blob: b96f30d11644e24eb3886e5f2536d6eaad4d01db [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2017 Intel Deutschland GmbH
* Copyright (C) 2019-2023 Intel Corporation
*/
#include <linux/uuid.h>
#include <linux/dmi.h>
#include "iwl-drv.h"
#include "iwl-debug.h"
#include "acpi.h"
#include "fw/runtime.h"
const guid_t iwl_guid = GUID_INIT(0xF21202BF, 0x8F78, 0x4DC6,
0xA5, 0xB3, 0x1F, 0x73,
0x8E, 0x28, 0x5A, 0xDE);
IWL_EXPORT_SYMBOL(iwl_guid);
const guid_t iwl_rfi_guid = GUID_INIT(0x7266172C, 0x220B, 0x4B29,
0x81, 0x4F, 0x75, 0xE4,
0xDD, 0x26, 0xB5, 0xFD);
IWL_EXPORT_SYMBOL(iwl_rfi_guid);
static const struct dmi_system_id dmi_ppag_approved_list[] = {
{ .ident = "HP",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
},
},
{ .ident = "SAMSUNG",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD"),
},
},
{ .ident = "MSFT",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"),
},
},
{ .ident = "ASUS",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
},
},
{ .ident = "GOOGLE-HP",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Google"),
DMI_MATCH(DMI_BOARD_VENDOR, "HP"),
},
},
{ .ident = "GOOGLE-ASUS",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Google"),
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek COMPUTER INC."),
},
},
{ .ident = "GOOGLE-SAMSUNG",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Google"),
DMI_MATCH(DMI_BOARD_VENDOR, "SAMSUNG ELECTRONICS CO., LTD"),
},
},
{ .ident = "DELL",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
},
},
{ .ident = "DELL",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Alienware"),
},
},
{ .ident = "RAZER",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Razer"),
},
},
{}
};
static int iwl_acpi_get_handle(struct device *dev, acpi_string method,
acpi_handle *ret_handle)
{
acpi_handle root_handle;
acpi_status status;
root_handle = ACPI_HANDLE(dev);
if (!root_handle) {
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: Could not retrieve root port handle\n");
return -ENOENT;
}
status = acpi_get_handle(root_handle, method, ret_handle);
if (ACPI_FAILURE(status)) {
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: %s method not found\n", method);
return -ENOENT;
}
return 0;
}
static void *iwl_acpi_get_object(struct device *dev, acpi_string method)
{
struct acpi_buffer buf = {ACPI_ALLOCATE_BUFFER, NULL};
acpi_handle handle;
acpi_status status;
int ret;
ret = iwl_acpi_get_handle(dev, method, &handle);
if (ret)
return ERR_PTR(-ENOENT);
/* Call the method with no arguments */
status = acpi_evaluate_object(handle, NULL, NULL, &buf);
if (ACPI_FAILURE(status)) {
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: %s method invocation failed (status: 0x%x)\n",
method, status);
return ERR_PTR(-ENOENT);
}
return buf.pointer;
}
/*
* Generic function for evaluating a method defined in the device specific
* method (DSM) interface. The returned acpi object must be freed by calling
* function.
*/
static void *iwl_acpi_get_dsm_object(struct device *dev, int rev, int func,
union acpi_object *args,
const guid_t *guid)
{
union acpi_object *obj;
obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), guid, rev, func,
args);
if (!obj) {
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: DSM method invocation failed (rev: %d, func:%d)\n",
rev, func);
return ERR_PTR(-ENOENT);
}
return obj;
}
/*
* Generic function to evaluate a DSM with no arguments
* and an integer return value,
* (as an integer object or inside a buffer object),
* verify and assign the value in the "value" parameter.
* return 0 in success and the appropriate errno otherwise.
