| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * PowerPC64 port by Mike Corrigan and Dave Engebretsen |
| * {mikejc|engebret}@us.ibm.com |
| * |
| * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> |
| * |
| * SMP scalability work: |
| * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * Module name: htab.c |
| * |
| * Description: |
| * PowerPC Hashed Page Table functions |
| */ |
| |
| #undef DEBUG |
| #undef DEBUG_LOW |
| |
| #define pr_fmt(fmt) "hash-mmu: " fmt |
| #include <linux/spinlock.h> |
| #include <linux/errno.h> |
| #include <linux/sched/mm.h> |
| #include <linux/proc_fs.h> |
| #include <linux/stat.h> |
| #include <linux/sysctl.h> |
| #include <linux/export.h> |
| #include <linux/ctype.h> |
| #include <linux/cache.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| #include <linux/memblock.h> |
| #include <linux/context_tracking.h> |
| #include <linux/libfdt.h> |
| #include <linux/pkeys.h> |
| #include <linux/hugetlb.h> |
| #include <linux/cpu.h> |
| #include <linux/pgtable.h> |
| #include <linux/debugfs.h> |
| |
| #include <asm/interrupt.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/page.h> |
| #include <asm/types.h> |
| #include <linux/uaccess.h> |
| #include <asm/machdep.h> |
| #include <asm/prom.h> |
| #include <asm/io.h> |
| #include <asm/eeh.h> |
| #include <asm/tlb.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/copro.h> |
| #include <asm/udbg.h> |
| #include <asm/code-patching.h> |
| #include <asm/fadump.h> |
| #include <asm/firmware.h> |
| #include <asm/tm.h> |
| #include <asm/trace.h> |
| #include <asm/ps3.h> |
| #include <asm/pte-walk.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/ultravisor.h> |
| |
| #include <mm/mmu_decl.h> |
| |
| #include "internal.h" |
| |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifdef DEBUG_LOW |
| #define DBG_LOW(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG_LOW(fmt...) |
| #endif |
| |
| #define KB (1024) |
| #define MB (1024*KB) |
| #define GB (1024L*MB) |
| |
| /* |
| * Note: pte --> Linux PTE |
| * HPTE --> PowerPC Hashed Page Table Entry |
| * |
| * Execution context: |
| * htab_initialize is called with the MMU off (of course), but |
| * the kernel has been copied down to zero so it can directly |
| * reference global data. At this point it is very difficult |
| * to print debug info. |
| * |
| */ |
| |
| static unsigned long _SDR1; |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; |
| EXPORT_SYMBOL_GPL(mmu_psize_defs); |
| |
| u8 hpte_page_sizes[1 << LP_BITS]; |
| EXPORT_SYMBOL_GPL(hpte_page_sizes); |
| |
| struct hash_pte *htab_address; |
| unsigned long htab_size_bytes; |
| unsigned long htab_hash_mask; |
| EXPORT_SYMBOL_GPL(htab_hash_mask); |
| int mmu_linear_psize = MMU_PAGE_4K; |
| EXPORT_SYMBOL_GPL(mmu_linear_psize); |
| int mmu_virtual_psize = MMU_PAGE_4K; |
| int mmu_vmalloc_psize = MMU_PAGE_4K; |
| EXPORT_SYMBOL_GPL(mmu_vmalloc_psize); |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| int mmu_vmemmap_psize = MMU_PAGE_4K; |
| #endif |
| int mmu_io_psize = MMU_PAGE_4K; |
| int mmu_kernel_ssize = MMU_SEGSIZE_256M; |
| EXPORT_SYMBOL_GPL(mmu_kernel_ssize); |
| int mmu_highuser_ssize = MMU_SEGSIZE_256M; |
| u16 mmu_slb_size = 64; |
| EXPORT_SYMBOL_GPL(mmu_slb_size); |
| #ifdef CONFIG_PPC_64K_PAGES |
| int mmu_ci_restrictions; |
| #endif |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| static u8 *linear_map_hash_slots; |
| static unsigned long linear_map_hash_count; |
| static DEFINE_SPINLOCK(linear_map_hash_lock); |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| struct mmu_hash_ops mmu_hash_ops; |
| EXPORT_SYMBOL(mmu_hash_ops); |
| |
| /* |
| * These are definitions of page sizes arrays to be used when none |
| * is provided by the firmware. |
| */ |
| |
| /* |
| * Fallback (4k pages only) |
| */ |
| static struct mmu_psize_def mmu_psize_defaults[] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| .sllp = 0, |
| .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, |
| .avpnm = 0, |
| .tlbiel = 0, |
| }, |
| }; |
| |
| /* |
| * POWER4, GPUL, POWER5 |
| * |
| * Support for 16Mb large pages |
| */ |
| static struct mmu_psize_def mmu_psize_defaults_gp[] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| .sllp = 0, |
| .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, |
| .avpnm = 0, |
| .tlbiel = 1, |
| }, |
| [MMU_PAGE_16M] = { |
| .shift = 24, |
| .sllp = SLB_VSID_L, |
| .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, |
| [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, |
| .avpnm = 0x1UL, |
| .tlbiel = 0, |
| }, |
| }; |
| |
| /* |
| * 'R' and 'C' update notes: |
| * - Under pHyp or KVM, the updatepp path will not set C, thus it *will* |
| * create writeable HPTEs without C set, because the hcall H_PROTECT |
| * that we use in that case will not update C |
| * - The above is however not a problem, because we also don't do that |
| * fancy "no flush" variant of eviction and we use H_REMOVE which will |
| * do the right thing and thus we don't have the race I described earlier |
| * |
| * - Under bare metal, we do have the race, so we need R and C set |
| * - We make sure R is always set and never lost |
| * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping |
| */ |
| unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags) |
| { |
| unsigned long rflags = 0; |
| |
| /* _PAGE_EXEC -> NOEXEC */ |
| if ((pteflags & _PAGE_EXEC) == 0) |
| rflags |= HPTE_R_N; |
| /* |
| * PPP bits: |
| * Linux uses slb key 0 for kernel and 1 for user. |
| * kernel RW areas are mapped with PPP=0b000 |
| * User area is mapped with PPP=0b010 for read/write |
| * or PPP=0b011 for read-only (including writeable but clean pages). |
| */ |
| if (pteflags & _PAGE_PRIVILEGED) { |
| /* |
| * Kernel read only mapped with ppp bits 0b110 |
| */ |
| if (!(pteflags & _PAGE_WRITE)) { |
| if (mmu_has_feature(MMU_FTR_KERNEL_RO)) |
| rflags |= (HPTE_R_PP0 | 0x2); |
| else |
| rflags |= 0x3; |
| } |
| } else { |
| if (pteflags & _PAGE_RWX) |
| rflags |= 0x2; |
| if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY))) |
| rflags |= 0x1; |
| } |
| /* |
| * We can't allow hardware to update hpte bits. Hence always |
| * set 'R' bit and set 'C' if it is a write fault |
| */ |
| rflags |= HPTE_R_R; |
| |
| if (pteflags & _PAGE_DIRTY) |
| rflags |= HPTE_R_C; |
| /* |
| * Add in WIG bits |
| */ |
| |
| if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) |
| rflags |= HPTE_R_I; |
| else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT) |
| rflags |= (HPTE_R_I | HPTE_R_G); |
| else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO) |
| rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M); |
| else |
| /* |
| * Add memory coherence if cache inhibited is not set |
| */ |
| rflags |= HPTE_R_M; |
| |
| rflags |= pte_to_hpte_pkey_bits(pteflags, flags); |
| return rflags; |
| } |
| |
| int htab_bolt_mapping(unsigned long vstart, unsigned long vend, |
| unsigned long pstart, unsigned long prot, |
| int psize, int ssize) |
| { |
| unsigned long vaddr, paddr; |
| unsigned int step, shift; |
| int ret = 0; |
| |
| shift = mmu_psize_defs[psize].shift; |
| step = 1 << shift; |
| |
| prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY); |
| |
| DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", |
| vstart, vend, pstart, prot, psize, ssize); |
| |
| /* Carefully map only the possible range */ |
| vaddr = ALIGN(vstart, step); |
| paddr = ALIGN(pstart, step); |
| vend = ALIGN_DOWN(vend, step); |
| |
