blob: 9903a78df896fd141d035810f75351d5c0c0ade7 [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <drm/drm_scdc_helper.h>
#include "i915_drv.h"
#include "intel_audio.h"
#include "intel_combo_phy.h"
#include "intel_connector.h"
#include "intel_crtc.h"
#include "intel_ddi.h"
#include "intel_ddi_buf_trans.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#include "intel_dp_mst.h"
#include "intel_dpio_phy.h"
#include "intel_dsi.h"
#include "intel_fdi.h"
#include "intel_fifo_underrun.h"
#include "intel_gmbus.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_lspcon.h"
#include "intel_panel.h"
#include "intel_pps.h"
#include "intel_psr.h"
#include "intel_snps_phy.h"
#include "intel_sprite.h"
#include "intel_tc.h"
#include "intel_vdsc.h"
#include "intel_vrr.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
static const u8 index_to_dp_signal_levels[] = {
[0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
[3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
[4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
[7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
};
static int intel_ddi_hdmi_level(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int n_entries, level, default_entry;
n_entries = intel_ddi_hdmi_num_entries(encoder, crtc_state, &default_entry);
if (n_entries == 0)
return 0;
level = intel_bios_hdmi_level_shift(encoder);
if (level < 0)
level = default_entry;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
return level;
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* DP/eDP/FDI use cases.
*/
void hsw_prepare_dp_ddi_buffers(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int i, n_entries;
enum port port = encoder->port;
const struct intel_ddi_buf_trans *ddi_translations;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
/* If we're boosting the current, set bit 31 of trans1 */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv) &&
intel_bios_encoder_dp_boost_level(encoder->devdata))
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
for (i = 0; i < n_entries; i++) {
intel_de_write(dev_priv, DDI_BUF_TRANS_LO(port, i),
ddi_translations->entries[i].hsw.trans1 | iboost_bit);
intel_de_write(dev_priv, DDI_BUF_TRANS_HI(port, i),
ddi_translations->entries[i].hsw.trans2);
}
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* HDMI/DVI use cases.
*/
static void hsw_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int n_entries;
enum port port = encoder->port;
const struct intel_ddi_buf_trans *ddi_translations;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
/* If we're boosting the current, set bit 31 of trans1 */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv) &&
intel_bios_encoder_hdmi_boost_level(encoder->devdata))
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
/* Entry 9 is for HDMI: */
intel_de_write(dev_priv, DDI_BUF_TRANS_LO(port, 9),
ddi_translations->entries[level].hsw.trans1 | iboost_bit);
intel_de_write(dev_priv, DDI_BUF_TRANS_HI(port, 9),
ddi_translations->entries[level].hsw.trans2);
}
void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
if (IS_BROXTON(dev_priv)) {
udelay(16);
return;
}
if (wait_for_us((intel_de_read(dev_priv, DDI_BUF_CTL(port)) &
DDI_BUF_IS_IDLE), 8))
drm_err(&dev_priv->drm, "Timeout waiting for DDI BUF %c to get idle\n",
port_name(port));
}
static void intel_wait_ddi_buf_active(struct drm_i915_private *dev_priv,
enum port port)
{
int ret;
/* Wait > 518 usecs for DDI_BUF_CTL to be non idle */
if (DISPLAY_VER(dev_priv) < 10) {
usleep_range(518, 1000);
return;
}
ret = _wait_for(!(intel_de_read(dev_priv, DDI_BUF_CTL(port)) &
DDI_BUF_IS_IDLE), IS_DG2(dev_priv) ? 1200 : 500, 10, 10);
if (ret)
drm_err(&dev_priv->drm, "Timeout waiting for DDI BUF %c to get active\n",
port_name(port));
}
static u32 hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll)
{
switch (pll->info->id) {
case DPLL_ID_WRPLL1:
return PORT_CLK_SEL_WRPLL1;
case DPLL_ID_WRPLL2:
return PORT_CLK_SEL_WRPLL2;
case DPLL_ID_SPLL:
return PORT_CLK_SEL_SPLL;
case DPLL_ID_LCPLL_810:
return PORT_CLK_SEL_LCPLL_810;
case DPLL_ID_LCPLL_1350:
return PORT_CLK_SEL_LCPLL_1350;
case DPLL_ID_LCPLL_2700:
return PORT_CLK_SEL_LCPLL_2700;
default:
MISSING_CASE(pll->info->id);
return PORT_CLK_SEL_NONE;
}
}
static u32 icl_pll_to_ddi_clk_sel(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
int clock = crtc_state->port_clock;
const enum intel_dpll_id id = pll->info->id;
switch (id) {
default:
/*
* DPLL_ID_ICL_DPLL0 and DPLL_ID_ICL_DPLL1 should not be used
* here, so do warn if this get passed in
*/
MISSING_CASE(id);
return DDI_CLK_SEL_NONE;
case DPLL_ID_ICL_TBTPLL:
switch (clock) {
case 162000:
return DDI_CLK_SEL_TBT_162;
case 270000:
return DDI_CLK_SEL_TBT_270;
case 540000:
return DDI_CLK_SEL_TBT_540;
case 810000:
return DDI_CLK_SEL_TBT_810;
default:
MISSING_CASE(clock);
return DDI_CLK_SEL_NONE;
}
case DPLL_ID_ICL_MGPLL1:
case DPLL_ID_ICL_MGPLL2:
case DPLL_ID_ICL_MGPLL3:
case DPLL_ID_ICL_MGPLL4:
case DPLL_ID_TGL_MGPLL5:
case DPLL_ID_TGL_MGPLL6:
return DDI_CLK_SEL_MG;
}
}
static u32 ddi_buf_phy_link_rate(int port_clock)
{
switch (port_clock) {
case 162000:
return DDI_BUF_PHY_LINK_RATE(0);
case 216000:
return DDI_BUF_PHY_LINK_RATE(4);
case 243000:
return DDI_BUF_PHY_LINK_RATE(5);
case 270000:
return DDI_BUF_PHY_LINK_RATE(1);
case 324000:
return DDI_BUF_PHY_LINK_RATE(6);
case 432000:
return DDI_BUF_PHY_LINK_RATE(7);
case 540000:
return DDI_BUF_PHY_LINK_RATE(2);
case 810000:
return DDI_BUF_PHY_LINK_RATE(3);
default:
MISSING_CASE(port_clock);
return DDI_BUF_PHY_LINK_RATE(0);
}
}
static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
enum phy phy = intel_port_to_phy(i915, encoder->port);
intel_dp->DP = dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
intel_dp->DP |= DDI_PORT_WIDTH(crtc_state->lane_count);
if (IS_ALDERLAKE_P(i915) && intel_phy_is_tc(i915, phy)) {
intel_dp->DP |= ddi_buf_phy_link_rate(crtc_state->port_clock);
if (dig_port->tc_mode != TC_PORT_TBT_ALT)
intel_dp->DP |= DDI_BUF_CTL_TC_PHY_OWNERSHIP;
}
}
static int icl_calc_tbt_pll_link(struct drm_i915_private *dev_priv,
enum port port)
{
u32 val = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
switch (val) {
case DDI_CLK_SEL_NONE:
return 0;
case DDI_CLK_SEL_TBT_162:
return 162000;
case DDI_CLK_SEL_TBT_270:
return 270000;
case DDI_CLK_SEL_TBT_540:
return 540000;
case DDI_CLK_SEL_TBT_810:
return 810000;
default:
MISSING_CASE(val);
return 0;
}
}
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
int dotclock;
if (pipe_config->has_pch_encoder)
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->fdi_m_n);
else if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24)
dotclock = pipe_config->port_clock * 24 / pipe_config->pipe_bpp;
else
dotclock = pipe_config->port_clock;
if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
!intel_crtc_has_dp_encoder(pipe_config))
dotclock *= 2;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->hw.adjusted_mode.crtc_clock = dotclock;
}
void intel_ddi_set_dp_msa(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 temp;
if (!intel_crtc_has_dp_encoder(crtc_state))
return;
drm_WARN_ON(&dev_priv->drm, transcoder_is_dsi(cpu_transcoder));
temp = DP_MSA_MISC_SYNC_CLOCK;
switch (crtc_state->pipe_bpp) {
case 18:
temp |= DP_MSA_MISC_6_BPC;
break;
case 24:
temp |= DP_MSA_MISC_8_BPC;
break;
case 30:
temp |= DP_MSA_MISC_10_BPC;
break;
case 36:
temp |= DP_MSA_MISC_12_BPC;
break;
default:
MISSING_CASE(crtc_state->pipe_bpp);
break;
}
/* nonsense combination */
drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
if (crtc_state->limited_color_range)
temp |= DP_MSA_MISC_COLOR_CEA_RGB;
/*
* As per DP 1.2 spec section 2.3.4.3 while sending
* YCBCR 444 signals we should program MSA MISC1/0 fields with
* colorspace information.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
temp |= DP_MSA_MISC_COLOR_YCBCR_444_BT709;
/*
* As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
* of Color Encoding Format and Content Color Gamut] while sending
* YCBCR 420, HDR BT.2020 signals we should program MSA MISC1 fields
* which indicate VSC SDP for the Pixel Encoding/Colorimetry Format.
*/
if (intel_dp_needs_vsc_sdp(crtc_state, conn_state))
temp |= DP_MSA_MISC_COLOR_VSC_SDP;
intel_de_write(dev_priv, TRANS_MSA_MISC(cpu_transcoder), temp);
}
static u32 bdw_trans_port_sync_master_select(enum transcoder master_transcoder)
{
if (master_transcoder == TRANSCODER_EDP)
return 0;
else
return master_transcoder + 1;
}
/*
* Returns the TRANS_DDI_FUNC_CTL value based on CRTC state.
*
* Only intended to be used by intel_ddi_enable_transcoder_func() and
* intel_ddi_config_transcoder_func().
*/
static u32
intel_ddi_transcoder_func_reg_val_get(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
enum port port = encoder->port;
u32 temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
if (DISPLAY_VER(dev_priv) >= 12)
temp |= TGL_TRANS_DDI_SELECT_PORT(port);
else
temp |= TRANS_DDI_SELECT_PORT(port);
switch (crtc_state->pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* On Haswell, can only use the always-on power well for
* eDP when not using the panel fitter, and when not
* using motion blur mitigation (which we don't
* support). */
if (crtc_state->pch_pfit.force_thru)
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
if (crtc_state->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
if (crtc_state->hdmi_scrambling)
temp |= TRANS_DDI_HDMI_SCRAMBLING;
if (crtc_state->hdmi_high_tmds_clock_ratio)
temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (crtc_state->fdi_lanes - 1) << 1;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
if (DISPLAY_VER(dev_priv) >= 12) {
enum transcoder master;
master = crtc_state->mst_master_transcoder;
drm_WARN_ON(&dev_priv->drm,
master == INVALID_TRANSCODER);
temp |= TRANS_DDI_MST_TRANSPORT_SELECT(master);
}
} else {
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
}
if (IS_DISPLAY_VER(dev_priv, 8, 10) &&
crtc_state->master_transcoder != INVALID_TRANSCODER) {
u8 master_select =
bdw_trans_port_sync_master_select(crtc_state->master_transcoder);
temp |= TRANS_DDI_PORT_SYNC_ENABLE |
TRANS_DDI_PORT_SYNC_MASTER_SELECT(master_select);
}
return temp;
}
void intel_ddi_enable_transcoder_func(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (DISPLAY_VER(dev_priv) >= 11) {
enum transcoder master_transcoder = crtc_state->master_transcoder;
u32 ctl2 = 0;
if (master_transcoder != INVALID_TRANSCODER) {
u8 master_select =
bdw_trans_port_sync_master_select(master_transcoder);
ctl2 |= PORT_SYNC_MODE_ENABLE |
PORT_SYNC_MODE_MASTER_SELECT(master_select);
}
intel_de_write(dev_priv,
TRANS_DDI_FUNC_CTL2(cpu_transcoder), ctl2);
}
intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder),
intel_ddi_transcoder_func_reg_val_get(encoder,
crtc_state));
}
/*
* Same as intel_ddi_enable_transcoder_func(), but it does not set the enable
* bit.
