blob: a1bb1704d33944548a4d96f12796175d173d79bc [file] [log] [blame]
/*
* ToupTek UCMOS / AmScope MU series camera driver
* TODO: contrast with ScopeTek / AmScope MDC cameras
*
* Copyright (C) 2012-2014 John McMaster <JohnDMcMaster@gmail.com>
*
* Special thanks to Bushing for helping with the decrypt algorithm and
* Sean O'Sullivan / the Rensselaer Center for Open Source
* Software (RCOS) for helping me learn kernel development
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "gspca.h"
#define MODULE_NAME "touptek"
MODULE_AUTHOR("John McMaster");
MODULE_DESCRIPTION("ToupTek UCMOS / Amscope MU microscope camera driver");
MODULE_LICENSE("GPL");
/*
* Exposure reg is linear with exposure time
* Exposure (sec), E (reg)
* 0.000400, 0x0002
* 0.001000, 0x0005
* 0.005000, 0x0019
* 0.020000, 0x0064
* 0.080000, 0x0190
* 0.400000, 0x07D0
* 1.000000, 0x1388
* 2.000000, 0x2710
*
* Three gain stages
* 0x1000: master channel enable bit
* 0x007F: low gain bits
* 0x0080: medium gain bit
* 0x0100: high gain bit
* gain = enable * (1 + regH) * (1 + regM) * z * regL
*
* Gain implementation
* Want to do something similar to mt9v011.c's set_balance
*
* Gain does not vary with resolution (checked 640x480 vs 1600x1200)
*
* Constant derivation:
*
* Raw data:
* Gain, GTOP, B, R, GBOT
* 1.00, 0x105C, 0x1068, 0x10C8, 0x105C
* 1.20, 0x106E, 0x107E, 0x10D6, 0x106E
* 1.40, 0x10C0, 0x10CA, 0x10E5, 0x10C0
* 1.60, 0x10C9, 0x10D4, 0x10F3, 0x10C9
* 1.80, 0x10D2, 0x10DE, 0x11C1, 0x10D2
* 2.00, 0x10DC, 0x10E9, 0x11C8, 0x10DC
* 2.20, 0x10E5, 0x10F3, 0x11CF, 0x10E5
* 2.40, 0x10EE, 0x10FE, 0x11D7, 0x10EE
* 2.60, 0x10F7, 0x11C4, 0x11DE, 0x10F7
* 2.80, 0x11C0, 0x11CA, 0x11E5, 0x11C0
* 3.00, 0x11C5, 0x11CF, 0x11ED, 0x11C5
*
* zR = 0.0069605943152454778
* about 3/431 = 0.0069605568445475635
* zB = 0.0095695970695970703
* about 6/627 = 0.0095693779904306216
* zG = 0.010889328063241107
* about 6/551 = 0.010889292196007259
* about 10 bits for constant + 7 bits for value => at least 17 bit
* intermediate with 32 bit ints should be fine for overflow etc
* Essentially gains are in range 0-0x001FF
*
* However, V4L expects a main gain channel + R and B balance
* To keep things simple for now saturate the values of balance is too high/low
* This isn't really ideal but easy way to fit the Linux model
*
* Converted using gain model turns out to be quite linear:
* Gain, GTOP, B, R, GBOT
* 1.00, 92, 104, 144, 92
* 1.20, 110, 126, 172, 110
* 1.40, 128, 148, 202, 128
* 1.60, 146, 168, 230, 146
* 1.80, 164, 188, 260, 164
* 2.00, 184, 210, 288, 184
* 2.20, 202, 230, 316, 202
* 2.40, 220, 252, 348, 220
* 2.60, 238, 272, 376, 238
* 2.80, 256, 296, 404, 256
* 3.00, 276, 316, 436, 276
*
* Maximum gain is 0x7FF * 2 * 2 => 0x1FFC (8188)
* or about 13 effective bits of gain
* The highest the commercial driver goes in my setup 436
