| /* | 
 |  * Driver for NAND MLC Controller in LPC32xx | 
 |  * | 
 |  * Author: Roland Stigge <stigge@antcom.de> | 
 |  * | 
 |  * Copyright © 2011 WORK Microwave GmbH | 
 |  * Copyright © 2011, 2012 Roland Stigge | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * | 
 |  * NAND Flash Controller Operation: | 
 |  * - Read: Auto Decode | 
 |  * - Write: Auto Encode | 
 |  * - Tested Page Sizes: 2048, 4096 | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/module.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/mtd/partitions.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/err.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_gpio.h> | 
 | #include <linux/mtd/lpc32xx_mlc.h> | 
 | #include <linux/io.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/mtd/nand_ecc.h> | 
 |  | 
 | #define DRV_NAME "lpc32xx_mlc" | 
 |  | 
 | /********************************************************************** | 
 | * MLC NAND controller register offsets | 
 | **********************************************************************/ | 
 |  | 
 | #define MLC_BUFF(x)			(x + 0x00000) | 
 | #define MLC_DATA(x)			(x + 0x08000) | 
 | #define MLC_CMD(x)			(x + 0x10000) | 
 | #define MLC_ADDR(x)			(x + 0x10004) | 
 | #define MLC_ECC_ENC_REG(x)		(x + 0x10008) | 
 | #define MLC_ECC_DEC_REG(x)		(x + 0x1000C) | 
 | #define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010) | 
 | #define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014) | 
 | #define MLC_RPR(x)			(x + 0x10018) | 
 | #define MLC_WPR(x)			(x + 0x1001C) | 
 | #define MLC_RUBP(x)			(x + 0x10020) | 
 | #define MLC_ROBP(x)			(x + 0x10024) | 
 | #define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028) | 
 | #define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C) | 
 | #define MLC_ICR(x)			(x + 0x10030) | 
 | #define MLC_TIME_REG(x)			(x + 0x10034) | 
 | #define MLC_IRQ_MR(x)			(x + 0x10038) | 
 | #define MLC_IRQ_SR(x)			(x + 0x1003C) | 
 | #define MLC_LOCK_PR(x)			(x + 0x10044) | 
 | #define MLC_ISR(x)			(x + 0x10048) | 
 | #define MLC_CEH(x)			(x + 0x1004C) | 
 |  | 
 | /********************************************************************** | 
 | * MLC_CMD bit definitions | 
 | **********************************************************************/ | 
 | #define MLCCMD_RESET			0xFF | 
 |  | 
 | /********************************************************************** | 
 | * MLC_ICR bit definitions | 
 | **********************************************************************/ | 
 | #define MLCICR_WPROT			(1 << 3) | 
 | #define MLCICR_LARGEBLOCK		(1 << 2) | 
 | #define MLCICR_LONGADDR			(1 << 1) | 
 | #define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */ | 
 |  | 
 | /********************************************************************** | 
 | * MLC_TIME_REG bit definitions | 
 | **********************************************************************/ | 
 | #define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24) | 
 | #define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19) | 
 | #define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16) | 
 | #define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12) | 
 | #define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8) | 
 | #define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4) | 
 | #define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0) | 
 |  | 
 | /********************************************************************** | 
 | * MLC_IRQ_MR and MLC_IRQ_SR bit definitions | 
 | **********************************************************************/ | 
 | #define MLCIRQ_NAND_READY		(1 << 5) | 
 | #define MLCIRQ_CONTROLLER_READY		(1 << 4) | 
 | #define MLCIRQ_DECODE_FAILURE		(1 << 3) | 
 | #define MLCIRQ_DECODE_ERROR		(1 << 2) | 
 | #define MLCIRQ_ECC_READY		(1 << 1) | 
 | #define MLCIRQ_WRPROT_FAULT		(1 << 0) | 
 |  | 
 | /********************************************************************** | 
 | * MLC_LOCK_PR bit definitions | 