*/
static void
intel_ddi_config_transcoder_func(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 ctl;
ctl = intel_ddi_transcoder_func_reg_val_get(encoder, crtc_state);
ctl &= ~TRANS_DDI_FUNC_ENABLE;
intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), ctl);
}
void intel_ddi_disable_transcoder_func(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 ctl;
if (DISPLAY_VER(dev_priv) >= 11)
intel_de_write(dev_priv,
TRANS_DDI_FUNC_CTL2(cpu_transcoder), 0);
ctl = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
drm_WARN_ON(crtc->base.dev, ctl & TRANS_DDI_HDCP_SIGNALLING);
ctl &= ~TRANS_DDI_FUNC_ENABLE;
if (IS_DISPLAY_VER(dev_priv, 8, 10))
ctl &= ~(TRANS_DDI_PORT_SYNC_ENABLE |
TRANS_DDI_PORT_SYNC_MASTER_SELECT_MASK);
if (DISPLAY_VER(dev_priv) >= 12) {
if (!intel_dp_mst_is_master_trans(crtc_state)) {
ctl &= ~(TGL_TRANS_DDI_PORT_MASK |
TRANS_DDI_MODE_SELECT_MASK);
}
} else {
ctl &= ~(TRANS_DDI_PORT_MASK | TRANS_DDI_MODE_SELECT_MASK);
}
intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), ctl);
if (dev_priv->quirks & QUIRK_INCREASE_DDI_DISABLED_TIME &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
drm_dbg_kms(&dev_priv->drm,
"Quirk Increase DDI disabled time\n");
/* Quirk time at 100ms for reliable operation */
msleep(100);
}
}
int intel_ddi_toggle_hdcp_bits(struct intel_encoder *intel_encoder,
enum transcoder cpu_transcoder,
bool enable, u32 hdcp_mask)
{
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
intel_wakeref_t wakeref;
int ret = 0;
u32 tmp;
wakeref = intel_display_power_get_if_enabled(dev_priv,
intel_encoder->power_domain);
if (drm_WARN_ON(dev, !wakeref))
return -ENXIO;
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (enable)
tmp |= hdcp_mask;
else
tmp &= ~hdcp_mask;
intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), tmp);
intel_display_power_put(dev_priv, intel_encoder->power_domain, wakeref);
return ret;
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *encoder = intel_attached_encoder(intel_connector);
int type = intel_connector->base.connector_type;
enum port port = encoder->port;
enum transcoder cpu_transcoder;
intel_wakeref_t wakeref;
enum pipe pipe = 0;
u32 tmp;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
if (!encoder->get_hw_state(encoder, &pipe)) {
ret = false;
goto out;
}
if (HAS_TRANSCODER(dev_priv, TRANSCODER_EDP) && port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
ret = type == DRM_MODE_CONNECTOR_HDMIA;
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
ret = type == DRM_MODE_CONNECTOR_eDP ||
type == DRM_MODE_CONNECTOR_DisplayPort;
break;
case TRANS_DDI_MODE_SELECT_DP_MST:
/* if the transcoder is in MST state then
* connector isn't connected */
ret = false;
break;
case TRANS_DDI_MODE_SELECT_FDI:
ret = type == DRM_MODE_CONNECTOR_VGA;
break;
default:
ret = false;
break;
}
out:
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return ret;
}
static void intel_ddi_get_encoder_pipes(struct intel_encoder *encoder,
u8 *pipe_mask, bool *is_dp_mst)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = encoder->port;
intel_wakeref_t wakeref;
enum pipe p;
u32 tmp;
u8 mst_pipe_mask;
*pipe_mask = 0;
*is_dp_mst = false;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return;
tmp = intel_de_read(dev_priv, DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
goto out;
if (HAS_TRANSCODER(dev_priv, TRANSCODER_EDP) && port == PORT_A) {
tmp = intel_de_read(dev_priv,
TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
MISSING_CASE(tmp & TRANS_DDI_EDP_INPUT_MASK);
fallthrough;
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe_mask = BIT(PIPE_A);
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe_mask = BIT(PIPE_B);
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe_mask = BIT(PIPE_C);
break;
}
goto out;
}
mst_pipe_mask = 0;
for_each_pipe(dev_priv, p) {
enum transcoder cpu_transcoder = (enum transcoder)p;
unsigned int port_mask, ddi_select;
intel_wakeref_t trans_wakeref;
trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(cpu_transcoder));
if (!trans_wakeref)
continue;
if (DISPLAY_VER(dev_priv) >= 12) {
port_mask = TGL_TRANS_DDI_PORT_MASK;
ddi_select = TGL_TRANS_DDI_SELECT_PORT(port);
} else {
port_mask = TRANS_DDI_PORT_MASK;
ddi_select = TRANS_DDI_SELECT_PORT(port);
}
tmp = intel_de_read(dev_priv,
TRANS_DDI_FUNC_CTL(cpu_transcoder));
intel_display_power_put(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder),
trans_wakeref);
if ((tmp & port_mask) != ddi_select)
continue;
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
TRANS_DDI_MODE_SELECT_DP_MST)
mst_pipe_mask |= BIT(p);
*pipe_mask |= BIT(p);
}
if (!*pipe_mask)
drm_dbg_kms(&dev_priv->drm,
"No pipe for [ENCODER:%d:%s] found\n",
encoder->base.base.id, encoder->base.name);
if (!mst_pipe_mask && hweight8(*pipe_mask) > 1) {
drm_dbg_kms(&dev_priv->drm,
"Multiple pipes for [ENCODER:%d:%s] (pipe_mask %02x)\n",
encoder->base.base.id, encoder->base.name,
*pipe_mask);
*pipe_mask = BIT(ffs(*pipe_mask) - 1);
}
if (mst_pipe_mask && mst_pipe_mask != *pipe_mask)
drm_dbg_kms(&dev_priv->drm,
"Conflicting MST and non-MST state for [ENCODER:%d:%s] (pipe_mask %02x mst_pipe_mask %02x)\n",
encoder->base.base.id, encoder->base.name,
*pipe_mask, mst_pipe_mask);
else
*is_dp_mst = mst_pipe_mask;
out:
if (*pipe_mask && (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))) {
tmp = intel_de_read(dev_priv, BXT_PHY_CTL(port));
if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK |
BXT_PHY_LANE_POWERDOWN_ACK |
BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
drm_err(&dev_priv->drm,
"[ENCODER:%d:%s] enabled but PHY powered down? (PHY_CTL %08x)\n",
encoder->base.base.id, encoder->base.name, tmp);
}
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
u8 pipe_mask;
bool is_mst;
intel_ddi_get_encoder_pipes(encoder, &pipe_mask, &is_mst);
if (is_mst || !pipe_mask)
return false;
*pipe = ffs(pipe_mask) - 1;
return true;
}
static enum intel_display_power_domain
intel_ddi_main_link_aux_domain(struct intel_digital_port *dig_port)
{
/* ICL+ HW requires corresponding AUX IOs to be powered up for PSR with
* DC states enabled at the same time, while for driver initiated AUX
* transfers we need the same AUX IOs to be powered but with DC states
* disabled. Accordingly use the AUX power domain here which leaves DC
* states enabled.
* However, for non-A AUX ports the corresponding non-EDP transcoders
* would have already enabled power well 2 and DC_OFF. This means we can
* acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a
* specific AUX_IO reference without powering up any extra wells.
* Note that PSR is enabled only on Port A even though this function
* returns the correct domain for other ports too.
*/
return dig_port->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A :
intel_aux_power_domain(dig_port);
}
static void intel_ddi_get_power_domains(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port;
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
/*
* TODO: Add support for MST encoders. Atm, the following should never
* happen since fake-MST encoders don't set their get_power_domains()
* hook.
*/
if (drm_WARN_ON(&dev_priv->drm,
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)))
return;
dig_port = enc_to_dig_port(encoder);
if (!intel_phy_is_tc(dev_priv, phy) ||
dig_port->tc_mode != TC_PORT_TBT_ALT) {
drm_WARN_ON(&dev_priv->drm, dig_port->ddi_io_wakeref);
dig_port->ddi_io_wakeref = intel_display_power_get(dev_priv,
dig_port->ddi_io_power_domain);
}
/*
* AUX power is only needed for (e)DP mode, and for HDMI mode on TC
* ports.
*/
if (intel_crtc_has_dp_encoder(crtc_state) ||
intel_phy_is_tc(dev_priv, phy)) {
drm_WARN_ON(&dev_priv->drm, dig_port->aux_wakeref);
dig_port->aux_wakeref =
intel_display_power_get(dev_priv,
intel_ddi_main_link_aux_domain(dig_port));
}
}
void intel_ddi_enable_pipe_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
u32 val;
if (cpu_transcoder != TRANSCODER_EDP) {
if (DISPLAY_VER(dev_priv) >= 13)
val = TGL_TRANS_CLK_SEL_PORT(phy);
else if (DISPLAY_VER(dev_priv) >= 12)
val = TGL_TRANS_CLK_SEL_PORT(encoder->port);
else
val = TRANS_CLK_SEL_PORT(encoder->port);
intel_de_write(dev_priv, TRANS_CLK_SEL(cpu_transcoder), val);
}
}
void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP) {
if (DISPLAY_VER(dev_priv) >= 12)
intel_de_write(dev_priv,
TRANS_CLK_SEL(cpu_transcoder),
TGL_TRANS_CLK_SEL_DISABLED);
else
intel_de_write(dev_priv,
TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
}
static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
enum port port, u8 iboost)
{
u32 tmp;
tmp = intel_de_read(dev_priv, DISPIO_CR_TX_BMU_CR0);
tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
if (iboost)
tmp |= iboost << BALANCE_LEG_SHIFT(port);
else
tmp |= BALANCE_LEG_DISABLE(port);
intel_de_write(dev_priv, DISPIO_CR_TX_BMU_CR0, tmp);
}
static void skl_ddi_set_iboost(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u8 iboost;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
iboost = intel_bios_encoder_hdmi_boost_level(encoder->devdata);
else
iboost = intel_bios_encoder_dp_boost_level(encoder->devdata);
if (iboost == 0) {
const struct intel_ddi_buf_trans *ddi_translations;
int n_entries;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
iboost = ddi_translations->entries[level].hsw.i_boost;
}
/* Make sure that the requested I_boost is valid */
if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
drm_err(&dev_priv->drm, "Invalid I_boost value %u\n", iboost);
return;
}
_skl_ddi_set_iboost(dev_priv, encoder->port, iboost);
if (encoder->port == PORT_A && dig_port->max_lanes == 4)
_skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
}
static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct intel_ddi_buf_trans *ddi_translations;
enum port port = encoder->port;
int n_entries;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
bxt_ddi_phy_set_signal_level(dev_priv, port,
ddi_translations->entries[level].bxt.margin,
ddi_translations->entries[level].bxt.scale,
ddi_translations->entries[level].bxt.enable,
ddi_translations->entries[level].bxt.deemphasis);
}
static u8 intel_ddi_dp_voltage_max(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int n_entries;
encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON(&dev_priv->drm, n_entries < 1))
n_entries = 1;
if (drm_WARN_ON(&dev_priv->drm,
n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
return index_to_dp_signal_levels[n_entries - 1] &
DP_TRAIN_VOLTAGE_SWING_MASK;
}
/*
* We assume that the full set of pre-emphasis values can be
* used on all DDI platforms. Should that change we need to
* rethink this code.
*/
static u8 intel_ddi_dp_preemph_max(struct intel_dp *intel_dp)
{
return DP_TRAIN_PRE_EMPH_LEVEL_3;
}
static void icl_ddi_combo_vswing_program(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct intel_ddi_buf_trans *ddi_translations;
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
int n_entries, ln;
u32 val;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
val = EDP4K2K_MODE_OVRD_EN | EDP4K2K_MODE_OVRD_OPTIMIZED;
intel_dp->hobl_active = is_hobl_buf_trans(ddi_translations);
intel_de_rmw(dev_priv, ICL_PORT_CL_DW10(phy), val,
intel_dp->hobl_active ? val : 0);
}
/* Set PORT_TX_DW5 */
val = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy));
val &= ~(SCALING_MODE_SEL_MASK | RTERM_SELECT_MASK |
TAP2_DISABLE | TAP3_DISABLE);
val |= SCALING_MODE_SEL(0x2);
val |= RTERM_SELECT(0x6);
val |= TAP3_DISABLE;
intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), val);
/* Program PORT_TX_DW2 */
val = intel_de_read(dev_priv, ICL_PORT_TX_DW2_LN0(phy));
val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
RCOMP_SCALAR_MASK);
val |= SWING_SEL_UPPER(ddi_translations->entries[level].icl.dw2_swing_sel);
val |= SWING_SEL_LOWER(ddi_translations->entries[level].icl.dw2_swing_sel);
/* Program Rcomp scalar for every table entry */
val |= RCOMP_SCALAR(0x98);
intel_de_write(dev_priv, ICL_PORT_TX_DW2_GRP(phy), val);
/* Program PORT_TX_DW4 */
/* We cannot write to GRP. It would overwrite individual loadgen. */
for (ln = 0; ln <= 3; ln++) {
val = intel_de_read(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy));
val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
CURSOR_COEFF_MASK);
val |= POST_CURSOR_1(ddi_translations->entries[level].icl.dw4_post_cursor_1);
val |= POST_CURSOR_2(ddi_translations->entries[level].icl.dw4_post_cursor_2);
val |= CURSOR_COEFF(ddi_translations->entries[level].icl.dw4_cursor_coeff);
intel_de_write(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy), val);
}
/* Program PORT_TX_DW7 */
val = intel_de_read(dev_priv, ICL_PORT_TX_DW7_LN0(phy));
val &= ~N_SCALAR_MASK;
val |= N_SCALAR(ddi_translations->entries[level].icl.dw7_n_scalar);
intel_de_write(dev_priv, ICL_PORT_TX_DW7_GRP(phy), val);
}
static void icl_combo_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
int width, rate, ln;
u32 val;
width = crtc_state->lane_count;
rate = crtc_state->port_clock;
/*
* 1. If port type is eDP or DP,
* set PORT_PCS_DW1 cmnkeeper_enable to 1b,
* else clear to 0b.
