blob: e45b37c3f0c262744f960d769eeed29a07ef14e7 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_pt.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_drm_client.h"
#include "xe_gt.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_migrate.h"
#include "xe_pt_types.h"
#include "xe_pt_walk.h"
#include "xe_res_cursor.h"
#include "xe_trace.h"
#include "xe_ttm_stolen_mgr.h"
#include "xe_vm.h"
struct xe_pt_dir {
struct xe_pt pt;
/** @dir: Directory structure for the xe_pt_walk functionality */
struct xe_ptw_dir dir;
};
#if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
#define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
#define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
#else
#define xe_pt_set_addr(__xe_pt, __addr)
#define xe_pt_addr(__xe_pt) 0ull
#endif
static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
#define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
{
return container_of(pt, struct xe_pt_dir, pt);
}
static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
{
return container_of(pt_dir->dir.entries[index], struct xe_pt, base);
}
static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
unsigned int level)
{
struct xe_device *xe = tile_to_xe(tile);
u16 pat_index = xe->pat.idx[XE_CACHE_WB];
u8 id = tile->id;
if (!xe_vm_has_scratch(vm))
return 0;
if (level > MAX_HUGEPTE_LEVEL)
return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
0, pat_index);
return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
XE_PTE_NULL;
}
/**
* xe_pt_create() - Create a page-table.
* @vm: The vm to create for.
* @tile: The tile to create for.
* @level: The page-table level.
*
* Allocate and initialize a single struct xe_pt metadata structure. Also
* create the corresponding page-table bo, but don't initialize it. If the
* level is grater than zero, then it's assumed to be a directory page-
* table and the directory structure is also allocated and initialized to
* NULL pointers.
*
* Return: A valid struct xe_pt pointer on success, Pointer error code on
* error.
*/
struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
unsigned int level)
{
struct xe_pt *pt;
struct xe_bo *bo;
size_t size;
int err;
size = !level ? sizeof(struct xe_pt) : sizeof(struct xe_pt_dir) +
XE_PDES * sizeof(struct xe_ptw *);
pt = kzalloc(size, GFP_KERNEL);
if (!pt)
return ERR_PTR(-ENOMEM);
bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
ttm_bo_type_kernel,
XE_BO_CREATE_VRAM_IF_DGFX(tile) |
XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT |
XE_BO_CREATE_PINNED_BIT |
XE_BO_CREATE_NO_RESV_EVICT |
XE_BO_PAGETABLE);
if (IS_ERR(bo)) {
err = PTR_ERR(bo);
goto err_kfree;
}
pt->bo = bo;
pt->level = level;
pt->base.dir = level ? &as_xe_pt_dir(pt)->dir : NULL;
if (vm->xef)
xe_drm_client_add_bo(vm->xef->client, pt->bo);
xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
return pt;
err_kfree:
kfree(pt);
return ERR_PTR(err);
}
/**
* xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
* entries.
* @tile: The tile the scratch pagetable of which to use.
* @vm: The vm we populate for.
* @pt: The pagetable the bo of which to initialize.
*
* Populate the page-table bo of @pt with entries pointing into the tile's
* scratch page-table tree if any. Otherwise populate with zeros.
*/
void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
struct xe_pt *pt)
{
struct iosys_map *map = &pt->bo->vmap;
u64 empty;
int i;
if (!xe_vm_has_scratch(vm)) {
/*
* FIXME: Some memory is allocated already allocated to zero?
* Find out which memory that is and avoid this memset...
*/
xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
} else {
empty = __xe_pt_empty_pte(tile, vm, pt->level);
for (i = 0; i < XE_PDES; i++)
xe_pt_write(vm->xe, map, i, empty);
}
}
/**
* xe_pt_shift() - Return the ilog2 value of the size of the address range of
* a page-table at a certain level.
* @level: The level.
*
* Return: The ilog2 value of the size of the address range of a page-table
* at level @level.
*/
unsigned int xe_pt_shift(unsigned int level)
{
return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
}
/**
* xe_pt_destroy() - Destroy a page-table tree.
* @pt: The root of the page-table tree to destroy.
* @flags: vm flags. Currently unused.
* @deferred: List head of lockless list for deferred putting. NULL for
* immediate putting.
*
* Puts the page-table bo, recursively calls xe_pt_destroy on all children
* and finally frees @pt. TODO: Can we remove the @flags argument?
*/
void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
{
int i;
if (!pt)
return;
XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
xe_bo_unpin(pt->bo);
xe_bo_put_deferred(pt->bo, deferred);
if (pt->level > 0 && pt->num_live) {
struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
for (i = 0; i < XE_PDES; i++) {
if (xe_pt_entry(pt_dir, i))
xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
deferred);
}
}
kfree(pt);
}
/**
* DOC: Pagetable building
*
* Below we use the term "page-table" for both page-directories, containing
* pointers to lower level page-directories or page-tables, and level 0
* page-tables that contain only page-table-entries pointing to memory pages.
*
* When inserting an address range in an already existing page-table tree
* there will typically be a set of page-tables that are shared with other
* address ranges, and a set that are private to this address range.
* The set of shared page-tables can be at most two per level,
* and those can't be updated immediately because the entries of those
* page-tables may still be in use by the gpu for other mappings. Therefore
* when inserting entries into those, we instead stage those insertions by
* adding insertion data into struct xe_vm_pgtable_update structures. This
* data, (subtrees for the cpu and page-table-entries for the gpu) is then
* added in a separate commit step. CPU-data is committed while still under the
* vm lock, the object lock and for userptr, the notifier lock in read mode.