 | **********************************************************************/ | 
 | #define MLCLOCKPR_MAGIC			0xA25E | 
 |  | 
 | /********************************************************************** | 
 | * MLC_ISR bit definitions | 
 | **********************************************************************/ | 
 | #define MLCISR_DECODER_FAILURE		(1 << 6) | 
 | #define MLCISR_ERRORS			((1 << 4) | (1 << 5)) | 
 | #define MLCISR_ERRORS_DETECTED		(1 << 3) | 
 | #define MLCISR_ECC_READY		(1 << 2) | 
 | #define MLCISR_CONTROLLER_READY		(1 << 1) | 
 | #define MLCISR_NAND_READY		(1 << 0) | 
 |  | 
 | /********************************************************************** | 
 | * MLC_CEH bit definitions | 
 | **********************************************************************/ | 
 | #define MLCCEH_NORMAL			(1 << 0) | 
 |  | 
 | struct lpc32xx_nand_cfg_mlc { | 
 | 	uint32_t tcea_delay; | 
 | 	uint32_t busy_delay; | 
 | 	uint32_t nand_ta; | 
 | 	uint32_t rd_high; | 
 | 	uint32_t rd_low; | 
 | 	uint32_t wr_high; | 
 | 	uint32_t wr_low; | 
 | 	int wp_gpio; | 
 | 	struct mtd_partition *parts; | 
 | 	unsigned num_parts; | 
 | }; | 
 |  | 
 | static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, | 
 | 				 struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd_to_nand(mtd); | 
 |  | 
 | 	if (section >= nand_chip->ecc.steps) | 
 | 		return -ERANGE; | 
 |  | 
 | 	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes; | 
 | 	oobregion->length = nand_chip->ecc.bytes; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, | 
 | 				  struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd_to_nand(mtd); | 
 |  | 
 | 	if (section >= nand_chip->ecc.steps) | 
 | 		return -ERANGE; | 
 |  | 
 | 	oobregion->offset = 16 * section; | 
 | 	oobregion->length = 16 - nand_chip->ecc.bytes; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { | 
 | 	.ecc = lpc32xx_ooblayout_ecc, | 
 | 	.free = lpc32xx_ooblayout_free, | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr lpc32xx_nand_bbt = { | 
 | 	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | | 
 | 		   NAND_BBT_WRITE, | 
 | 	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { | 
 | 	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | | 
 | 		   NAND_BBT_WRITE, | 
 | 	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, | 
 | }; | 
 |  | 
 | struct lpc32xx_nand_host { | 
 | 	struct nand_chip	nand_chip; | 
 | 	struct lpc32xx_mlc_platform_data *pdata; | 
 | 	struct clk		*clk; | 
 | 	void __iomem		*io_base; | 
 | 	int			irq; | 
 | 	struct lpc32xx_nand_cfg_mlc	*ncfg; | 
 | 	struct completion       comp_nand; | 
 | 	struct completion       comp_controller; | 
 | 	uint32_t llptr; | 
 | 	/* | 
 | 	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer | 
 | 	 */ | 
 | 	dma_addr_t		oob_buf_phy; | 
 | 	/* | 
 | 	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer | 
 | 	 */ | 
 | 	uint8_t			*oob_buf; | 
 | 	/* Physical address of DMA base address */ | 
 | 	dma_addr_t		io_base_phy; | 
 |  | 
 | 	struct completion	comp_dma; | 
 | 	struct dma_chan		*dma_chan; | 
 | 	struct dma_slave_config	dma_slave_config; | 
 | 	struct scatterlist	sgl; | 
 | 	uint8_t			*dma_buf; | 
 | 	uint8_t			*dummy_buf; | 
 | 	int			mlcsubpages; /* number of 512bytes-subpages */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Activate/Deactivate DMA Operation: | 
 |  * | 
 |  * Using the PL080 DMA Controller for transferring the 512 byte subpages | 
 |  * instead of doing readl() / writel() in a loop slows it down significantly. | 
 |  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: | 
 |  * | 
 |  * - readl() of 128 x 32 bits in a loop: ~20us | 
 |  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us | 
 |  * - DMA read of 512 bytes (32 bit, no bursts): ~100us | 
 |  * | 
 |  * This applies to the transfer itself. In the DMA case: only the | 
 |  * wait_for_completion() (DMA setup _not_ included). | 
 |  * | 
 |  * Note that the 512 bytes subpage transfer is done directly from/to a | 
 |  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a | 
