_ENABLE:
/* For THM irqs */
// TODO
/* For MP1 SW irqs */
val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT);
val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE);
val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0);
WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT, val);
val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL);
val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0);
WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val);
break;
default:
break;
}
return 0;
}
static int smu_v14_0_irq_process(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
// TODO
return 0;
}
static const struct amdgpu_irq_src_funcs smu_v14_0_irq_funcs = {
.set = smu_v14_0_set_irq_state,
.process = smu_v14_0_irq_process,
};
int smu_v14_0_register_irq_handler(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct amdgpu_irq_src *irq_src = &smu->irq_source;
int ret = 0;
if (amdgpu_sriov_vf(adev))
return 0;
irq_src->num_types = 1;
irq_src->funcs = &smu_v14_0_irq_funcs;
// TODO: THM related
ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
0xfe,
irq_src);
if (ret)
return ret;
return ret;
}
static int smu_v14_0_wait_for_reset_complete(struct smu_context *smu,
uint64_t event_arg)
{
int ret = 0;
dev_dbg(smu->adev->dev, "waiting for smu reset complete\n");
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GfxDriverResetRecovery, NULL);
return ret;
}
int smu_v14_0_wait_for_event(struct smu_context *smu, enum smu_event_type event,
uint64_t event_arg)
{
int ret = -EINVAL;
switch (event) {
case SMU_EVENT_RESET_COMPLETE:
ret = smu_v14_0_wait_for_reset_complete(smu, event_arg);
break;
default:
break;
}
return ret;
}
int smu_v14_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t *min, uint32_t *max)
{
int ret = 0, clk_id = 0;
uint32_t param = 0;
uint32_t clock_limit;
if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) {
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
clock_limit = smu->smu_table.boot_values.uclk;
break;
case SMU_GFXCLK:
case SMU_SCLK:
clock_limit = smu->smu_table.boot_values.gfxclk;
break;
case SMU_SOCCLK:
clock_limit = smu->smu_table.boot_values.socclk;
break;
default:
clock_limit = 0;
break;
}
/* clock in Mhz unit */
if (min)
*min = clock_limit / 100;
if (max)
*max = clock_limit / 100;
return 0;
}
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0) {
ret = -EINVAL;
goto failed;
}
param = (clk_id & 0xffff) << 16;
if (max) {
if (smu->adev->pm.ac_power)
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetMaxDpmFreq,
param,
max);
else
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetDcModeMaxDpmFreq,
param,
max);
if (ret)
goto failed;
}
if (min) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
if (ret)
goto failed;
}
failed:
return ret;
}
int smu_v14_0_set_soft_freq_limited_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t min,
uint32_t max)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return clk_id;
if (max > 0) {
param = (uint32_t)((clk_id << 16) | (max & 0xffff));
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
param, NULL);
if (ret)
goto out;
}
if (min > 0) {
param = (uint32_t)((clk_id << 16) | (min & 0xffff));
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
param, NULL);
if (ret)
goto out;
}
out:
return ret;
}
int smu_v14_0_set_hard_freq_limited_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t min,
uint32_t max)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (min <= 0 && max <= 0)
return -EINVAL;
if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return clk_id;
if (max > 0) {
param = (uint32_t)((clk_id << 16) | (max & 0xffff));
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
param, NULL);
if (ret)
return ret;
}
if (min > 0) {
param = (uint32_t)((clk_id << 16) | (min & 0xffff));
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
param, NULL);