| for (; vaddr < vend; vaddr += step, paddr += step) { |
| unsigned long hash, hpteg; |
| unsigned long vsid = get_kernel_vsid(vaddr, ssize); |
| unsigned long vpn = hpt_vpn(vaddr, vsid, ssize); |
| unsigned long tprot = prot; |
| bool secondary_hash = false; |
| |
| /* |
| * If we hit a bad address return error. |
| */ |
| if (!vsid) |
| return -1; |
| /* Make kernel text executable */ |
| if (overlaps_kernel_text(vaddr, vaddr + step)) |
| tprot &= ~HPTE_R_N; |
| |
| /* |
| * If relocatable, check if it overlaps interrupt vectors that |
| * are copied down to real 0. For relocatable kernel |
| * (e.g. kdump case) we copy interrupt vectors down to real |
| * address 0. Mark that region as executable. This is |
| * because on p8 system with relocation on exception feature |
| * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence |
| * in order to execute the interrupt handlers in virtual |
| * mode the vector region need to be marked as executable. |
| */ |
| if ((PHYSICAL_START > MEMORY_START) && |
| overlaps_interrupt_vector_text(vaddr, vaddr + step)) |
| tprot &= ~HPTE_R_N; |
| |
| hash = hpt_hash(vpn, shift, ssize); |
| hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| |
| BUG_ON(!mmu_hash_ops.hpte_insert); |
| repeat: |
| ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, |
| HPTE_V_BOLTED, psize, psize, |
| ssize); |
| if (ret == -1) { |
| /* |
| * Try to to keep bolted entries in primary. |
| * Remove non bolted entries and try insert again |
| */ |
| ret = mmu_hash_ops.hpte_remove(hpteg); |
| if (ret != -1) |
| ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, |
| HPTE_V_BOLTED, psize, psize, |
| ssize); |
| if (ret == -1 && !secondary_hash) { |
| secondary_hash = true; |
| hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP); |
| goto repeat; |
| } |
| } |
| |
| if (ret < 0) |
| break; |
| |
| cond_resched(); |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| if (debug_pagealloc_enabled() && |
| (paddr >> PAGE_SHIFT) < linear_map_hash_count) |
| linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| } |
| return ret < 0 ? ret : 0; |
| } |
| |
| int htab_remove_mapping(unsigned long vstart, unsigned long vend, |
| int psize, int ssize) |
| { |
| unsigned long vaddr, time_limit; |
| unsigned int step, shift; |
| int rc; |
| int ret = 0; |
| |
| shift = mmu_psize_defs[psize].shift; |
| step = 1 << shift; |
| |
| if (!mmu_hash_ops.hpte_removebolted) |
| return -ENODEV; |
| |
| /* Unmap the full range specificied */ |
| vaddr = ALIGN_DOWN(vstart, step); |
| time_limit = jiffies + HZ; |
| |
| for (;vaddr < vend; vaddr += step) { |
| rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize); |
| |
| /* |
| * For large number of mappings introduce a cond_resched() |
| * to prevent softlockup warnings. |
| */ |
| if (time_after(jiffies, time_limit)) { |
| cond_resched(); |
| time_limit = jiffies + HZ; |
| } |
| if (rc == -ENOENT) { |
| ret = -ENOENT; |
| continue; |
| } |
| if (rc < 0) |
| return rc; |
| } |
| |
| return ret; |
| } |
| |
| static bool disable_1tb_segments = false; |
| |
| static int __init parse_disable_1tb_segments(char *p) |
| { |
| disable_1tb_segments = true; |
| return 0; |
| } |
| early_param("disable_1tb_segments", parse_disable_1tb_segments); |
| |
| static int __init htab_dt_scan_seg_sizes(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *prop; |
| int size = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); |
| if (prop == NULL) |
| return 0; |
| for (; size >= 4; size -= 4, ++prop) { |
| if (be32_to_cpu(prop[0]) == 40) { |
| DBG("1T segment support detected\n"); |
| |
| if (disable_1tb_segments) { |
| DBG("1T segments disabled by command line\n"); |
| break; |
| } |
| |
| cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; |
| return 1; |
| } |
| } |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; |
| return 0; |
| } |
| |
| static int __init get_idx_from_shift(unsigned int shift) |
| { |
| int idx = -1; |
| |
| switch (shift) { |
| case 0xc: |
| idx = MMU_PAGE_4K; |
| break; |
| case 0x10: |
| idx = MMU_PAGE_64K; |
| break; |
| case 0x14: |
| idx = MMU_PAGE_1M; |
| break; |
| case 0x18: |
| idx = MMU_PAGE_16M; |
| break; |
| case 0x22: |
| idx = MMU_PAGE_16G; |
| break; |
| } |
| return idx; |
| } |
| |
| static int __init htab_dt_scan_page_sizes(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *prop; |
| int size = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); |
| if (!prop) |
| return 0; |
| |
| pr_info("Page sizes from device-tree:\n"); |
| size /= 4; |
| cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); |
| while(size > 0) { |
| unsigned int base_shift = be32_to_cpu(prop[0]); |
| unsigned int slbenc = be32_to_cpu(prop[1]); |
| unsigned int lpnum = be32_to_cpu(prop[2]); |
| struct mmu_psize_def *def; |
| int idx, base_idx; |
| |
| size -= 3; prop += 3; |
| base_idx = get_idx_from_shift(base_shift); |
| if (base_idx < 0) { |
| /* skip the pte encoding also */ |
| prop += lpnum * 2; size -= lpnum * 2; |
| continue; |
| } |
| def = &mmu_psize_defs[base_idx]; |
| if (base_idx == MMU_PAGE_16M) |
| cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; |
| |
| def->shift = base_shift; |
| if (base_shift <= 23) |
| def->avpnm = 0; |
| else |
| def->avpnm = (1 << (base_shift - 23)) - 1; |
| def->sllp = slbenc; |
| /* |
| * We don't know for sure what's up with tlbiel, so |
| * for now we only set it for 4K and 64K pages |
| */ |
| if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) |
| def->tlbiel = 1; |
| else |
| def->tlbiel = 0; |
| |
| while (size > 0 && lpnum) { |
| unsigned int shift = be32_to_cpu(prop[0]); |
| int penc = be32_to_cpu(prop[1]); |
| |
| prop += 2; size -= 2; |
| lpnum--; |
| |
| idx = get_idx_from_shift(shift); |
| if (idx < 0) |
| continue; |
| |
| if (penc == -1) |
| pr_err("Invalid penc for base_shift=%d " |
| "shift=%d\n", base_shift, shift); |
| |
| def->penc[idx] = penc; |
| pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," |
| " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", |
| base_shift, shift, def->sllp, |
| def->avpnm, def->tlbiel, def->penc[idx]); |
| } |
| } |
| |
| return 1; |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * Scan for 16G memory blocks that have been set aside for huge pages |
| * and reserve those blocks for 16G huge pages. |
| */ |
| static int __init htab_dt_scan_hugepage_blocks(unsigned long node, |
| const char *uname, int depth, |
| void *data) { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be64 *addr_prop; |
| const __be32 *page_count_prop; |
| unsigned int expected_pages; |
| long unsigned int phys_addr; |
| long unsigned int block_size; |
| |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL || strcmp(type, "memory") != 0) |
| return 0; |
| |
| /* |
| * This property is the log base 2 of the number of virtual pages that |
| * will represent this memory block. |
| */ |
| page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); |
| if (page_count_prop == NULL) |
| return 0; |
| expected_pages = (1 << be32_to_cpu(page_count_prop[0])); |
| addr_prop = of_get_flat_dt_prop(node, "reg", NULL); |
| if (addr_prop == NULL) |
| return 0; |
| phys_addr = be64_to_cpu(addr_prop[0]); |
| block_size = be64_to_cpu(addr_prop[1]); |
| if (block_size != (16 * GB)) |
| return 0; |
| printk(KERN_INFO "Huge page(16GB) memory: " |
| "addr = 0x%lX size = 0x%lX pages = %d\n", |
| phys_addr, block_size, expected_pages); |
| if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) { |