 |  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND | 
 |  * controller transferring data between its internal buffer to/from the NAND | 
 |  * chip.) | 
 |  * | 
 |  * Therefore, using the PL080 DMA is disabled by default, for now. | 
 |  * | 
 |  */ | 
 | static int use_dma; | 
 |  | 
 | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) | 
 | { | 
 | 	uint32_t clkrate, tmp; | 
 |  | 
 | 	/* Reset MLC controller */ | 
 | 	writel(MLCCMD_RESET, MLC_CMD(host->io_base)); | 
 | 	udelay(1000); | 
 |  | 
 | 	/* Get base clock for MLC block */ | 
 | 	clkrate = clk_get_rate(host->clk); | 
 | 	if (clkrate == 0) | 
 | 		clkrate = 104000000; | 
 |  | 
 | 	/* Unlock MLC_ICR | 
 | 	 * (among others, will be locked again automatically) */ | 
 | 	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); | 
 |  | 
 | 	/* Configure MLC Controller: Large Block, 5 Byte Address */ | 
 | 	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; | 
 | 	writel(tmp, MLC_ICR(host->io_base)); | 
 |  | 
 | 	/* Unlock MLC_TIME_REG | 
 | 	 * (among others, will be locked again automatically) */ | 
 | 	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); | 
 |  | 
 | 	/* Compute clock setup values, see LPC and NAND manual */ | 
 | 	tmp = 0; | 
 | 	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); | 
 | 	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); | 
 | 	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); | 
 | 	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); | 
 | 	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); | 
 | 	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); | 
 | 	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); | 
 | 	writel(tmp, MLC_TIME_REG(host->io_base)); | 
 |  | 
 | 	/* Enable IRQ for CONTROLLER_READY and NAND_READY */ | 
 | 	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, | 
 | 			MLC_IRQ_MR(host->io_base)); | 
 |  | 
 | 	/* Normal nCE operation: nCE controlled by controller */ | 
 | 	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); | 
 | } | 
 |  | 
 | /* | 
 |  * Hardware specific access to control lines | 
 |  */ | 
 | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, | 
 | 				  unsigned int ctrl) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd_to_nand(mtd); | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); | 
 |  | 
 | 	if (cmd != NAND_CMD_NONE) { | 
 | 		if (ctrl & NAND_CLE) | 
 | 			writel(cmd, MLC_CMD(host->io_base)); | 
 | 		else | 
 | 			writel(cmd, MLC_ADDR(host->io_base)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Read Device Ready (NAND device _and_ controller ready) | 
 |  */ | 
 | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd_to_nand(mtd); | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); | 
 |  | 
 | 	if ((readb(MLC_ISR(host->io_base)) & | 
 | 	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == | 
 | 	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) | 
 | 		return  1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) | 
 | { | 
 | 	uint8_t sr; | 
 |  | 
 | 	/* Clear interrupt flag by reading status */ | 
 | 	sr = readb(MLC_IRQ_SR(host->io_base)); | 
 | 	if (sr & MLCIRQ_NAND_READY) | 
 | 		complete(&host->comp_nand); | 
 | 	if (sr & MLCIRQ_CONTROLLER_READY) | 
 | 		complete(&host->comp_controller); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip); | 
 |  | 
 | 	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) | 
 | 		goto exit; | 
 |  | 
 | 	wait_for_completion(&host->comp_nand); | 
 |  | 
 | 	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { | 
 | 		/* Seems to be delayed sometimes by controller */ | 
 | 		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); | 
 | 		cpu_relax(); | 
 | 	} | 
 |  | 
 | exit: | 
 | 	return NAND_STATUS_READY; | 
 | } | 
 |  | 
 | static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, | 
 | 				       struct nand_chip *chip) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip); | 
 |  | 
 | 	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) | 