*/
val = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_LN0(phy));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
val &= ~COMMON_KEEPER_EN;
else
val |= COMMON_KEEPER_EN;
intel_de_write(dev_priv, ICL_PORT_PCS_DW1_GRP(phy), val);
/* 2. Program loadgen select */
/*
* Program PORT_TX_DW4_LN depending on Bit rate and used lanes
* <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
* <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
* > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
*/
for (ln = 0; ln <= 3; ln++) {
val = intel_de_read(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy));
val &= ~LOADGEN_SELECT;
if ((rate <= 600000 && width == 4 && ln >= 1) ||
(rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
val |= LOADGEN_SELECT;
}
intel_de_write(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy), val);
}
/* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
val = intel_de_read(dev_priv, ICL_PORT_CL_DW5(phy));
val |= SUS_CLOCK_CONFIG;
intel_de_write(dev_priv, ICL_PORT_CL_DW5(phy), val);
/* 4. Clear training enable to change swing values */
val = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy));
val &= ~TX_TRAINING_EN;
intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), val);
/* 5. Program swing and de-emphasis */
icl_ddi_combo_vswing_program(encoder, crtc_state, level);
/* 6. Set training enable to trigger update */
val = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy));
val |= TX_TRAINING_EN;
intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), val);
}
static void icl_mg_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum tc_port tc_port = intel_port_to_tc(dev_priv, encoder->port);
const struct intel_ddi_buf_trans *ddi_translations;
int n_entries, ln;
u32 val;
if (enc_to_dig_port(encoder)->tc_mode == TC_PORT_TBT_ALT)
return;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
/* Set MG_TX_LINK_PARAMS cri_use_fs32 to 0. */
for (ln = 0; ln < 2; ln++) {
val = intel_de_read(dev_priv, MG_TX1_LINK_PARAMS(ln, tc_port));
val &= ~CRI_USE_FS32;
intel_de_write(dev_priv, MG_TX1_LINK_PARAMS(ln, tc_port), val);
val = intel_de_read(dev_priv, MG_TX2_LINK_PARAMS(ln, tc_port));
val &= ~CRI_USE_FS32;
intel_de_write(dev_priv, MG_TX2_LINK_PARAMS(ln, tc_port), val);
}
/* Program MG_TX_SWINGCTRL with values from vswing table */
for (ln = 0; ln < 2; ln++) {
val = intel_de_read(dev_priv, MG_TX1_SWINGCTRL(ln, tc_port));
val &= ~CRI_TXDEEMPH_OVERRIDE_17_12_MASK;
val |= CRI_TXDEEMPH_OVERRIDE_17_12(
ddi_translations->entries[level].mg.cri_txdeemph_override_17_12);
intel_de_write(dev_priv, MG_TX1_SWINGCTRL(ln, tc_port), val);
val = intel_de_read(dev_priv, MG_TX2_SWINGCTRL(ln, tc_port));
val &= ~CRI_TXDEEMPH_OVERRIDE_17_12_MASK;
val |= CRI_TXDEEMPH_OVERRIDE_17_12(
ddi_translations->entries[level].mg.cri_txdeemph_override_17_12);
intel_de_write(dev_priv, MG_TX2_SWINGCTRL(ln, tc_port), val);
}
/* Program MG_TX_DRVCTRL with values from vswing table */
for (ln = 0; ln < 2; ln++) {
val = intel_de_read(dev_priv, MG_TX1_DRVCTRL(ln, tc_port));
val &= ~(CRI_TXDEEMPH_OVERRIDE_11_6_MASK |
CRI_TXDEEMPH_OVERRIDE_5_0_MASK);
val |= CRI_TXDEEMPH_OVERRIDE_5_0(
ddi_translations->entries[level].mg.cri_txdeemph_override_5_0) |
CRI_TXDEEMPH_OVERRIDE_11_6(
ddi_translations->entries[level].mg.cri_txdeemph_override_11_6) |
CRI_TXDEEMPH_OVERRIDE_EN;
intel_de_write(dev_priv, MG_TX1_DRVCTRL(ln, tc_port), val);
val = intel_de_read(dev_priv, MG_TX2_DRVCTRL(ln, tc_port));
val &= ~(CRI_TXDEEMPH_OVERRIDE_11_6_MASK |
CRI_TXDEEMPH_OVERRIDE_5_0_MASK);
val |= CRI_TXDEEMPH_OVERRIDE_5_0(
ddi_translations->entries[level].mg.cri_txdeemph_override_5_0) |
CRI_TXDEEMPH_OVERRIDE_11_6(
ddi_translations->entries[level].mg.cri_txdeemph_override_11_6) |
CRI_TXDEEMPH_OVERRIDE_EN;
intel_de_write(dev_priv, MG_TX2_DRVCTRL(ln, tc_port), val);
/* FIXME: Program CRI_LOADGEN_SEL after the spec is updated */
}
/*
* Program MG_CLKHUB<LN, port being used> with value from frequency table
* In case of Legacy mode on MG PHY, both TX1 and TX2 enabled so use the
* values from table for which TX1 and TX2 enabled.
*/
for (ln = 0; ln < 2; ln++) {
val = intel_de_read(dev_priv, MG_CLKHUB(ln, tc_port));
if (crtc_state->port_clock < 300000)
val |= CFG_LOW_RATE_LKREN_EN;
else
val &= ~CFG_LOW_RATE_LKREN_EN;
intel_de_write(dev_priv, MG_CLKHUB(ln, tc_port), val);
}
/* Program the MG_TX_DCC<LN, port being used> based on the link frequency */
for (ln = 0; ln < 2; ln++) {
val = intel_de_read(dev_priv, MG_TX1_DCC(ln, tc_port));
val &= ~CFG_AMI_CK_DIV_OVERRIDE_VAL_MASK;
if (crtc_state->port_clock <= 500000) {
val &= ~CFG_AMI_CK_DIV_OVERRIDE_EN;
} else {
val |= CFG_AMI_CK_DIV_OVERRIDE_EN |
CFG_AMI_CK_DIV_OVERRIDE_VAL(1);
}
intel_de_write(dev_priv, MG_TX1_DCC(ln, tc_port), val);
val = intel_de_read(dev_priv, MG_TX2_DCC(ln, tc_port));
val &= ~CFG_AMI_CK_DIV_OVERRIDE_VAL_MASK;
if (crtc_state->port_clock <= 500000) {
val &= ~CFG_AMI_CK_DIV_OVERRIDE_EN;
} else {
val |= CFG_AMI_CK_DIV_OVERRIDE_EN |
CFG_AMI_CK_DIV_OVERRIDE_VAL(1);
}
intel_de_write(dev_priv, MG_TX2_DCC(ln, tc_port), val);
}
/* Program MG_TX_PISO_READLOAD with values from vswing table */
for (ln = 0; ln < 2; ln++) {
val = intel_de_read(dev_priv,
MG_TX1_PISO_READLOAD(ln, tc_port));
val |= CRI_CALCINIT;
intel_de_write(dev_priv, MG_TX1_PISO_READLOAD(ln, tc_port),
val);
val = intel_de_read(dev_priv,
MG_TX2_PISO_READLOAD(ln, tc_port));
val |= CRI_CALCINIT;
intel_de_write(dev_priv, MG_TX2_PISO_READLOAD(ln, tc_port),
val);
}
}
static void icl_ddi_vswing_sequence(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
if (intel_phy_is_combo(dev_priv, phy))
icl_combo_phy_ddi_vswing_sequence(encoder, crtc_state, level);
else
icl_mg_phy_ddi_vswing_sequence(encoder, crtc_state, level);
}
static void
tgl_dkl_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum tc_port tc_port = intel_port_to_tc(dev_priv, encoder->port);
const struct intel_ddi_buf_trans *ddi_translations;
u32 val, dpcnt_mask, dpcnt_val;
int n_entries, ln;
if (enc_to_dig_port(encoder)->tc_mode == TC_PORT_TBT_ALT)
return;
ddi_translations = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries))
level = n_entries - 1;
dpcnt_mask = (DKL_TX_PRESHOOT_COEFF_MASK |
DKL_TX_DE_EMPAHSIS_COEFF_MASK |
DKL_TX_VSWING_CONTROL_MASK);
dpcnt_val = DKL_TX_VSWING_CONTROL(ddi_translations->entries[level].dkl.dkl_vswing_control);
dpcnt_val |= DKL_TX_DE_EMPHASIS_COEFF(ddi_translations->entries[level].dkl.dkl_de_emphasis_control);
dpcnt_val |= DKL_TX_PRESHOOT_COEFF(ddi_translations->entries[level].dkl.dkl_preshoot_control);
for (ln = 0; ln < 2; ln++) {
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, ln));
intel_de_write(dev_priv, DKL_TX_PMD_LANE_SUS(tc_port), 0);
/* All the registers are RMW */
val = intel_de_read(dev_priv, DKL_TX_DPCNTL0(tc_port));
val &= ~dpcnt_mask;
val |= dpcnt_val;
intel_de_write(dev_priv, DKL_TX_DPCNTL0(tc_port), val);
val = intel_de_read(dev_priv, DKL_TX_DPCNTL1(tc_port));
val &= ~dpcnt_mask;
val |= dpcnt_val;
intel_de_write(dev_priv, DKL_TX_DPCNTL1(tc_port), val);
val = intel_de_read(dev_priv, DKL_TX_DPCNTL2(tc_port));
val &= ~DKL_TX_DP20BITMODE;
intel_de_write(dev_priv, DKL_TX_DPCNTL2(tc_port), val);
if ((intel_crtc_has_dp_encoder(crtc_state) &&
crtc_state->port_clock == 162000) ||
(intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
crtc_state->port_clock == 594000))
val |= DKL_TX_LOADGEN_SHARING_PMD_DISABLE;
else
val &= ~DKL_TX_LOADGEN_SHARING_PMD_DISABLE;
}
}
static void tgl_ddi_vswing_sequence(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
if (intel_phy_is_combo(dev_priv, phy))
icl_combo_phy_ddi_vswing_sequence(encoder, crtc_state, level);
else
tgl_dkl_phy_ddi_vswing_sequence(encoder, crtc_state, level);
}
static int translate_signal_level(struct intel_dp *intel_dp,
u8 signal_levels)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int i;
for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
if (index_to_dp_signal_levels[i] == signal_levels)
return i;
}
drm_WARN(&i915->drm, 1,
"Unsupported voltage swing/pre-emphasis level: 0x%x\n",
signal_levels);
return 0;
}
static int intel_ddi_dp_level(struct intel_dp *intel_dp)
{
u8 train_set = intel_dp->train_set[0];
u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
return translate_signal_level(intel_dp, signal_levels);
}
static void
dg2_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int level = intel_ddi_dp_level(intel_dp);
intel_snps_phy_ddi_vswing_sequence(encoder, level);
}
static void
tgl_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int level = intel_ddi_dp_level(intel_dp);
tgl_ddi_vswing_sequence(encoder, crtc_state, level);
}
static void
icl_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int level = intel_ddi_dp_level(intel_dp);
icl_ddi_vswing_sequence(encoder, crtc_state, level);
}
static void
bxt_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int level = intel_ddi_dp_level(intel_dp);
bxt_ddi_vswing_sequence(encoder, crtc_state, level);
}
static void
hsw_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int level = intel_ddi_dp_level(intel_dp);
enum port port = encoder->port;
u32 signal_levels;
signal_levels = DDI_BUF_TRANS_SELECT(level);
drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
signal_levels);
intel_dp->DP &= ~DDI_BUF_EMP_MASK;
intel_dp->DP |= signal_levels;
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
skl_ddi_set_iboost(encoder, crtc_state, level);
intel_de_write(dev_priv, DDI_BUF_CTL(port), intel_dp->DP);
intel_de_posting_read(dev_priv, DDI_BUF_CTL(port));
}
static void _icl_ddi_enable_clock(struct drm_i915_private *i915, i915_reg_t reg,
u32 clk_sel_mask, u32 clk_sel, u32 clk_off)
{
mutex_lock(&i915->dpll.lock);
intel_de_rmw(i915, reg, clk_sel_mask, clk_sel);
/*
* "This step and the step before must be
* done with separate register writes."
*/
intel_de_rmw(i915, reg, clk_off, 0);
mutex_unlock(&i915->dpll.lock);
}
static void _icl_ddi_disable_clock(struct drm_i915_private *i915, i915_reg_t reg,
u32 clk_off)
{
mutex_lock(&i915->dpll.lock);
intel_de_rmw(i915, reg, 0, clk_off);
mutex_unlock(&i915->dpll.lock);
}
static bool _icl_ddi_is_clock_enabled(struct drm_i915_private *i915, i915_reg_t reg,
u32 clk_off)
{
return !(intel_de_read(i915, reg) & clk_off);
}
static struct intel_shared_dpll *
_icl_ddi_get_pll(struct drm_i915_private *i915, i915_reg_t reg,
u32 clk_sel_mask, u32 clk_sel_shift)
{
enum intel_dpll_id id;
id = (intel_de_read(i915, reg) & clk_sel_mask) >> clk_sel_shift;
return intel_get_shared_dpll_by_id(i915, id);
}
static void adls_ddi_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum phy phy = intel_port_to_phy(i915, encoder->port);
if (drm_WARN_ON(&i915->drm, !pll))
return;
_icl_ddi_enable_clock(i915, ADLS_DPCLKA_CFGCR(phy),
ADLS_DPCLKA_CFGCR_DDI_CLK_SEL_MASK(phy),
pll->info->id << ADLS_DPCLKA_CFGCR_DDI_SHIFT(phy),
ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static void adls_ddi_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
_icl_ddi_disable_clock(i915, ADLS_DPCLKA_CFGCR(phy),
ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static bool adls_ddi_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_is_clock_enabled(i915, ADLS_DPCLKA_CFGCR(phy),
ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static struct intel_shared_dpll *adls_ddi_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_get_pll(i915, ADLS_DPCLKA_CFGCR(phy),
ADLS_DPCLKA_CFGCR_DDI_CLK_SEL_MASK(phy),
ADLS_DPCLKA_CFGCR_DDI_SHIFT(phy));
}
static void rkl_ddi_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum phy phy = intel_port_to_phy(i915, encoder->port);
if (drm_WARN_ON(&i915->drm, !pll))
return;
_icl_ddi_enable_clock(i915, ICL_DPCLKA_CFGCR0,
RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy),
RKL_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy),
RKL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static void rkl_ddi_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
_icl_ddi_disable_clock(i915, ICL_DPCLKA_CFGCR0,
RKL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static bool rkl_ddi_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_is_clock_enabled(i915, ICL_DPCLKA_CFGCR0,
RKL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static struct intel_shared_dpll *rkl_ddi_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_get_pll(i915, ICL_DPCLKA_CFGCR0,
RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy),
RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy));
}
static void dg1_ddi_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum phy phy = intel_port_to_phy(i915, encoder->port);
if (drm_WARN_ON(&i915->drm, !pll))
return;
/*
* If we fail this, something went very wrong: first 2 PLLs should be
* used by first 2 phys and last 2 PLLs by last phys
*/
if (drm_WARN_ON(&i915->drm,
(pll->info->id < DPLL_ID_DG1_DPLL2 && phy >= PHY_C) ||
(pll->info->id >= DPLL_ID_DG1_DPLL2 && phy < PHY_C)))
return;
_icl_ddi_enable_clock(i915, DG1_DPCLKA_CFGCR0(phy),
DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy),
DG1_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy),
DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static void dg1_ddi_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
_icl_ddi_disable_clock(i915, DG1_DPCLKA_CFGCR0(phy),
DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static bool dg1_ddi_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_is_clock_enabled(i915, DG1_DPCLKA_CFGCR0(phy),
DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static struct intel_shared_dpll *dg1_ddi_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
enum intel_dpll_id id;
u32 val;
val = intel_de_read(i915, DG1_DPCLKA_CFGCR0(phy));
val &= DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
val >>= DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
id = val;
/*
* _DG1_DPCLKA0_CFGCR0 maps between DPLL 0 and 1 with one bit for phy A
* and B while _DG1_DPCLKA1_CFGCR0 maps between DPLL 2 and 3 with one
* bit for phy C and D.