* The GPU async data is committed either by the GPU or CPU after fulfilling
* relevant dependencies.
* For non-shared page-tables (and, in fact, for shared ones that aren't
* existing at the time of staging), we add the data in-place without the
* special update structures. This private part of the page-table tree will
* remain disconnected from the vm page-table tree until data is committed to
* the shared page tables of the vm tree in the commit phase.
*/
struct xe_pt_update {
/** @update: The update structure we're building for this parent. */
struct xe_vm_pgtable_update *update;
/** @parent: The parent. Used to detect a parent change. */
struct xe_pt *parent;
/** @preexisting: Whether the parent was pre-existing or allocated */
bool preexisting;
};
struct xe_pt_stage_bind_walk {
/** base: The base class. */
struct xe_pt_walk base;
/* Input parameters for the walk */
/** @vm: The vm we're building for. */
struct xe_vm *vm;
/** @tile: The tile we're building for. */
struct xe_tile *tile;
/** @default_pte: PTE flag only template. No address is associated */
u64 default_pte;
/** @dma_offset: DMA offset to add to the PTE. */
u64 dma_offset;
/**
* @needs_64k: This address range enforces 64K alignment and
* granularity.
*/
bool needs_64K;
/**
* @vma: VMA being mapped
*/
struct xe_vma *vma;
/* Also input, but is updated during the walk*/
/** @curs: The DMA address cursor. */
struct xe_res_cursor *curs;
/** @va_curs_start: The Virtual address coresponding to @curs->start */
u64 va_curs_start;
/* Output */
struct xe_walk_update {
/** @wupd.entries: Caller provided storage. */
struct xe_vm_pgtable_update *entries;
/** @wupd.num_used_entries: Number of update @entries used. */
unsigned int num_used_entries;
/** @wupd.updates: Tracks the update entry at a given level */
struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
} wupd;
/* Walk state */
/**
* @l0_end_addr: The end address of the current l0 leaf. Used for
* 64K granularity detection.
*/
u64 l0_end_addr;
/** @addr_64K: The start address of the current 64K chunk. */
u64 addr_64K;
/** @found_64: Whether @add_64K actually points to a 64K chunk. */
bool found_64K;
};
static int
xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
pgoff_t offset, bool alloc_entries)
{
struct xe_pt_update *upd = &wupd->updates[parent->level];
struct xe_vm_pgtable_update *entry;
/*
* For *each level*, we could only have one active
* struct xt_pt_update at any one time. Once we move on to a
* new parent and page-directory, the old one is complete, and
* updates are either already stored in the build tree or in
* @wupd->entries
*/
if (likely(upd->parent == parent))
return 0;
upd->parent = parent;
upd->preexisting = true;
if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
return -EINVAL;
entry = wupd->entries + wupd->num_used_entries++;
upd->update = entry;
entry->ofs = offset;
entry->pt_bo = parent->bo;
entry->pt = parent;
entry->flags = 0;
entry->qwords = 0;
if (alloc_entries) {
entry->pt_entries = kmalloc_array(XE_PDES,
sizeof(*entry->pt_entries),
GFP_KERNEL);
if (!entry->pt_entries)
return -ENOMEM;
}
return 0;
}
/*
* NOTE: This is a very frequently called function so we allow ourselves
* to annotate (using branch prediction hints) the fastpath of updating a
* non-pre-existing pagetable with leaf ptes.
*/
static int
xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
pgoff_t offset, struct xe_pt *xe_child, u64 pte)
{
struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
struct xe_pt_update *child_upd = xe_child ?
&xe_walk->wupd.updates[xe_child->level] : NULL;
int ret;
ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
if (unlikely(ret))
return ret;
/*
* Register this new pagetable so that it won't be recognized as
* a shared pagetable by a subsequent insertion.
*/
if (unlikely(child_upd)) {
child_upd->update = NULL;
child_upd->parent = xe_child;
child_upd->preexisting = false;
}
if (likely(!upd->preexisting)) {
/* Continue building a non-connected subtree. */
struct iosys_map *map = &parent->bo->vmap;
if (unlikely(xe_child))
parent->base.dir->entries[offset] = &xe_child->base;
xe_pt_write(xe_walk->vm->xe, map, offset, pte);
parent->num_live++;
} else {
/* Shared pt. Stage update. */
unsigned int idx;
struct xe_vm_pgtable_update *entry = upd->update;
idx = offset - entry->ofs;
entry->pt_entries[idx].pt = xe_child;
entry->pt_entries[idx].pte = pte;
entry->qwords++;
}
return 0;
}
static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
struct xe_pt_stage_bind_walk *xe_walk)
{
u64 size, dma;
if (level > MAX_HUGEPTE_LEVEL)
return false;
/* Does the virtual range requested cover a huge pte? */
if (!xe_pt_covers(addr, next, level, &xe_walk->base))
return false;
/* Does the DMA segment cover the whole pte? */
if (next - xe_walk->va_curs_start > xe_walk->curs->size)
return false;
/* null VMA's do not have dma addresses */
if (xe_vma_is_null(xe_walk->vma))
return true;
/* Is the DMA address huge PTE size aligned? */
size = next - addr;
dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
return IS_ALIGNED(dma, size);
}
/*
* Scan the requested mapping to check whether it can be done entirely
* with 64K PTEs.