 | 		goto exit; | 
 |  | 
 | 	wait_for_completion(&host->comp_controller); | 
 |  | 
 | 	while (!(readb(MLC_ISR(host->io_base)) & | 
 | 		 MLCISR_CONTROLLER_READY)) { | 
 | 		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); | 
 | 		cpu_relax(); | 
 | 	} | 
 |  | 
 | exit: | 
 | 	return NAND_STATUS_READY; | 
 | } | 
 |  | 
 | static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) | 
 | { | 
 | 	lpc32xx_waitfunc_nand(mtd, chip); | 
 | 	lpc32xx_waitfunc_controller(mtd, chip); | 
 |  | 
 | 	return NAND_STATUS_READY; | 
 | } | 
 |  | 
 | /* | 
 |  * Enable NAND write protect | 
 |  */ | 
 | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) | 
 | { | 
 | 	if (gpio_is_valid(host->ncfg->wp_gpio)) | 
 | 		gpio_set_value(host->ncfg->wp_gpio, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Disable NAND write protect | 
 |  */ | 
 | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) | 
 | { | 
 | 	if (gpio_is_valid(host->ncfg->wp_gpio)) | 
 | 		gpio_set_value(host->ncfg->wp_gpio, 1); | 
 | } | 
 |  | 
 | static void lpc32xx_dma_complete_func(void *completion) | 
 | { | 
 | 	complete(completion); | 
 | } | 
 |  | 
 | static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, | 
 | 			    enum dma_transfer_direction dir) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip); | 
 | 	struct dma_async_tx_descriptor *desc; | 
 | 	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | 
 | 	int res; | 
 |  | 
 | 	sg_init_one(&host->sgl, mem, len); | 
 |  | 
 | 	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
 | 			 DMA_BIDIRECTIONAL); | 
 | 	if (res != 1) { | 
 | 		dev_err(mtd->dev.parent, "Failed to map sg list\n"); | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, | 
 | 				       flags); | 
 | 	if (!desc) { | 
 | 		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); | 
 | 		goto out1; | 
 | 	} | 
 |  | 
 | 	init_completion(&host->comp_dma); | 
 | 	desc->callback = lpc32xx_dma_complete_func; | 
 | 	desc->callback_param = &host->comp_dma; | 
 |  | 
 | 	dmaengine_submit(desc); | 
 | 	dma_async_issue_pending(host->dma_chan); | 
 |  | 
 | 	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); | 
 |  | 
 | 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
 | 		     DMA_BIDIRECTIONAL); | 
 | 	return 0; | 
 | out1: | 
 | 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
 | 		     DMA_BIDIRECTIONAL); | 
 | 	return -ENXIO; | 
 | } | 
 |  | 
 | static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			     uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip); | 
 | 	int i, j; | 
 | 	uint8_t *oobbuf = chip->oob_poi; | 
 | 	uint32_t mlc_isr; | 
 | 	int res; | 
 | 	uint8_t *dma_buf; | 
 | 	bool dma_mapped; | 
 |  | 
 | 	if ((void *)buf <= high_memory) { | 
 | 		dma_buf = buf; | 
 | 		dma_mapped = true; | 
 | 	} else { | 
 | 		dma_buf = host->dma_buf; | 
 | 		dma_mapped = false; | 
 | 	} | 
 |  | 
 | 	/* Writing Command and Address */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
 |  | 
 | 	/* For all sub-pages */ | 
 | 	for (i = 0; i < host->mlcsubpages; i++) { | 
 | 		/* Start Auto Decode Command */ | 
 | 		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); | 
 |  | 
 | 		/* Wait for Controller Ready */ | 
 | 		lpc32xx_waitfunc_controller(mtd, chip); | 
 |  | 
 | 		/* Check ECC Error status */ | 
 | 		mlc_isr = readl(MLC_ISR(host->io_base)); | 
 | 		if (mlc_isr & MLCISR_DECODER_FAILURE) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); | 
 | 		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) { | 
 | 			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; | 
 | 		} | 
 |  | 
 | 		/* Read 512 + 16 Bytes */ | 
 | 		if (use_dma) { | 
 | 			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, | 
 | 					       DMA_DEV_TO_MEM); | 
 | 			if (res) | 
 | 				return res; | 
 | 		} else { | 
 | 			for (j = 0; j < (512 >> 2); j++) { | 
 | 				*((uint32_t *)(buf)) = | 
 | 					readl(MLC_BUFF(host->io_base)); | 
 | 				buf += 4; | 
 | 			} | 
 | 		} | 
 | 		for (j = 0; j < (16 >> 2); j++) { | 