| memblock_reserve(phys_addr, block_size * expected_pages); |
| pseries_add_gpage(phys_addr, block_size, expected_pages); |
| } |
| return 0; |
| } |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| static void mmu_psize_set_default_penc(void) |
| { |
| int bpsize, apsize; |
| for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) |
| for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) |
| mmu_psize_defs[bpsize].penc[apsize] = -1; |
| } |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| |
| static bool might_have_hea(void) |
| { |
| /* |
| * The HEA ethernet adapter requires awareness of the |
| * GX bus. Without that awareness we can easily assume |
| * we will never see an HEA ethernet device. |
| */ |
| #ifdef CONFIG_IBMEBUS |
| return !cpu_has_feature(CPU_FTR_ARCH_207S) && |
| firmware_has_feature(FW_FEATURE_SPLPAR); |
| #else |
| return false; |
| #endif |
| } |
| |
| #endif /* #ifdef CONFIG_PPC_64K_PAGES */ |
| |
| static void __init htab_scan_page_sizes(void) |
| { |
| int rc; |
| |
| /* se the invalid penc to -1 */ |
| mmu_psize_set_default_penc(); |
| |
| /* Default to 4K pages only */ |
| memcpy(mmu_psize_defs, mmu_psize_defaults, |
| sizeof(mmu_psize_defaults)); |
| |
| /* |
| * Try to find the available page sizes in the device-tree |
| */ |
| rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); |
| if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) { |
| /* |
| * Nothing in the device-tree, but the CPU supports 16M pages, |
| * so let's fallback on a known size list for 16M capable CPUs. |
| */ |
| memcpy(mmu_psize_defs, mmu_psize_defaults_gp, |
| sizeof(mmu_psize_defaults_gp)); |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| if (!hugetlb_disabled && !early_radix_enabled() ) { |
| /* Reserve 16G huge page memory sections for huge pages */ |
| of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); |
| } |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| } |
| |
| /* |
| * Fill in the hpte_page_sizes[] array. |
| * We go through the mmu_psize_defs[] array looking for all the |
| * supported base/actual page size combinations. Each combination |
| * has a unique pagesize encoding (penc) value in the low bits of |
| * the LP field of the HPTE. For actual page sizes less than 1MB, |
| * some of the upper LP bits are used for RPN bits, meaning that |
| * we need to fill in several entries in hpte_page_sizes[]. |
| * |
| * In diagrammatic form, with r = RPN bits and z = page size bits: |
| * PTE LP actual page size |
| * rrrr rrrz >=8KB |
| * rrrr rrzz >=16KB |
| * rrrr rzzz >=32KB |
| * rrrr zzzz >=64KB |
| * ... |
| * |
| * The zzzz bits are implementation-specific but are chosen so that |
| * no encoding for a larger page size uses the same value in its |
| * low-order N bits as the encoding for the 2^(12+N) byte page size |
| * (if it exists). |
| */ |
| static void init_hpte_page_sizes(void) |
| { |
| long int ap, bp; |
| long int shift, penc; |
| |
| for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) { |
| if (!mmu_psize_defs[bp].shift) |
| continue; /* not a supported page size */ |
| for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) { |
| penc = mmu_psize_defs[bp].penc[ap]; |
| if (penc == -1 || !mmu_psize_defs[ap].shift) |
| continue; |
| shift = mmu_psize_defs[ap].shift - LP_SHIFT; |
| if (shift <= 0) |
| continue; /* should never happen */ |
| /* |
| * For page sizes less than 1MB, this loop |
| * replicates the entry for all possible values |
| * of the rrrr bits. |
| */ |
| while (penc < (1 << LP_BITS)) { |
| hpte_page_sizes[penc] = (ap << 4) | bp; |
| penc += 1 << shift; |
| } |
| } |
| } |
| } |
| |
| static void __init htab_init_page_sizes(void) |
| { |
| bool aligned = true; |
| init_hpte_page_sizes(); |
| |
| if (!debug_pagealloc_enabled()) { |
| /* |
| * Pick a size for the linear mapping. Currently, we only |
| * support 16M, 1M and 4K which is the default |
| */ |
| if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && |
| (unsigned long)_stext % 0x1000000) { |
| if (mmu_psize_defs[MMU_PAGE_16M].shift) |
| pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n"); |
| aligned = false; |
| } |
| |
| if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned) |
| mmu_linear_psize = MMU_PAGE_16M; |
| else if (mmu_psize_defs[MMU_PAGE_1M].shift) |
| mmu_linear_psize = MMU_PAGE_1M; |
| } |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* |
| * Pick a size for the ordinary pages. Default is 4K, we support |
| * 64K for user mappings and vmalloc if supported by the processor. |
| * We only use 64k for ioremap if the processor |
| * (and firmware) support cache-inhibited large pages. |
| * If not, we use 4k and set mmu_ci_restrictions so that |
| * hash_page knows to switch processes that use cache-inhibited |
| * mappings to 4k pages. |
| */ |
| if (mmu_psize_defs[MMU_PAGE_64K].shift) { |
| mmu_virtual_psize = MMU_PAGE_64K; |
| mmu_vmalloc_psize = MMU_PAGE_64K; |
| if (mmu_linear_psize == MMU_PAGE_4K) |
| mmu_linear_psize = MMU_PAGE_64K; |
| if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { |
| /* |
| * When running on pSeries using 64k pages for ioremap |
| * would stop us accessing the HEA ethernet. So if we |
| * have the chance of ever seeing one, stay at 4k. |
| */ |
| if (!might_have_hea()) |
| mmu_io_psize = MMU_PAGE_64K; |
| } else |
| mmu_ci_restrictions = 1; |
| } |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* |
| * We try to use 16M pages for vmemmap if that is supported |
| * and we have at least 1G of RAM at boot |
| */ |
| if (mmu_psize_defs[MMU_PAGE_16M].shift && |
| memblock_phys_mem_size() >= 0x40000000) |
| mmu_vmemmap_psize = MMU_PAGE_16M; |
| else |
| mmu_vmemmap_psize = mmu_virtual_psize; |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| |
| printk(KERN_DEBUG "Page orders: linear mapping = %d, " |
| "virtual = %d, io = %d" |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| ", vmemmap = %d" |
| #endif |
| "\n", |
| mmu_psize_defs[mmu_linear_psize].shift, |
| mmu_psize_defs[mmu_virtual_psize].shift, |
| mmu_psize_defs[mmu_io_psize].shift |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| ,mmu_psize_defs[mmu_vmemmap_psize].shift |
| #endif |
| ); |
| } |
| |
| static int __init htab_dt_scan_pftsize(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *prop; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); |
| if (prop != NULL) { |
| /* pft_size[0] is the NUMA CEC cookie */ |
| ppc64_pft_size = be32_to_cpu(prop[1]); |
| return 1; |
| } |
| return 0; |
| } |
| |
| unsigned htab_shift_for_mem_size(unsigned long mem_size) |
| { |
| unsigned memshift = __ilog2(mem_size); |
| unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift; |
| unsigned pteg_shift; |
| |
| /* round mem_size up to next power of 2 */ |
| if ((1UL << memshift) < mem_size) |
| memshift += 1; |
| |
| /* aim for 2 pages / pteg */ |
| pteg_shift = memshift - (pshift + 1); |
| |
| /* |
| * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab |
| * size permitted by the architecture. |
| */ |
| return max(pteg_shift + 7, 18U); |
| } |
| |
| static unsigned long __init htab_get_table_size(void) |
| { |
| /* |
| * If hash size isn't already provided by the platform, we try to |
| * retrieve it from the device-tree. If it's not there neither, we |
| * calculate it now based on the total RAM size |
| */ |
| if (ppc64_pft_size == 0) |
| of_scan_flat_dt(htab_dt_scan_pftsize, NULL); |
| if (ppc64_pft_size) |
| return 1UL << ppc64_pft_size; |
| |