* However, because could *maybe* damage circuits
* limit the gain until have a reason to go higher
* Solution: gain clipped and warning emitted
*/
#define GAIN_MAX 511
/* Frame sync is a short read */
#define BULK_SIZE 0x4000
/* MT9E001 reg names to give a rough approximation */
#define REG_COARSE_INTEGRATION_TIME_ 0x3012
#define REG_GROUPED_PARAMETER_HOLD_ 0x3022
#define REG_MODE_SELECT 0x0100
#define REG_OP_SYS_CLK_DIV 0x030A
#define REG_VT_SYS_CLK_DIV 0x0302
#define REG_PRE_PLL_CLK_DIV 0x0304
#define REG_VT_PIX_CLK_DIV 0x0300
#define REG_OP_PIX_CLK_DIV 0x0308
#define REG_PLL_MULTIPLIER 0x0306
#define REG_COARSE_INTEGRATION_TIME_ 0x3012
#define REG_FRAME_LENGTH_LINES 0x0340
#define REG_FRAME_LENGTH_LINES_ 0x300A
#define REG_GREEN1_GAIN 0x3056
#define REG_GREEN2_GAIN 0x305C
#define REG_GROUPED_PARAMETER_HOLD 0x0104
#define REG_LINE_LENGTH_PCK_ 0x300C
#define REG_MODE_SELECT 0x0100
#define REG_PLL_MULTIPLIER 0x0306
#define REG_READ_MODE 0x3040
#define REG_BLUE_GAIN 0x3058
#define REG_RED_GAIN 0x305A
#define REG_RESET_REGISTER 0x301A
#define REG_SCALE_M 0x0404
#define REG_SCALING_MODE 0x0400
#define REG_SOFTWARE_RESET 0x0103
#define REG_X_ADDR_END 0x0348
#define REG_X_ADDR_START 0x0344
#define REG_X_ADDR_START 0x0344
#define REG_X_OUTPUT_SIZE 0x034C
#define REG_Y_ADDR_END 0x034A
#define REG_Y_ADDR_START 0x0346
#define REG_Y_OUTPUT_SIZE 0x034E
/* specific webcam descriptor */
struct sd {
struct gspca_dev gspca_dev; /* !! must be the first item */
/* How many bytes this frame */
unsigned int this_f;
/*
Device has separate gains for each Bayer quadrant
V4L supports master gain which is referenced to G1/G2 and supplies
individual balance controls for R/B
*/
struct v4l2_ctrl *blue;
struct v4l2_ctrl *red;
};
/* Used to simplify reg write error handling */
struct cmd {
u16 value;
u16 index;
};
static const struct v4l2_pix_format vga_mode[] = {
{800, 600,
V4L2_PIX_FMT_SGRBG8,
V4L2_FIELD_NONE,
.bytesperline = 800,
.sizeimage = 800 * 600,
.colorspace = V4L2_COLORSPACE_SRGB},
{1600, 1200,
V4L2_PIX_FMT_SGRBG8,
V4L2_FIELD_NONE,
.bytesperline = 1600,
.sizeimage = 1600 * 1200,
.colorspace = V4L2_COLORSPACE_SRGB},
{3264, 2448,
V4L2_PIX_FMT_SGRBG8,
V4L2_FIELD_NONE,
.bytesperline = 3264,
.sizeimage = 3264 * 2448,
.colorspace = V4L2_COLORSPACE_SRGB},
};
/*
* As theres no known frame sync, the only way to keep synced is to try hard
* to never miss any packets
*/
#if MAX_NURBS < 4
#error "Not enough URBs in the gspca table"
#endif
static int val_reply(struct gspca_dev *gspca_dev, const char *reply, int rc)
{
if (rc < 0) {
gspca_err(gspca_dev, "reply has error %d\n", rc);
return -EIO;
}
if (rc != 1) {
gspca_err(gspca_dev, "Bad reply size %d\n", rc);
return -EIO;
}
if (reply[0] != 0x08) {
gspca_err(gspca_dev, "Bad reply 0x%02x\n", (int)reply[0]);
return -EIO;
}
return 0;