 | 			*((uint32_t *)(oobbuf)) = | 
 | 				readl(MLC_BUFF(host->io_base)); | 
 | 			oobbuf += 4; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (use_dma && !dma_mapped) | 
 | 		memcpy(buf, dma_buf, mtd->writesize); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, | 
 | 				       struct nand_chip *chip, | 
 | 				       const uint8_t *buf, int oob_required, | 
 | 				       int page) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip); | 
 | 	const uint8_t *oobbuf = chip->oob_poi; | 
 | 	uint8_t *dma_buf = (uint8_t *)buf; | 
 | 	int res; | 
 | 	int i, j; | 
 |  | 
 | 	if (use_dma && (void *)buf >= high_memory) { | 
 | 		dma_buf = host->dma_buf; | 
 | 		memcpy(dma_buf, buf, mtd->writesize); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < host->mlcsubpages; i++) { | 
 | 		/* Start Encode */ | 
 | 		writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); | 
 |  | 
 | 		/* Write 512 + 6 Bytes to Buffer */ | 
 | 		if (use_dma) { | 
 | 			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, | 
 | 					       DMA_MEM_TO_DEV); | 
 | 			if (res) | 
 | 				return res; | 
 | 		} else { | 
 | 			for (j = 0; j < (512 >> 2); j++) { | 
 | 				writel(*((uint32_t *)(buf)), | 
 | 				       MLC_BUFF(host->io_base)); | 
 | 				buf += 4; | 
 | 			} | 
 | 		} | 
 | 		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); | 
 | 		oobbuf += 4; | 
 | 		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); | 
 | 		oobbuf += 12; | 
 |  | 
 | 		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ | 
 | 		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); | 
 |  | 
 | 		/* Wait for Controller Ready */ | 
 | 		lpc32xx_waitfunc_controller(mtd, chip); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			    int page) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip); | 
 |  | 
 | 	/* Read whole page - necessary with MLC controller! */ | 
 | 	lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			      int page) | 
 | { | 
 | 	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ | 
 | static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	/* Always enabled! */ | 
 | } | 
 |  | 
 | static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) | 
 | { | 
 | 	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); | 
 | 	dma_cap_mask_t mask; | 
 |  | 
 | 	if (!host->pdata || !host->pdata->dma_filter) { | 
 | 		dev_err(mtd->dev.parent, "no DMA platform data\n"); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	dma_cap_zero(mask); | 
 | 	dma_cap_set(DMA_SLAVE, mask); | 
 | 	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, | 
 | 					     "nand-mlc"); | 
 | 	if (!host->dma_chan) { | 
 | 		dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set direction to a sensible value even if the dmaengine driver | 
 | 	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x | 
 | 	 * driver criticizes it as "alien transfer direction". | 
 | 	 */ | 
 | 	host->dma_slave_config.direction = DMA_DEV_TO_MEM; | 
 | 	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 	host->dma_slave_config.src_maxburst = 128; | 
 | 	host->dma_slave_config.dst_maxburst = 128; | 
 | 	/* DMA controller does flow control: */ | 
 | 	host->dma_slave_config.device_fc = false; | 
 | 	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); | 
 | 	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); | 
 | 	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { | 
 | 		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); | 
 | 		goto out1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | out1: | 
 | 	dma_release_channel(host->dma_chan); | 
 | 	return -ENXIO; | 
 | } | 
 |  | 
 | static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) | 
 | { | 
 | 	struct lpc32xx_nand_cfg_mlc *ncfg; | 
 | 	struct device_node *np = dev->of_node; | 
 |  | 
 | 	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); | 
 | 	if (!ncfg) | 
 | 		return NULL; | 
 |  | 
 | 	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); | 
 | 	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); | 