*/
if (phy >= PHY_C)
id += DPLL_ID_DG1_DPLL2;
return intel_get_shared_dpll_by_id(i915, id);
}
static void icl_ddi_combo_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum phy phy = intel_port_to_phy(i915, encoder->port);
if (drm_WARN_ON(&i915->drm, !pll))
return;
_icl_ddi_enable_clock(i915, ICL_DPCLKA_CFGCR0,
ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy),
ICL_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy),
ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static void icl_ddi_combo_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
_icl_ddi_disable_clock(i915, ICL_DPCLKA_CFGCR0,
ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
static bool icl_ddi_combo_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_is_clock_enabled(i915, ICL_DPCLKA_CFGCR0,
ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy));
}
struct intel_shared_dpll *icl_ddi_combo_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
return _icl_ddi_get_pll(i915, ICL_DPCLKA_CFGCR0,
ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy),
ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy));
}
static void jsl_ddi_tc_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum port port = encoder->port;
if (drm_WARN_ON(&i915->drm, !pll))
return;
/*
* "For DDIC and DDID, program DDI_CLK_SEL to map the MG clock to the port.
* MG does not exist, but the programming is required to ungate DDIC and DDID."
*/
intel_de_write(i915, DDI_CLK_SEL(port), DDI_CLK_SEL_MG);
icl_ddi_combo_enable_clock(encoder, crtc_state);
}
static void jsl_ddi_tc_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
icl_ddi_combo_disable_clock(encoder);
intel_de_write(i915, DDI_CLK_SEL(port), DDI_CLK_SEL_NONE);
}
static bool jsl_ddi_tc_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 tmp;
tmp = intel_de_read(i915, DDI_CLK_SEL(port));
if ((tmp & DDI_CLK_SEL_MASK) == DDI_CLK_SEL_NONE)
return false;
return icl_ddi_combo_is_clock_enabled(encoder);
}
static void icl_ddi_tc_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum tc_port tc_port = intel_port_to_tc(i915, encoder->port);
enum port port = encoder->port;
if (drm_WARN_ON(&i915->drm, !pll))
return;
intel_de_write(i915, DDI_CLK_SEL(port),
icl_pll_to_ddi_clk_sel(encoder, crtc_state));
mutex_lock(&i915->dpll.lock);
intel_de_rmw(i915, ICL_DPCLKA_CFGCR0,
ICL_DPCLKA_CFGCR0_TC_CLK_OFF(tc_port), 0);
mutex_unlock(&i915->dpll.lock);
}
static void icl_ddi_tc_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum tc_port tc_port = intel_port_to_tc(i915, encoder->port);
enum port port = encoder->port;
mutex_lock(&i915->dpll.lock);
intel_de_rmw(i915, ICL_DPCLKA_CFGCR0,
0, ICL_DPCLKA_CFGCR0_TC_CLK_OFF(tc_port));
mutex_unlock(&i915->dpll.lock);
intel_de_write(i915, DDI_CLK_SEL(port), DDI_CLK_SEL_NONE);
}
static bool icl_ddi_tc_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum tc_port tc_port = intel_port_to_tc(i915, encoder->port);
enum port port = encoder->port;
u32 tmp;
tmp = intel_de_read(i915, DDI_CLK_SEL(port));
if ((tmp & DDI_CLK_SEL_MASK) == DDI_CLK_SEL_NONE)
return false;
tmp = intel_de_read(i915, ICL_DPCLKA_CFGCR0);
return !(tmp & ICL_DPCLKA_CFGCR0_TC_CLK_OFF(tc_port));
}
static struct intel_shared_dpll *icl_ddi_tc_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum tc_port tc_port = intel_port_to_tc(i915, encoder->port);
enum port port = encoder->port;
enum intel_dpll_id id;
u32 tmp;
tmp = intel_de_read(i915, DDI_CLK_SEL(port));
switch (tmp & DDI_CLK_SEL_MASK) {
case DDI_CLK_SEL_TBT_162:
case DDI_CLK_SEL_TBT_270:
case DDI_CLK_SEL_TBT_540:
case DDI_CLK_SEL_TBT_810:
id = DPLL_ID_ICL_TBTPLL;
break;
case DDI_CLK_SEL_MG:
id = icl_tc_port_to_pll_id(tc_port);
break;
default:
MISSING_CASE(tmp);
fallthrough;
case DDI_CLK_SEL_NONE:
return NULL;
}
return intel_get_shared_dpll_by_id(i915, id);
}
static struct intel_shared_dpll *bxt_ddi_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum intel_dpll_id id;
switch (encoder->port) {
case PORT_A:
id = DPLL_ID_SKL_DPLL0;
break;
case PORT_B:
id = DPLL_ID_SKL_DPLL1;
break;
case PORT_C:
id = DPLL_ID_SKL_DPLL2;
break;
default:
MISSING_CASE(encoder->port);
return NULL;
}
return intel_get_shared_dpll_by_id(i915, id);
}
static void skl_ddi_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum port port = encoder->port;
if (drm_WARN_ON(&i915->drm, !pll))
return;
mutex_lock(&i915->dpll.lock);
intel_de_rmw(i915, DPLL_CTRL2,
DPLL_CTRL2_DDI_CLK_OFF(port) |
DPLL_CTRL2_DDI_CLK_SEL_MASK(port),
DPLL_CTRL2_DDI_CLK_SEL(pll->info->id, port) |
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
mutex_unlock(&i915->dpll.lock);
}
static void skl_ddi_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
mutex_lock(&i915->dpll.lock);
intel_de_rmw(i915, DPLL_CTRL2,
0, DPLL_CTRL2_DDI_CLK_OFF(port));
mutex_unlock(&i915->dpll.lock);
}
static bool skl_ddi_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
/*
* FIXME Not sure if the override affects both
* the PLL selection and the CLK_OFF bit.
*/
return !(intel_de_read(i915, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port));
}
static struct intel_shared_dpll *skl_ddi_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum intel_dpll_id id;
u32 tmp;
tmp = intel_de_read(i915, DPLL_CTRL2);
/*
* FIXME Not sure if the override affects both
* the PLL selection and the CLK_OFF bit.
*/
if ((tmp & DPLL_CTRL2_DDI_SEL_OVERRIDE(port)) == 0)
return NULL;
id = (tmp & DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
return intel_get_shared_dpll_by_id(i915, id);
}
void hsw_ddi_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum port port = encoder->port;
if (drm_WARN_ON(&i915->drm, !pll))
return;
intel_de_write(i915, PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
}
void hsw_ddi_disable_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
intel_de_write(i915, PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
}
bool hsw_ddi_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
return intel_de_read(i915, PORT_CLK_SEL(port)) != PORT_CLK_SEL_NONE;
}
static struct intel_shared_dpll *hsw_ddi_get_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum intel_dpll_id id;
u32 tmp;
tmp = intel_de_read(i915, PORT_CLK_SEL(port));
switch (tmp & PORT_CLK_SEL_MASK) {
case PORT_CLK_SEL_WRPLL1:
id = DPLL_ID_WRPLL1;
break;
case PORT_CLK_SEL_WRPLL2:
id = DPLL_ID_WRPLL2;
break;
case PORT_CLK_SEL_SPLL:
id = DPLL_ID_SPLL;
break;
case PORT_CLK_SEL_LCPLL_810:
id = DPLL_ID_LCPLL_810;
break;
case PORT_CLK_SEL_LCPLL_1350:
id = DPLL_ID_LCPLL_1350;
break;
case PORT_CLK_SEL_LCPLL_2700:
id = DPLL_ID_LCPLL_2700;
break;
default:
MISSING_CASE(tmp);
fallthrough;
case PORT_CLK_SEL_NONE:
return NULL;
}
return intel_get_shared_dpll_by_id(i915, id);
}
void intel_ddi_enable_clock(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
if (encoder->enable_clock)
encoder->enable_clock(encoder, crtc_state);
}
static void intel_ddi_disable_clock(struct intel_encoder *encoder)
{
if (encoder->disable_clock)
encoder->disable_clock(encoder);
}
void intel_ddi_sanitize_encoder_pll_mapping(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u32 port_mask;
bool ddi_clk_needed;
/*
* In case of DP MST, we sanitize the primary encoder only, not the
* virtual ones.
*/
if (encoder->type == INTEL_OUTPUT_DP_MST)
return;
if (!encoder->base.crtc && intel_encoder_is_dp(encoder)) {
u8 pipe_mask;
bool is_mst;
intel_ddi_get_encoder_pipes(encoder, &pipe_mask, &is_mst);
/*
* In the unlikely case that BIOS enables DP in MST mode, just
* warn since our MST HW readout is incomplete.
*/
if (drm_WARN_ON(&i915->drm, is_mst))
return;
}
port_mask = BIT(encoder->port);
ddi_clk_needed = encoder->base.crtc;
if (encoder->type == INTEL_OUTPUT_DSI) {
struct intel_encoder *other_encoder;
port_mask = intel_dsi_encoder_ports(encoder);
/*
* Sanity check that we haven't incorrectly registered another
* encoder using any of the ports of this DSI encoder.
*/
for_each_intel_encoder(&i915->drm, other_encoder) {
if (other_encoder == encoder)
continue;
if (drm_WARN_ON(&i915->drm,
port_mask & BIT(other_encoder->port)))
return;
}
/*
* For DSI we keep the ddi clocks gated
* except during enable/disable sequence.
*/
ddi_clk_needed = false;
}
if (ddi_clk_needed || !encoder->is_clock_enabled ||
!encoder->is_clock_enabled(encoder))
return;
drm_notice(&i915->drm,
"[ENCODER:%d:%s] is disabled/in DSI mode with an ungated DDI clock, gate it\n",
encoder->base.base.id, encoder->base.name);
encoder->disable_clock(encoder);
}
static void
icl_program_mg_dp_mode(struct intel_digital_port *dig_port,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
u32 ln0, ln1, pin_assignment;
u8 width;
if (!intel_phy_is_tc(dev_priv, phy) ||
dig_port->tc_mode == TC_PORT_TBT_ALT)
return;
if (DISPLAY_VER(dev_priv) >= 12) {
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x0));
ln0 = intel_de_read(dev_priv, DKL_DP_MODE(tc_port));
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x1));
ln1 = intel_de_read(dev_priv, DKL_DP_MODE(tc_port));
} else {
ln0 = intel_de_read(dev_priv, MG_DP_MODE(0, tc_port));
ln1 = intel_de_read(dev_priv, MG_DP_MODE(1, tc_port));
}
ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
/* DPPATC */
pin_assignment = intel_tc_port_get_pin_assignment_mask(dig_port);
width = crtc_state->lane_count;
switch (pin_assignment) {
case 0x0:
drm_WARN_ON(&dev_priv->drm,
dig_port->tc_mode != TC_PORT_LEGACY);
if (width == 1) {
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
} else {
ln0 |= MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X2_MODE;
}
break;
case 0x1:
if (width == 4) {
ln0 |= MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X2_MODE;
}
break;
case 0x2:
if (width == 2) {
ln0 |= MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X2_MODE;
}
break;
case 0x3:
case 0x5:
if (width == 1) {
ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
} else {
ln0 |= MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X2_MODE;
}
break;
case 0x4:
case 0x6:
if (width == 1) {
ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
} else {
ln0 |= MG_DP_MODE_CFG_DP_X2_MODE;
ln1 |= MG_DP_MODE_CFG_DP_X2_MODE;
}
break;
default:
MISSING_CASE(pin_assignment);
}
if (DISPLAY_VER(dev_priv) >= 12) {
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x0));
intel_de_write(dev_priv, DKL_DP_MODE(tc_port), ln0);
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x1));
intel_de_write(dev_priv, DKL_DP_MODE(tc_port), ln1);
} else {
intel_de_write(dev_priv, MG_DP_MODE(0, tc_port), ln0);
intel_de_write(dev_priv, MG_DP_MODE(1, tc_port), ln1);
}
}
static enum transcoder
tgl_dp_tp_transcoder(const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST))
return crtc_state->mst_master_transcoder;
else
return crtc_state->cpu_transcoder;
}
i915_reg_t dp_tp_ctl_reg(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (DISPLAY_VER(dev_priv) >= 12)
return TGL_DP_TP_CTL(tgl_dp_tp_transcoder(crtc_state));
else
return DP_TP_CTL(encoder->port);
}
i915_reg_t dp_tp_status_reg(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (DISPLAY_VER(dev_priv) >= 12)
return TGL_DP_TP_STATUS(tgl_dp_tp_transcoder(crtc_state));
else
return DP_TP_STATUS(encoder->port);
}
static void intel_dp_sink_set_msa_timing_par_ignore_state(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool enable)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!crtc_state->vrr.enable)
return;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_DOWNSPREAD_CTRL,
enable ? DP_MSA_TIMING_PAR_IGNORE_EN : 0) <= 0)
drm_dbg_kms(&i915->drm,
"Failed to %s MSA_TIMING_PAR_IGNORE in the sink\n",
enabledisable(enable));
}
static void intel_dp_sink_set_fec_ready(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!crtc_state->fec_enable)
return;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_FEC_CONFIGURATION, DP_FEC_READY) <= 0)
drm_dbg_kms(&i915->drm,
"Failed to set FEC_READY in the sink\n");
}
static void intel_ddi_enable_fec(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp;
u32 val;
if (!crtc_state->fec_enable)
return;
intel_dp = enc_to_intel_dp(encoder);
val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
val |= DP_TP_CTL_FEC_ENABLE;
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val);
}
static void intel_ddi_disable_fec_state(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp;
u32 val;
if (!crtc_state->fec_enable)
return;
intel_dp = enc_to_intel_dp(encoder);
val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
val &= ~DP_TP_CTL_FEC_ENABLE;
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val);
intel_de_posting_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
}
static void intel_ddi_power_up_lanes(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
enum phy phy = intel_port_to_phy(i915, encoder->port);
if (intel_phy_is_combo(i915, phy)) {
bool lane_reversal =
dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
intel_combo_phy_power_up_lanes(i915, phy, false,
crtc_state->lane_count,
lane_reversal);
}
}
/* Splitter enable for eDP MSO is limited to certain pipes. */
static u8 intel_ddi_splitter_pipe_mask(struct drm_i915_private *i915)
{
if (IS_ALDERLAKE_P(i915))
return BIT(PIPE_A) | BIT(PIPE_B);
else
return BIT(PIPE_A);
}
static void intel_ddi_mso_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 dss1;
if (!HAS_MSO(i915))
return;
dss1 = intel_de_read(i915, ICL_PIPE_DSS_CTL1(pipe));
pipe_config->splitter.enable = dss1 & SPLITTER_ENABLE;
if (!pipe_config->splitter.enable)
return;
if (drm_WARN_ON(&i915->drm, !(intel_ddi_splitter_pipe_mask(i915) & BIT(pipe)))) {
pipe_config->splitter.enable = false;
return;
}
switch (dss1 & SPLITTER_CONFIGURATION_MASK) {
default:
drm_WARN(&i915->drm, true,
"Invalid splitter configuration, dss1=0x%08x\n", dss1);
fallthrough;
case SPLITTER_CONFIGURATION_2_SEGMENT:
pipe_config->splitter.link_count = 2;
break;
case SPLITTER_CONFIGURATION_4_SEGMENT:
pipe_config->splitter.link_count = 4;
break;
}
pipe_config->splitter.pixel_overlap = REG_FIELD_GET(OVERLAP_PIXELS_MASK, dss1);
}
static void intel_ddi_mso_configure(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 dss1 = 0;
if (!HAS_MSO(i915))
return;
if (crtc_state->splitter.enable) {
dss1 |= SPLITTER_ENABLE;
dss1 |= OVERLAP_PIXELS(crtc_state->splitter.pixel_overlap);
if (crtc_state->splitter.link_count == 2)
dss1 |= SPLITTER_CONFIGURATION_2_SEGMENT;
else
dss1 |= SPLITTER_CONFIGURATION_4_SEGMENT;
}
intel_de_rmw(i915, ICL_PIPE_DSS_CTL1(pipe),
SPLITTER_ENABLE | SPLITTER_CONFIGURATION_MASK |
OVERLAP_PIXELS_MASK, dss1);
}
static void dg2_ddi_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
int level = intel_ddi_dp_level(intel_dp);
intel_dp_set_link_params(intel_dp, crtc_state->port_clock,
crtc_state->lane_count);
/*
* 1. Enable Power Wells
*
* This was handled at the beginning of intel_atomic_commit_tail(),
* before we called down into this function.