}
static void reg_w(struct gspca_dev *gspca_dev, u16 value, u16 index)
{
char *buff = gspca_dev->usb_buf;
int rc;
PDEBUG(D_USBO,
"reg_w bReq=0x0B, bReqT=0xC0, wVal=0x%04X, wInd=0x%04X\n",
value, index);
rc = usb_control_msg(gspca_dev->dev, usb_rcvctrlpipe(gspca_dev->dev, 0),
0x0B, 0xC0, value, index, buff, 1, 500);
PDEBUG(D_USBO, "rc=%d, ret={0x%02x}", rc, (int)buff[0]);
if (rc < 0) {
gspca_err(gspca_dev, "Failed reg_w(0x0B, 0xC0, 0x%04X, 0x%04X) w/ rc %d\n",
value, index, rc);
gspca_dev->usb_err = rc;
return;
}
if (val_reply(gspca_dev, buff, rc)) {
gspca_err(gspca_dev, "Bad reply to reg_w(0x0B, 0xC0, 0x%04X, 0x%04X\n",
value, index);
gspca_dev->usb_err = -EIO;
}
}
static void reg_w_buf(struct gspca_dev *gspca_dev,
const struct cmd *p, int l)
{
do {
reg_w(gspca_dev, p->value, p->index);
p++;
} while (--l > 0);
}
static void setexposure(struct gspca_dev *gspca_dev, s32 val)
{
u16 value;
unsigned int w = gspca_dev->pixfmt.width;
if (w == 800)
value = val * 5;
else if (w == 1600)
value = val * 3;
else if (w == 3264)
value = val * 3 / 2;
else {
gspca_err(gspca_dev, "Invalid width %u\n", w);
gspca_dev->usb_err = -EINVAL;
return;
}
PDEBUG(D_STREAM, "exposure: 0x%04X ms\n", value);
/* Wonder if theres a good reason for sending it twice */
/* probably not but leave it in because...why not */
reg_w(gspca_dev, value, REG_COARSE_INTEGRATION_TIME_);
reg_w(gspca_dev, value, REG_COARSE_INTEGRATION_TIME_);
}
static int gainify(int in)
{
/*
* TODO: check if there are any issues with corner cases
* 0x000 (0):0x07F (127): regL
* 0x080 (128) - 0x0FF (255): regM, regL
* 0x100 (256) - max: regH, regM, regL
*/
if (in <= 0x7F)
return 0x1000 | in;
else if (in <= 0xFF)
return 0x1080 | in / 2;
else
return 0x1180 | in / 4;
}
static void setggain(struct gspca_dev *gspca_dev, u16 global_gain)
{
u16 normalized;
normalized = gainify(global_gain);
PDEBUG(D_STREAM, "gain G1/G2 (0x%04X): 0x%04X (src 0x%04X)\n",
REG_GREEN1_GAIN,
normalized, global_gain);
reg_w(gspca_dev, normalized, REG_GREEN1_GAIN);
reg_w(gspca_dev, normalized, REG_GREEN2_GAIN);
}
static void setbgain(struct gspca_dev *gspca_dev,
u16 gain, u16 global_gain)
{
u16 normalized;
normalized = global_gain +
((u32)global_gain) * gain / GAIN_MAX;
if (normalized > GAIN_MAX) {
PDEBUG(D_STREAM, "Truncating blue 0x%04X w/ value 0x%04X\n",
GAIN_MAX, normalized);
normalized = GAIN_MAX;
}
normalized = gainify(normalized);
PDEBUG(D_STREAM, "gain B (0x%04X): 0x%04X w/ source 0x%04X\n",
REG_BLUE_GAIN, normalized, gain);
reg_w(gspca_dev, normalized, REG_BLUE_GAIN);
}
static void setrgain(struct gspca_dev *gspca_dev,
u16 gain, u16 global_gain)
{
u16 normalized;
normalized = global_gain +
((u32)global_gain) * gain / GAIN_MAX;
if (normalized > GAIN_MAX) {
PDEBUG(D_STREAM, "Truncating gain 0x%04X w/ value 0x%04X\n",
GAIN_MAX, normalized);