 | 	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); | 
 | 	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); | 
 | 	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); | 
 | 	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); | 
 | 	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); | 
 |  | 
 | 	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || | 
 | 	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || | 
 | 	    !ncfg->wr_low) { | 
 | 		dev_err(dev, "chip parameters not specified correctly\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); | 
 |  | 
 | 	return ncfg; | 
 | } | 
 |  | 
 | /* | 
 |  * Probe for NAND controller | 
 |  */ | 
 | static int lpc32xx_nand_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct lpc32xx_nand_host *host; | 
 | 	struct mtd_info *mtd; | 
 | 	struct nand_chip *nand_chip; | 
 | 	struct resource *rc; | 
 | 	int res; | 
 |  | 
 | 	/* Allocate memory for the device structure (and zero it) */ | 
 | 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | 
 | 	if (!host) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	host->io_base = devm_ioremap_resource(&pdev->dev, rc); | 
 | 	if (IS_ERR(host->io_base)) | 
 | 		return PTR_ERR(host->io_base); | 
 | 	 | 
 | 	host->io_base_phy = rc->start; | 
 |  | 
 | 	nand_chip = &host->nand_chip; | 
 | 	mtd = nand_to_mtd(nand_chip); | 
 | 	if (pdev->dev.of_node) | 
 | 		host->ncfg = lpc32xx_parse_dt(&pdev->dev); | 
 | 	if (!host->ncfg) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"Missing or bad NAND config from device tree\n"); | 
 | 		return -ENOENT; | 
 | 	} | 
 | 	if (host->ncfg->wp_gpio == -EPROBE_DEFER) | 
 | 		return -EPROBE_DEFER; | 
 | 	if (gpio_is_valid(host->ncfg->wp_gpio) && | 
 | 			gpio_request(host->ncfg->wp_gpio, "NAND WP")) { | 
 | 		dev_err(&pdev->dev, "GPIO not available\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	lpc32xx_wp_disable(host); | 
 |  | 
 | 	host->pdata = dev_get_platdata(&pdev->dev); | 
 |  | 
 | 	/* link the private data structures */ | 
 | 	nand_set_controller_data(nand_chip, host); | 
 | 	nand_set_flash_node(nand_chip, pdev->dev.of_node); | 
 | 	mtd->dev.parent = &pdev->dev; | 
 |  | 
 | 	/* Get NAND clock */ | 
 | 	host->clk = clk_get(&pdev->dev, NULL); | 
 | 	if (IS_ERR(host->clk)) { | 
 | 		dev_err(&pdev->dev, "Clock initialization failure\n"); | 
 | 		res = -ENOENT; | 
 | 		goto err_exit1; | 
 | 	} | 
 | 	clk_prepare_enable(host->clk); | 
 |  | 
 | 	nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; | 
 | 	nand_chip->dev_ready = lpc32xx_nand_device_ready; | 
 | 	nand_chip->chip_delay = 25; /* us */ | 
 | 	nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); | 
 | 	nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); | 
 |  | 
 | 	/* Init NAND controller */ | 
 | 	lpc32xx_nand_setup(host); | 
 |  | 
 | 	platform_set_drvdata(pdev, host); | 
 |  | 
 | 	/* Initialize function pointers */ | 
 | 	nand_chip->ecc.hwctl = lpc32xx_ecc_enable; | 
 | 	nand_chip->ecc.read_page_raw = lpc32xx_read_page; | 
 | 	nand_chip->ecc.read_page = lpc32xx_read_page; | 
 | 	nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; | 
 | 	nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; | 
 | 	nand_chip->ecc.write_oob = lpc32xx_write_oob; | 
 | 	nand_chip->ecc.read_oob = lpc32xx_read_oob; | 
 | 	nand_chip->ecc.strength = 4; | 
 | 	nand_chip->ecc.bytes = 10; | 
 | 	nand_chip->waitfunc = lpc32xx_waitfunc; | 
 |  | 
 | 	nand_chip->options = NAND_NO_SUBPAGE_WRITE; | 
 | 	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; | 
 | 	nand_chip->bbt_td = &lpc32xx_nand_bbt; | 
 | 	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; | 
 |  | 
 | 	if (use_dma) { | 
 | 		res = lpc32xx_dma_setup(host); | 
 | 		if (res) { | 
 | 			res = -EIO; | 
 | 			goto err_exit2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Scan to find existance of the device and | 
 | 	 * Get the type of NAND device SMALL block or LARGE block | 
 | 	 */ | 
 | 	res = nand_scan_ident(mtd, 1, NULL); | 