| return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size()); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static int resize_hpt_for_hotplug(unsigned long new_mem_size) |
| { |
| unsigned target_hpt_shift; |
| |
| if (!mmu_hash_ops.resize_hpt) |
| return 0; |
| |
| target_hpt_shift = htab_shift_for_mem_size(new_mem_size); |
| |
| /* |
| * To avoid lots of HPT resizes if memory size is fluctuating |
| * across a boundary, we deliberately have some hysterisis |
| * here: we immediately increase the HPT size if the target |
| * shift exceeds the current shift, but we won't attempt to |
| * reduce unless the target shift is at least 2 below the |
| * current shift |
| */ |
| if (target_hpt_shift > ppc64_pft_size || |
| target_hpt_shift < ppc64_pft_size - 1) |
| return mmu_hash_ops.resize_hpt(target_hpt_shift); |
| |
| return 0; |
| } |
| |
| int hash__create_section_mapping(unsigned long start, unsigned long end, |
| int nid, pgprot_t prot) |
| { |
| int rc; |
| |
| if (end >= H_VMALLOC_START) { |
| pr_warn("Outside the supported range\n"); |
| return -1; |
| } |
| |
| resize_hpt_for_hotplug(memblock_phys_mem_size()); |
| |
| rc = htab_bolt_mapping(start, end, __pa(start), |
| pgprot_val(prot), mmu_linear_psize, |
| mmu_kernel_ssize); |
| |
| if (rc < 0) { |
| int rc2 = htab_remove_mapping(start, end, mmu_linear_psize, |
| mmu_kernel_ssize); |
| BUG_ON(rc2 && (rc2 != -ENOENT)); |
| } |
| return rc; |
| } |
| |
| int hash__remove_section_mapping(unsigned long start, unsigned long end) |
| { |
| int rc = htab_remove_mapping(start, end, mmu_linear_psize, |
| mmu_kernel_ssize); |
| |
| if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC) |
| pr_warn("Hash collision while resizing HPT\n"); |
| |
| return rc; |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| static void __init hash_init_partition_table(phys_addr_t hash_table, |
| unsigned long htab_size) |
| { |
| mmu_partition_table_init(); |
| |
| /* |
| * PS field (VRMA page size) is not used for LPID 0, hence set to 0. |
| * For now, UPRT is 0 and we have no segment table. |
| */ |
| htab_size = __ilog2(htab_size) - 18; |
| mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false); |
| pr_info("Partition table %p\n", partition_tb); |
| } |
| |
| static void __init htab_initialize(void) |
| { |
| unsigned long table; |
| unsigned long pteg_count; |
| unsigned long prot; |
| phys_addr_t base = 0, size = 0, end; |
| u64 i; |
| |
| DBG(" -> htab_initialize()\n"); |
| |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { |
| mmu_kernel_ssize = MMU_SEGSIZE_1T; |
| mmu_highuser_ssize = MMU_SEGSIZE_1T; |
| printk(KERN_INFO "Using 1TB segments\n"); |
| } |
| |
| if (stress_slb_enabled) |
| static_branch_enable(&stress_slb_key); |
| |
| /* |
| * Calculate the required size of the htab. We want the number of |
| * PTEGs to equal one half the number of real pages. |
| */ |
| htab_size_bytes = htab_get_table_size(); |
| pteg_count = htab_size_bytes >> 7; |
| |
| htab_hash_mask = pteg_count - 1; |
| |
| if (firmware_has_feature(FW_FEATURE_LPAR) || |
| firmware_has_feature(FW_FEATURE_PS3_LV1)) { |
| /* Using a hypervisor which owns the htab */ |
| htab_address = NULL; |
| _SDR1 = 0; |
| #ifdef CONFIG_FA_DUMP |
| /* |
| * If firmware assisted dump is active firmware preserves |
| * the contents of htab along with entire partition memory. |
| * Clear the htab if firmware assisted dump is active so |
| * that we dont end up using old mappings. |
| */ |
| if (is_fadump_active() && mmu_hash_ops.hpte_clear_all) |
| mmu_hash_ops.hpte_clear_all(); |
| #endif |
| } else { |
| unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE; |
| |
| #ifdef CONFIG_PPC_CELL |
| /* |
| * Cell may require the hash table down low when using the |
| * Axon IOMMU in order to fit the dynamic region over it, see |
| * comments in cell/iommu.c |
| */ |
| if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) { |
| limit = 0x80000000; |
| pr_info("Hash table forced below 2G for Axon IOMMU\n"); |
| } |
| #endif /* CONFIG_PPC_CELL */ |
| |
| table = memblock_phys_alloc_range(htab_size_bytes, |
| htab_size_bytes, |
| 0, limit); |
| if (!table) |
| panic("ERROR: Failed to allocate %pa bytes below %pa\n", |
| &htab_size_bytes, &limit); |
| |
| DBG("Hash table allocated at %lx, size: %lx\n", table, |
| htab_size_bytes); |
| |
| htab_address = __va(table); |
| |
| /* htab absolute addr + encoded htabsize */ |
| _SDR1 = table + __ilog2(htab_size_bytes) - 18; |
| |
| /* Initialize the HPT with no entries */ |
| memset((void *)table, 0, htab_size_bytes); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| /* Set SDR1 */ |
| mtspr(SPRN_SDR1, _SDR1); |
| else |
| hash_init_partition_table(table, htab_size_bytes); |
| } |
| |
| prot = pgprot_val(PAGE_KERNEL); |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| if (debug_pagealloc_enabled()) { |
| linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; |
| linear_map_hash_slots = memblock_alloc_try_nid( |
| linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT, |
| ppc64_rma_size, NUMA_NO_NODE); |
| if (!linear_map_hash_slots) |
| panic("%s: Failed to allocate %lu bytes max_addr=%pa\n", |
| __func__, linear_map_hash_count, &ppc64_rma_size); |
| } |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| |
| /* create bolted the linear mapping in the hash table */ |
| for_each_mem_range(i, &base, &end) { |
| size = end - base; |
| base = (unsigned long)__va(base); |
| |
| DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", |
| base, size, prot); |
| |
| if ((base + size) >= H_VMALLOC_START) { |
| pr_warn("Outside the supported range\n"); |
| continue; |
| } |
| |
| BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), |
| prot, mmu_linear_psize, mmu_kernel_ssize)); |
| } |
| memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); |
| |
| /* |
| * If we have a memory_limit and we've allocated TCEs then we need to |
| * explicitly map the TCE area at the top of RAM. We also cope with the |
| * case that the TCEs start below memory_limit. |
| * tce_alloc_start/end are 16MB aligned so the mapping should work |
| * for either 4K or 16MB pages. |
| */ |
| if (tce_alloc_start) { |
| tce_alloc_start = (unsigned long)__va(tce_alloc_start); |
| tce_alloc_end = (unsigned long)__va(tce_alloc_end); |
| |
| if (base + size >= tce_alloc_start) |
| tce_alloc_start = base + size + 1; |
| |
| BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, |
| __pa(tce_alloc_start), prot, |
| mmu_linear_psize, mmu_kernel_ssize)); |
| } |
| |
| |
| DBG(" <- htab_initialize()\n"); |
| } |
| #undef KB |
| #undef MB |
| |
| void __init hash__early_init_devtree(void) |
| { |
| /* Initialize segment sizes */ |
| of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); |
| |
| /* Initialize page sizes */ |
| htab_scan_page_sizes(); |
| } |
| |
| static struct hash_mm_context init_hash_mm_context; |
| void __init hash__early_init_mmu(void) |
| { |
| #ifndef CONFIG_PPC_64K_PAGES |
| /* |
| * We have code in __hash_page_4K() and elsewhere, which assumes it can |
| * do the following: |
| * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); |
| * |
| * Where the slot number is between 0-15, and values of 8-15 indicate |
| * the secondary bucket. For that code to work H_PAGE_F_SECOND and |
| * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and |
| * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here |
| * with a BUILD_BUG_ON(). |
| */ |
| BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3))); |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| htab_init_page_sizes(); |