*/
static int iwl_acpi_get_dsm_integer(struct device *dev, int rev, int func,
const guid_t *guid, u64 *value,
size_t expected_size)
{
union acpi_object *obj;
int ret = 0;
obj = iwl_acpi_get_dsm_object(dev, rev, func, NULL, guid);
if (IS_ERR(obj)) {
IWL_DEBUG_DEV_RADIO(dev,
"Failed to get DSM object. func= %d\n",
func);
return -ENOENT;
}
if (obj->type == ACPI_TYPE_INTEGER) {
*value = obj->integer.value;
} else if (obj->type == ACPI_TYPE_BUFFER) {
__le64 le_value = 0;
if (WARN_ON_ONCE(expected_size > sizeof(le_value)))
return -EINVAL;
/* if the buffer size doesn't match the expected size */
if (obj->buffer.length != expected_size)
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: DSM invalid buffer size, padding or truncating (%d)\n",
obj->buffer.length);
/* assuming LE from Intel BIOS spec */
memcpy(&le_value, obj->buffer.pointer,
min_t(size_t, expected_size, (size_t)obj->buffer.length));
*value = le64_to_cpu(le_value);
} else {
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: DSM method did not return a valid object, type=%d\n",
obj->type);
ret = -EINVAL;
goto out;
}
IWL_DEBUG_DEV_RADIO(dev,
"ACPI: DSM method evaluated: func=%d, ret=%d\n",
func, ret);
out:
ACPI_FREE(obj);
return ret;
}
/*
* Evaluate a DSM with no arguments and a u8 return value,
*/
int iwl_acpi_get_dsm_u8(struct device *dev, int rev, int func,
const guid_t *guid, u8 *value)
{
int ret;
u64 val;
ret = iwl_acpi_get_dsm_integer(dev, rev, func,
guid, &val, sizeof(u8));
if (ret < 0)
return ret;
/* cast val (u64) to be u8 */
*value = (u8)val;
return 0;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_dsm_u8);
/*
* Evaluate a DSM with no arguments and a u32 return value,
*/
int iwl_acpi_get_dsm_u32(struct device *dev, int rev, int func,
const guid_t *guid, u32 *value)
{
int ret;
u64 val;
ret = iwl_acpi_get_dsm_integer(dev, rev, func,
guid, &val, sizeof(u32));
if (ret < 0)
return ret;
/* cast val (u64) to be u32 */
*value = (u32)val;
return 0;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_dsm_u32);
static union acpi_object *
iwl_acpi_get_wifi_pkg_range(struct device *dev,
union acpi_object *data,
int min_data_size,
int max_data_size,
int *tbl_rev)
{
int i;
union acpi_object *wifi_pkg;
/*
* We need at least one entry in the wifi package that
* describes the domain, and one more entry, otherwise there's
* no point in reading it.
*/
if (WARN_ON_ONCE(min_data_size < 2 || min_data_size > max_data_size))
return ERR_PTR(-EINVAL);
/*
* We need at least two packages, one for the revision and one
* for the data itself. Also check that the revision is valid
* (i.e. it is an integer (each caller has to check by itself
* if the returned revision is supported)).
*/
if (data->type != ACPI_TYPE_PACKAGE ||
data->package.count < 2 ||
data->package.elements[0].type != ACPI_TYPE_INTEGER) {
IWL_DEBUG_DEV_RADIO(dev, "Invalid packages structure\n");
return ERR_PTR(-EINVAL);
}
*tbl_rev = data->package.elements[0].integer.value;
/* loop through all the packages to find the one for WiFi */
for (i = 1; i < data->package.count; i++) {
union acpi_object *domain;
wifi_pkg = &data->package.elements[i];
/* skip entries that are not a package with the right size */
if (wifi_pkg->type != ACPI_TYPE_PACKAGE ||
wifi_pkg->package.count < min_data_size ||
wifi_pkg->package.count > max_data_size)
continue;
domain = &wifi_pkg->package.elements[0];
if (domain->type == ACPI_TYPE_INTEGER &&
domain->integer.value == ACPI_WIFI_DOMAIN)
goto found;
}
return ERR_PTR(-ENOENT);
found:
return wifi_pkg;
}
static union acpi_object *
iwl_acpi_get_wifi_pkg(struct device *dev,
union acpi_object *data,
int data_size, int *tbl_rev)
{
return iwl_acpi_get_wifi_pkg_range(dev, data, data_size, data_size,
tbl_rev);
}
int iwl_acpi_get_tas(struct iwl_fw_runtime *fwrt,
union iwl_tas_config_cmd *cmd, int fw_ver)
{
union acpi_object *wifi_pkg, *data;
int ret, tbl_rev, i, block_list_size, enabled;
data = iwl_acpi_get_object(fwrt->dev, ACPI_WTAS_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
/* try to read wtas table revision 1 or revision 0*/
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_WTAS_WIFI_DATA_SIZE,
&tbl_rev);