 | 	if (res) | 
 | 		goto err_exit3; | 
 |  | 
 | 	host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); | 
 | 	if (!host->dma_buf) { | 
 | 		res = -ENOMEM; | 
 | 		goto err_exit3; | 
 | 	} | 
 |  | 
 | 	host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); | 
 | 	if (!host->dummy_buf) { | 
 | 		res = -ENOMEM; | 
 | 		goto err_exit3; | 
 | 	} | 
 |  | 
 | 	nand_chip->ecc.mode = NAND_ECC_HW; | 
 | 	nand_chip->ecc.size = 512; | 
 | 	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); | 
 | 	host->mlcsubpages = mtd->writesize / 512; | 
 |  | 
 | 	/* initially clear interrupt status */ | 
 | 	readb(MLC_IRQ_SR(host->io_base)); | 
 |  | 
 | 	init_completion(&host->comp_nand); | 
 | 	init_completion(&host->comp_controller); | 
 |  | 
 | 	host->irq = platform_get_irq(pdev, 0); | 
 | 	if ((host->irq < 0) || (host->irq >= NR_IRQS)) { | 
 | 		dev_err(&pdev->dev, "failed to get platform irq\n"); | 
 | 		res = -EINVAL; | 
 | 		goto err_exit3; | 
 | 	} | 
 |  | 
 | 	if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, | 
 | 			IRQF_TRIGGER_HIGH, DRV_NAME, host)) { | 
 | 		dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); | 
 | 		res = -ENXIO; | 
 | 		goto err_exit3; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fills out all the uninitialized function pointers with the defaults | 
 | 	 * And scans for a bad block table if appropriate. | 
 | 	 */ | 
 | 	res = nand_scan_tail(mtd); | 
 | 	if (res) | 
 | 		goto err_exit4; | 
 |  | 
 | 	mtd->name = DRV_NAME; | 
 |  | 
 | 	res = mtd_device_register(mtd, host->ncfg->parts, | 
 | 				  host->ncfg->num_parts); | 
 | 	if (!res) | 
 | 		return res; | 
 |  | 
 | 	nand_release(mtd); | 
 |  | 
 | err_exit4: | 
 | 	free_irq(host->irq, host); | 
 | err_exit3: | 
 | 	if (use_dma) | 
 | 		dma_release_channel(host->dma_chan); | 
 | err_exit2: | 
 | 	clk_disable_unprepare(host->clk); | 
 | 	clk_put(host->clk); | 
 | err_exit1: | 
 | 	lpc32xx_wp_enable(host); | 
 | 	gpio_free(host->ncfg->wp_gpio); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove NAND device | 
 |  */ | 
 | static int lpc32xx_nand_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
 | 	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); | 
 |  | 
 | 	nand_release(mtd); | 
 | 	free_irq(host->irq, host); | 
 | 	if (use_dma) | 
 | 		dma_release_channel(host->dma_chan); | 
 |  | 
 | 	clk_disable_unprepare(host->clk); | 
 | 	clk_put(host->clk); | 
 |  | 
 | 	lpc32xx_wp_enable(host); | 
 | 	gpio_free(host->ncfg->wp_gpio); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int lpc32xx_nand_resume(struct platform_device *pdev) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
 |  | 
 | 	/* Re-enable NAND clock */ | 
 | 	clk_prepare_enable(host->clk); | 
 |  | 
 | 	/* Fresh init of NAND controller */ | 
 | 	lpc32xx_nand_setup(host); | 
 |  | 
 | 	/* Disable write protect */ | 
 | 	lpc32xx_wp_disable(host); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) | 
 | { | 
 | 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
 |  | 
 | 	/* Enable write protect for safety */ | 
 | 	lpc32xx_wp_enable(host); | 
 |  | 
 | 	/* Disable clock */ | 
 | 	clk_disable_unprepare(host->clk); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else | 
 | #define lpc32xx_nand_resume NULL | 
 | #define lpc32xx_nand_suspend NULL | 
 | #endif | 
 |  | 
 | static const struct of_device_id lpc32xx_nand_match[] = { | 
 | 	{ .compatible = "nxp,lpc3220-mlc" }, | 
 | 	{ /* sentinel */ }, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); | 
 |  | 
 | static struct platform_driver lpc32xx_nand_driver = { | 
 | 	.probe		= lpc32xx_nand_probe, | 
 | 	.remove		= lpc32xx_nand_remove, | 
 | 	.resume		= lpc32xx_nand_resume, | 
 | 	.suspend	= lpc32xx_nand_suspend, | 
 | 	.driver		= { | 
 | 		.name	= DRV_NAME, | 
 | 		.of_match_table = lpc32xx_nand_match, | 
 | 	}, | 
 | }; | 
 |  | 
 | module_platform_driver(lpc32xx_nand_driver); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); | 
 | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); |