normalized = GAIN_MAX;
}
normalized = gainify(normalized);
PDEBUG(D_STREAM, "gain R (0x%04X): 0x%04X w / source 0x%04X\n",
REG_RED_GAIN, normalized, gain);
reg_w(gspca_dev, normalized, REG_RED_GAIN);
}
static void configure_wh(struct gspca_dev *gspca_dev)
{
unsigned int w = gspca_dev->pixfmt.width;
PDEBUG(D_STREAM, "configure_wh\n");
if (w == 800) {
static const struct cmd reg_init_res[] = {
{0x0060, REG_X_ADDR_START},
{0x0CD9, REG_X_ADDR_END},
{0x0036, REG_Y_ADDR_START},
{0x098F, REG_Y_ADDR_END},
{0x07C7, REG_READ_MODE},
};
reg_w_buf(gspca_dev,
reg_init_res, ARRAY_SIZE(reg_init_res));
} else if (w == 1600) {
static const struct cmd reg_init_res[] = {
{0x009C, REG_X_ADDR_START},
{0x0D19, REG_X_ADDR_END},
{0x0068, REG_Y_ADDR_START},
{0x09C5, REG_Y_ADDR_END},
{0x06C3, REG_READ_MODE},
};
reg_w_buf(gspca_dev,
reg_init_res, ARRAY_SIZE(reg_init_res));
} else if (w == 3264) {
static const struct cmd reg_init_res[] = {
{0x00E8, REG_X_ADDR_START},
{0x0DA7, REG_X_ADDR_END},
{0x009E, REG_Y_ADDR_START},
{0x0A2D, REG_Y_ADDR_END},
{0x0241, REG_READ_MODE},
};
reg_w_buf(gspca_dev,
reg_init_res, ARRAY_SIZE(reg_init_res));
} else {
gspca_err(gspca_dev, "bad width %u\n", w);
gspca_dev->usb_err = -EINVAL;
return;
}
reg_w(gspca_dev, 0x0000, REG_SCALING_MODE);
reg_w(gspca_dev, 0x0010, REG_SCALE_M);
reg_w(gspca_dev, w, REG_X_OUTPUT_SIZE);
reg_w(gspca_dev, gspca_dev->pixfmt.height, REG_Y_OUTPUT_SIZE);
if (w == 800) {
reg_w(gspca_dev, 0x0384, REG_FRAME_LENGTH_LINES_);
reg_w(gspca_dev, 0x0960, REG_LINE_LENGTH_PCK_);
} else if (w == 1600) {
reg_w(gspca_dev, 0x0640, REG_FRAME_LENGTH_LINES_);
reg_w(gspca_dev, 0x0FA0, REG_LINE_LENGTH_PCK_);
} else if (w == 3264) {
reg_w(gspca_dev, 0x0B4B, REG_FRAME_LENGTH_LINES_);
reg_w(gspca_dev, 0x1F40, REG_LINE_LENGTH_PCK_);
} else {
gspca_err(gspca_dev, "bad width %u\n", w);
gspca_dev->usb_err = -EINVAL;
return;
}
}
/* Packets that were encrypted, no idea if the grouping is significant */
static void configure_encrypted(struct gspca_dev *gspca_dev)
{
static const struct cmd reg_init_begin[] = {
{0x0100, REG_SOFTWARE_RESET},
{0x0000, REG_MODE_SELECT},
{0x0100, REG_GROUPED_PARAMETER_HOLD},
{0x0004, REG_VT_PIX_CLK_DIV},
{0x0001, REG_VT_SYS_CLK_DIV},
{0x0008, REG_OP_PIX_CLK_DIV},
{0x0001, REG_OP_SYS_CLK_DIV},
{0x0004, REG_PRE_PLL_CLK_DIV},
{0x0040, REG_PLL_MULTIPLIER},
{0x0000, REG_GROUPED_PARAMETER_HOLD},
{0x0100, REG_GROUPED_PARAMETER_HOLD},
};
static const struct cmd reg_init_end[] = {
{0x0000, REG_GROUPED_PARAMETER_HOLD},
{0x0301, 0x31AE},
{0x0805, 0x3064},
{0x0071, 0x3170},
{0x10DE, REG_RESET_REGISTER},
{0x0000, REG_MODE_SELECT},
{0x0010, REG_PLL_MULTIPLIER},
{0x0100, REG_MODE_SELECT},
};
PDEBUG(D_STREAM, "Encrypted begin, w = %u\n", gspca_dev->pixfmt.width);
reg_w_buf(gspca_dev, reg_init_begin, ARRAY_SIZE(reg_init_begin));
configure_wh(gspca_dev);