if (ret)
return ret;
}
return ret;
}
int smu_v14_0_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
struct smu_14_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_14_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_14_0_dpm_table *mem_table =
&dpm_context->dpm_tables.uclk_table;
struct smu_14_0_dpm_table *soc_table =
&dpm_context->dpm_tables.soc_table;
struct smu_14_0_dpm_table *vclk_table =
&dpm_context->dpm_tables.vclk_table;
struct smu_14_0_dpm_table *dclk_table =
&dpm_context->dpm_tables.dclk_table;
struct smu_14_0_dpm_table *fclk_table =
&dpm_context->dpm_tables.fclk_table;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
struct amdgpu_device *adev = smu->adev;
uint32_t sclk_min = 0, sclk_max = 0;
uint32_t mclk_min = 0, mclk_max = 0;
uint32_t socclk_min = 0, socclk_max = 0;
uint32_t vclk_min = 0, vclk_max = 0;
uint32_t dclk_min = 0, dclk_max = 0;
uint32_t fclk_min = 0, fclk_max = 0;
int ret = 0, i;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
sclk_min = sclk_max = gfx_table->max;
mclk_min = mclk_max = mem_table->max;
socclk_min = socclk_max = soc_table->max;
vclk_min = vclk_max = vclk_table->max;
dclk_min = dclk_max = dclk_table->max;
fclk_min = fclk_max = fclk_table->max;
break;
case AMD_DPM_FORCED_LEVEL_LOW:
sclk_min = sclk_max = gfx_table->min;
mclk_min = mclk_max = mem_table->min;
socclk_min = socclk_max = soc_table->min;
vclk_min = vclk_max = vclk_table->min;
dclk_min = dclk_max = dclk_table->min;
fclk_min = fclk_max = fclk_table->min;
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
sclk_min = gfx_table->min;
sclk_max = gfx_table->max;
mclk_min = mem_table->min;
mclk_max = mem_table->max;
socclk_min = soc_table->min;
socclk_max = soc_table->max;
vclk_min = vclk_table->min;
vclk_max = vclk_table->max;
dclk_min = dclk_table->min;
dclk_max = dclk_table->max;
fclk_min = fclk_table->min;
fclk_max = fclk_table->max;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
sclk_min = sclk_max = pstate_table->gfxclk_pstate.standard;
mclk_min = mclk_max = pstate_table->uclk_pstate.standard;
socclk_min = socclk_max = pstate_table->socclk_pstate.standard;
vclk_min = vclk_max = pstate_table->vclk_pstate.standard;
dclk_min = dclk_max = pstate_table->dclk_pstate.standard;
fclk_min = fclk_max = pstate_table->fclk_pstate.standard;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
sclk_min = sclk_max = pstate_table->gfxclk_pstate.min;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
mclk_min = mclk_max = pstate_table->uclk_pstate.min;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
sclk_min = sclk_max = pstate_table->gfxclk_pstate.peak;
mclk_min = mclk_max = pstate_table->uclk_pstate.peak;
socclk_min = socclk_max = pstate_table->socclk_pstate.peak;
vclk_min = vclk_max = pstate_table->vclk_pstate.peak;
dclk_min = dclk_max = pstate_table->dclk_pstate.peak;
fclk_min = fclk_max = pstate_table->fclk_pstate.peak;
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
return 0;
default:
dev_err(adev->dev, "Invalid performance level %d\n", level);
return -EINVAL;
}
if (sclk_min && sclk_max) {
ret = smu_v14_0_set_soft_freq_limited_range(smu,
SMU_GFXCLK,
sclk_min,
sclk_max);
if (ret)
return ret;
pstate_table->gfxclk_pstate.curr.min = sclk_min;
pstate_table->gfxclk_pstate.curr.max = sclk_max;
}
if (mclk_min && mclk_max) {
ret = smu_v14_0_set_soft_freq_limited_range(smu,
SMU_MCLK,
mclk_min,
mclk_max);
if (ret)
return ret;
pstate_table->uclk_pstate.curr.min = mclk_min;
pstate_table->uclk_pstate.curr.max = mclk_max;
}
if (socclk_min && socclk_max) {
ret = smu_v14_0_set_soft_freq_limited_range(smu,
SMU_SOCCLK,
socclk_min,
socclk_max);
if (ret)
return ret;
pstate_table->socclk_pstate.curr.min = socclk_min;
pstate_table->socclk_pstate.curr.max = socclk_max;
}
if (vclk_min && vclk_max) {
for (i = 0; i < adev->vcn.num_vcn_inst; i++) {