if (IS_ERR(wifi_pkg)) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
if (tbl_rev == 1 && wifi_pkg->package.elements[1].type ==
ACPI_TYPE_INTEGER) {
u32 tas_selection =
(u32)wifi_pkg->package.elements[1].integer.value;
u16 override_iec =
(tas_selection & ACPI_WTAS_OVERRIDE_IEC_MSK) >> ACPI_WTAS_OVERRIDE_IEC_POS;
u16 enabled_iec = (tas_selection & ACPI_WTAS_ENABLE_IEC_MSK) >>
ACPI_WTAS_ENABLE_IEC_POS;
u8 usa_tas_uhb = (tas_selection & ACPI_WTAS_USA_UHB_MSK) >> ACPI_WTAS_USA_UHB_POS;
enabled = tas_selection & ACPI_WTAS_ENABLED_MSK;
if (fw_ver <= 3) {
cmd->v3.override_tas_iec = cpu_to_le16(override_iec);
cmd->v3.enable_tas_iec = cpu_to_le16(enabled_iec);
} else {
cmd->v4.usa_tas_uhb_allowed = usa_tas_uhb;
cmd->v4.override_tas_iec = (u8)override_iec;
cmd->v4.enable_tas_iec = (u8)enabled_iec;
}
} else if (tbl_rev == 0 &&
wifi_pkg->package.elements[1].type == ACPI_TYPE_INTEGER) {
enabled = !!wifi_pkg->package.elements[1].integer.value;
} else {
ret = -EINVAL;
goto out_free;
}
if (!enabled) {
IWL_DEBUG_RADIO(fwrt, "TAS not enabled\n");
ret = 0;
goto out_free;
}
IWL_DEBUG_RADIO(fwrt, "Reading TAS table revision %d\n", tbl_rev);
if (wifi_pkg->package.elements[2].type != ACPI_TYPE_INTEGER ||
wifi_pkg->package.elements[2].integer.value >
APCI_WTAS_BLACK_LIST_MAX) {
IWL_DEBUG_RADIO(fwrt, "TAS invalid array size %llu\n",
wifi_pkg->package.elements[2].integer.value);
ret = -EINVAL;
goto out_free;
}
block_list_size = wifi_pkg->package.elements[2].integer.value;
cmd->v4.block_list_size = cpu_to_le32(block_list_size);
IWL_DEBUG_RADIO(fwrt, "TAS array size %u\n", block_list_size);
if (block_list_size > APCI_WTAS_BLACK_LIST_MAX) {
IWL_DEBUG_RADIO(fwrt, "TAS invalid array size value %u\n",
block_list_size);
ret = -EINVAL;
goto out_free;
}
for (i = 0; i < block_list_size; i++) {
u32 country;
if (wifi_pkg->package.elements[3 + i].type !=
ACPI_TYPE_INTEGER) {
IWL_DEBUG_RADIO(fwrt,
"TAS invalid array elem %d\n", 3 + i);
ret = -EINVAL;
goto out_free;
}
country = wifi_pkg->package.elements[3 + i].integer.value;
cmd->v4.block_list_array[i] = cpu_to_le32(country);
IWL_DEBUG_RADIO(fwrt, "TAS block list country %d\n", country);
}
ret = 1;
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_tas);
int iwl_acpi_get_mcc(struct device *dev, char *mcc)
{
union acpi_object *wifi_pkg, *data;
u32 mcc_val;
int ret, tbl_rev;
data = iwl_acpi_get_object(dev, ACPI_WRDD_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_WRDD_WIFI_DATA_SIZE,
&tbl_rev);
if (IS_ERR(wifi_pkg)) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER ||
tbl_rev != 0) {
ret = -EINVAL;
goto out_free;
}
mcc_val = wifi_pkg->package.elements[1].integer.value;
mcc[0] = (mcc_val >> 8) & 0xff;
mcc[1] = mcc_val & 0xff;
mcc[2] = '\0';
ret = 0;
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_mcc);
u64 iwl_acpi_get_pwr_limit(struct device *dev)
{
union acpi_object *data, *wifi_pkg;
u64 dflt_pwr_limit;
int tbl_rev;
data = iwl_acpi_get_object(dev, ACPI_SPLC_METHOD);
if (IS_ERR(data)) {
dflt_pwr_limit = 0;
goto out;
}
wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data,
ACPI_SPLC_WIFI_DATA_SIZE, &tbl_rev);
if (IS_ERR(wifi_pkg) || tbl_rev != 0 ||
wifi_pkg->package.elements[1].integer.value != ACPI_TYPE_INTEGER) {
dflt_pwr_limit = 0;
goto out_free;
}
dflt_pwr_limit = wifi_pkg->package.elements[1].integer.value;
out_free:
kfree(data);
out:
return dflt_pwr_limit;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_pwr_limit);
int iwl_acpi_get_eckv(struct device *dev, u32 *extl_clk)
{
union acpi_object *wifi_pkg, *data;
int ret, tbl_rev;
data = iwl_acpi_get_object(dev, ACPI_ECKV_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_ECKV_WIFI_DATA_SIZE,
&tbl_rev);
if (IS_ERR(wifi_pkg)) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER ||
tbl_rev != 0) {
ret = -EINVAL;
goto out_free;
}
*extl_clk = wifi_pkg->package.elements[1].integer.value;
ret = 0;
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_eckv);
static int iwl_sar_set_profile(union acpi_object *table,
struct iwl_sar_profile *profile,
bool enabled, u8 num_chains, u8 num_sub_bands)
{
int i, j, idx = 0;
/*
* The table from ACPI is flat, but we store it in a
* structured array.