reg_w_buf(gspca_dev, reg_init_end, ARRAY_SIZE(reg_init_end));
reg_w(gspca_dev, 0x0100, REG_GROUPED_PARAMETER_HOLD);
reg_w(gspca_dev, 0x0000, REG_GROUPED_PARAMETER_HOLD);
PDEBUG(D_STREAM, "Encrypted end\n");
}
static int configure(struct gspca_dev *gspca_dev)
{
int rc;
char *buff = gspca_dev->usb_buf;
PDEBUG(D_STREAM, "configure()\n");
/*
* First driver sets a sort of encryption key
* A number of futur requests of this type have wValue and wIndex
* encrypted as follows:
* -Compute key = this wValue rotate left by 4 bits
* (decrypt.py rotates right because we are decrypting)
* -Later packets encrypt packets by XOR'ing with key
* XOR encrypt/decrypt is symmetrical
* wValue, and wIndex are encrypted
* bRequest is not and bRequestType is always 0xC0
* This allows resyncing if key is unknown?
* By setting 0 we XOR with 0 and the shifting and XOR drops out
*/
rc = usb_control_msg(gspca_dev->dev, usb_rcvctrlpipe(gspca_dev->dev, 0),
0x16, 0xC0, 0x0000, 0x0000, buff, 2, 500);
if (val_reply(gspca_dev, buff, rc)) {
gspca_err(gspca_dev, "failed key req\n");
return -EIO;
}
/*
* Next does some sort of 2 packet challenge / response
* evidence suggests its an Atmel I2C crypto part but nobody cares to
* look
* (to make sure its not cloned hardware?)
* Ignore: I want to work with their hardware, not clone it
* 16 bytes out challenge, requestType: 0x40
* 16 bytes in response, requestType: 0xC0
*/
rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0),
0x01, 0x40, 0x0001, 0x000F, NULL, 0, 500);
if (rc < 0) {
gspca_err(gspca_dev, "failed to replay packet 176 w/ rc %d\n",
rc);
return rc;
}
rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0),
0x01, 0x40, 0x0000, 0x000F, NULL, 0, 500);
if (rc < 0) {
gspca_err(gspca_dev, "failed to replay packet 178 w/ rc %d\n",
rc);
return rc;
}
rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0),
0x01, 0x40, 0x0001, 0x000F, NULL, 0, 500);
if (rc < 0) {
gspca_err(gspca_dev, "failed to replay packet 180 w/ rc %d\n",
rc);
return rc;
}
/*
* Serial number? Doesn't seem to be required
* cam1: \xE6\x0D\x00\x00, cam2: \x70\x19\x00\x00
* rc = usb_control_msg(gspca_dev->dev,
* usb_rcvctrlpipe(gspca_dev->dev, 0),
* 0x20, 0xC0, 0x0000, 0x0000, buff, 4, 500);
*/
/* Large (EEPROM?) read, skip it since no idea what to do with it */
gspca_dev->usb_err = 0;
configure_encrypted(gspca_dev);
if (gspca_dev->usb_err)
return gspca_dev->usb_err;
/* Omitted this by accident, does not work without it */
rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0),
0x01, 0x40, 0x0003, 0x000F, NULL, 0, 500);
if (rc < 0) {
gspca_err(gspca_dev, "failed to replay final packet w/ rc %d\n",
rc);
return rc;
}
PDEBUG(D_STREAM, "Configure complete\n");
return 0;
}
static int sd_config(struct gspca_dev *gspca_dev,
const struct usb_device_id *id)
{
gspca_dev->cam.cam_mode = vga_mode;
