| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests |
| * |
| * Copyright (C) 2022, Red Hat, Inc. |
| * |
| */ |
| |
| #define _GNU_SOURCE /* for program_invocation_short_name */ |
| #include <asm/barrier.h> |
| #include <pthread.h> |
| #include <inttypes.h> |
| |
| #include "kvm_util.h" |
| #include "processor.h" |
| #include "hyperv.h" |
| #include "test_util.h" |
| #include "vmx.h" |
| |
| #define WORKER_VCPU_ID_1 2 |
| #define WORKER_VCPU_ID_2 65 |
| |
| #define NTRY 100 |
| #define NTEST_PAGES 2 |
| |
| struct hv_vpset { |
| u64 format; |
| u64 valid_bank_mask; |
| u64 bank_contents[]; |
| }; |
| |
| enum HV_GENERIC_SET_FORMAT { |
| HV_GENERIC_SET_SPARSE_4K, |
| HV_GENERIC_SET_ALL, |
| }; |
| |
| #define HV_FLUSH_ALL_PROCESSORS BIT(0) |
| #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1) |
| #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2) |
| #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3) |
| |
| /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ |
| struct hv_tlb_flush { |
| u64 address_space; |
| u64 flags; |
| u64 processor_mask; |
| u64 gva_list[]; |
| } __packed; |
| |
| /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ |
| struct hv_tlb_flush_ex { |
| u64 address_space; |
| u64 flags; |
| struct hv_vpset hv_vp_set; |
| u64 gva_list[]; |
| } __packed; |
| |
| /* |
| * Pass the following info to 'workers' and 'sender' |
| * - Hypercall page's GVA |
| * - Hypercall page's GPA |
| * - Test pages GVA |
| * - GVAs of the test pages' PTEs |
| */ |
| struct test_data { |
| vm_vaddr_t hcall_gva; |
| vm_paddr_t hcall_gpa; |
| vm_vaddr_t test_pages; |
| vm_vaddr_t test_pages_pte[NTEST_PAGES]; |
| }; |
| |
| /* 'Worker' vCPU code checking the contents of the test page */ |
| static void worker_guest_code(vm_vaddr_t test_data) |
| { |
| struct test_data *data = (struct test_data *)test_data; |
| u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX); |
| void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES; |
| u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64)); |
| u64 expected, val; |
| |
| x2apic_enable(); |
| wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID); |
| |
| for (;;) { |
| cpu_relax(); |
| |
| expected = READ_ONCE(*this_cpu); |
| |
| /* |
| * Make sure the value in the test page is read after reading |
| * the expectation for the first time. Pairs with wmb() in |
| * prepare_to_test(). |
| */ |
| rmb(); |
| |
| val = READ_ONCE(*(u64 *)data->test_pages); |
| |
| /* |
| * Make sure the value in the test page is read after before |
| * reading the expectation for the second time. Pairs with wmb() |
| * post_test(). |
| */ |
| rmb(); |
| |
| /* |
| * '0' indicates the sender is between iterations, wait until |
| * the sender is ready for this vCPU to start checking again. |
| */ |
| if (!expected) |
| continue; |
| |
| /* |
| * Re-read the per-vCPU byte to ensure the sender didn't move |
| * onto a new iteration. |
| */ |
| if (expected != READ_ONCE(*this_cpu)) |
| continue; |
| |
| GUEST_ASSERT(val == expected); |
| } |
| } |
| |
| /* |
| * Write per-CPU info indicating what each 'worker' CPU is supposed to see in |
| * test page. '0' means don't check. |
| */ |
| static void set_expected_val(void *addr, u64 val, int vcpu_id) |
| { |
| void *exp_page = addr + PAGE_SIZE * NTEST_PAGES; |
| |
| *(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val; |
| } |
| |
| /* |
| * Update PTEs swapping two test pages. |
| * TODO: use swap()/xchg() when these are provided. |
| */ |
| static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2) |
| { |
| uint64_t tmp = *(uint64_t *)pte_gva1; |
| |
| *(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2; |
| *(uint64_t *)pte_gva2 = tmp; |
| } |
| |
| /* |
| * TODO: replace the silly NOP loop with a proper udelay() implementation. |
| */ |
| static inline void do_delay(void) |
| { |
| int i; |
| |
| for (i = 0; i < 1000000; i++) |
| asm volatile("nop"); |
| } |
| |
| /* |
| * Prepare to test: 'disable' workers by setting the expectation to '0', |
| * clear hypercall input page and then swap two test pages. |
| */ |
| static inline void prepare_to_test(struct test_data *data) |
| { |
| /* Clear hypercall input page */ |
| memset((void *)data->hcall_gva, 0, PAGE_SIZE); |
| |
| /* 'Disable' workers */ |
| set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1); |
| set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2); |
| |
| /* Make sure workers are 'disabled' before we swap PTEs. */ |
| wmb(); |
| |
| /* Make sure workers have enough time to notice */ |
| do_delay(); |
| |
| /* Swap test page mappings */ |
| swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]); |
| } |
| |
| /* |
| * Finalize the test: check hypercall resule set the expected val for |
| * 'worker' CPUs and give them some time to test. |
| */ |
| static inline void post_test(struct test_data *data, u64 exp1, u64 exp2) |
| { |
| /* Make sure we change the expectation after swapping PTEs */ |
| wmb(); |
| |
| /* Set the expectation for workers, '0' means don't test */ |
| set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1); |
| set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2); |
| |