*/
/* 2. Enable Panel Power if PPS is required */
intel_pps_on(intel_dp);
/*
* 3. Enable the port PLL.
*/
intel_ddi_enable_clock(encoder, crtc_state);
/* 4. Enable IO power */
if (!intel_phy_is_tc(dev_priv, phy) ||
dig_port->tc_mode != TC_PORT_TBT_ALT)
dig_port->ddi_io_wakeref = intel_display_power_get(dev_priv,
dig_port->ddi_io_power_domain);
/*
* 5. The rest of the below are substeps under the bspec's "Enable and
* Train Display Port" step. Note that steps that are specific to
* MST will be handled by intel_mst_pre_enable_dp() before/after it
* calls into this function. Also intel_mst_pre_enable_dp() only calls
* us when active_mst_links==0, so any steps designated for "single
* stream or multi-stream master transcoder" can just be performed
* unconditionally here.
*/
/*
* 5.a Configure Transcoder Clock Select to direct the Port clock to the
* Transcoder.
*/
intel_ddi_enable_pipe_clock(encoder, crtc_state);
/* 5.b Not relevant to i915 for now */
/*
* 5.c Configure TRANS_DDI_FUNC_CTL DDI Select, DDI Mode Select & MST
* Transport Select
*/
intel_ddi_config_transcoder_func(encoder, crtc_state);
/*
* 5.d Configure & enable DP_TP_CTL with link training pattern 1
* selected
*
* This will be handled by the intel_dp_start_link_train() farther
* down this function.
*/
/* 5.e Configure voltage swing and related IO settings */
intel_snps_phy_ddi_vswing_sequence(encoder, level);
/*
* 5.f Configure and enable DDI_BUF_CTL
* 5.g Wait for DDI_BUF_CTL DDI Idle Status = 0b (Not Idle), timeout
* after 1200 us.
*
* We only configure what the register value will be here. Actual
* enabling happens during link training farther down.
*/
intel_ddi_init_dp_buf_reg(encoder, crtc_state);
if (!is_mst)
intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
intel_dp_sink_set_decompression_state(intel_dp, crtc_state, true);
/*
* DDI FEC: "anticipates enabling FEC encoding sets the FEC_READY bit
* in the FEC_CONFIGURATION register to 1 before initiating link
* training
*/
intel_dp_sink_set_fec_ready(intel_dp, crtc_state);
/*
* 5.h Follow DisplayPort specification training sequence (see notes for
* failure handling)
* 5.i If DisplayPort multi-stream - Set DP_TP_CTL link training to Idle
* Pattern, wait for 5 idle patterns (DP_TP_STATUS Min_Idles_Sent)
* (timeout after 800 us)
*/
intel_dp_start_link_train(intel_dp, crtc_state);
/* 5.j Set DP_TP_CTL link training to Normal */
if (!is_trans_port_sync_mode(crtc_state))
intel_dp_stop_link_train(intel_dp, crtc_state);
/* 5.k Configure and enable FEC if needed */
intel_ddi_enable_fec(encoder, crtc_state);
intel_dsc_enable(encoder, crtc_state);
}
static void tgl_ddi_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
int level = intel_ddi_dp_level(intel_dp);
intel_dp_set_link_params(intel_dp,
crtc_state->port_clock,
crtc_state->lane_count);
/*
* 1. Enable Power Wells
*
* This was handled at the beginning of intel_atomic_commit_tail(),
* before we called down into this function.
*/
/* 2. Enable Panel Power if PPS is required */
intel_pps_on(intel_dp);
/*
* 3. For non-TBT Type-C ports, set FIA lane count
* (DFLEXDPSP.DPX4TXLATC)
*
* This was done before tgl_ddi_pre_enable_dp by
* hsw_crtc_enable()->intel_encoders_pre_pll_enable().
*/
/*
* 4. Enable the port PLL.
*
* The PLL enabling itself was already done before this function by
* hsw_crtc_enable()->intel_enable_shared_dpll(). We need only
* configure the PLL to port mapping here.
*/
intel_ddi_enable_clock(encoder, crtc_state);
/* 5. If IO power is controlled through PWR_WELL_CTL, Enable IO Power */
if (!intel_phy_is_tc(dev_priv, phy) ||
dig_port->tc_mode != TC_PORT_TBT_ALT) {
drm_WARN_ON(&dev_priv->drm, dig_port->ddi_io_wakeref);
dig_port->ddi_io_wakeref = intel_display_power_get(dev_priv,
dig_port->ddi_io_power_domain);
}
/* 6. Program DP_MODE */
icl_program_mg_dp_mode(dig_port, crtc_state);
/*
* 7. The rest of the below are substeps under the bspec's "Enable and
* Train Display Port" step. Note that steps that are specific to
* MST will be handled by intel_mst_pre_enable_dp() before/after it
* calls into this function. Also intel_mst_pre_enable_dp() only calls
* us when active_mst_links==0, so any steps designated for "single
* stream or multi-stream master transcoder" can just be performed
* unconditionally here.
*/
/*
* 7.a Configure Transcoder Clock Select to direct the Port clock to the
* Transcoder.
*/
intel_ddi_enable_pipe_clock(encoder, crtc_state);
/*
* 7.b Configure TRANS_DDI_FUNC_CTL DDI Select, DDI Mode Select & MST
* Transport Select
*/
intel_ddi_config_transcoder_func(encoder, crtc_state);
/*
* 7.c Configure & enable DP_TP_CTL with link training pattern 1
* selected
*
* This will be handled by the intel_dp_start_link_train() farther
* down this function.
*/
/* 7.e Configure voltage swing and related IO settings */
tgl_ddi_vswing_sequence(encoder, crtc_state, level);
/*
* 7.f Combo PHY: Configure PORT_CL_DW10 Static Power Down to power up
* the used lanes of the DDI.
*/
intel_ddi_power_up_lanes(encoder, crtc_state);
/*
* 7.g Program CoG/MSO configuration bits in DSS_CTL1 if selected.
*/
intel_ddi_mso_configure(crtc_state);
/*
* 7.g Configure and enable DDI_BUF_CTL
* 7.h Wait for DDI_BUF_CTL DDI Idle Status = 0b (Not Idle), timeout
* after 500 us.
*
* We only configure what the register value will be here. Actual
* enabling happens during link training farther down.
*/
intel_ddi_init_dp_buf_reg(encoder, crtc_state);
if (!is_mst)
intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
intel_dp_configure_protocol_converter(intel_dp, crtc_state);
intel_dp_sink_set_decompression_state(intel_dp, crtc_state, true);
/*
* DDI FEC: "anticipates enabling FEC encoding sets the FEC_READY bit
* in the FEC_CONFIGURATION register to 1 before initiating link
* training
*/
intel_dp_sink_set_fec_ready(intel_dp, crtc_state);
intel_dp_check_frl_training(intel_dp);
intel_dp_pcon_dsc_configure(intel_dp, crtc_state);
/*
* 7.i Follow DisplayPort specification training sequence (see notes for
* failure handling)
* 7.j If DisplayPort multi-stream - Set DP_TP_CTL link training to Idle
* Pattern, wait for 5 idle patterns (DP_TP_STATUS Min_Idles_Sent)
* (timeout after 800 us)
*/
intel_dp_start_link_train(intel_dp, crtc_state);
/* 7.k Set DP_TP_CTL link training to Normal */
if (!is_trans_port_sync_mode(crtc_state))
intel_dp_stop_link_train(intel_dp, crtc_state);
/* 7.l Configure and enable FEC if needed */
intel_ddi_enable_fec(encoder, crtc_state);
if (!crtc_state->bigjoiner)
intel_dsc_enable(encoder, crtc_state);
}
static void hsw_ddi_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_port_to_phy(dev_priv, port);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
int level = intel_ddi_dp_level(intel_dp);
if (DISPLAY_VER(dev_priv) < 11)
drm_WARN_ON(&dev_priv->drm,
is_mst && (port == PORT_A || port == PORT_E));
else
drm_WARN_ON(&dev_priv->drm, is_mst && port == PORT_A);
intel_dp_set_link_params(intel_dp,
crtc_state->port_clock,
crtc_state->lane_count);
intel_pps_on(intel_dp);
intel_ddi_enable_clock(encoder, crtc_state);
if (!intel_phy_is_tc(dev_priv, phy) ||
dig_port->tc_mode != TC_PORT_TBT_ALT) {
drm_WARN_ON(&dev_priv->drm, dig_port->ddi_io_wakeref);
dig_port->ddi_io_wakeref = intel_display_power_get(dev_priv,
dig_port->ddi_io_power_domain);
}
icl_program_mg_dp_mode(dig_port, crtc_state);
if (DISPLAY_VER(dev_priv) >= 11)
icl_ddi_vswing_sequence(encoder, crtc_state, level);
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_ddi_vswing_sequence(encoder, crtc_state, level);
else
hsw_prepare_dp_ddi_buffers(encoder, crtc_state);
intel_ddi_power_up_lanes(encoder, crtc_state);
intel_ddi_init_dp_buf_reg(encoder, crtc_state);
if (!is_mst)
intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
intel_dp_configure_protocol_converter(intel_dp, crtc_state);
intel_dp_sink_set_decompression_state(intel_dp, crtc_state,
true);
intel_dp_sink_set_fec_ready(intel_dp, crtc_state);
intel_dp_start_link_train(intel_dp, crtc_state);
if ((port != PORT_A || DISPLAY_VER(dev_priv) >= 9) &&
!is_trans_port_sync_mode(crtc_state))
intel_dp_stop_link_train(intel_dp, crtc_state);
intel_ddi_enable_fec(encoder, crtc_state);
if (!is_mst)
intel_ddi_enable_pipe_clock(encoder, crtc_state);
if (!crtc_state->bigjoiner)
intel_dsc_enable(encoder, crtc_state);
}
static void intel_ddi_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (IS_DG2(dev_priv))
dg2_ddi_pre_enable_dp(state, encoder, crtc_state, conn_state);
else if (DISPLAY_VER(dev_priv) >= 12)
tgl_ddi_pre_enable_dp(state, encoder, crtc_state, conn_state);
else
hsw_ddi_pre_enable_dp(state, encoder, crtc_state, conn_state);
/* MST will call a setting of MSA after an allocating of Virtual Channel
* from MST encoder pre_enable callback.
*/
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
intel_ddi_set_dp_msa(crtc_state, conn_state);
intel_dp_set_m_n(crtc_state, M1_N1);
}
}
static void intel_ddi_pre_enable_hdmi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
intel_ddi_enable_clock(encoder, crtc_state);
drm_WARN_ON(&dev_priv->drm, dig_port->ddi_io_wakeref);
dig_port->ddi_io_wakeref = intel_display_power_get(dev_priv,
dig_port->ddi_io_power_domain);
icl_program_mg_dp_mode(dig_port, crtc_state);
intel_ddi_enable_pipe_clock(encoder, crtc_state);
dig_port->set_infoframes(encoder,
crtc_state->has_infoframe,
crtc_state, conn_state);
}
static void intel_ddi_pre_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/*
* When called from DP MST code:
* - conn_state will be NULL
* - encoder will be the main encoder (ie. mst->primary)
* - the main connector associated with this port
* won't be active or linked to a crtc
* - crtc_state will be the state of the first stream to
* be activated on this port, and it may not be the same
* stream that will be deactivated last, but each stream
* should have a state that is identical when it comes to
* the DP link parameteres
*/
drm_WARN_ON(&dev_priv->drm, crtc_state->has_pch_encoder);
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
intel_ddi_pre_enable_hdmi(state, encoder, crtc_state,
conn_state);
} else {
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
intel_ddi_pre_enable_dp(state, encoder, crtc_state,
conn_state);
/* FIXME precompute everything properly */
/* FIXME how do we turn infoframes off again? */
if (dig_port->lspcon.active && dig_port->dp.has_hdmi_sink)
dig_port->set_infoframes(encoder,
crtc_state->has_infoframe,
crtc_state, conn_state);
}
}
static void intel_disable_ddi_buf(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
bool wait = false;
u32 val;
val = intel_de_read(dev_priv, DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
intel_de_write(dev_priv, DDI_BUF_CTL(port), val);
wait = true;
}
if (intel_crtc_has_dp_encoder(crtc_state)) {
val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val);
}
/* Disable FEC in DP Sink */
intel_ddi_disable_fec_state(encoder, crtc_state);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
static void intel_ddi_post_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &dig_port->dp;
bool is_mst = intel_crtc_has_type(old_crtc_state,
INTEL_OUTPUT_DP_MST);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
if (!is_mst)
intel_dp_set_infoframes(encoder, false,
old_crtc_state, old_conn_state);
/*
* Power down sink before disabling the port, otherwise we end
* up getting interrupts from the sink on detecting link loss.