gspca_dev->cam.nmodes = ARRAY_SIZE(vga_mode);
/* Yes we want URBs and we want them now! */
gspca_dev->cam.no_urb_create = 0;
gspca_dev->cam.bulk_nurbs = 4;
/* Largest size the windows driver uses */
gspca_dev->cam.bulk_size = BULK_SIZE;
/* Def need to use bulk transfers */
gspca_dev->cam.bulk = 1;
return 0;
}
static int sd_start(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int rc;
sd->this_f = 0;
rc = configure(gspca_dev);
if (rc < 0) {
gspca_err(gspca_dev, "Failed configure\n");
return rc;
}
/* First two frames have messed up gains
Drop them to avoid special cases in user apps? */
return 0;
}
static void sd_pkt_scan(struct gspca_dev *gspca_dev,
u8 *data, /* isoc packet */
int len) /* iso packet length */
{
struct sd *sd = (struct sd *) gspca_dev;
if (len != BULK_SIZE) {
/* can we finish a frame? */
if (sd->this_f + len == gspca_dev->pixfmt.sizeimage) {
gspca_frame_add(gspca_dev, LAST_PACKET, data, len);
PDEBUG(D_FRAM, "finish frame sz %u/%u w/ len %u\n",
sd->this_f, gspca_dev->pixfmt.sizeimage, len);
/* lost some data, discard the frame */
} else {
gspca_frame_add(gspca_dev, DISCARD_PACKET, NULL, 0);
PDEBUG(D_FRAM, "abort frame sz %u/%u w/ len %u\n",
sd->this_f, gspca_dev->pixfmt.sizeimage, len);
}
sd->this_f = 0;
} else {
if (sd->this_f == 0)
gspca_frame_add(gspca_dev, FIRST_PACKET, data, len);
else
gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
sd->this_f += len;
}
}
static int sd_init(struct gspca_dev *gspca_dev)
{
return 0;
}
static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct gspca_dev *gspca_dev =
container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
struct sd *sd = (struct sd *) gspca_dev;
gspca_dev->usb_err = 0;
if (!gspca_dev->streaming)
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
setexposure(gspca_dev, ctrl->val);
break;
case V4L2_CID_GAIN:
/* gspca_dev->gain automatically updated */
setggain(gspca_dev, gspca_dev->gain->val);
break;
case V4L2_CID_BLUE_BALANCE:
sd->blue->val = ctrl->val;
setbgain(gspca_dev, sd->blue->val, gspca_dev->gain->val);
break;
case V4L2_CID_RED_BALANCE:
sd->red->val = ctrl->val;
setrgain(gspca_dev, sd->red->val, gspca_dev->gain->val);
break;
}
return gspca_dev->usb_err;
}
static const struct v4l2_ctrl_ops sd_ctrl_ops = {
.s_ctrl = sd_s_ctrl,
};
static int sd_init_controls(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
gspca_dev->vdev.ctrl_handler = hdl;
v4l2_ctrl_handler_init(hdl, 4);
gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
/* Mostly limited by URB timeouts */
/* XXX: make dynamic based on frame rate? */
V4L2_CID_EXPOSURE, 0, 800, 1, 350);
gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
V4L2_CID_GAIN, 0, 511, 1, 128);
sd->blue = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
V4L2_CID_BLUE_BALANCE, 0, 1023, 1, 80);