if (adev->vcn.harvest_config & (1 << i))
continue;
ret = smu_v14_0_set_soft_freq_limited_range(smu,
i ? SMU_VCLK1 : SMU_VCLK,
vclk_min,
vclk_max);
if (ret)
return ret;
}
pstate_table->vclk_pstate.curr.min = vclk_min;
pstate_table->vclk_pstate.curr.max = vclk_max;
}
if (dclk_min && dclk_max) {
for (i = 0; i < adev->vcn.num_vcn_inst; i++) {
if (adev->vcn.harvest_config & (1 << i))
continue;
ret = smu_v14_0_set_soft_freq_limited_range(smu,
i ? SMU_DCLK1 : SMU_DCLK,
dclk_min,
dclk_max);
if (ret)
return ret;
}
pstate_table->dclk_pstate.curr.min = dclk_min;
pstate_table->dclk_pstate.curr.max = dclk_max;
}
if (fclk_min && fclk_max) {
ret = smu_v14_0_set_soft_freq_limited_range(smu,
SMU_FCLK,
fclk_min,
fclk_max);
if (ret)
return ret;
pstate_table->fclk_pstate.curr.min = fclk_min;
pstate_table->fclk_pstate.curr.max = fclk_max;
}
return ret;
}
int smu_v14_0_set_power_source(struct smu_context *smu,
enum smu_power_src_type power_src)
{
int pwr_source;
pwr_source = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_PWR,
(uint32_t)power_src);
if (pwr_source < 0)
return -EINVAL;
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_NotifyPowerSource,
pwr_source,
NULL);
}
static int smu_v14_0_get_dpm_freq_by_index(struct smu_context *smu,
enum smu_clk_type clk_type,
uint16_t level,
uint32_t *value)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (!value)
return -EINVAL;
if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return clk_id;
param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmFreqByIndex,
param,
value);
if (ret)
return ret;
*value = *value & 0x7fffffff;
return ret;
}
static int smu_v14_0_get_dpm_level_count(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
int ret;
ret = smu_v14_0_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
return ret;
}
static int smu_v14_0_get_fine_grained_status(struct smu_context *smu,
enum smu_clk_type clk_type,
bool *is_fine_grained_dpm)
{
int ret = 0, clk_id = 0;
uint32_t param;
uint32_t value;
if (!is_fine_grained_dpm)
return -EINVAL;
if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return clk_id;
param = (uint32_t)(((clk_id & 0xffff) << 16) | 0xff);
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmFreqByIndex,
param,
&value);
if (ret)
return ret;
/*
* BIT31: 1 - Fine grained DPM, 0 - Dicrete DPM
* now, we un-support it
*/
*is_fine_grained_dpm = value & 0x80000000;
return 0;
}
int smu_v14_0_set_single_dpm_table(struct smu_context *smu,
enum smu_clk_type clk_type,
struct smu_14_0_dpm_table *single_dpm_table)
{
int ret = 0;
uint32_t clk;
int i;
ret = smu_v14_0_get_dpm_level_count(smu,
clk_type,
&single_dpm_table->count);
if (ret) {
dev_err(smu->adev->dev, "[%s] failed to get dpm levels!\n", __func__);
return ret;
}
ret = smu_v14_0_get_fine_grained_status(smu,
clk_type,
&single_dpm_table->is_fine_grained);
if (ret) {
dev_err(smu->adev->dev, "[%s] failed to get fine grained status!\n", __func__);
return ret;
}
for (i = 0; i < single_dpm_table->count; i++) {
ret = smu_v14_0_get_dpm_freq_by_index(smu,
clk_type,
i,
&clk);
if (ret) {
dev_err(smu->adev->dev, "[%s] failed to get dpm freq by index!\n", __func__);
return ret;
}
single_dpm_table->dpm_levels[i].value = clk;
single_dpm_table->dpm_levels[i].enabled = true;
if (i == 0)
single_dpm_table->min = clk;
else if (i == single_dpm_table->count - 1)
single_dpm_table->max = clk;
}
return 0;
}
int smu_v14_0_set_vcn_enable(struct smu_context *smu,
bool enable)
{
struct amdgpu_device *adev = smu->adev;
int i, ret = 0;
for (i = 0; i < adev->vcn.num_vcn_inst; i++) {
if (adev->vcn.harvest_config & (1 << i))
continue;
ret = smu_cmn_send_smc_msg_with_param(smu, enable ?
SMU_MSG_PowerUpVcn : SMU_MSG_PowerDownVcn,
i << 16U, NULL);
if (ret)
return ret;
}
return ret;
}
int smu_v14_0_set_jpeg_enable(struct smu_context *smu,
bool enable)
{
return smu_cmn_send_smc_msg_with_param(smu, enable ?