*/
for (i = 0; i < ACPI_SAR_NUM_CHAINS_REV2; i++) {
for (j = 0; j < ACPI_SAR_NUM_SUB_BANDS_REV2; j++) {
/* if we don't have the values, use the default */
if (i >= num_chains || j >= num_sub_bands) {
profile->chains[i].subbands[j] = 0;
} else {
if (table[idx].type != ACPI_TYPE_INTEGER ||
table[idx].integer.value > U8_MAX)
return -EINVAL;
profile->chains[i].subbands[j] =
table[idx].integer.value;
idx++;
}
}
}
/* Only if all values were valid can the profile be enabled */
profile->enabled = enabled;
return 0;
}
static int iwl_sar_fill_table(struct iwl_fw_runtime *fwrt,
__le16 *per_chain, u32 n_subbands,
int prof_a, int prof_b)
{
int profs[ACPI_SAR_NUM_CHAINS_REV0] = { prof_a, prof_b };
int i, j;
for (i = 0; i < ACPI_SAR_NUM_CHAINS_REV0; i++) {
struct iwl_sar_profile *prof;
/* don't allow SAR to be disabled (profile 0 means disable) */
if (profs[i] == 0)
return -EPERM;
/* we are off by one, so allow up to ACPI_SAR_PROFILE_NUM */
if (profs[i] > ACPI_SAR_PROFILE_NUM)
return -EINVAL;
/* profiles go from 1 to 4, so decrement to access the array */
prof = &fwrt->sar_profiles[profs[i] - 1];
/* if the profile is disabled, do nothing */
if (!prof->enabled) {
IWL_DEBUG_RADIO(fwrt, "SAR profile %d is disabled.\n",
profs[i]);
/*
* if one of the profiles is disabled, we
* ignore all of them and return 1 to
* differentiate disabled from other failures.
*/
return 1;
}
IWL_DEBUG_INFO(fwrt,
"SAR EWRD: chain %d profile index %d\n",
i, profs[i]);
IWL_DEBUG_RADIO(fwrt, " Chain[%d]:\n", i);
for (j = 0; j < n_subbands; j++) {
per_chain[i * n_subbands + j] =
cpu_to_le16(prof->chains[i].subbands[j]);
IWL_DEBUG_RADIO(fwrt, " Band[%d] = %d * .125dBm\n",
j, prof->chains[i].subbands[j]);
}
}
return 0;
}
int iwl_sar_select_profile(struct iwl_fw_runtime *fwrt,
__le16 *per_chain, u32 n_tables, u32 n_subbands,
int prof_a, int prof_b)
{
int i, ret = 0;
for (i = 0; i < n_tables; i++) {
ret = iwl_sar_fill_table(fwrt,
&per_chain[i * n_subbands * ACPI_SAR_NUM_CHAINS_REV0],
n_subbands, prof_a, prof_b);
if (ret)
break;
}
return ret;
}
IWL_EXPORT_SYMBOL(iwl_sar_select_profile);
int iwl_sar_get_wrds_table(struct iwl_fw_runtime *fwrt)
{
union acpi_object *wifi_pkg, *table, *data;
int ret, tbl_rev;
u32 flags;
u8 num_chains, num_sub_bands;
data = iwl_acpi_get_object(fwrt->dev, ACPI_WRDS_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
/* start by trying to read revision 2 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_WRDS_WIFI_DATA_SIZE_REV2,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 2) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV2;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2;
goto read_table;
}
/* then try revision 1 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_WRDS_WIFI_DATA_SIZE_REV1,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 1) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV1;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1;
goto read_table;
}
/* then finally revision 0 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_WRDS_WIFI_DATA_SIZE_REV0,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 0) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV0;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0;
goto read_table;
}
ret = PTR_ERR(wifi_pkg);
goto out_free;
read_table:
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
ret = -EINVAL;
goto out_free;
}
IWL_DEBUG_RADIO(fwrt, "Reading WRDS tbl_rev=%d\n", tbl_rev);
flags = wifi_pkg->package.elements[1].integer.value;
fwrt->reduced_power_flags = flags >> IWL_REDUCE_POWER_FLAGS_POS;
/* position of the actual table */
table = &wifi_pkg->package.elements[2];
/* The profile from WRDS is officially profile 1, but goes
* into sar_profiles[0] (because we don't have a profile 0).
*/
ret = iwl_sar_set_profile(table, &fwrt->sar_profiles[0],
flags & IWL_SAR_ENABLE_MSK,
num_chains, num_sub_bands);
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_sar_get_wrds_table);
int iwl_sar_get_ewrd_table(struct iwl_fw_runtime *fwrt)
{
union acpi_object *wifi_pkg, *data;
bool enabled;
int i, n_profiles, tbl_rev, pos;
int ret = 0;
u8 num_chains, num_sub_bands;
data = iwl_acpi_get_object(fwrt->dev, ACPI_EWRD_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
/* start by trying to read revision 2 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_EWRD_WIFI_DATA_SIZE_REV2,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 2) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV2;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2;
goto read_table;
}
/* then try revision 1 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_EWRD_WIFI_DATA_SIZE_REV1,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 1) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV1;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1;
goto read_table;
}
/* then finally revision 0 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_EWRD_WIFI_DATA_SIZE_REV0,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 0) {
ret = PTR_ERR(wifi_pkg);
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV0;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0;
goto read_table;
}
ret = PTR_ERR(wifi_pkg);
goto out_free;
read_table:
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER ||
wifi_pkg->package.elements[2].type != ACPI_TYPE_INTEGER) {
ret = -EINVAL;
goto out_free;
}
enabled = !!(wifi_pkg->package.elements[1].integer.value);
n_profiles = wifi_pkg->package.elements[2].integer.value;
/*
* Check the validity of n_profiles. The EWRD profiles start
* from index 1, so the maximum value allowed here is
* ACPI_SAR_PROFILES_NUM - 1.