*/
static bool
xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
{
struct xe_res_cursor curs = *xe_walk->curs;
if (!IS_ALIGNED(addr, SZ_64K))
return false;
if (next > xe_walk->l0_end_addr)
return false;
/* null VMA's do not have dma addresses */
if (xe_vma_is_null(xe_walk->vma))
return true;
xe_res_next(&curs, addr - xe_walk->va_curs_start);
for (; addr < next; addr += SZ_64K) {
if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
return false;
xe_res_next(&curs, SZ_64K);
}
return addr == next;
}
/*
* For non-compact "normal" 4K level-0 pagetables, we want to try to group
* addresses together in 64K-contigous regions to add a 64K TLB hint for the
* device to the PTE.
* This function determines whether the address is part of such a
* segment. For VRAM in normal pagetables, this is strictly necessary on
* some devices.
*/
static bool
xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
{
/* Address is within an already found 64k region */
if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
return true;
xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
xe_walk->addr_64K = addr;
return xe_walk->found_64K;
}
static int
xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
unsigned int level, u64 addr, u64 next,
struct xe_ptw **child,
enum page_walk_action *action,
struct xe_pt_walk *walk)
{
struct xe_pt_stage_bind_walk *xe_walk =
container_of(walk, typeof(*xe_walk), base);
u16 pat_index = xe_walk->vma->pat_index;
struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
struct xe_vm *vm = xe_walk->vm;
struct xe_pt *xe_child;
bool covers;
int ret = 0;
u64 pte;
/* Is this a leaf entry ?*/
if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
struct xe_res_cursor *curs = xe_walk->curs;
bool is_null = xe_vma_is_null(xe_walk->vma);
XE_WARN_ON(xe_walk->va_curs_start != addr);
pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
xe_res_dma(curs) + xe_walk->dma_offset,
xe_walk->vma, pat_index, level);
pte |= xe_walk->default_pte;
/*
* Set the XE_PTE_PS64 hint if possible, otherwise if
* this device *requires* 64K PTE size for VRAM, fail.
*/
if (level == 0 && !xe_parent->is_compact) {
if (xe_pt_is_pte_ps64K(addr, next, xe_walk))
pte |= XE_PTE_PS64;
else if (XE_WARN_ON(xe_walk->needs_64K))
return -EINVAL;
}
ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
if (unlikely(ret))
return ret;
if (!is_null)
xe_res_next(curs, next - addr);
xe_walk->va_curs_start = next;
xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
*action = ACTION_CONTINUE;
return ret;
}
/*
* Descending to lower level. Determine if we need to allocate a
* new page table or -directory, which we do if there is no
* previous one or there is one we can completely replace.
*/
if (level == 1) {
walk->shifts = xe_normal_pt_shifts;
xe_walk->l0_end_addr = next;
}
covers = xe_pt_covers(addr, next, level, &xe_walk->base);
if (covers || !*child) {
u64 flags = 0;
xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
if (IS_ERR(xe_child))
return PTR_ERR(xe_child);
xe_pt_set_addr(xe_child,
round_down(addr, 1ull << walk->shifts[level]));
if (!covers)
xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
*child = &xe_child->base;
/*
* Prefer the compact pagetable layout for L0 if possible.
* TODO: Suballocate the pt bo to avoid wasting a lot of
* memory.
*/
if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
covers && xe_pt_scan_64K(addr, next, xe_walk)) {
walk->shifts = xe_compact_pt_shifts;
flags |= XE_PDE_64K;
xe_child->is_compact = true;
}
pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
pte);
}
*action = ACTION_SUBTREE;
return ret;
}
static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
.pt_entry = xe_pt_stage_bind_entry,
};
/**
* xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
* range.
* @tile: The tile we're building for.
* @vma: The vma indicating the address range.
* @entries: Storage for the update entries used for connecting the tree to
* the main tree at commit time.
* @num_entries: On output contains the number of @entries used.
*
* This function builds a disconnected page-table tree for a given address
* range. The tree is connected to the main vm tree for the gpu using
* xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
* The function builds xe_vm_pgtable_update structures for already existing
* shared page-tables, and non-existing shared and non-shared page-tables
* are built and populated directly.
*
* Return 0 on success, negative error code on error.
*/
static int
xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
struct xe_vm_pgtable_update *entries, u32 *num_entries)
{
struct xe_device *xe = tile_to_xe(tile);
struct xe_bo *bo = xe_vma_bo(vma);
bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
struct xe_res_cursor curs;
struct xe_pt_stage_bind_walk xe_walk = {
.base = {
.ops = &xe_pt_stage_bind_ops,
.shifts = xe_normal_pt_shifts,
.max_level = XE_PT_HIGHEST_LEVEL,
},
.vm = xe_vma_vm(vma),
.tile = tile,
.curs = &curs,
.va_curs_start = xe_vma_start(vma),
.vma = vma,
.wupd.entries = entries,
.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
};
struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
int ret;
if (vma && (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) &&
(is_devmem || !IS_DGFX(xe)))
xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
if (is_devmem) {
xe_walk.default_pte |= XE_PPGTT_PTE_DM;
xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
}
if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
xe_bo_assert_held(bo);
if (!xe_vma_is_null(vma)) {
if (xe_vma_is_userptr(vma))
xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
xe_vma_size(vma), &curs);
else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
xe_vma_size(vma), &curs);
else
xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
xe_vma_size(vma), &curs);
} else {
curs.size = xe_vma_size(vma);
}
ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
xe_vma_end(vma), &xe_walk.base);
*num_entries = xe_walk.wupd.num_used_entries;
return ret;
}
/**
* xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
* shared pagetable.
* @addr: The start address within the non-shared pagetable.
* @end: The end address within the non-shared pagetable.
* @level: The level of the non-shared pagetable.