SMU_MSG_PowerUpJpeg : SMU_MSG_PowerDownJpeg,
0, NULL);
}
int smu_v14_0_run_btc(struct smu_context *smu)
{
int res;
res = smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL);
if (res)
dev_err(smu->adev->dev, "RunDcBtc failed!\n");
return res;
}
int smu_v14_0_gpo_control(struct smu_context *smu,
bool enablement)
{
int res;
res = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_AllowGpo,
enablement ? 1 : 0,
NULL);
if (res)
dev_err(smu->adev->dev, "SetGpoAllow %d failed!\n", enablement);
return res;
}
int smu_v14_0_deep_sleep_control(struct smu_context *smu,
bool enablement)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_GFXCLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_GFXCLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s GFXCLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_UCLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_UCLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s UCLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_FCLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_FCLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s FCLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_SOCCLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_SOCCLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s SOCCLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_LCLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_LCLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s LCLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_VCN_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_VCN_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s VCN DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_MP0CLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_MP0CLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s MP0/MPIOCLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_MP1CLK_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_DS_MP1CLK_BIT, enablement);
if (ret) {
dev_err(adev->dev, "Failed to %s MP1CLK DS!\n", enablement ? "enable" : "disable");
return ret;
}
}
return ret;
}
int smu_v14_0_gfx_ulv_control(struct smu_context *smu,
bool enablement)
{
int ret = 0;
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_GFX_ULV_BIT))
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_GFX_ULV_BIT, enablement);
return ret;
}
int smu_v14_0_baco_set_armd3_sequence(struct smu_context *smu,
enum smu_baco_seq baco_seq)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
int ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_ArmD3,
baco_seq,
NULL);
if (ret)
return ret;
if (baco_seq == BACO_SEQ_BAMACO ||
baco_seq == BACO_SEQ_BACO)
smu_baco->state = SMU_BACO_STATE_ENTER;
else
smu_baco->state = SMU_BACO_STATE_EXIT;
return 0;
}
bool smu_v14_0_baco_is_support(struct smu_context *smu)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
if (amdgpu_sriov_vf(smu->adev) ||
!smu_baco->platform_support)
return false;
/* return true if ASIC is in BACO state already */
if (smu_v14_0_baco_get_state(smu) == SMU_BACO_STATE_ENTER)
return true;
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
return false;
return true;
}
enum smu_baco_state smu_v14_0_baco_get_state(struct smu_context *smu)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
return smu_baco->state;
}
int smu_v14_0_baco_set_state(struct smu_context *smu,
enum smu_baco_state state)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (smu_v14_0_baco_get_state(smu) == state)
return 0;
if (state == SMU_BACO_STATE_ENTER) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_EnterBaco,
smu_baco->maco_support ?
BACO_SEQ_BAMACO : BACO_SEQ_BACO,
NULL);
} else {
ret = smu_cmn_send_smc_msg(smu,
SMU_MSG_ExitBaco,
NULL);
if (ret)
return ret;
/* clear vbios scratch 6 and 7 for coming asic reinit */
WREG32(adev->bios_scratch_reg_offset + 6, 0);
WREG32(adev->bios_scratch_reg_offset + 7, 0);
}
if (!ret)
smu_baco->state = state;
return ret;
}
int smu_v14_0_baco_enter(struct smu_context *smu)
{
int ret = 0;
ret = smu_v14_0_baco_set_state(smu,
SMU_BACO_STATE_ENTER);
if (ret)
return ret;
msleep(10);
return ret;
}
int smu_v14_0_baco_exit(struct smu_context *smu)
{
return smu_v14_0_baco_set_state(smu,
SMU_BACO_STATE_EXIT);
}
int smu_v14_0_set_gfx_power_up_by_imu(struct smu_context *smu)
{
uint16_t index;
index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG,
SMU_MSG_EnableGfxImu);
/* Param 1 to tell PMFW to enable GFXOFF feature */
return smu_cmn_send_msg_without_waiting(smu, index, 1);
}
int smu_v14_0_set_default_dpm_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
return smu_cmn_update_table(smu, SMU_TABLE_DPMCLOCKS, 0,
smu_table->clocks_table, false);
}
int smu_v14_0_od_edit_dpm_table(struct smu_context *smu,
enum PP_OD_DPM_TABLE_COMMAND type,
long input[], uint32_t size)
{
struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
int ret = 0;
/* Only allowed in manual mode */
if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
return -EINVAL;
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (size != 2) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
if (input[0] == 0) {
if (input[1] < smu->gfx_default_hard_min_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n",
input[1], smu->gfx_default_hard_min_freq);
return -EINVAL;
}
smu->gfx_actual_hard_min_freq = input[1];
} else if (input[0] == 1) {
if (input[1] > smu->gfx_default_soft_max_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n",
input[1], smu->gfx_default_soft_max_freq);
return -EINVAL;
}
smu->gfx_actual_soft_max_freq = input[1];
} else {
return -EINVAL;
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
break;
case PP_OD_COMMIT_DPM_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) {
dev_err(smu->adev->dev,
"The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n",
smu->gfx_actual_hard_min_freq,
smu->gfx_actual_soft_max_freq);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
smu->gfx_actual_hard_min_freq,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Set hard min sclk failed!");
return ret;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
smu->gfx_actual_soft_max_freq,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Set soft max sclk failed!");
return ret;
}
break;
default:
return -ENOSYS;
}
return ret;
}