*/
if (n_profiles <= 0 || n_profiles >= ACPI_SAR_PROFILE_NUM) {
ret = -EINVAL;
goto out_free;
}
/* the tables start at element 3 */
pos = 3;
for (i = 0; i < n_profiles; i++) {
/* The EWRD profiles officially go from 2 to 4, but we
* save them in sar_profiles[1-3] (because we don't
* have profile 0). So in the array we start from 1.
*/
ret = iwl_sar_set_profile(&wifi_pkg->package.elements[pos],
&fwrt->sar_profiles[i + 1], enabled,
num_chains, num_sub_bands);
if (ret < 0)
break;
/* go to the next table */
pos += num_chains * num_sub_bands;
}
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_sar_get_ewrd_table);
int iwl_sar_get_wgds_table(struct iwl_fw_runtime *fwrt)
{
union acpi_object *wifi_pkg, *data;
int i, j, k, ret, tbl_rev;
u8 num_bands, num_profiles;
static const struct {
u8 revisions;
u8 bands;
u8 profiles;
u8 min_profiles;
} rev_data[] = {
{
.revisions = BIT(3),
.bands = ACPI_GEO_NUM_BANDS_REV2,
.profiles = ACPI_NUM_GEO_PROFILES_REV3,
.min_profiles = 3,
},
{
.revisions = BIT(2),
.bands = ACPI_GEO_NUM_BANDS_REV2,
.profiles = ACPI_NUM_GEO_PROFILES,
},
{
.revisions = BIT(0) | BIT(1),
.bands = ACPI_GEO_NUM_BANDS_REV0,
.profiles = ACPI_NUM_GEO_PROFILES,
},
};
int idx;
/* start from one to skip the domain */
int entry_idx = 1;
BUILD_BUG_ON(ACPI_NUM_GEO_PROFILES_REV3 != IWL_NUM_GEO_PROFILES_V3);
BUILD_BUG_ON(ACPI_NUM_GEO_PROFILES != IWL_NUM_GEO_PROFILES);
data = iwl_acpi_get_object(fwrt->dev, ACPI_WGDS_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
/* read the highest revision we understand first */
for (idx = 0; idx < ARRAY_SIZE(rev_data); idx++) {
/* min_profiles != 0 requires num_profiles header */
u32 hdr_size = 1 + !!rev_data[idx].min_profiles;
u32 profile_size = ACPI_GEO_PER_CHAIN_SIZE *
rev_data[idx].bands;
u32 max_size = hdr_size + profile_size * rev_data[idx].profiles;
u32 min_size;
if (!rev_data[idx].min_profiles)
min_size = max_size;
else
min_size = hdr_size +
profile_size * rev_data[idx].min_profiles;
wifi_pkg = iwl_acpi_get_wifi_pkg_range(fwrt->dev, data,
min_size, max_size,
&tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (!(BIT(tbl_rev) & rev_data[idx].revisions))
continue;
num_bands = rev_data[idx].bands;
num_profiles = rev_data[idx].profiles;
if (rev_data[idx].min_profiles) {
/* read header that says # of profiles */
union acpi_object *entry;
entry = &wifi_pkg->package.elements[entry_idx];
entry_idx++;
if (entry->type != ACPI_TYPE_INTEGER ||
entry->integer.value > num_profiles) {
ret = -EINVAL;
goto out_free;
}
num_profiles = entry->integer.value;
/*
* this also validates >= min_profiles since we
* otherwise wouldn't have gotten the data when
* looking up in ACPI
*/
if (wifi_pkg->package.count !=
hdr_size + profile_size * num_profiles) {
ret = -EINVAL;
goto out_free;
}
}
goto read_table;
}
}
if (idx < ARRAY_SIZE(rev_data))
ret = PTR_ERR(wifi_pkg);
else
ret = -ENOENT;
goto out_free;
read_table:
fwrt->geo_rev = tbl_rev;
for (i = 0; i < num_profiles; i++) {
for (j = 0; j < ACPI_GEO_NUM_BANDS_REV2; j++) {
union acpi_object *entry;
/*
* num_bands is either 2 or 3, if it's only 2 then
* fill the third band (6 GHz) with the values from
* 5 GHz (second band)
*/
if (j >= num_bands) {
fwrt->geo_profiles[i].bands[j].max =
fwrt->geo_profiles[i].bands[1].max;
} else {
entry = &wifi_pkg->package.elements[entry_idx];
entry_idx++;
if (entry->type != ACPI_TYPE_INTEGER ||
entry->integer.value > U8_MAX) {
ret = -EINVAL;
goto out_free;
}
fwrt->geo_profiles[i].bands[j].max =
entry->integer.value;
}
for (k = 0; k < ACPI_GEO_NUM_CHAINS; k++) {
/* same here as above */
if (j >= num_bands) {
fwrt->geo_profiles[i].bands[j].chains[k] =
fwrt->geo_profiles[i].bands[1].chains[k];
} else {
entry = &wifi_pkg->package.elements[entry_idx];
entry_idx++;
if (entry->type != ACPI_TYPE_INTEGER ||
entry->integer.value > U8_MAX) {
ret = -EINVAL;
goto out_free;
}
fwrt->geo_profiles[i].bands[j].chains[k] =
entry->integer.value;
}
}
}
}
fwrt->geo_num_profiles = num_profiles;
fwrt->geo_enabled = true;
ret = 0;
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_sar_get_wgds_table);
bool iwl_sar_geo_support(struct iwl_fw_runtime *fwrt)
{
/*
* The PER_CHAIN_LIMIT_OFFSET_CMD command is not supported on
* earlier firmware versions. Unfortunately, we don't have a
* TLV API flag to rely on, so rely on the major version which
* is in the first byte of ucode_ver. This was implemented
* initially on version 38 and then backported to 17. It was
* also backported to 29, but only for 7265D devices. The
* intention was to have it in 36 as well, but not all 8000
* family got this feature enabled. The 8000 family is the
* only one using version 36, so skip this version entirely.