* @walk: Walk info. The function adjusts the walk action.
* @action: next action to perform (see enum page_walk_action)
* @offset: Ignored on input, First non-shared entry on output.
* @end_offset: Ignored on input, Last non-shared entry + 1 on output.
*
* A non-shared page-table has some entries that belong to the address range
* and others that don't. This function determines the entries that belong
* fully to the address range. Depending on level, some entries may
* partially belong to the address range (that can't happen at level 0).
* The function detects that and adjust those offsets to not include those
* partial entries. Iff it does detect partial entries, we know that there must
* be shared page tables also at lower levels, so it adjusts the walk action
* accordingly.
*
* Return: true if there were non-shared entries, false otherwise.
*/
static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
struct xe_pt_walk *walk,
enum page_walk_action *action,
pgoff_t *offset, pgoff_t *end_offset)
{
u64 size = 1ull << walk->shifts[level];
*offset = xe_pt_offset(addr, level, walk);
*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
if (!level)
return true;
/*
* If addr or next are not size aligned, there are shared pts at lower
* level, so in that case traverse down the subtree
*/
*action = ACTION_CONTINUE;
if (!IS_ALIGNED(addr, size)) {
*action = ACTION_SUBTREE;
(*offset)++;
}
if (!IS_ALIGNED(end, size)) {
*action = ACTION_SUBTREE;
(*end_offset)--;
}
return *end_offset > *offset;
}
struct xe_pt_zap_ptes_walk {
/** @base: The walk base-class */
struct xe_pt_walk base;
/* Input parameters for the walk */
/** @tile: The tile we're building for */
struct xe_tile *tile;
/* Output */
/** @needs_invalidate: Whether we need to invalidate TLB*/
bool needs_invalidate;
};
static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
unsigned int level, u64 addr, u64 next,
struct xe_ptw **child,
enum page_walk_action *action,
struct xe_pt_walk *walk)
{
struct xe_pt_zap_ptes_walk *xe_walk =
container_of(walk, typeof(*xe_walk), base);
struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
pgoff_t end_offset;
XE_WARN_ON(!*child);
XE_WARN_ON(!level && xe_child->is_compact);
/*
* Note that we're called from an entry callback, and we're dealing
* with the child of that entry rather than the parent, so need to
* adjust level down.
*/
if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
&end_offset)) {
xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
offset * sizeof(u64), 0,
(end_offset - offset) * sizeof(u64));
xe_walk->needs_invalidate = true;
}
return 0;
}
static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
.pt_entry = xe_pt_zap_ptes_entry,
};
/**
* xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
* @tile: The tile we're zapping for.
* @vma: GPU VMA detailing address range.
*
* Eviction and Userptr invalidation needs to be able to zap the
* gpu ptes of a given address range in pagefaulting mode.
* In order to be able to do that, that function needs access to the shared
* page-table entrieaso it can either clear the leaf PTEs or
* clear the pointers to lower-level page-tables. The caller is required
* to hold the necessary locks to ensure neither the page-table connectivity
* nor the page-table entries of the range is updated from under us.
*
* Return: Whether ptes were actually updated and a TLB invalidation is
* required.
*/
bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
{
struct xe_pt_zap_ptes_walk xe_walk = {
.base = {
.ops = &xe_pt_zap_ptes_ops,
.shifts = xe_normal_pt_shifts,
.max_level = XE_PT_HIGHEST_LEVEL,
},
.tile = tile,
};
struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
if (!(vma->tile_present & BIT(tile->id)))
return false;
(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
xe_vma_end(vma), &xe_walk.base);
return xe_walk.needs_invalidate;
}
static void
xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
struct iosys_map *map, void *data,
u32 qword_ofs, u32 num_qwords,
const struct xe_vm_pgtable_update *update)
{
struct xe_pt_entry *ptes = update->pt_entries;
u64 *ptr = data;
u32 i;
for (i = 0; i < num_qwords; i++) {
if (map)
xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
sizeof(u64), u64, ptes[i].pte);
else
ptr[i] = ptes[i].pte;
}
}
static void xe_pt_abort_bind(struct xe_vma *vma,
struct xe_vm_pgtable_update *entries,
u32 num_entries)
{
u32 i, j;
for (i = 0; i < num_entries; i++) {
if (!entries[i].pt_entries)
continue;
for (j = 0; j < entries[i].qwords; j++)
xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL);
kfree(entries[i].pt_entries);
}
}
static void xe_pt_commit_locks_assert(struct xe_vma *vma)
{
struct xe_vm *vm = xe_vma_vm(vma);
lockdep_assert_held(&vm->lock);
if (xe_vma_is_userptr(vma))
lockdep_assert_held_read(&vm->userptr.notifier_lock);
else if (!xe_vma_is_null(vma))
dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
xe_vm_assert_held(vm);
}
static void xe_pt_commit_bind(struct xe_vma *vma,
struct xe_vm_pgtable_update *entries,
u32 num_entries, bool rebind,
struct llist_head *deferred)
{
u32 i, j;
xe_pt_commit_locks_assert(vma);
for (i = 0; i < num_entries; i++) {
struct xe_pt *pt = entries[i].pt;
struct xe_pt_dir *pt_dir;
if (!rebind)
pt->num_live += entries[i].qwords;
if (!pt->level) {
kfree(entries[i].pt_entries);
continue;
}
pt_dir = as_xe_pt_dir(pt);
for (j = 0; j < entries[i].qwords; j++) {
u32 j_ = j + entries[i].ofs;
struct xe_pt *newpte = entries[i].pt_entries[j].pt;
if (xe_pt_entry(pt_dir, j_))
xe_pt_destroy(xe_pt_entry(pt_dir, j_),
xe_vma_vm(vma)->flags, deferred);
pt_dir->dir.entries[j_] = &newpte->base;
}
kfree(entries[i].pt_entries);
}
}
static int
xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
struct xe_vm_pgtable_update *entries, u32 *num_entries,
bool rebind)
{
int err;
*num_entries = 0;
err = xe_pt_stage_bind(tile, vma, entries, num_entries);
if (!err)
xe_tile_assert(tile, *num_entries);
else /* abort! */
xe_pt_abort_bind(vma, entries, *num_entries);
return err;
}
static void xe_vm_dbg_print_entries(struct xe_device *xe,
const struct xe_vm_pgtable_update *entries,
unsigned int num_entries)
#if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
{
unsigned int i;
vm_dbg(&xe->drm, "%u entries to update\n", num_entries);
for (i = 0; i < num_entries; i++) {
const struct xe_vm_pgtable_update *entry = &entries[i];
struct xe_pt *xe_pt = entry->pt;
u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
u64 end;
u64 start;
xe_assert(xe, !entry->pt->is_compact);
start = entry->ofs * page_size;
end = start + page_size * entry->qwords;
vm_dbg(&xe->drm,
"\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
i, xe_pt->level, entry->ofs, entry->qwords,
xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
}
}
#else
{}
#endif
#ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
{
u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
static u32 count;
if (count++ % divisor == divisor - 1) {
struct xe_vm *vm = xe_vma_vm(&uvma->vma);
uvma->userptr.divisor = divisor << 1;
spin_lock(&vm->userptr.invalidated_lock);
list_move_tail(&uvma->userptr.invalidate_link,
&vm->userptr.invalidated);
spin_unlock(&vm->userptr.invalidated_lock);
return true;
}
return false;
}
#else
static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
{
return false;
}
#endif
/**
* struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks
* @base: Base we derive from.
* @bind: Whether this is a bind or an unbind operation. A bind operation
* makes the pre-commit callback error with -EAGAIN if it detects a
* pending invalidation.
* @locked: Whether the pre-commit callback locked the userptr notifier lock
* and it needs unlocking.
*/
struct xe_pt_migrate_pt_update {
struct xe_migrate_pt_update base;
bool bind;
bool locked;
};
/*
* This function adds the needed dependencies to a page-table update job
* to make sure racing jobs for separate bind engines don't race writing
* to the same page-table range, wreaking havoc. Initially use a single
* fence for the entire VM. An optimization would use smaller granularity.
*/
static int xe_pt_vm_dependencies(struct xe_sched_job *job,
struct xe_range_fence_tree *rftree,
u64 start, u64 last)
{
struct xe_range_fence *rtfence;
struct dma_fence *fence;
int err;
rtfence = xe_range_fence_tree_first(rftree, start, last);
while (rtfence) {
fence = rtfence->fence;
if (!dma_fence_is_signaled(fence)) {
/*
* Is this a CPU update? GPU is busy updating, so return
* an error
*/
if (!job)
return -ETIME;
dma_fence_get(fence);
err = drm_sched_job_add_dependency(&job->drm, fence);
if (err)
return err;
}
rtfence = xe_range_fence_tree_next(rtfence, start, last);
}
return 0;
}
static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
{
struct xe_range_fence_tree *rftree =
&xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id];
return xe_pt_vm_dependencies(pt_update->job, rftree,
pt_update->start, pt_update->last);
}
static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
{
struct xe_pt_migrate_pt_update *userptr_update =
container_of(pt_update, typeof(*userptr_update), base);
struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma);
unsigned long notifier_seq = uvma->userptr.notifier_seq;
struct xe_vm *vm = xe_vma_vm(&uvma->vma);
int err = xe_pt_vm_dependencies(pt_update->job,
&vm->rftree[pt_update->tile_id],
pt_update->start,
pt_update->last);
if (err)
return err;
userptr_update->locked = false;
/*
* Wait until nobody is running the invalidation notifier, and
* since we're exiting the loop holding the notifier lock,
* nobody can proceed invalidating either.
*
* Note that we don't update the vma->userptr.notifier_seq since
* we don't update the userptr pages.