*/
intel_dp_set_power(intel_dp, DP_SET_POWER_D3);
if (DISPLAY_VER(dev_priv) >= 12) {
if (is_mst) {
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
u32 val;
val = intel_de_read(dev_priv,
TRANS_DDI_FUNC_CTL(cpu_transcoder));
val &= ~(TGL_TRANS_DDI_PORT_MASK |
TRANS_DDI_MODE_SELECT_MASK);
intel_de_write(dev_priv,
TRANS_DDI_FUNC_CTL(cpu_transcoder),
val);
}
} else {
if (!is_mst)
intel_ddi_disable_pipe_clock(old_crtc_state);
}
intel_disable_ddi_buf(encoder, old_crtc_state);
/*
* From TGL spec: "If single stream or multi-stream master transcoder:
* Configure Transcoder Clock select to direct no clock to the
* transcoder"
*/
if (DISPLAY_VER(dev_priv) >= 12)
intel_ddi_disable_pipe_clock(old_crtc_state);
intel_pps_vdd_on(intel_dp);
intel_pps_off(intel_dp);
if (!intel_phy_is_tc(dev_priv, phy) ||
dig_port->tc_mode != TC_PORT_TBT_ALT)
intel_display_power_put(dev_priv,
dig_port->ddi_io_power_domain,
fetch_and_zero(&dig_port->ddi_io_wakeref));
intel_ddi_disable_clock(encoder);
}
static void intel_ddi_post_disable_hdmi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
dig_port->set_infoframes(encoder, false,
old_crtc_state, old_conn_state);
intel_ddi_disable_pipe_clock(old_crtc_state);
intel_disable_ddi_buf(encoder, old_crtc_state);
intel_display_power_put(dev_priv,
dig_port->ddi_io_power_domain,
fetch_and_zero(&dig_port->ddi_io_wakeref));
intel_ddi_disable_clock(encoder);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
}
static void intel_ddi_post_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
bool is_tc_port = intel_phy_is_tc(dev_priv, phy);
if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) {
intel_crtc_vblank_off(old_crtc_state);
intel_disable_pipe(old_crtc_state);
intel_vrr_disable(old_crtc_state);
intel_ddi_disable_transcoder_func(old_crtc_state);
intel_dsc_disable(old_crtc_state);
if (DISPLAY_VER(dev_priv) >= 9)
skl_scaler_disable(old_crtc_state);
else
ilk_pfit_disable(old_crtc_state);
}
if (old_crtc_state->bigjoiner_linked_crtc) {
struct intel_atomic_state *state =
to_intel_atomic_state(old_crtc_state->uapi.state);
struct intel_crtc *slave =
old_crtc_state->bigjoiner_linked_crtc;
const struct intel_crtc_state *old_slave_crtc_state =
intel_atomic_get_old_crtc_state(state, slave);
intel_crtc_vblank_off(old_slave_crtc_state);
intel_dsc_disable(old_slave_crtc_state);
skl_scaler_disable(old_slave_crtc_state);
}
/*
* When called from DP MST code:
* - old_conn_state will be NULL
* - encoder will be the main encoder (ie. mst->primary)
* - the main connector associated with this port
* won't be active or linked to a crtc
* - old_crtc_state will be the state of the last stream to
* be deactivated on this port, and it may not be the same
* stream that was activated last, but each stream
* should have a state that is identical when it comes to
* the DP link parameteres
*/
if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
intel_ddi_post_disable_hdmi(state, encoder, old_crtc_state,
old_conn_state);
else
intel_ddi_post_disable_dp(state, encoder, old_crtc_state,
old_conn_state);
if (intel_crtc_has_dp_encoder(old_crtc_state) || is_tc_port)
intel_display_power_put(dev_priv,
intel_ddi_main_link_aux_domain(dig_port),
fetch_and_zero(&dig_port->aux_wakeref));
if (is_tc_port)
intel_tc_port_put_link(dig_port);
}
void intel_ddi_fdi_post_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val;
/*
* Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
* and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
* step 13 is the correct place for it. Step 18 is where it was
* originally before the BUN.
*/
val = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_ENABLE;
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), val);
intel_disable_ddi_buf(encoder, old_crtc_state);
intel_ddi_disable_clock(encoder);
val = intel_de_read(dev_priv, FDI_RX_MISC(PIPE_A));
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
intel_de_write(dev_priv, FDI_RX_MISC(PIPE_A), val);
val = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
val &= ~FDI_PCDCLK;
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), val);
val = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_PLL_ENABLE;
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), val);
}
static void trans_port_sync_stop_link_train(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
if (!crtc_state->sync_mode_slaves_mask)
return;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *slave_encoder =
to_intel_encoder(conn_state->best_encoder);
struct intel_crtc *slave_crtc = to_intel_crtc(conn_state->crtc);
const struct intel_crtc_state *slave_crtc_state;
if (!slave_crtc)
continue;
slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
if (slave_crtc_state->master_transcoder !=
crtc_state->cpu_transcoder)
continue;
intel_dp_stop_link_train(enc_to_intel_dp(slave_encoder),
slave_crtc_state);
}
usleep_range(200, 400);
intel_dp_stop_link_train(enc_to_intel_dp(encoder),
crtc_state);
}
static void intel_enable_ddi_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
enum port port = encoder->port;
if (port == PORT_A && DISPLAY_VER(dev_priv) < 9)
intel_dp_stop_link_train(intel_dp, crtc_state);
intel_edp_backlight_on(crtc_state, conn_state);
intel_psr_enable(intel_dp, crtc_state, conn_state);
if (!dig_port->lspcon.active || dig_port->dp.has_hdmi_sink)
intel_dp_set_infoframes(encoder, true, crtc_state, conn_state);
intel_edp_drrs_enable(intel_dp, crtc_state);
if (crtc_state->has_audio)
intel_audio_codec_enable(encoder, crtc_state, conn_state);
trans_port_sync_stop_link_train(state, encoder, crtc_state);
}
static i915_reg_t
gen9_chicken_trans_reg_by_port(struct drm_i915_private *dev_priv,
enum port port)
{
static const enum transcoder trans[] = {
[PORT_A] = TRANSCODER_EDP,
[PORT_B] = TRANSCODER_A,
[PORT_C] = TRANSCODER_B,
[PORT_D] = TRANSCODER_C,
[PORT_E] = TRANSCODER_A,
};
drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) < 9);
if (drm_WARN_ON(&dev_priv->drm, port < PORT_A || port > PORT_E))
port = PORT_A;
return CHICKEN_TRANS(trans[port]);
}
static void intel_enable_ddi_hdmi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_connector *connector = conn_state->connector;
int level = intel_ddi_hdmi_level(encoder, crtc_state);
enum port port = encoder->port;
if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
crtc_state->hdmi_high_tmds_clock_ratio,
crtc_state->hdmi_scrambling))
drm_dbg_kms(&dev_priv->drm,
"[CONNECTOR:%d:%s] Failed to configure sink scrambling/TMDS bit clock ratio\n",
connector->base.id, connector->name);
if (IS_DG2(dev_priv))
intel_snps_phy_ddi_vswing_sequence(encoder, U32_MAX);
else if (DISPLAY_VER(dev_priv) >= 12)
tgl_ddi_vswing_sequence(encoder, crtc_state, level);
else if (DISPLAY_VER(dev_priv) == 11)
icl_ddi_vswing_sequence(encoder, crtc_state, level);
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_ddi_vswing_sequence(encoder, crtc_state, level);
else
hsw_prepare_hdmi_ddi_buffers(encoder, crtc_state, level);
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
skl_ddi_set_iboost(encoder, crtc_state, level);
/* Display WA #1143: skl,kbl,cfl */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
/*
* For some reason these chicken bits have been
* stuffed into a transcoder register, event though
* the bits affect a specific DDI port rather than
* a specific transcoder.
*/
i915_reg_t reg = gen9_chicken_trans_reg_by_port(dev_priv, port);
u32 val;
val = intel_de_read(dev_priv, reg);
if (port == PORT_E)
val |= DDIE_TRAINING_OVERRIDE_ENABLE |
DDIE_TRAINING_OVERRIDE_VALUE;
else
val |= DDI_TRAINING_OVERRIDE_ENABLE |
DDI_TRAINING_OVERRIDE_VALUE;
intel_de_write(dev_priv, reg, val);
intel_de_posting_read(dev_priv, reg);
udelay(1);
if (port == PORT_E)
val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE |
DDIE_TRAINING_OVERRIDE_VALUE);
else
val &= ~(DDI_TRAINING_OVERRIDE_ENABLE |
DDI_TRAINING_OVERRIDE_VALUE);
intel_de_write(dev_priv, reg, val);
}
intel_ddi_power_up_lanes(encoder, crtc_state);
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*
* On ADL_P the PHY link rate and lane count must be programmed but
* these are both 0 for HDMI.
*/
intel_de_write(dev_priv, DDI_BUF_CTL(port),
dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE);
if (crtc_state->has_audio)
intel_audio_codec_enable(encoder, crtc_state, conn_state);
}
static void intel_enable_ddi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
drm_WARN_ON(state->base.dev, crtc_state->has_pch_encoder);
if (!crtc_state->bigjoiner_slave)
intel_ddi_enable_transcoder_func(encoder, crtc_state);
intel_vrr_enable(encoder, crtc_state);
intel_enable_pipe(crtc_state);
intel_crtc_vblank_on(crtc_state);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
intel_enable_ddi_hdmi(state, encoder, crtc_state, conn_state);
else
intel_enable_ddi_dp(state, encoder, crtc_state, conn_state);
/* Enable hdcp if it's desired */
if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_DESIRED)
intel_hdcp_enable(to_intel_connector(conn_state->connector),
crtc_state,
(u8)conn_state->hdcp_content_type);
}
static void intel_disable_ddi_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_dp->link_trained = false;
intel_edp_backlight_off(old_conn_state);
/* Disable the decompression in DP Sink */
intel_dp_sink_set_decompression_state(intel_dp, old_crtc_state,
false);
/* Disable Ignore_MSA bit in DP Sink */
intel_dp_sink_set_msa_timing_par_ignore_state(intel_dp, old_crtc_state,
false);
}
static void intel_disable_ddi_hdmi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct drm_connector *connector = old_conn_state->connector;
if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
false, false))
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s] Failed to reset sink scrambling/TMDS bit clock ratio\n",
connector->base.id, connector->name);
}
static void intel_pre_disable_ddi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp;
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder, old_crtc_state,
old_conn_state);
if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
return;
intel_dp = enc_to_intel_dp(encoder);
intel_edp_drrs_disable(intel_dp, old_crtc_state);
intel_psr_disable(intel_dp, old_crtc_state);
}
static void intel_disable_ddi(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_hdcp_disable(to_intel_connector(old_conn_state->connector));
if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
intel_disable_ddi_hdmi(state, encoder, old_crtc_state,
old_conn_state);
else
intel_disable_ddi_dp(state, encoder, old_crtc_state,
old_conn_state);
}
static void intel_ddi_update_pipe_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_ddi_set_dp_msa(crtc_state, conn_state);
intel_psr_update(intel_dp, crtc_state, conn_state);
intel_dp_set_infoframes(encoder, true, crtc_state, conn_state);
intel_edp_drrs_update(intel_dp, crtc_state);
intel_panel_update_backlight(state, encoder, crtc_state, conn_state);
}
void intel_ddi_update_pipe(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
!intel_encoder_is_mst(encoder))
intel_ddi_update_pipe_dp(state, encoder, crtc_state,
conn_state);
intel_hdcp_update_pipe(state, encoder, crtc_state, conn_state);
}
static void
intel_ddi_update_prepare(struct intel_atomic_state *state,
struct intel_encoder *encoder,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
crtc ? intel_atomic_get_new_crtc_state(state, crtc) : NULL;
int required_lanes = crtc_state ? crtc_state->lane_count : 1;
drm_WARN_ON(state->base.dev, crtc && crtc->active);
intel_tc_port_get_link(enc_to_dig_port(encoder),
required_lanes);
if (crtc_state && crtc_state->hw.active)
intel_update_active_dpll(state, crtc, encoder);
}
static void
intel_ddi_update_complete(struct intel_atomic_state *state,
struct intel_encoder *encoder,
struct intel_crtc *crtc)
{
intel_tc_port_put_link(enc_to_dig_port(encoder));
}
static void
intel_ddi_pre_pll_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
bool is_tc_port = intel_phy_is_tc(dev_priv, phy);
if (is_tc_port)
intel_tc_port_get_link(dig_port, crtc_state->lane_count);
if (intel_crtc_has_dp_encoder(crtc_state) || is_tc_port) {
drm_WARN_ON(&dev_priv->drm, dig_port->aux_wakeref);
dig_port->aux_wakeref =
intel_display_power_get(dev_priv,
intel_ddi_main_link_aux_domain(dig_port));
}
if (is_tc_port && dig_port->tc_mode != TC_PORT_TBT_ALT)
/*
* Program the lane count for static/dynamic connections on
* Type-C ports. Skip this step for TBT.