*/
return IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) >= 38 ||
(IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) == 17 &&
fwrt->trans->hw_rev != CSR_HW_REV_TYPE_3160) ||
(IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) == 29 &&
((fwrt->trans->hw_rev & CSR_HW_REV_TYPE_MSK) ==
CSR_HW_REV_TYPE_7265D));
}
IWL_EXPORT_SYMBOL(iwl_sar_geo_support);
int iwl_sar_geo_init(struct iwl_fw_runtime *fwrt,
struct iwl_per_chain_offset *table,
u32 n_bands, u32 n_profiles)
{
int i, j;
if (!fwrt->geo_enabled)
return -ENODATA;
if (!iwl_sar_geo_support(fwrt))
return -EOPNOTSUPP;
for (i = 0; i < n_profiles; i++) {
for (j = 0; j < n_bands; j++) {
struct iwl_per_chain_offset *chain =
&table[i * n_bands + j];
chain->max_tx_power =
cpu_to_le16(fwrt->geo_profiles[i].bands[j].max);
chain->chain_a = fwrt->geo_profiles[i].bands[j].chains[0];
chain->chain_b = fwrt->geo_profiles[i].bands[j].chains[1];
IWL_DEBUG_RADIO(fwrt,
"SAR geographic profile[%d] Band[%d]: chain A = %d chain B = %d max_tx_power = %d\n",
i, j,
fwrt->geo_profiles[i].bands[j].chains[0],
fwrt->geo_profiles[i].bands[j].chains[1],
fwrt->geo_profiles[i].bands[j].max);
}
}
return 0;
}
IWL_EXPORT_SYMBOL(iwl_sar_geo_init);
__le32 iwl_acpi_get_lari_config_bitmap(struct iwl_fw_runtime *fwrt)
{
int ret;
u8 value;
u32 val;
__le32 config_bitmap = 0;
/*
* Evaluate func 'DSM_FUNC_ENABLE_INDONESIA_5G2'.
* Setting config_bitmap Indonesia bit is valid only for HR/JF.
*/
switch (CSR_HW_RFID_TYPE(fwrt->trans->hw_rf_id)) {
case IWL_CFG_RF_TYPE_HR1:
case IWL_CFG_RF_TYPE_HR2:
case IWL_CFG_RF_TYPE_JF1:
case IWL_CFG_RF_TYPE_JF2:
ret = iwl_acpi_get_dsm_u8(fwrt->dev, 0,
DSM_FUNC_ENABLE_INDONESIA_5G2,
&iwl_guid, &value);
if (!ret && value == DSM_VALUE_INDONESIA_ENABLE)
config_bitmap |=
cpu_to_le32(LARI_CONFIG_ENABLE_5G2_IN_INDONESIA_MSK);
break;
default:
break;
}
/*
** Evaluate func 'DSM_FUNC_DISABLE_SRD'
*/
ret = iwl_acpi_get_dsm_u8(fwrt->dev, 0,
DSM_FUNC_DISABLE_SRD,
&iwl_guid, &value);
if (!ret) {
if (value == DSM_VALUE_SRD_PASSIVE)
config_bitmap |=
cpu_to_le32(LARI_CONFIG_CHANGE_ETSI_TO_PASSIVE_MSK);
else if (value == DSM_VALUE_SRD_DISABLE)
config_bitmap |=
cpu_to_le32(LARI_CONFIG_CHANGE_ETSI_TO_DISABLED_MSK);
}
if (fw_has_capa(&fwrt->fw->ucode_capa,
IWL_UCODE_TLV_CAPA_CHINA_22_REG_SUPPORT)) {
/*
** Evaluate func 'DSM_FUNC_REGULATORY_CONFIG'
*/
ret = iwl_acpi_get_dsm_u32(fwrt->dev, 0,
DSM_FUNC_REGULATORY_CONFIG,
&iwl_guid, &val);
/*
* China 2022 enable if the BIOS object does not exist or
* if it is enabled in BIOS.