*/
do {
down_read(&vm->userptr.notifier_lock);
if (!mmu_interval_read_retry(&uvma->userptr.notifier,
notifier_seq))
break;
up_read(&vm->userptr.notifier_lock);
if (userptr_update->bind)
return -EAGAIN;
notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier);
} while (true);
/* Inject errors to test_whether they are handled correctly */
if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) {
up_read(&vm->userptr.notifier_lock);
return -EAGAIN;
}
userptr_update->locked = true;
return 0;
}
static const struct xe_migrate_pt_update_ops bind_ops = {
.populate = xe_vm_populate_pgtable,
.pre_commit = xe_pt_pre_commit,
};
static const struct xe_migrate_pt_update_ops userptr_bind_ops = {
.populate = xe_vm_populate_pgtable,
.pre_commit = xe_pt_userptr_pre_commit,
};
struct invalidation_fence {
struct xe_gt_tlb_invalidation_fence base;
struct xe_gt *gt;
struct xe_vma *vma;
struct dma_fence *fence;
struct dma_fence_cb cb;
struct work_struct work;
};
static const char *
invalidation_fence_get_driver_name(struct dma_fence *dma_fence)
{
return "xe";
}
static const char *
invalidation_fence_get_timeline_name(struct dma_fence *dma_fence)
{
return "invalidation_fence";
}
static const struct dma_fence_ops invalidation_fence_ops = {
.get_driver_name = invalidation_fence_get_driver_name,
.get_timeline_name = invalidation_fence_get_timeline_name,
};
static void invalidation_fence_cb(struct dma_fence *fence,
struct dma_fence_cb *cb)
{
struct invalidation_fence *ifence =
container_of(cb, struct invalidation_fence, cb);
trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base);
if (!ifence->fence->error) {
queue_work(system_wq, &ifence->work);
} else {
ifence->base.base.error = ifence->fence->error;
dma_fence_signal(&ifence->base.base);
dma_fence_put(&ifence->base.base);
}
dma_fence_put(ifence->fence);
}
static void invalidation_fence_work_func(struct work_struct *w)
{
struct invalidation_fence *ifence =
container_of(w, struct invalidation_fence, work);
trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base);
xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma);
}
static int invalidation_fence_init(struct xe_gt *gt,
struct invalidation_fence *ifence,
struct dma_fence *fence,
struct xe_vma *vma)
{
int ret;
trace_xe_gt_tlb_invalidation_fence_create(&ifence->base);
spin_lock_irq(&gt->tlb_invalidation.lock);
dma_fence_init(&ifence->base.base, &invalidation_fence_ops,
&gt->tlb_invalidation.lock,
gt->tlb_invalidation.fence_context,
++gt->tlb_invalidation.fence_seqno);
spin_unlock_irq(&gt->tlb_invalidation.lock);
INIT_LIST_HEAD(&ifence->base.link);
dma_fence_get(&ifence->base.base); /* Ref for caller */
ifence->fence = fence;
ifence->gt = gt;
ifence->vma = vma;
INIT_WORK(&ifence->work, invalidation_fence_work_func);
ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
if (ret == -ENOENT) {
dma_fence_put(ifence->fence); /* Usually dropped in CB */
invalidation_fence_work_func(&ifence->work);
} else if (ret) {
dma_fence_put(&ifence->base.base); /* Caller ref */
dma_fence_put(&ifence->base.base); /* Creation ref */
}
xe_gt_assert(gt, !ret || ret == -ENOENT);
return ret && ret != -ENOENT ? ret : 0;
}
static void xe_pt_calc_rfence_interval(struct xe_vma *vma,
struct xe_pt_migrate_pt_update *update,
struct xe_vm_pgtable_update *entries,
u32 num_entries)
{
int i, level = 0;
for (i = 0; i < num_entries; i++) {
const struct xe_vm_pgtable_update *entry = &entries[i];
if (entry->pt->level > level)
level = entry->pt->level;
}
/* Greedy (non-optimal) calculation but simple */
update->base.start = ALIGN_DOWN(xe_vma_start(vma),
0x1ull << xe_pt_shift(level));
update->base.last = ALIGN(xe_vma_end(vma),
0x1ull << xe_pt_shift(level)) - 1;
}
/**
* __xe_pt_bind_vma() - Build and connect a page-table tree for the vma
* address range.
* @tile: The tile to bind for.
* @vma: The vma to bind.
* @q: The exec_queue with which to do pipelined page-table updates.
* @syncs: Entries to sync on before binding the built tree to the live vm tree.
* @num_syncs: Number of @sync entries.
* @rebind: Whether we're rebinding this vma to the same address range without
* an unbind in-between.
*
* This function builds a page-table tree (see xe_pt_stage_bind() for more
* information on page-table building), and the xe_vm_pgtable_update entries
* abstracting the operations needed to attach it to the main vm tree. It
* then takes the relevant locks and updates the metadata side of the main
* vm tree and submits the operations for pipelined attachment of the
* gpu page-table to the vm main tree, (which can be done either by the
* cpu and the GPU).
*
* Return: A valid dma-fence representing the pipelined attachment operation
* on success, an error pointer on error.
*/
struct dma_fence *
__xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
struct xe_sync_entry *syncs, u32 num_syncs,
bool rebind)
{
struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
struct xe_pt_migrate_pt_update bind_pt_update = {
.base = {
.ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops,
.vma = vma,
.tile_id = tile->id,
},
.bind = true,
};
struct xe_vm *vm = xe_vma_vm(vma);
u32 num_entries;
struct dma_fence *fence;
struct invalidation_fence *ifence = NULL;
struct xe_range_fence *rfence;
int err;
bind_pt_update.locked = false;
xe_bo_assert_held(xe_vma_bo(vma));
xe_vm_assert_held(vm);
vm_dbg(&xe_vma_vm(vma)->xe->drm,
"Preparing bind, with range [%llx...%llx) engine %p.\n",
xe_vma_start(vma), xe_vma_end(vma), q);
err = xe_pt_prepare_bind(tile, vma, entries, &num_entries, rebind);
if (err)
goto err;
xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries,
num_entries);
/*
* If rebind, we have to invalidate TLB on !LR vms to invalidate
* cached PTEs point to freed memory. on LR vms this is done
* automatically when the context is re-enabled by the rebind worker,
* or in fault mode it was invalidated on PTE zapping.
*
* If !rebind, and scratch enabled VMs, there is a chance the scratch
* PTE is already cached in the TLB so it needs to be invalidated.
* on !LR VMs this is done in the ring ops preceding a batch, but on
* non-faulting LR, in particular on user-space batch buffer chaining,
* it needs to be done here.