*/
intel_tc_port_set_fia_lane_count(dig_port, crtc_state->lane_count);
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_ddi_phy_set_lane_optim_mask(encoder,
crtc_state->lane_lat_optim_mask);
}
static void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 dp_tp_ctl, ddi_buf_ctl;
bool wait = false;
dp_tp_ctl = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
if (dp_tp_ctl & DP_TP_CTL_ENABLE) {
ddi_buf_ctl = intel_de_read(dev_priv, DDI_BUF_CTL(port));
if (ddi_buf_ctl & DDI_BUF_CTL_ENABLE) {
intel_de_write(dev_priv, DDI_BUF_CTL(port),
ddi_buf_ctl & ~DDI_BUF_CTL_ENABLE);
wait = true;
}
dp_tp_ctl &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
dp_tp_ctl |= DP_TP_CTL_LINK_TRAIN_PAT1;
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), dp_tp_ctl);
intel_de_posting_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
dp_tp_ctl = DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
dp_tp_ctl |= DP_TP_CTL_MODE_MST;
} else {
dp_tp_ctl |= DP_TP_CTL_MODE_SST;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
dp_tp_ctl |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
}
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), dp_tp_ctl);
intel_de_posting_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
intel_de_write(dev_priv, DDI_BUF_CTL(port), intel_dp->DP);
intel_de_posting_read(dev_priv, DDI_BUF_CTL(port));
intel_wait_ddi_buf_active(dev_priv, port);
}
static void intel_ddi_set_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
u8 dp_train_pat)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 temp;
temp = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (intel_dp_training_pattern_symbol(dp_train_pat)) {
case DP_TRAINING_PATTERN_DISABLE:
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
case DP_TRAINING_PATTERN_4:
temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
break;
}
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), temp);
}
static void intel_ddi_set_idle_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
u32 val;
val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state));
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val);
/*
* Until TGL on PORT_A we can have only eDP in SST mode. There the only
* reason we need to set idle transmission mode is to work around a HW
* issue where we enable the pipe while not in idle link-training mode.
* In this case there is requirement to wait for a minimum number of
* idle patterns to be sent.
*/
if (port == PORT_A && DISPLAY_VER(dev_priv) < 12)
return;
if (intel_de_wait_for_set(dev_priv,
dp_tp_status_reg(encoder, crtc_state),
DP_TP_STATUS_IDLE_DONE, 1))
drm_err(&dev_priv->drm,
"Timed out waiting for DP idle patterns\n");
}
static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
if (cpu_transcoder == TRANSCODER_EDP)
return false;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO_MMIO))
return false;
return intel_de_read(dev_priv, HSW_AUD_PIN_ELD_CP_VLD) &
AUDIO_OUTPUT_ENABLE(cpu_transcoder);
}
void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv,
struct intel_crtc_state *crtc_state)
{
if (DISPLAY_VER(dev_priv) >= 12 && crtc_state->port_clock > 594000)
crtc_state->min_voltage_level = 2;
else if (IS_JSL_EHL(dev_priv) && crtc_state->port_clock > 594000)
crtc_state->min_voltage_level = 3;
else if (DISPLAY_VER(dev_priv) >= 11 && crtc_state->port_clock > 594000)
crtc_state->min_voltage_level = 1;
}
static enum transcoder bdw_transcoder_master_readout(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
u32 master_select;
if (DISPLAY_VER(dev_priv) >= 11) {
u32 ctl2 = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL2(cpu_transcoder));
if ((ctl2 & PORT_SYNC_MODE_ENABLE) == 0)
return INVALID_TRANSCODER;
master_select = REG_FIELD_GET(PORT_SYNC_MODE_MASTER_SELECT_MASK, ctl2);
} else {
u32 ctl = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
if ((ctl & TRANS_DDI_PORT_SYNC_ENABLE) == 0)
return INVALID_TRANSCODER;
master_select = REG_FIELD_GET(TRANS_DDI_PORT_SYNC_MASTER_SELECT_MASK, ctl);
}
if (master_select == 0)
return TRANSCODER_EDP;
else
return master_select - 1;
}
static void bdw_get_trans_port_sync_config(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u32 transcoders = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
enum transcoder cpu_transcoder;
crtc_state->master_transcoder =
bdw_transcoder_master_readout(dev_priv, crtc_state->cpu_transcoder);
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
enum intel_display_power_domain power_domain;
intel_wakeref_t trans_wakeref;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
power_domain);
if (!trans_wakeref)
continue;
if (bdw_transcoder_master_readout(dev_priv, cpu_transcoder) ==
crtc_state->cpu_transcoder)
crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder);
intel_display_power_put(dev_priv, power_domain, trans_wakeref);
}
drm_WARN_ON(&dev_priv->drm,
crtc_state->master_transcoder != INVALID_TRANSCODER &&
crtc_state->sync_mode_slaves_mask);
}
static void intel_ddi_read_func_ctl(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
u32 temp, flags = 0;
temp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->hw.adjusted_mode.flags |= flags;
switch (temp & TRANS_DDI_BPC_MASK) {
case TRANS_DDI_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANS_DDI_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANS_DDI_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANS_DDI_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
pipe_config->has_hdmi_sink = true;
pipe_config->infoframes.enable |=
intel_hdmi_infoframes_enabled(encoder, pipe_config);
if (pipe_config->infoframes.enable)
pipe_config->has_infoframe = true;
if (temp & TRANS_DDI_HDMI_SCRAMBLING)
pipe_config->hdmi_scrambling = true;
if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
pipe_config->hdmi_high_tmds_clock_ratio = true;
fallthrough;
case TRANS_DDI_MODE_SELECT_DVI:
pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
pipe_config->lane_count = 4;
break;
case TRANS_DDI_MODE_SELECT_FDI:
pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG);
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
if (encoder->type == INTEL_OUTPUT_EDP)
pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
else
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
pipe_config->lane_count =
((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(crtc, pipe_config);
if (DISPLAY_VER(dev_priv) >= 11) {
i915_reg_t dp_tp_ctl = dp_tp_ctl_reg(encoder, pipe_config);
pipe_config->fec_enable =
intel_de_read(dev_priv, dp_tp_ctl) & DP_TP_CTL_FEC_ENABLE;
drm_dbg_kms(&dev_priv->drm,
"[ENCODER:%d:%s] Fec status: %u\n",
encoder->base.base.id, encoder->base.name,
pipe_config->fec_enable);
}
if (dig_port->lspcon.active && dig_port->dp.has_hdmi_sink)
pipe_config->infoframes.enable |=
intel_lspcon_infoframes_enabled(encoder, pipe_config);
else
pipe_config->infoframes.enable |=
intel_hdmi_infoframes_enabled(encoder, pipe_config);
break;
case TRANS_DDI_MODE_SELECT_DP_MST:
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST);
pipe_config->lane_count =
((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
if (DISPLAY_VER(dev_priv) >= 12)
pipe_config->mst_master_transcoder =
REG_FIELD_GET(TRANS_DDI_MST_TRANSPORT_SELECT_MASK, temp);
intel_dp_get_m_n(crtc, pipe_config);
pipe_config->infoframes.enable |=
intel_hdmi_infoframes_enabled(encoder, pipe_config);
break;
default:
break;
}
}
static void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
/* XXX: DSI transcoder paranoia */
if (drm_WARN_ON(&dev_priv->drm, transcoder_is_dsi(cpu_transcoder)))
return;
if (pipe_config->bigjoiner_slave) {
/* read out pipe settings from master */
enum transcoder save = pipe_config->cpu_transcoder;
/* Our own transcoder needs to be disabled when reading it in intel_ddi_read_func_ctl() */
WARN_ON(pipe_config->output_types);
pipe_config->cpu_transcoder = (enum transcoder)pipe_config->bigjoiner_linked_crtc->pipe;
intel_ddi_read_func_ctl(encoder, pipe_config);
pipe_config->cpu_transcoder = save;
} else {
intel_ddi_read_func_ctl(encoder, pipe_config);
}
intel_ddi_mso_get_config(encoder, pipe_config);
pipe_config->has_audio =
intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder);
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
drm_dbg_kms(&dev_priv->drm,
"pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
if (!pipe_config->bigjoiner_slave)
ddi_dotclock_get(pipe_config);
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
intel_hdmi_read_gcp_infoframe(encoder, pipe_config);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_AVI,
&pipe_config->infoframes.avi);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_SPD,
&pipe_config->infoframes.spd);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_VENDOR,
&pipe_config->infoframes.hdmi);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_DRM,
&pipe_config->infoframes.drm);
if (DISPLAY_VER(dev_priv) >= 8)
bdw_get_trans_port_sync_config(pipe_config);
intel_read_dp_sdp(encoder, pipe_config, HDMI_PACKET_TYPE_GAMUT_METADATA);
intel_read_dp_sdp(encoder, pipe_config, DP_SDP_VSC);
intel_psr_get_config(encoder, pipe_config);
}
void intel_ddi_get_clock(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct intel_shared_dpll *pll)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT;
struct icl_port_dpll *port_dpll = &crtc_state->icl_port_dplls[port_dpll_id];
bool pll_active;
if (drm_WARN_ON(&i915->drm, !pll))
return;
port_dpll->pll = pll;
pll_active = intel_dpll_get_hw_state(i915, pll, &port_dpll->hw_state);
drm_WARN_ON(&i915->drm, !pll_active);
icl_set_active_port_dpll(crtc_state, port_dpll_id);
crtc_state->port_clock = intel_dpll_get_freq(i915, crtc_state->shared_dpll,
&crtc_state->dpll_hw_state);
}
static void dg2_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_mpllb_readout_hw_state(encoder, &crtc_state->mpllb_state);
crtc_state->port_clock = intel_mpllb_calc_port_clock(encoder, &crtc_state->mpllb_state);
intel_ddi_get_config(encoder, crtc_state);
}
static void adls_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, adls_ddi_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void rkl_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, rkl_ddi_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void dg1_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, dg1_ddi_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void icl_ddi_combo_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, icl_ddi_combo_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void icl_ddi_tc_get_clock(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct intel_shared_dpll *pll)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum icl_port_dpll_id port_dpll_id;
struct icl_port_dpll *port_dpll;
bool pll_active;
if (drm_WARN_ON(&i915->drm, !pll))
return;
if (intel_get_shared_dpll_id(i915, pll) == DPLL_ID_ICL_TBTPLL)
port_dpll_id = ICL_PORT_DPLL_DEFAULT;
else
port_dpll_id = ICL_PORT_DPLL_MG_PHY;
port_dpll = &crtc_state->icl_port_dplls[port_dpll_id];
port_dpll->pll = pll;
pll_active = intel_dpll_get_hw_state(i915, pll, &port_dpll->hw_state);
drm_WARN_ON(&i915->drm, !pll_active);
icl_set_active_port_dpll(crtc_state, port_dpll_id);
if (intel_get_shared_dpll_id(i915, crtc_state->shared_dpll) == DPLL_ID_ICL_TBTPLL)
crtc_state->port_clock = icl_calc_tbt_pll_link(i915, encoder->port);
else
crtc_state->port_clock = intel_dpll_get_freq(i915, crtc_state->shared_dpll,
&crtc_state->dpll_hw_state);
}
static void icl_ddi_tc_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
icl_ddi_tc_get_clock(encoder, crtc_state, icl_ddi_tc_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void bxt_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, bxt_ddi_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void skl_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, skl_ddi_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
void hsw_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
intel_ddi_get_clock(encoder, crtc_state, hsw_ddi_get_pll(encoder));
intel_ddi_get_config(encoder, crtc_state);
}
static void intel_ddi_sync_state(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_dp_encoder(crtc_state))
intel_dp_sync_state(encoder, crtc_state);
}
static bool intel_ddi_initial_fastset_check(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_dp_encoder(crtc_state))
return intel_dp_initial_fastset_check(encoder, crtc_state);
return true;
}
static enum intel_output_type
intel_ddi_compute_output_type(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
switch (conn_state->connector->connector_type) {
case DRM_MODE_CONNECTOR_HDMIA:
return INTEL_OUTPUT_HDMI;
case DRM_MODE_CONNECTOR_eDP:
return INTEL_OUTPUT_EDP;
case DRM_MODE_CONNECTOR_DisplayPort:
return INTEL_OUTPUT_DP;
default:
MISSING_CASE(conn_state->connector->connector_type);
return INTEL_OUTPUT_UNUSED;
}
}
static int intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
int ret;
if (HAS_TRANSCODER(dev_priv, TRANSCODER_EDP) && port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) {
ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
} else {
ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
}
if (ret)
return ret;
if (IS_HASWELL(dev_priv) && crtc->pipe == PIPE_A &&
pipe_config->cpu_transcoder == TRANSCODER_EDP)
pipe_config->pch_pfit.force_thru =
pipe_config->pch_pfit.enabled ||
pipe_config->crc_enabled;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count);
intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
return 0;
}
static bool mode_equal(const struct drm_display_mode *mode1,
const struct drm_display_mode *mode2)
{
return drm_mode_match(mode1, mode2,
DRM_MODE_MATCH_TIMINGS |
DRM_MODE_MATCH_FLAGS |
DRM_MODE_MATCH_3D_FLAGS) &&
mode1->clock == mode2->clock; /* we want an exact match */
}
static bool m_n_equal(const struct intel_link_m_n *m_n_1,
const struct intel_link_m_n *m_n_2)
{
return m_n_1->tu == m_n_2->tu &&
m_n_1->gmch_m == m_n_2->gmch_m &&
m_n_1->gmch_n == m_n_2->gmch_n &&
m_n_1->link_m == m_n_2->link_m &&
m_n_1->link_n == m_n_2->link_n;
}
static bool crtcs_port_sync_compatible(const struct intel_crtc_state *crtc_state1,
const struct intel_crtc_state *crtc_state2)
{
return crtc_state1->hw.active && crtc_state2->hw.active &&
crtc_state1->output_types == crtc_state2->output_types &&
crtc_state1->output_format == crtc_state2->output_format &&
crtc_state1->lane_count == crtc_state2->lane_count &&
crtc_state1->port_clock == crtc_state2->port_clock &&
mode_equal(&crtc_state1->hw.adjusted_mode,
&crtc_state2->hw.adjusted_mode) &&
m_n_equal(&crtc_state1->dp_m_n, &crtc_state2->dp_m_n);
}
static u8
intel_ddi_port_sync_transcoders(const struct intel_crtc_state *ref_crtc_state,
int tile_group_id)
{
struct drm_connector *connector;
const struct drm_connector_state *conn_state;
struct drm_i915_private *dev_priv = to_i915(ref_crtc_state->uapi.crtc->dev);
struct intel_atomic_state *state =
to_intel_atomic_state(ref_crtc_state->uapi.state);
u8 transcoders = 0;
int i;
/*
* We don't enable port sync on BDW due to missing w/as and
* due to not having adjusted the modeset sequence appropriately.