| |
| /* |
| * initialize page table size |
| */ |
| __pte_frag_nr = H_PTE_FRAG_NR; |
| __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; |
| __pmd_frag_nr = H_PMD_FRAG_NR; |
| __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT; |
| |
| __pte_index_size = H_PTE_INDEX_SIZE; |
| __pmd_index_size = H_PMD_INDEX_SIZE; |
| __pud_index_size = H_PUD_INDEX_SIZE; |
| __pgd_index_size = H_PGD_INDEX_SIZE; |
| __pud_cache_index = H_PUD_CACHE_INDEX; |
| __pte_table_size = H_PTE_TABLE_SIZE; |
| __pmd_table_size = H_PMD_TABLE_SIZE; |
| __pud_table_size = H_PUD_TABLE_SIZE; |
| __pgd_table_size = H_PGD_TABLE_SIZE; |
| /* |
| * 4k use hugepd format, so for hash set then to |
| * zero |
| */ |
| __pmd_val_bits = HASH_PMD_VAL_BITS; |
| __pud_val_bits = HASH_PUD_VAL_BITS; |
| __pgd_val_bits = HASH_PGD_VAL_BITS; |
| |
| __kernel_virt_start = H_KERN_VIRT_START; |
| __vmalloc_start = H_VMALLOC_START; |
| __vmalloc_end = H_VMALLOC_END; |
| __kernel_io_start = H_KERN_IO_START; |
| __kernel_io_end = H_KERN_IO_END; |
| vmemmap = (struct page *)H_VMEMMAP_START; |
| ioremap_bot = IOREMAP_BASE; |
| |
| #ifdef CONFIG_PCI |
| pci_io_base = ISA_IO_BASE; |
| #endif |
| |
| /* Select appropriate backend */ |
| if (firmware_has_feature(FW_FEATURE_PS3_LV1)) |
| ps3_early_mm_init(); |
| else if (firmware_has_feature(FW_FEATURE_LPAR)) |
| hpte_init_pseries(); |
| else if (IS_ENABLED(CONFIG_PPC_NATIVE)) |
| hpte_init_native(); |
| |
| if (!mmu_hash_ops.hpte_insert) |
| panic("hash__early_init_mmu: No MMU hash ops defined!\n"); |
| |
| /* |
| * Initialize the MMU Hash table and create the linear mapping |
| * of memory. Has to be done before SLB initialization as this is |
| * currently where the page size encoding is obtained. |
| */ |
| htab_initialize(); |
| |
| init_mm.context.hash_context = &init_hash_mm_context; |
| mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); |
| |
| pr_info("Initializing hash mmu with SLB\n"); |
| /* Initialize SLB management */ |
| slb_initialize(); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_206) |
| && cpu_has_feature(CPU_FTR_HVMODE)) |
| tlbiel_all(); |
| } |
| |
| #ifdef CONFIG_SMP |
| void hash__early_init_mmu_secondary(void) |
| { |
| /* Initialize hash table for that CPU */ |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| mtspr(SPRN_SDR1, _SDR1); |
| else |
| set_ptcr_when_no_uv(__pa(partition_tb) | |
| (PATB_SIZE_SHIFT - 12)); |
| } |
| /* Initialize SLB */ |
| slb_initialize(); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_206) |
| && cpu_has_feature(CPU_FTR_HVMODE)) |
| tlbiel_all(); |
| |
| #ifdef CONFIG_PPC_MEM_KEYS |
| if (mmu_has_feature(MMU_FTR_PKEY)) |
| mtspr(SPRN_UAMOR, default_uamor); |
| #endif |
| } |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * Called by asm hashtable.S for doing lazy icache flush |
| */ |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) |
| { |
| struct page *page; |
| |
| if (!pfn_valid(pte_pfn(pte))) |
| return pp; |
| |
| page = pte_page(pte); |
| |
| /* page is dirty */ |
| if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) { |
| if (trap == INTERRUPT_INST_STORAGE) { |
| flush_dcache_icache_page(page); |
| set_bit(PG_dcache_clean, &page->flags); |
| } else |
| pp |= HPTE_R_N; |
| } |
| return pp; |
| } |
| |
| #ifdef CONFIG_PPC_MM_SLICES |
| static unsigned int get_paca_psize(unsigned long addr) |
| { |
| unsigned char *psizes; |
| unsigned long index, mask_index; |
| |
| if (addr < SLICE_LOW_TOP) { |
| psizes = get_paca()->mm_ctx_low_slices_psize; |
| index = GET_LOW_SLICE_INDEX(addr); |
| } else { |
| psizes = get_paca()->mm_ctx_high_slices_psize; |
| index = GET_HIGH_SLICE_INDEX(addr); |
| } |
| mask_index = index & 0x1; |
| return (psizes[index >> 1] >> (mask_index * 4)) & 0xF; |
| } |
| |
| #else |
| unsigned int get_paca_psize(unsigned long addr) |
| { |
| return get_paca()->mm_ctx_user_psize; |
| } |
| #endif |
| |
| /* |
| * Demote a segment to using 4k pages. |
| * For now this makes the whole process use 4k pages. |
| */ |
| #ifdef CONFIG_PPC_64K_PAGES |
| void demote_segment_4k(struct mm_struct *mm, unsigned long addr) |
| { |
| if (get_slice_psize(mm, addr) == MMU_PAGE_4K) |
| return; |
| slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); |
| copro_flush_all_slbs(mm); |
| if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { |
| |
| copy_mm_to_paca(mm); |
| slb_flush_and_restore_bolted(); |
| } |
| } |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| #ifdef CONFIG_PPC_SUBPAGE_PROT |
| /* |
| * This looks up a 2-bit protection code for a 4k subpage of a 64k page. |
| * Userspace sets the subpage permissions using the subpage_prot system call. |
| * |
| * Result is 0: full permissions, _PAGE_RW: read-only, |
| * _PAGE_RWX: no access. |
| */ |
| static int subpage_protection(struct mm_struct *mm, unsigned long ea) |
| { |
| struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context); |
| u32 spp = 0; |
| u32 **sbpm, *sbpp; |
| |
| if (!spt) |
| return 0; |
| |
| if (ea >= spt->maxaddr) |
| return 0; |
| if (ea < 0x100000000UL) { |
| /* addresses below 4GB use spt->low_prot */ |
| sbpm = spt->low_prot; |
| } else { |
| sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; |
| if (!sbpm) |
| return 0; |
| } |
| sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; |
| if (!sbpp) |
| return 0; |
| spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; |
| |
| /* extract 2-bit bitfield for this 4k subpage */ |
| spp >>= 30 - 2 * ((ea >> 12) & 0xf); |
| |
| /* |
| * 0 -> full premission |
| * 1 -> Read only |
| * 2 -> no access. |
| * We return the flag that need to be cleared. |
| */ |
| spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0); |
| return spp; |
| } |
| |
| #else /* CONFIG_PPC_SUBPAGE_PROT */ |
| static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) |
| { |
| return 0; |
| } |
| #endif |
| |
| void hash_failure_debug(unsigned long ea, unsigned long access, |
| unsigned long vsid, unsigned long trap, |
| int ssize, int psize, int lpsize, unsigned long pte) |
| { |
| if (!printk_ratelimit()) |
| return; |
| pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", |
| ea, access, current->comm); |
| pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", |
| trap, vsid, ssize, psize, lpsize, pte); |
| } |
| |
| static void check_paca_psize(unsigned long ea, struct mm_struct *mm, |
| int psize, bool user_region) |
| { |
| if (user_region) { |
| if (psize != get_paca_psize(ea)) { |
| copy_mm_to_paca(mm); |
| slb_flush_and_restore_bolted(); |
| } |
| } else if (get_paca()->vmalloc_sllp != |
| mmu_psize_defs[mmu_vmalloc_psize].sllp) { |
| get_paca()->vmalloc_sllp = |
| mmu_psize_defs[mmu_vmalloc_psize].sllp; |
| slb_vmalloc_update(); |
| } |
| } |
| |
| /* |
| * Result code is: |
| * 0 - handled |
| * 1 - normal page fault |
| * -1 - critical hash insertion error |
| * -2 - access not permitted by subpage protection mechanism |
| */ |
| int hash_page_mm(struct mm_struct *mm, unsigned long ea, |
| unsigned long access, unsigned long trap, |
| unsigned long flags) |
| { |
| bool is_thp; |
| pgd_t *pgdir; |
| unsigned long vsid; |
| pte_t *ptep; |
| unsigned hugeshift; |
| int rc, user_region = 0; |
| int psize, ssize; |
| |
| DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", |
| ea, access, trap); |
| trace_hash_fault(ea, access, trap); |
| |
| /* Get region & vsid */ |
| switch (get_region_id(ea)) { |
| case USER_REGION_ID: |
| user_region = 1; |
| if (! mm) { |