*/
if (ret < 0 || val & DSM_MASK_CHINA_22_REG)
config_bitmap |=
cpu_to_le32(LARI_CONFIG_ENABLE_CHINA_22_REG_SUPPORT_MSK);
}
return config_bitmap;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_lari_config_bitmap);
int iwl_acpi_get_ppag_table(struct iwl_fw_runtime *fwrt)
{
union acpi_object *wifi_pkg, *data, *flags;
int i, j, ret, tbl_rev, num_sub_bands = 0;
int idx = 2;
u8 cmd_ver;
fwrt->ppag_flags = 0;
fwrt->ppag_table_valid = false;
data = iwl_acpi_get_object(fwrt->dev, ACPI_PPAG_METHOD);
if (IS_ERR(data))
return PTR_ERR(data);
/* try to read ppag table rev 2 or 1 (both have the same data size) */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_PPAG_WIFI_DATA_SIZE_V2, &tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev == 1 || tbl_rev == 2) {
num_sub_bands = IWL_NUM_SUB_BANDS_V2;
IWL_DEBUG_RADIO(fwrt,
"Reading PPAG table v2 (tbl_rev=%d)\n",
tbl_rev);
goto read_table;
} else {
ret = -EINVAL;
goto out_free;
}
}
/* try to read ppag table revision 0 */
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_PPAG_WIFI_DATA_SIZE_V1, &tbl_rev);
if (!IS_ERR(wifi_pkg)) {
if (tbl_rev != 0) {
ret = -EINVAL;
goto out_free;
}
num_sub_bands = IWL_NUM_SUB_BANDS_V1;
IWL_DEBUG_RADIO(fwrt, "Reading PPAG table v1 (tbl_rev=0)\n");
goto read_table;
}
read_table:
fwrt->ppag_ver = tbl_rev;
flags = &wifi_pkg->package.elements[1];
if (flags->type != ACPI_TYPE_INTEGER) {
ret = -EINVAL;
goto out_free;
}
fwrt->ppag_flags = flags->integer.value & ACPI_PPAG_MASK;
cmd_ver = iwl_fw_lookup_cmd_ver(fwrt->fw,
WIDE_ID(PHY_OPS_GROUP,
PER_PLATFORM_ANT_GAIN_CMD),
IWL_FW_CMD_VER_UNKNOWN);
if (cmd_ver == IWL_FW_CMD_VER_UNKNOWN) {
ret = -EINVAL;
goto out_free;
}
if (!fwrt->ppag_flags && cmd_ver <= 3) {
ret = 0;
goto out_free;
}
/*
* read, verify gain values and save them into the PPAG table.
* first sub-band (j=0) corresponds to Low-Band (2.4GHz), and the
* following sub-bands to High-Band (5GHz).
*/
for (i = 0; i < IWL_NUM_CHAIN_LIMITS; i++) {
for (j = 0; j < num_sub_bands; j++) {
union acpi_object *ent;
ent = &wifi_pkg->package.elements[idx++];
if (ent->type != ACPI_TYPE_INTEGER) {
ret = -EINVAL;
goto out_free;
}
fwrt->ppag_chains[i].subbands[j] = ent->integer.value;
/* from ver 4 the fw deals with out of range values */
if (cmd_ver >= 4)
continue;
if ((j == 0 &&
(fwrt->ppag_chains[i].subbands[j] > ACPI_PPAG_MAX_LB ||
fwrt->ppag_chains[i].subbands[j] < ACPI_PPAG_MIN_LB)) ||
(j != 0 &&
(fwrt->ppag_chains[i].subbands[j] > ACPI_PPAG_MAX_HB ||
fwrt->ppag_chains[i].subbands[j] < ACPI_PPAG_MIN_HB))) {
ret = -EINVAL;
goto out_free;
}
}
}
fwrt->ppag_table_valid = true;
ret = 0;
out_free:
kfree(data);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_ppag_table);
int iwl_read_ppag_table(struct iwl_fw_runtime *fwrt, union iwl_ppag_table_cmd *cmd,
int *cmd_size)
{
u8 cmd_ver;
int i, j, num_sub_bands;
s8 *gain;
/* many firmware images for JF lie about this */
if (CSR_HW_RFID_TYPE(fwrt->trans->hw_rf_id) ==
CSR_HW_RFID_TYPE(CSR_HW_RF_ID_TYPE_JF))
return -EOPNOTSUPP;
if (!fw_has_capa(&fwrt->fw->ucode_capa, IWL_UCODE_TLV_CAPA_SET_PPAG)) {
IWL_DEBUG_RADIO(fwrt,
"PPAG capability not supported by FW, command not sent.\n");
return -EINVAL;
}
cmd_ver = iwl_fw_lookup_cmd_ver(fwrt->fw,
WIDE_ID(PHY_OPS_GROUP,
PER_PLATFORM_ANT_GAIN_CMD),
IWL_FW_CMD_VER_UNKNOWN);
if (!fwrt->ppag_table_valid || (cmd_ver <= 3 && !fwrt->ppag_flags)) {
IWL_DEBUG_RADIO(fwrt, "PPAG not enabled, command not sent.\n");
return -EINVAL;
}
/* The 'flags' field is the same in v1 and in v2 so we can just
* use v1 to access it.