sd->red = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
V4L2_CID_RED_BALANCE, 0, 1023, 1, 295);
if (hdl->error) {
gspca_err(gspca_dev, "Could not initialize controls\n");
return hdl->error;
}
return 0;
}
/* sub-driver description */
static const struct sd_desc sd_desc = {
.name = MODULE_NAME,
.config = sd_config,
.init = sd_init,
.init_controls = sd_init_controls,
.start = sd_start,
.pkt_scan = sd_pkt_scan,
};
/* Table of supported USB devices */
static const struct usb_device_id device_table[] = {
/* Commented out devices should be related */
/* AS: AmScope, TT: ToupTek */
/* { USB_DEVICE(0x0547, 0x6035) }, TT UCMOS00350KPA */
/* { USB_DEVICE(0x0547, 0x6130) }, TT UCMOS01300KPA */
/* { USB_DEVICE(0x0547, 0x6200) }, TT UCMOS02000KPA */
/* { USB_DEVICE(0x0547, 0x6310) }, TT UCMOS03100KPA */
/* { USB_DEVICE(0x0547, 0x6510) }, TT UCMOS05100KPA */
/* { USB_DEVICE(0x0547, 0x6800) }, TT UCMOS08000KPA */
/* { USB_DEVICE(0x0547, 0x6801) }, TT UCMOS08000KPB */
{ USB_DEVICE(0x0547, 0x6801) }, /* TT UCMOS08000KPB, AS MU800 */
/* { USB_DEVICE(0x0547, 0x6900) }, TT UCMOS09000KPA */
/* { USB_DEVICE(0x0547, 0x6901) }, TT UCMOS09000KPB */
/* { USB_DEVICE(0x0547, 0x6010) }, TT UCMOS10000KPA */
/* { USB_DEVICE(0x0547, 0x6014) }, TT UCMOS14000KPA */
/* { USB_DEVICE(0x0547, 0x6131) }, TT UCMOS01300KMA */
/* { USB_DEVICE(0x0547, 0x6511) }, TT UCMOS05100KMA */
/* { USB_DEVICE(0x0547, 0x8080) }, TT UHCCD00800KPA */
/* { USB_DEVICE(0x0547, 0x8140) }, TT UHCCD01400KPA */
/* { USB_DEVICE(0x0547, 0x8141) }, TT EXCCD01400KPA */
/* { USB_DEVICE(0x0547, 0x8200) }, TT UHCCD02000KPA */
/* { USB_DEVICE(0x0547, 0x8201) }, TT UHCCD02000KPB */
/* { USB_DEVICE(0x0547, 0x8310) }, TT UHCCD03100KPA */
/* { USB_DEVICE(0x0547, 0x8500) }, TT UHCCD05000KPA */
/* { USB_DEVICE(0x0547, 0x8510) }, TT UHCCD05100KPA */
/* { USB_DEVICE(0x0547, 0x8600) }, TT UHCCD06000KPA */
/* { USB_DEVICE(0x0547, 0x8800) }, TT UHCCD08000KPA */
/* { USB_DEVICE(0x0547, 0x8315) }, TT UHCCD03150KPA */
/* { USB_DEVICE(0x0547, 0x7800) }, TT UHCCD00800KMA */
/* { USB_DEVICE(0x0547, 0x7140) }, TT UHCCD01400KMA */
/* { USB_DEVICE(0x0547, 0x7141) }, TT UHCCD01400KMB */
/* { USB_DEVICE(0x0547, 0x7200) }, TT UHCCD02000KMA */
/* { USB_DEVICE(0x0547, 0x7315) }, TT UHCCD03150KMA */
{ }
};
MODULE_DEVICE_TABLE(usb, device_table);
static int sd_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
THIS_MODULE);
}
static struct usb_driver sd_driver = {
.name = MODULE_NAME,
.id_table = device_table,
.probe = sd_probe,
.disconnect = gspca_disconnect,
#ifdef CONFIG_PM
.suspend = gspca_suspend,
.resume = gspca_resume,
#endif
};
static int __init sd_mod_init(void)
{
int ret;
ret = usb_register(&sd_driver);
if (ret < 0)
return ret;
return 0;
}
static void __exit sd_mod_exit(void)
{
usb_deregister(&sd_driver);
}
module_init(sd_mod_init);
module_exit(sd_mod_exit);