| /* Make sure workers have enough time to test */ |
| do_delay(); |
| } |
| |
| #define TESTVAL1 0x0101010101010101 |
| #define TESTVAL2 0x0202020202020202 |
| |
| /* Main vCPU doing the test */ |
| static void sender_guest_code(vm_vaddr_t test_data) |
| { |
| struct test_data *data = (struct test_data *)test_data; |
| struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva; |
| struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva; |
| vm_paddr_t hcall_gpa = data->hcall_gpa; |
| int i, stage = 1; |
| |
| wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID); |
| wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa); |
| |
| /* "Slow" hypercalls */ |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush->processor_mask = BIT(WORKER_VCPU_ID_1); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa, |
| hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush->processor_mask = BIT(WORKER_VCPU_ID_1); |
| flush->gva_list[0] = (u64)data->test_pages; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | |
| HV_FLUSH_ALL_PROCESSORS; |
| flush->processor_mask = 0; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa, |
| hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | |
| HV_FLUSH_ALL_PROCESSORS; |
| flush->gva_list[0] = (u64)data->test_pages; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | |
| (1 << HV_HYPERCALL_VARHEAD_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| /* bank_contents and gva_list occupy the same space, thus [1] */ |
| flush_ex->gva_list[1] = (u64)data->test_pages; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | |
| (1 << HV_HYPERCALL_VARHEAD_OFFSET) | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) | |
| BIT_ULL(WORKER_VCPU_ID_1 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); |
| flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | |
| (2 << HV_HYPERCALL_VARHEAD_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) | |
| BIT_ULL(WORKER_VCPU_ID_2 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); |
| flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| /* bank_contents and gva_list occupy the same space, thus [2] */ |
| flush_ex->gva_list[2] = (u64)data->test_pages; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | |
| (2 << HV_HYPERCALL_VARHEAD_OFFSET) | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX, |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; |
| flush_ex->gva_list[0] = (u64)data->test_pages; |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| hcall_gpa, hcall_gpa + PAGE_SIZE); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| /* "Fast" hypercalls */ |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->processor_mask = BIT(WORKER_VCPU_ID_1); |
| hyperv_write_xmm_input(&flush->processor_mask, 1); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE | |
| HV_HYPERCALL_FAST_BIT, 0x0, |
| HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->processor_mask = BIT(WORKER_VCPU_ID_1); |
| flush->gva_list[0] = (u64)data->test_pages; |
| hyperv_write_xmm_input(&flush->processor_mask, 1); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | |
| HV_HYPERCALL_FAST_BIT | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| hyperv_write_xmm_input(&flush->processor_mask, 1); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE | |
| HV_HYPERCALL_FAST_BIT, 0x0, |
| HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | |
| HV_FLUSH_ALL_PROCESSORS); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush->gva_list[0] = (u64)data->test_pages; |
| hyperv_write_xmm_input(&flush->processor_mask, 1); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | |
| HV_HYPERCALL_FAST_BIT | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0, |
| HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | |
| HV_FLUSH_ALL_PROCESSORS); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | |
| HV_HYPERCALL_FAST_BIT | |
| (1 << HV_HYPERCALL_VARHEAD_OFFSET), |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| /* bank_contents and gva_list occupy the same space, thus [1] */ |
| flush_ex->gva_list[1] = (u64)data->test_pages; |
| hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | |
| HV_HYPERCALL_FAST_BIT | |
| (1 << HV_HYPERCALL_VARHEAD_OFFSET) | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) | |
| BIT_ULL(WORKER_VCPU_ID_1 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); |
| flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | |
| HV_HYPERCALL_FAST_BIT | |
| (2 << HV_HYPERCALL_VARHEAD_OFFSET), |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, i % 2 ? TESTVAL1 : |
| TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; |
| flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) | |
| BIT_ULL(WORKER_VCPU_ID_2 / 64); |
| flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); |
| flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); |
| /* bank_contents and gva_list occupy the same space, thus [2] */ |
| flush_ex->gva_list[2] = (u64)data->test_pages; |
| hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | |
| HV_HYPERCALL_FAST_BIT | |
| (2 << HV_HYPERCALL_VARHEAD_OFFSET) | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; |
| hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | |
| HV_HYPERCALL_FAST_BIT, |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_SYNC(stage++); |
| |
| /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */ |
| for (i = 0; i < NTRY; i++) { |
| prepare_to_test(data); |
| flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; |
| flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; |
| flush_ex->gva_list[0] = (u64)data->test_pages; |
| hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); |
| hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | |
| HV_HYPERCALL_FAST_BIT | |
| (1UL << HV_HYPERCALL_REP_COMP_OFFSET), |
| 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); |
| post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, |
| i % 2 ? TESTVAL1 : TESTVAL2); |
| } |
| |
| GUEST_DONE(); |
| } |
| |
| static void *vcpu_thread(void *arg) |
| { |
| struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg; |
| struct ucall uc; |
| int old; |
| int r; |
| |
| r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old); |
| TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d", |
| vcpu->id, r); |
| |
| vcpu_run(vcpu); |
| TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); |
| |
| switch (get_ucall(vcpu, &uc)) { |
| case UCALL_ABORT: |
| REPORT_GUEST_ASSERT(uc); |
| /* NOT REACHED */ |
| default: |
| TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id); |
| } |
| |
| return NULL; |
| } |
| |
| static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu) |
| { |
| void *retval; |
| int r; |
| |
| r = pthread_cancel(thread); |
| TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d", |
| vcpu->id, r); |
| |
| r = pthread_join(thread, &retval); |
| TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d", |
| vcpu->id, r); |
| TEST_ASSERT(retval == PTHREAD_CANCELED, |
| "expected retval=%p, got %p", PTHREAD_CANCELED, |
| retval); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct kvm_vm *vm; |
| struct kvm_vcpu *vcpu[3]; |
| pthread_t threads[2]; |
| vm_vaddr_t test_data_page, gva; |
| vm_paddr_t gpa; |
| uint64_t *pte; |
| struct test_data *data; |
| struct ucall uc; |
| int stage = 1, r, i; |
| |
| TEST_REQUIRE(kvm_has_cap(KVM_CAP_HYPERV_TLBFLUSH)); |
| |
| vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code); |
| |
| /* Test data page */ |
| test_data_page = vm_vaddr_alloc_page(vm); |
| data = (struct test_data *)addr_gva2hva(vm, test_data_page); |
| |
| /* Hypercall input/output */ |
| data->hcall_gva = vm_vaddr_alloc_pages(vm, 2); |
| data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva); |
| memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE); |
| |
| /* |
| * Test pages: the first one is filled with '0x01's, the second with '0x02's |
| * and the test will swap their mappings. The third page keeps the indication |
| * about the current state of mappings. |
| */ |
| data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1); |
| for (i = 0; i < NTEST_PAGES; i++) |
| memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i), |
| (u8)(i + 1), PAGE_SIZE); |
| set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1); |
| set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2); |
| |
| /* |
| * Get PTE pointers for test pages and map them inside the guest. |
| * Use separate page for each PTE for simplicity. |
| */ |
| gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR); |
| for (i = 0; i < NTEST_PAGES; i++) { |
| pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE); |
| gpa = addr_hva2gpa(vm, pte); |
| __virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K); |
| data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK); |
| } |
| |
| /* |
| * Sender vCPU which performs the test: swaps test pages, sets expectation |
| * for 'workers' and issues TLB flush hypercalls. |
| */ |
| vcpu_args_set(vcpu[0], 1, test_data_page); |
| vcpu_set_hv_cpuid(vcpu[0]); |
| |
| /* Create worker vCPUs which check the contents of the test pages */ |
| vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code); |
| vcpu_args_set(vcpu[1], 1, test_data_page); |
| vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1); |
| vcpu_set_hv_cpuid(vcpu[1]); |
| |
| vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code); |
| vcpu_args_set(vcpu[2], 1, test_data_page); |
| vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2); |
| vcpu_set_hv_cpuid(vcpu[2]); |
| |
| r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]); |
| TEST_ASSERT(!r, "pthread_create() failed"); |
| |
| r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]); |
| TEST_ASSERT(!r, "pthread_create() failed"); |
| |
| while (true) { |
| vcpu_run(vcpu[0]); |
| TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO); |
| |
| switch (get_ucall(vcpu[0], &uc)) { |
| case UCALL_SYNC: |
| TEST_ASSERT(uc.args[1] == stage, |
| "Unexpected stage: %ld (%d expected)\n", |
| uc.args[1], stage); |
| break; |
| case UCALL_ABORT: |
| REPORT_GUEST_ASSERT(uc); |
| /* NOT REACHED */ |
| case UCALL_DONE: |
| goto done; |
| default: |
| TEST_FAIL("Unknown ucall %lu", uc.cmd); |
| } |
| |
| stage++; |
| } |
| |
| done: |
| cancel_join_vcpu_thread(threads[0], vcpu[1]); |
| cancel_join_vcpu_thread(threads[1], vcpu[2]); |
| kvm_vm_free(vm); |
| |
| return 0; |
| } |