*/
cmd->v1.flags = cpu_to_le32(fwrt->ppag_flags);
IWL_DEBUG_RADIO(fwrt, "PPAG cmd ver is %d\n", cmd_ver);
if (cmd_ver == 1) {
num_sub_bands = IWL_NUM_SUB_BANDS_V1;
gain = cmd->v1.gain[0];
*cmd_size = sizeof(cmd->v1);
if (fwrt->ppag_ver == 1 || fwrt->ppag_ver == 2) {
/* in this case FW supports revision 0 */
IWL_DEBUG_RADIO(fwrt,
"PPAG table rev is %d, send truncated table\n",
fwrt->ppag_ver);
}
} else if (cmd_ver >= 2 && cmd_ver <= 4) {
num_sub_bands = IWL_NUM_SUB_BANDS_V2;
gain = cmd->v2.gain[0];
*cmd_size = sizeof(cmd->v2);
if (fwrt->ppag_ver == 0) {
/* in this case FW supports revisions 1 or 2 */
IWL_DEBUG_RADIO(fwrt,
"PPAG table rev is 0, send padded table\n");
}
} else {
IWL_DEBUG_RADIO(fwrt, "Unsupported PPAG command version\n");
return -EINVAL;
}
/* ppag mode */
IWL_DEBUG_RADIO(fwrt,
"PPAG MODE bits were read from bios: %d\n",
cmd->v1.flags & cpu_to_le32(ACPI_PPAG_MASK));
if ((cmd_ver == 1 && !fw_has_capa(&fwrt->fw->ucode_capa,
IWL_UCODE_TLV_CAPA_PPAG_CHINA_BIOS_SUPPORT)) ||
(cmd_ver == 2 && fwrt->ppag_ver == 2)) {
cmd->v1.flags &= cpu_to_le32(IWL_PPAG_ETSI_MASK);
IWL_DEBUG_RADIO(fwrt, "masking ppag China bit\n");
} else {
IWL_DEBUG_RADIO(fwrt, "isn't masking ppag China bit\n");
}
IWL_DEBUG_RADIO(fwrt,
"PPAG MODE bits going to be sent: %d\n",
cmd->v1.flags & cpu_to_le32(ACPI_PPAG_MASK));
for (i = 0; i < IWL_NUM_CHAIN_LIMITS; i++) {
for (j = 0; j < num_sub_bands; j++) {
gain[i * num_sub_bands + j] =
fwrt->ppag_chains[i].subbands[j];
IWL_DEBUG_RADIO(fwrt,
"PPAG table: chain[%d] band[%d]: gain = %d\n",
i, j, gain[i * num_sub_bands + j]);
}
}
return 0;
}
IWL_EXPORT_SYMBOL(iwl_read_ppag_table);
bool iwl_acpi_is_ppag_approved(struct iwl_fw_runtime *fwrt)
{
if (!dmi_check_system(dmi_ppag_approved_list)) {
IWL_DEBUG_RADIO(fwrt,
"System vendor '%s' is not in the approved list, disabling PPAG.\n",
dmi_get_system_info(DMI_SYS_VENDOR));
fwrt->ppag_flags = 0;
return false;
}
return true;
}
IWL_EXPORT_SYMBOL(iwl_acpi_is_ppag_approved);
void iwl_acpi_get_phy_filters(struct iwl_fw_runtime *fwrt,
struct iwl_phy_specific_cfg *filters)
{
struct iwl_phy_specific_cfg tmp = {};
union acpi_object *wifi_pkg, *data;
int tbl_rev, i;
data = iwl_acpi_get_object(fwrt->dev, ACPI_WPFC_METHOD);
if (IS_ERR(data))
return;
/* try to read wtas table revision 1 or revision 0*/
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
ACPI_WPFC_WIFI_DATA_SIZE,
&tbl_rev);
if (IS_ERR(wifi_pkg))
goto out_free;
if (tbl_rev != 0)
goto out_free;
BUILD_BUG_ON(ARRAY_SIZE(filters->filter_cfg_chains) != ACPI_WPFC_WIFI_DATA_SIZE);
for (i = 0; i < ARRAY_SIZE(filters->filter_cfg_chains); i++) {
if (wifi_pkg->package.elements[i].type != ACPI_TYPE_INTEGER)
return;
tmp.filter_cfg_chains[i] =
cpu_to_le32(wifi_pkg->package.elements[i].integer.value);
}
IWL_DEBUG_RADIO(fwrt, "Loaded WPFC filter config from ACPI\n");
*filters = tmp;
out_free:
kfree(data);
}
IWL_EXPORT_SYMBOL(iwl_acpi_get_phy_filters);