| DBG_LOW(" user region with no mm !\n"); |
| rc = 1; |
| goto bail; |
| } |
| psize = get_slice_psize(mm, ea); |
| ssize = user_segment_size(ea); |
| vsid = get_user_vsid(&mm->context, ea, ssize); |
| break; |
| case VMALLOC_REGION_ID: |
| vsid = get_kernel_vsid(ea, mmu_kernel_ssize); |
| psize = mmu_vmalloc_psize; |
| ssize = mmu_kernel_ssize; |
| flags |= HPTE_USE_KERNEL_KEY; |
| break; |
| |
| case IO_REGION_ID: |
| vsid = get_kernel_vsid(ea, mmu_kernel_ssize); |
| psize = mmu_io_psize; |
| ssize = mmu_kernel_ssize; |
| flags |= HPTE_USE_KERNEL_KEY; |
| break; |
| default: |
| /* |
| * Not a valid range |
| * Send the problem up to do_page_fault() |
| */ |
| rc = 1; |
| goto bail; |
| } |
| DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); |
| |
| /* Bad address. */ |
| if (!vsid) { |
| DBG_LOW("Bad address!\n"); |
| rc = 1; |
| goto bail; |
| } |
| /* Get pgdir */ |
| pgdir = mm->pgd; |
| if (pgdir == NULL) { |
| rc = 1; |
| goto bail; |
| } |
| |
| /* Check CPU locality */ |
| if (user_region && mm_is_thread_local(mm)) |
| flags |= HPTE_LOCAL_UPDATE; |
| |
| #ifndef CONFIG_PPC_64K_PAGES |
| /* |
| * If we use 4K pages and our psize is not 4K, then we might |
| * be hitting a special driver mapping, and need to align the |
| * address before we fetch the PTE. |
| * |
| * It could also be a hugepage mapping, in which case this is |
| * not necessary, but it's not harmful, either. |
| */ |
| if (psize != MMU_PAGE_4K) |
| ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| /* Get PTE and page size from page tables */ |
| ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift); |
| if (ptep == NULL || !pte_present(*ptep)) { |
| DBG_LOW(" no PTE !\n"); |
| rc = 1; |
| goto bail; |
| } |
| |
| /* |
| * Add _PAGE_PRESENT to the required access perm. If there are parallel |
| * updates to the pte that can possibly clear _PAGE_PTE, catch that too. |
| * |
| * We can safely use the return pte address in rest of the function |
| * because we do set H_PAGE_BUSY which prevents further updates to pte |
| * from generic code. |
| */ |
| access |= _PAGE_PRESENT | _PAGE_PTE; |
| |
| /* |
| * Pre-check access permissions (will be re-checked atomically |
| * in __hash_page_XX but this pre-check is a fast path |
| */ |
| if (!check_pte_access(access, pte_val(*ptep))) { |
| DBG_LOW(" no access !\n"); |
| rc = 1; |
| goto bail; |
| } |
| |
| if (hugeshift) { |
| if (is_thp) |
| rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, |
| trap, flags, ssize, psize); |
| #ifdef CONFIG_HUGETLB_PAGE |
| else |
| rc = __hash_page_huge(ea, access, vsid, ptep, trap, |
| flags, ssize, hugeshift, psize); |
| #else |
| else { |
| /* |
| * if we have hugeshift, and is not transhuge with |
| * hugetlb disabled, something is really wrong. |
| */ |
| rc = 1; |
| WARN_ON(1); |
| } |
| #endif |
| if (current->mm == mm) |
| check_paca_psize(ea, mm, psize, user_region); |
| |
| goto bail; |
| } |
| |
| #ifndef CONFIG_PPC_64K_PAGES |
| DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); |
| #else |
| DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), |
| pte_val(*(ptep + PTRS_PER_PTE))); |
| #endif |
| /* Do actual hashing */ |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */ |
| if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) { |
| demote_segment_4k(mm, ea); |
| psize = MMU_PAGE_4K; |
| } |
| |
| /* |
| * If this PTE is non-cacheable and we have restrictions on |
| * using non cacheable large pages, then we switch to 4k |
| */ |
| if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) { |
| if (user_region) { |
| demote_segment_4k(mm, ea); |
| psize = MMU_PAGE_4K; |
| } else if (ea < VMALLOC_END) { |
| /* |
| * some driver did a non-cacheable mapping |
| * in vmalloc space, so switch vmalloc |
| * to 4k pages |
| */ |
| printk(KERN_ALERT "Reducing vmalloc segment " |
| "to 4kB pages because of " |
| "non-cacheable mapping\n"); |
| psize = mmu_vmalloc_psize = MMU_PAGE_4K; |
| copro_flush_all_slbs(mm); |
| } |
| } |
| |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| if (current->mm == mm) |
| check_paca_psize(ea, mm, psize, user_region); |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| if (psize == MMU_PAGE_64K) |
| rc = __hash_page_64K(ea, access, vsid, ptep, trap, |
| flags, ssize); |
| else |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| { |
| int spp = subpage_protection(mm, ea); |
| if (access & spp) |
| rc = -2; |
| else |
| rc = __hash_page_4K(ea, access, vsid, ptep, trap, |
| flags, ssize, spp); |
| } |
| |
| /* |
| * Dump some info in case of hash insertion failure, they should |
| * never happen so it is really useful to know if/when they do |
| */ |
| if (rc == -1) |
| hash_failure_debug(ea, access, vsid, trap, ssize, psize, |
| psize, pte_val(*ptep)); |
| #ifndef CONFIG_PPC_64K_PAGES |
| DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); |
| #else |
| DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), |
| pte_val(*(ptep + PTRS_PER_PTE))); |
| #endif |
| DBG_LOW(" -> rc=%d\n", rc); |
| |
| bail: |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(hash_page_mm); |
| |
| int hash_page(unsigned long ea, unsigned long access, unsigned long trap, |
| unsigned long dsisr) |
| { |
| unsigned long flags = 0; |
| struct mm_struct *mm = current->mm; |
| |
| if ((get_region_id(ea) == VMALLOC_REGION_ID) || |
| (get_region_id(ea) == IO_REGION_ID)) |
| mm = &init_mm; |
| |
| if (dsisr & DSISR_NOHPTE) |
| flags |= HPTE_NOHPTE_UPDATE; |
| |
| return hash_page_mm(mm, ea, access, trap, flags); |
| } |
| EXPORT_SYMBOL_GPL(hash_page); |
| |
| DECLARE_INTERRUPT_HANDLER(__do_hash_fault); |
| DEFINE_INTERRUPT_HANDLER(__do_hash_fault) |
| { |
| unsigned long ea = regs->dar; |
| unsigned long dsisr = regs->dsisr; |
| unsigned long access = _PAGE_PRESENT | _PAGE_READ; |
| unsigned long flags = 0; |
| struct mm_struct *mm; |
| unsigned int region_id; |
| long err; |
| |
| if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) { |
| hash__do_page_fault(regs); |
| return; |
| } |
| |
| region_id = get_region_id(ea); |
| if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID)) |
| mm = &init_mm; |
| else |
| mm = current->mm; |
| |
| if (dsisr & DSISR_NOHPTE) |
| flags |= HPTE_NOHPTE_UPDATE; |
| |
| if (dsisr & DSISR_ISSTORE) |
| access |= _PAGE_WRITE; |
| /* |
| * We set _PAGE_PRIVILEGED only when |
| * kernel mode access kernel space. |
| * |
| * _PAGE_PRIVILEGED is NOT set |
| * 1) when kernel mode access user space |
| * 2) user space access kernel space. |
| */ |
| access |= _PAGE_PRIVILEGED; |
| if (user_mode(regs) || (region_id == USER_REGION_ID)) |
| access &= ~_PAGE_PRIVILEGED; |
| |
| if (TRAP(regs) == INTERRUPT_INST_STORAGE) |
| access |= _PAGE_EXEC; |
| |
| err = hash_page_mm(mm, ea, access, TRAP(regs), flags); |
| if (unlikely(err < 0)) { |
| // failed to instert a hash PTE due to an hypervisor error |
| if (user_mode(regs)) { |
| if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2) |
| _exception(SIGSEGV, regs, SEGV_ACCERR, ea); |
| else |
| _exception(SIGBUS, regs, BUS_ADRERR, ea); |
| } else { |
| bad_page_fault(regs, SIGBUS); |
| } |
| err = 0; |
| |
| } else if (err) { |
| hash__do_page_fault(regs); |
| } |
| } |
| |
| /* |
| * The _RAW interrupt entry checks for the in_nmi() case before |
| * running the full handler. |
| */ |
| DEFINE_INTERRUPT_HANDLER_RAW(do_hash_fault) |
| { |
| /* |
| * If we are in an "NMI" (e.g., an interrupt when soft-disabled), then |
| * don't call hash_page, just fail the fault. This is required to |