*/
if ((rebind && !xe_vm_in_lr_mode(vm) && !vm->batch_invalidate_tlb) ||
(!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) {
ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
if (!ifence)
return ERR_PTR(-ENOMEM);
}
rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
if (!rfence) {
kfree(ifence);
return ERR_PTR(-ENOMEM);
}
fence = xe_migrate_update_pgtables(tile->migrate,
vm, xe_vma_bo(vma), q,
entries, num_entries,
syncs, num_syncs,
&bind_pt_update.base);
if (!IS_ERR(fence)) {
bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND;
LLIST_HEAD(deferred);
int err;
err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
&xe_range_fence_kfree_ops,
bind_pt_update.base.start,
bind_pt_update.base.last, fence);
if (err)
dma_fence_wait(fence, false);
/* TLB invalidation must be done before signaling rebind */
if (ifence) {
int err = invalidation_fence_init(tile->primary_gt, ifence, fence,
vma);
if (err) {
dma_fence_put(fence);
kfree(ifence);
return ERR_PTR(err);
}
fence = &ifence->base.base;
}
/* add shared fence now for pagetable delayed destroy */
dma_resv_add_fence(xe_vm_resv(vm), fence, !rebind &&
last_munmap_rebind ?
DMA_RESV_USAGE_KERNEL :
DMA_RESV_USAGE_BOOKKEEP);
if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
DMA_RESV_USAGE_BOOKKEEP);
xe_pt_commit_bind(vma, entries, num_entries, rebind,
bind_pt_update.locked ? &deferred : NULL);
/* This vma is live (again?) now */
vma->tile_present |= BIT(tile->id);
if (bind_pt_update.locked) {
to_userptr_vma(vma)->userptr.initial_bind = true;
up_read(&vm->userptr.notifier_lock);
xe_bo_put_commit(&deferred);
}
if (!rebind && last_munmap_rebind &&
xe_vm_in_preempt_fence_mode(vm))
xe_vm_queue_rebind_worker(vm);
} else {
kfree(rfence);
kfree(ifence);
if (bind_pt_update.locked)
up_read(&vm->userptr.notifier_lock);
xe_pt_abort_bind(vma, entries, num_entries);
}
return fence;
err:
return ERR_PTR(err);
}
struct xe_pt_stage_unbind_walk {
/** @base: The pagewalk base-class. */
struct xe_pt_walk base;
/* Input parameters for the walk */
/** @tile: The tile we're unbinding from. */
struct xe_tile *tile;
/**
* @modified_start: Walk range start, modified to include any
* shared pagetables that we're the only user of and can thus
* treat as private.
*/
u64 modified_start;
/** @modified_end: Walk range start, modified like @modified_start. */
u64 modified_end;
/* Output */
/* @wupd: Structure to track the page-table updates we're building */
struct xe_walk_update wupd;
};
/*
* Check whether this range is the only one populating this pagetable,
* and in that case, update the walk range checks so that higher levels don't
* view us as a shared pagetable.
*/
static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
const struct xe_pt *child,
enum page_walk_action *action,
struct xe_pt_walk *walk)
{
struct xe_pt_stage_unbind_walk *xe_walk =
container_of(walk, typeof(*xe_walk), base);
unsigned int shift = walk->shifts[level];
u64 size = 1ull << shift;
if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
((next - addr) >> shift) == child->num_live) {
u64 size = 1ull << walk->shifts[level + 1];
*action = ACTION_CONTINUE;
if (xe_walk->modified_start >= addr)
xe_walk->modified_start = round_down(addr, size);
if (xe_walk->modified_end <= next)
xe_walk->modified_end = round_up(next, size);
return true;
}
return false;
}
static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
unsigned int level, u64 addr, u64 next,
struct xe_ptw **child,
enum page_walk_action *action,
struct xe_pt_walk *walk)
{
struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
XE_WARN_ON(!*child);
XE_WARN_ON(!level && xe_child->is_compact);
xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
return 0;
}
static int
xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
unsigned int level, u64 addr, u64 next,
struct xe_ptw **child,
enum page_walk_action *action,
struct xe_pt_walk *walk)
{
struct xe_pt_stage_unbind_walk *xe_walk =
container_of(walk, typeof(*xe_walk), base);
struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
pgoff_t end_offset;
u64 size = 1ull << walk->shifts[--level];
if (!IS_ALIGNED(addr, size))
addr = xe_walk->modified_start;
if (!IS_ALIGNED(next, size))
next = xe_walk->modified_end;
/* Parent == *child is the root pt. Don't kill it. */
if (parent != *child &&
xe_pt_check_kill(addr, next, level, xe_child, action, walk))
return 0;
if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
&end_offset))
return 0;
(void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false);
xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
return 0;
}
static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
.pt_entry = xe_pt_stage_unbind_entry,
.pt_post_descend = xe_pt_stage_unbind_post_descend,
};
/**
* xe_pt_stage_unbind() - Build page-table update structures for an unbind
* operation
* @tile: The tile we're unbinding for.
* @vma: The vma we're unbinding.
* @entries: Caller-provided storage for the update structures.
*
* Builds page-table update structures for an unbind operation. The function
* will attempt to remove all page-tables that we're the only user
* of, and for that to work, the unbind operation must be committed in the
* same critical section that blocks racing binds to the same page-table tree.
*
* Return: The number of entries used.