| * prevent re-entrancy problems in the hash code, namely perf |
| * interrupts hitting while something holds H_PAGE_BUSY, and taking a |
| * hash fault. See the comment in hash_preload(). |
| * |
| * We come here as a result of a DSI at a point where we don't want |
| * to call hash_page, such as when we are accessing memory (possibly |
| * user memory) inside a PMU interrupt that occurred while interrupts |
| * were soft-disabled. We want to invoke the exception handler for |
| * the access, or panic if there isn't a handler. |
| */ |
| if (unlikely(in_nmi())) { |
| do_bad_page_fault_segv(regs); |
| return 0; |
| } |
| |
| __do_hash_fault(regs); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_MM_SLICES |
| static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) |
| { |
| int psize = get_slice_psize(mm, ea); |
| |
| /* We only prefault standard pages for now */ |
| if (unlikely(psize != mm_ctx_user_psize(&mm->context))) |
| return false; |
| |
| /* |
| * Don't prefault if subpage protection is enabled for the EA. |
| */ |
| if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea))) |
| return false; |
| |
| return true; |
| } |
| #else |
| static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) |
| { |
| return true; |
| } |
| #endif |
| |
| static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea, |
| bool is_exec, unsigned long trap) |
| { |
| unsigned long vsid; |
| pgd_t *pgdir; |
| int rc, ssize, update_flags = 0; |
| unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0); |
| unsigned long flags; |
| |
| BUG_ON(get_region_id(ea) != USER_REGION_ID); |
| |
| if (!should_hash_preload(mm, ea)) |
| return; |
| |
| DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," |
| " trap=%lx\n", mm, mm->pgd, ea, access, trap); |
| |
| /* Get Linux PTE if available */ |
| pgdir = mm->pgd; |
| if (pgdir == NULL) |
| return; |
| |
| /* Get VSID */ |
| ssize = user_segment_size(ea); |
| vsid = get_user_vsid(&mm->context, ea, ssize); |
| if (!vsid) |
| return; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on |
| * a 64K kernel), then we don't preload, hash_page() will take |
| * care of it once we actually try to access the page. |
| * That way we don't have to duplicate all of the logic for segment |
| * page size demotion here |
| * Called with PTL held, hence can be sure the value won't change in |
| * between. |
| */ |
| if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep)) |
| return; |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| /* |
| * __hash_page_* must run with interrupts off, as it sets the |
| * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any |
| * time and may take a hash fault reading the user stack, see |
| * read_user_stack_slow() in the powerpc/perf code. |
| * |
| * If that takes a hash fault on the same page as we lock here, it |
| * will bail out when seeing H_PAGE_BUSY set, and retry the access |
| * leading to an infinite loop. |
| * |
| * Disabling interrupts here does not prevent perf interrupts, but it |
| * will prevent them taking hash faults (see the NMI test in |
| * do_hash_page), then read_user_stack's copy_from_user_nofault will |
| * fail and perf will fall back to read_user_stack_slow(), which |
| * walks the Linux page tables. |
| * |
| * Interrupts must also be off for the duration of the |
| * mm_is_thread_local test and update, to prevent preempt running the |
| * mm on another CPU (XXX: this may be racy vs kthread_use_mm). |
| */ |
| local_irq_save(flags); |
| |
| /* Is that local to this CPU ? */ |
| if (mm_is_thread_local(mm)) |
| update_flags |= HPTE_LOCAL_UPDATE; |
| |
| /* Hash it in */ |
| #ifdef CONFIG_PPC_64K_PAGES |
| if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K) |
| rc = __hash_page_64K(ea, access, vsid, ptep, trap, |
| update_flags, ssize); |
| else |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, |
| ssize, subpage_protection(mm, ea)); |
| |
| /* Dump some info in case of hash insertion failure, they should |
| * never happen so it is really useful to know if/when they do |
| */ |
| if (rc == -1) |
| hash_failure_debug(ea, access, vsid, trap, ssize, |
| mm_ctx_user_psize(&mm->context), |
| mm_ctx_user_psize(&mm->context), |
| pte_val(*ptep)); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * This is called at the end of handling a user page fault, when the |
| * fault has been handled by updating a PTE in the linux page tables. |
| * We use it to preload an HPTE into the hash table corresponding to |
| * the updated linux PTE. |
| * |
| * This must always be called with the pte lock held. |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep) |
| { |
| /* |
| * We don't need to worry about _PAGE_PRESENT here because we are |
| * called with either mm->page_table_lock held or ptl lock held |
| */ |
| unsigned long trap; |
| bool is_exec; |
| |
| if (radix_enabled()) |
| return; |
| |
| /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ |
| if (!pte_young(*ptep) || address >= TASK_SIZE) |
| return; |
| |
| /* |
| * We try to figure out if we are coming from an instruction |
| * access fault and pass that down to __hash_page so we avoid |
| * double-faulting on execution of fresh text. We have to test |
| * for regs NULL since init will get here first thing at boot. |
| * |
| * We also avoid filling the hash if not coming from a fault. |
| */ |
| |
| trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL; |
| switch (trap) { |
| case 0x300: |
| is_exec = false; |
| break; |
| case 0x400: |
| is_exec = true; |
| break; |
| default: |
| return; |
| } |
| |
| hash_preload(vma->vm_mm, ptep, address, is_exec, trap); |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static inline void tm_flush_hash_page(int local) |
| { |
| /* |
| * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a |
| * page back to a block device w/PIO could pick up transactional data |
| * (bad!) so we force an abort here. Before the sync the page will be |
| * made read-only, which will flush_hash_page. BIG ISSUE here: if the |
| * kernel uses a page from userspace without unmapping it first, it may |
| * see the speculated version. |
| */ |
| if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && |
| MSR_TM_ACTIVE(current->thread.regs->msr)) { |
| tm_enable(); |
| tm_abort(TM_CAUSE_TLBI); |
| } |
| } |
| #else |
| static inline void tm_flush_hash_page(int local) |
| { |
| } |
| #endif |
| |
| /* |
| * Return the global hash slot, corresponding to the given PTE, which contains |
| * the HPTE. |
| */ |
| unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift, |
| int ssize, real_pte_t rpte, unsigned int subpg_index) |
| { |
| unsigned long hash, gslot, hidx; |
| |
| hash = hpt_hash(vpn, shift, ssize); |
| hidx = __rpte_to_hidx(rpte, subpg_index); |
| if (hidx & _PTEIDX_SECONDARY) |
| hash = ~hash; |
| gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| gslot += hidx & _PTEIDX_GROUP_IX; |
| return gslot; |
| } |
| |
| void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, |
| unsigned long flags) |
| { |
| unsigned long index, shift, gslot; |
| int local = flags & HPTE_LOCAL_UPDATE; |
| |
| DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); |
| pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { |
| gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index); |
| DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot); |
| /* |
| * We use same base page size and actual psize, because we don't |
| * use these functions for hugepage |
| */ |
| mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize, |
| ssize, local); |
| } pte_iterate_hashed_end(); |
| |
| tm_flush_hash_page(local); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| void flush_hash_hugepage(unsigned long vsid, unsigned long addr, |
| pmd_t *pmdp, unsigned int psize, int ssize, |
| unsigned long flags) |
| { |
| int i, max_hpte_count, valid; |
| unsigned long s_addr; |
| unsigned char *hpte_slot_array; |
| unsigned long hidx, shift, vpn, hash, slot; |
| int local = flags & HPTE_LOCAL_UPDATE; |
| |
| s_addr = addr & HPAGE_PMD_MASK; |
| hpte_slot_array = get_hpte_slot_array(pmdp); |
| /* |
| * IF we try to do a HUGE PTE update after a withdraw is done. |
| * we will find the below NULL. This happens when we do |
| * split_huge_pmd |
| */ |
| if (!hpte_slot_array) |
| return; |
| |
| if (mmu_hash_ops.hugepage_invalidate) { |
| mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array, |
| psize, ssize, local); |
| goto tm_abort; |
| } |
| /* |
| * No bluk hpte removal support, invalidate each entry |
| */ |
| shift = mmu_psize_defs[psize].shift; |
| max_hpte_count = HPAGE_PMD_SIZE >> shift; |
| for (i = 0; i < max_hpte_count; i++) { |
| /* |
| * 8 bits per each hpte entries |
| * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] |
| */ |
| valid = hpte_valid(hpte_slot_array, i); |
| if (!valid) |
| continue; |
| hidx = hpte_hash_index(hpte_slot_array, i); |
| |
| /* get the vpn */ |
| addr = s_addr + (i * (1ul << shift)); |
| vpn = hpt_vpn(addr, vsid, ssize); |
| hash = hpt_hash(vpn, shift, ssize); |
| if (hidx & _PTEIDX_SECONDARY) |
| hash = ~hash; |
| |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += hidx & _PTEIDX_GROUP_IX; |
| mmu_hash_ops.hpte_invalidate(slot, vpn, psize, |
| MMU_PAGE_16M, ssize, local); |
| } |
| tm_abort: |
| tm_flush_hash_page(local); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| void flush_hash_range(unsigned long number, int local) |
| { |
| if (mmu_hash_ops.flush_hash_range) |
| mmu_hash_ops.flush_hash_range(number, local); |
| else { |
| int i; |
| struct ppc64_tlb_batch *batch = |
| this_cpu_ptr(&ppc64_tlb_batch); |
| |
| for (i = 0; i < number; i++) |
| flush_hash_page(batch->vpn[i], batch->pte[i], |
| batch->psize, batch->ssize, local); |
| } |
| } |
| |
| long hpte_insert_repeating(unsigned long hash, unsigned long vpn, |
| unsigned long pa, unsigned long rflags, |
| unsigned long vflags, int psize, int ssize) |
| { |
| unsigned long hpte_group; |
| long slot; |
| |
| repeat: |
| hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| |
| /* Insert into the hash table, primary slot */ |
| slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags, |
| psize, psize, ssize); |
| |
| /* Primary is full, try the secondary */ |
| if (unlikely(slot == -1)) { |
| hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, |
| vflags | HPTE_V_SECONDARY, |
| psize, psize, ssize); |
| if (slot == -1) { |
| if (mftb() & 0x1) |
| hpte_group = (hash & htab_hash_mask) * |
| HPTES_PER_GROUP; |
| |
| mmu_hash_ops.hpte_remove(hpte_group); |
| goto repeat; |
| } |
| } |
| |
| return slot; |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) |
| { |
| unsigned long hash; |
| unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); |
| unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); |
| unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY); |
| long ret; |
| |
| hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); |
| |
| /* Don't create HPTE entries for bad address */ |
| if (!vsid) |
| return; |
| |
| ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, |
| HPTE_V_BOLTED, |
| mmu_linear_psize, mmu_kernel_ssize); |
| |
| BUG_ON (ret < 0); |
| spin_lock(&linear_map_hash_lock); |
| BUG_ON(linear_map_hash_slots[lmi] & 0x80); |
| linear_map_hash_slots[lmi] = ret | 0x80; |
| spin_unlock(&linear_map_hash_lock); |
| } |
| |
| static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) |
| { |
| unsigned long hash, hidx, slot; |
| unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); |
| unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); |
| |
| hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); |
| spin_lock(&linear_map_hash_lock); |
| BUG_ON(!(linear_map_hash_slots[lmi] & 0x80)); |
| hidx = linear_map_hash_slots[lmi] & 0x7f; |
| linear_map_hash_slots[lmi] = 0; |
| spin_unlock(&linear_map_hash_lock); |
| if (hidx & _PTEIDX_SECONDARY) |
| hash = ~hash; |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += hidx & _PTEIDX_GROUP_IX; |
| mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize, |
| mmu_linear_psize, |
| mmu_kernel_ssize, 0); |
| } |
| |
| void __kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| unsigned long flags, vaddr, lmi; |
| int i; |
| |
| local_irq_save(flags); |
| for (i = 0; i < numpages; i++, page++) { |
| vaddr = (unsigned long)page_address(page); |
| lmi = __pa(vaddr) >> PAGE_SHIFT; |
| if (lmi >= linear_map_hash_count) |
| continue; |
| if (enable) |
| kernel_map_linear_page(vaddr, lmi); |
| else |
| kernel_unmap_linear_page(vaddr, lmi); |
| } |
| local_irq_restore(flags); |
| } |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| |
| void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base, |
| phys_addr_t first_memblock_size) |
| { |
| /* |
| * We don't currently support the first MEMBLOCK not mapping 0 |
| * physical on those processors |
| */ |
| BUG_ON(first_memblock_base != 0); |
| |
| /* |
| * On virtualized systems the first entry is our RMA region aka VRMA, |
| * non-virtualized 64-bit hash MMU systems don't have a limitation |
| * on real mode access. |
| * |
| * For guests on platforms before POWER9, we clamp the it limit to 1G |
| * to avoid some funky things such as RTAS bugs etc... |
| * |
| * On POWER9 we limit to 1TB in case the host erroneously told us that |
| * the RMA was >1TB. Effective address bits 0:23 are treated as zero |
| * (meaning the access is aliased to zero i.e. addr = addr % 1TB) |
| * for virtual real mode addressing and so it doesn't make sense to |
| * have an area larger than 1TB as it can't be addressed. |
| */ |
| if (!early_cpu_has_feature(CPU_FTR_HVMODE)) { |
| ppc64_rma_size = first_memblock_size; |
| if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) |
| ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000); |
| else |
| ppc64_rma_size = min_t(u64, ppc64_rma_size, |
| 1UL << SID_SHIFT_1T); |
| |
| /* Finally limit subsequent allocations */ |
| memblock_set_current_limit(ppc64_rma_size); |
| } else { |
| ppc64_rma_size = ULONG_MAX; |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| static int hpt_order_get(void *data, u64 *val) |
| { |
| *val = ppc64_pft_size; |
| return 0; |
| } |
| |
| static int hpt_order_set(void *data, u64 val) |
| { |
| int ret; |
| |
| if (!mmu_hash_ops.resize_hpt) |
| return -ENODEV; |
| |
| cpus_read_lock(); |
| ret = mmu_hash_ops.resize_hpt(val); |
| cpus_read_unlock(); |
| |
| return ret; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n"); |
| |
| static int __init hash64_debugfs(void) |
| { |
| debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL, |
| &fops_hpt_order); |
| return 0; |
| } |
| machine_device_initcall(pseries, hash64_debugfs); |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| void __init print_system_hash_info(void) |
| { |
| pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); |
| |
| if (htab_hash_mask) |
| pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask); |
| } |