*/
static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
struct xe_vm_pgtable_update *entries)
{
struct xe_pt_stage_unbind_walk xe_walk = {
.base = {
.ops = &xe_pt_stage_unbind_ops,
.shifts = xe_normal_pt_shifts,
.max_level = XE_PT_HIGHEST_LEVEL,
},
.tile = tile,
.modified_start = xe_vma_start(vma),
.modified_end = xe_vma_end(vma),
.wupd.entries = entries,
};
struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
xe_vma_end(vma), &xe_walk.base);
return xe_walk.wupd.num_used_entries;
}
static void
xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
struct xe_tile *tile, struct iosys_map *map,
void *ptr, u32 qword_ofs, u32 num_qwords,
const struct xe_vm_pgtable_update *update)
{
struct xe_vma *vma = pt_update->vma;
u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level);
int i;
if (map && map->is_iomem)
for (i = 0; i < num_qwords; ++i)
xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
sizeof(u64), u64, empty);
else if (map)
memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
num_qwords);
else
memset64(ptr, empty, num_qwords);
}
static void
xe_pt_commit_unbind(struct xe_vma *vma,
struct xe_vm_pgtable_update *entries, u32 num_entries,
struct llist_head *deferred)
{
u32 j;
xe_pt_commit_locks_assert(vma);
for (j = 0; j < num_entries; ++j) {
struct xe_vm_pgtable_update *entry = &entries[j];
struct xe_pt *pt = entry->pt;
pt->num_live -= entry->qwords;
if (pt->level) {
struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
u32 i;
for (i = entry->ofs; i < entry->ofs + entry->qwords;
i++) {
if (xe_pt_entry(pt_dir, i))
xe_pt_destroy(xe_pt_entry(pt_dir, i),
xe_vma_vm(vma)->flags, deferred);
pt_dir->dir.entries[i] = NULL;
}
}
}
}
static const struct xe_migrate_pt_update_ops unbind_ops = {
.populate = xe_migrate_clear_pgtable_callback,
.pre_commit = xe_pt_pre_commit,
};
static const struct xe_migrate_pt_update_ops userptr_unbind_ops = {
.populate = xe_migrate_clear_pgtable_callback,
.pre_commit = xe_pt_userptr_pre_commit,
};
/**
* __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma
* address range.
* @tile: The tile to unbind for.
* @vma: The vma to unbind.
* @q: The exec_queue with which to do pipelined page-table updates.
* @syncs: Entries to sync on before disconnecting the tree to be destroyed.
* @num_syncs: Number of @sync entries.
*
* This function builds a the xe_vm_pgtable_update entries abstracting the
* operations needed to detach the page-table tree to be destroyed from the
* man vm tree.
* It then takes the relevant locks and submits the operations for
* pipelined detachment of the gpu page-table from the vm main tree,
* (which can be done either by the cpu and the GPU), Finally it frees the
* detached page-table tree.
*
* Return: A valid dma-fence representing the pipelined detachment operation
* on success, an error pointer on error.
*/
struct dma_fence *
__xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
struct xe_sync_entry *syncs, u32 num_syncs)
{
struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
struct xe_pt_migrate_pt_update unbind_pt_update = {
.base = {
.ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops :
&unbind_ops,
.vma = vma,
.tile_id = tile->id,
},
};
struct xe_vm *vm = xe_vma_vm(vma);
u32 num_entries;
struct dma_fence *fence = NULL;
struct invalidation_fence *ifence;
struct xe_range_fence *rfence;
LLIST_HEAD(deferred);
xe_bo_assert_held(xe_vma_bo(vma));
xe_vm_assert_held(vm);
vm_dbg(&xe_vma_vm(vma)->xe->drm,
"Preparing unbind, with range [%llx...%llx) engine %p.\n",
xe_vma_start(vma), xe_vma_end(vma), q);
num_entries = xe_pt_stage_unbind(tile, vma, entries);
xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries,
num_entries);
ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
if (!ifence)
return ERR_PTR(-ENOMEM);
rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
if (!rfence) {
kfree(ifence);
return ERR_PTR(-ENOMEM);
}
/*
* Even if we were already evicted and unbind to destroy, we need to
* clear again here. The eviction may have updated pagetables at a
* lower level, because it needs to be more conservative.
*/
fence = xe_migrate_update_pgtables(tile->migrate,
vm, NULL, q ? q :
vm->q[tile->id],
entries, num_entries,
syncs, num_syncs,
&unbind_pt_update.base);
if (!IS_ERR(fence)) {
int err;
err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
&xe_range_fence_kfree_ops,
unbind_pt_update.base.start,
unbind_pt_update.base.last, fence);
if (err)
dma_fence_wait(fence, false);
/* TLB invalidation must be done before signaling unbind */
err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma);
if (err) {
dma_fence_put(fence);
kfree(ifence);
return ERR_PTR(err);
}
fence = &ifence->base.base;
/* add shared fence now for pagetable delayed destroy */
dma_resv_add_fence(xe_vm_resv(vm), fence,
DMA_RESV_USAGE_BOOKKEEP);
/* This fence will be installed by caller when doing eviction */
if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
DMA_RESV_USAGE_BOOKKEEP);
xe_pt_commit_unbind(vma, entries, num_entries,
unbind_pt_update.locked ? &deferred : NULL);
vma->tile_present &= ~BIT(tile->id);
} else {
kfree(rfence);
kfree(ifence);
}
if (!vma->tile_present)
list_del_init(&vma->combined_links.rebind);
if (unbind_pt_update.locked) {
xe_tile_assert(tile, xe_vma_is_userptr(vma));
if (!vma->tile_present) {
spin_lock(&vm->userptr.invalidated_lock);
list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
spin_unlock(&vm->userptr.invalidated_lock);
}
up_read(&vm->userptr.notifier_lock);
xe_bo_put_commit(&deferred);
}
return fence;
}