*/
if (DISPLAY_VER(dev_priv) < 9)
return 0;
if (!intel_crtc_has_type(ref_crtc_state, INTEL_OUTPUT_DP))
return 0;
for_each_new_connector_in_state(&state->base, connector, conn_state, i) {
struct intel_crtc *crtc = to_intel_crtc(conn_state->crtc);
const struct intel_crtc_state *crtc_state;
if (!crtc)
continue;
if (!connector->has_tile ||
connector->tile_group->id !=
tile_group_id)
continue;
crtc_state = intel_atomic_get_new_crtc_state(state,
crtc);
if (!crtcs_port_sync_compatible(ref_crtc_state,
crtc_state))
continue;
transcoders |= BIT(crtc_state->cpu_transcoder);
}
return transcoders;
}
static int intel_ddi_compute_config_late(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct drm_connector *connector = conn_state->connector;
u8 port_sync_transcoders = 0;
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] [CRTC:%d:%s]",
encoder->base.base.id, encoder->base.name,
crtc_state->uapi.crtc->base.id, crtc_state->uapi.crtc->name);
if (connector->has_tile)
port_sync_transcoders = intel_ddi_port_sync_transcoders(crtc_state,
connector->tile_group->id);
/*
* EDP Transcoders cannot be ensalved
* make them a master always when present
*/
if (port_sync_transcoders & BIT(TRANSCODER_EDP))
crtc_state->master_transcoder = TRANSCODER_EDP;
else
crtc_state->master_transcoder = ffs(port_sync_transcoders) - 1;
if (crtc_state->master_transcoder == crtc_state->cpu_transcoder) {
crtc_state->master_transcoder = INVALID_TRANSCODER;
crtc_state->sync_mode_slaves_mask =
port_sync_transcoders & ~BIT(crtc_state->cpu_transcoder);
}
return 0;
}
static void intel_ddi_encoder_destroy(struct drm_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->dev);
struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
intel_dp_encoder_flush_work(encoder);
intel_display_power_flush_work(i915);
drm_encoder_cleanup(encoder);
if (dig_port)
kfree(dig_port->hdcp_port_data.streams);
kfree(dig_port);
}
static void intel_ddi_encoder_reset(struct drm_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
intel_dp->reset_link_params = true;
intel_pps_encoder_reset(intel_dp);
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.reset = intel_ddi_encoder_reset,
.destroy = intel_ddi_encoder_destroy,
};
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *dig_port)
{
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
struct intel_connector *connector;
enum port port = dig_port->base.port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
dig_port->dp.output_reg = DDI_BUF_CTL(port);
dig_port->dp.prepare_link_retrain = intel_ddi_prepare_link_retrain;
dig_port->dp.set_link_train = intel_ddi_set_link_train;
dig_port->dp.set_idle_link_train = intel_ddi_set_idle_link_train;
if (IS_DG2(dev_priv))
dig_port->dp.set_signal_levels = dg2_set_signal_levels;
else if (DISPLAY_VER(dev_priv) >= 12)
dig_port->dp.set_signal_levels = tgl_set_signal_levels;
else if (DISPLAY_VER(dev_priv) >= 11)
dig_port->dp.set_signal_levels = icl_set_signal_levels;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
dig_port->dp.set_signal_levels = bxt_set_signal_levels;
else
dig_port->dp.set_signal_levels = hsw_set_signal_levels;
dig_port->dp.voltage_max = intel_ddi_dp_voltage_max;
dig_port->dp.preemph_max = intel_ddi_dp_preemph_max;
if (!intel_dp_init_connector(dig_port, connector)) {
kfree(connector);
return NULL;
}
return connector;
}
static int modeset_pipe(struct drm_crtc *crtc,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_atomic_state *state;
struct drm_crtc_state *crtc_state;
int ret;
state = drm_atomic_state_alloc(crtc->dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = ctx;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
crtc_state->connectors_changed = true;
ret = drm_atomic_commit(state);
out:
drm_atomic_state_put(state);
return ret;
}
static int intel_hdmi_reset_link(struct intel_encoder *encoder,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
struct intel_connector *connector = hdmi->attached_connector;
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
struct drm_connector_state *conn_state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
u8 config;
int ret;
if (!connector || connector->base.status != connector_status_connected)
return 0;
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
ctx);
if (ret)
return ret;
conn_state = connector->base.state;
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
return 0;
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(crtc->base.state);
drm_WARN_ON(&dev_priv->drm,
!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI));
if (!crtc_state->hw.active)
return 0;
if (!crtc_state->hdmi_high_tmds_clock_ratio &&
!crtc_state->hdmi_scrambling)
return 0;
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done))
return 0;
ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config);
if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to read TMDS config: %d\n",
ret);
return 0;
}
if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) ==
crtc_state->hdmi_high_tmds_clock_ratio &&
!!(config & SCDC_SCRAMBLING_ENABLE) ==
crtc_state->hdmi_scrambling)
return 0;
/*
* HDMI 2.0 says that one should not send scrambled data
* prior to configuring the sink scrambling, and that
* TMDS clock/data transmission should be suspended when
* changing the TMDS clock rate in the sink. So let's
* just do a full modeset here, even though some sinks
* would be perfectly happy if were to just reconfigure
* the SCDC settings on the fly.
*/
return modeset_pipe(&crtc->base, ctx);
}
static enum intel_hotplug_state
intel_ddi_hotplug(struct intel_encoder *encoder,
struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &dig_port->dp;
enum phy phy = intel_port_to_phy(i915, encoder->port);
bool is_tc = intel_phy_is_tc(i915, phy);
struct drm_modeset_acquire_ctx ctx;
enum intel_hotplug_state state;
int ret;
if (intel_dp->compliance.test_active &&
intel_dp->compliance.test_type == DP_TEST_LINK_PHY_TEST_PATTERN) {
intel_dp_phy_test(encoder);
/* just do the PHY test and nothing else */
return INTEL_HOTPLUG_UNCHANGED;
}
state = intel_encoder_hotplug(encoder, connector);
drm_modeset_acquire_init(&ctx, 0);
for (;;) {
if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA)
ret = intel_hdmi_reset_link(encoder, &ctx);
else
ret = intel_dp_retrain_link(encoder, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
continue;
}
break;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
drm_WARN(encoder->base.dev, ret,
"Acquiring modeset locks failed with %i\n", ret);
/*
* Unpowered type-c dongles can take some time to boot and be
* responsible, so here giving some time to those dongles to power up
* and then retrying the probe.
*
* On many platforms the HDMI live state signal is known to be
* unreliable, so we can't use it to detect if a sink is connected or
* not. Instead we detect if it's connected based on whether we can
* read the EDID or not. That in turn has a problem during disconnect,
* since the HPD interrupt may be raised before the DDC lines get
* disconnected (due to how the required length of DDC vs. HPD
* connector pins are specified) and so we'll still be able to get a
* valid EDID. To solve this schedule another detection cycle if this
* time around we didn't detect any change in the sink's connection
* status.
*
* Type-c connectors which get their HPD signal deasserted then
* reasserted, without unplugging/replugging the sink from the
* connector, introduce a delay until the AUX channel communication
* becomes functional. Retry the detection for 5 seconds on type-c
* connectors to account for this delay.
*/
if (state == INTEL_HOTPLUG_UNCHANGED &&
connector->hotplug_retries < (is_tc ? 5 : 1) &&
!dig_port->dp.is_mst)
state = INTEL_HOTPLUG_RETRY;
return state;
}
static bool lpt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
return intel_de_read(dev_priv, SDEISR) & bit;
}
static bool hsw_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
return intel_de_read(dev_priv, DEISR) & bit;
}
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
}
static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *dig_port)
{
struct intel_connector *connector;
enum port port = dig_port->base.port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(dig_port, connector);
return connector;
}
static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dig_port)
{
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
if (dig_port->base.port != PORT_A)
return false;
if (dig_port->saved_port_bits & DDI_A_4_LANES)
return false;
/* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only
* supported configuration
*/
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
return true;
return false;
}
static int
intel_ddi_max_lanes(struct intel_digital_port *dig_port)
{
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum port port = dig_port->base.port;
int max_lanes = 4;
if (DISPLAY_VER(dev_priv) >= 11)
return max_lanes;
if (port == PORT_A || port == PORT_E) {
if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
max_lanes = port == PORT_A ? 4 : 0;
else
/* Both A and E share 2 lanes */
max_lanes = 2;
}
/*
* Some BIOS might fail to set this bit on port A if eDP
* wasn't lit up at boot. Force this bit set when needed
* so we use the proper lane count for our calculations.
*/
if (intel_ddi_a_force_4_lanes(dig_port)) {
drm_dbg_kms(&dev_priv->drm,
"Forcing DDI_A_4_LANES for port A\n");
dig_port->saved_port_bits |= DDI_A_4_LANES;
max_lanes = 4;
}
return max_lanes;
}
static bool hti_uses_phy(struct drm_i915_private *i915, enum phy phy)
{
return i915->hti_state & HDPORT_ENABLED &&
i915->hti_state & HDPORT_DDI_USED(phy);
}
static enum hpd_pin xelpd_hpd_pin(struct drm_i915_private *dev_priv,
enum port port)
{
if (port >= PORT_D_XELPD)
return HPD_PORT_D + port - PORT_D_XELPD;
else if (port >= PORT_TC1)
return HPD_PORT_TC1 + port - PORT_TC1;
else
return HPD_PORT_A + port - PORT_A;
}
static enum hpd_pin dg1_hpd_pin(struct drm_i915_private *dev_priv,
enum port port)
{
if (port >= PORT_TC1)
return HPD_PORT_C + port - PORT_TC1;
else
return HPD_PORT_A + port - PORT_A;
}
static enum hpd_pin tgl_hpd_pin(struct drm_i915_private *dev_priv,
enum port port)
{
if (port >= PORT_TC1)
return HPD_PORT_TC1 + port - PORT_TC1;
else
return HPD_PORT_A + port - PORT_A;
}
static enum hpd_pin rkl_hpd_pin(struct drm_i915_private *dev_priv,
enum port port)
{
if (HAS_PCH_TGP(dev_priv))
return tgl_hpd_pin(dev_priv, port);
if (port >= PORT_TC1)
return HPD_PORT_C + port - PORT_TC1;
else
return HPD_PORT_A + port - PORT_A;
}
static enum hpd_pin icl_hpd_pin(struct drm_i915_private *dev_priv,
enum port port)
{
if (port >= PORT_C)
return HPD_PORT_TC1 + port - PORT_C;
else
return HPD_PORT_A + port - PORT_A;
}
static enum hpd_pin ehl_hpd_pin(struct drm_i915_private *dev_priv,
enum port port)
{
if (port == PORT_D)
return HPD_PORT_A;
if (HAS_PCH_MCC(dev_priv))
return icl_hpd_pin(dev_priv, port);
return HPD_PORT_A + port - PORT_A;
}
static enum hpd_pin skl_hpd_pin(struct drm_i915_private *dev_priv, enum port port)
{
if (HAS_PCH_TGP(dev_priv))
return icl_hpd_pin(dev_priv, port);
return HPD_PORT_A + port - PORT_A;
}
static bool intel_ddi_is_tc(struct drm_i915_private *i915, enum port port)
{
if (DISPLAY_VER(i915) >= 12)
return port >= PORT_TC1;
else if (DISPLAY_VER(i915) >= 11)
return port >= PORT_C;
else
return false;
}
static void intel_ddi_encoder_suspend(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum phy phy = intel_port_to_phy(i915, encoder->port);
intel_dp_encoder_suspend(encoder);
if (!intel_phy_is_tc(i915, phy))
return;
intel_tc_port_disconnect_phy(dig_port);
}
static void intel_ddi_encoder_shutdown(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum phy phy = intel_port_to_phy(i915, encoder->port);
intel_dp_encoder_shutdown(encoder);
if (!intel_phy_is_tc(i915, phy))
return;
intel_tc_port_disconnect_phy(dig_port);
}
#define port_tc_name(port) ((port) - PORT_TC1 + '1')
#define tc_port_name(tc_port) ((tc_port) - TC_PORT_1 + '1')
void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
{
struct intel_digital_port *dig_port;
struct intel_encoder *encoder;
const struct intel_bios_encoder_data *devdata;
bool init_hdmi, init_dp;
enum phy phy = intel_port_to_phy(dev_priv, port);
/*
* On platforms with HTI (aka HDPORT), if it's enabled at boot it may
* have taken over some of the PHYs and made them unavailable to the
* driver. In that case we should skip initializing the corresponding
* outputs.
*/
if (hti_uses_phy(dev_priv, phy)) {
drm_dbg_kms(&dev_priv->drm, "PORT %c / PHY %c reserved by HTI\n",
port_name(port), phy_name(phy));
return;
}
devdata = intel_bios_encoder_data_lookup(dev_priv, port);
if (!devdata) {
drm_dbg_kms(&dev_priv->drm,
"VBT says port %c is not present\n",
port_name(port));
return;
}
init_hdmi = intel_bios_encoder_supports_dvi(devdata) ||
intel_bios_encoder_supports_hdmi(devdata);
init_dp = intel_bios_encoder_supports_dp(devdata);
if (intel_bios_is_lspcon_present(dev_priv, port)) {
/*
* Lspcon device needs to be driven with DP connector
* with special detection sequence. So make sure DP
* is initialized before lspcon.
*/
init_dp = true;
init_hdmi = false;
drm_dbg_kms(&dev_priv->drm, "VBT says port %c has lspcon\n",
port_name(port));
}
if (!init_dp && !init_hdmi) {
drm_dbg_kms(&dev_priv->drm,
"VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
port_name(port));
return;
}
dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
if (!dig_port)
return;
encoder = &dig_port->base;
encoder->devdata = devdata;
if (DISPLAY_VER(dev_priv) >= 13 && port >= PORT_D_XELPD) {
drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS,
"DDI %c/PHY %c",
port_name(port - PORT_D_XELPD + PORT_D),
phy_name(phy));
} else if (DISPLAY_VER(dev_priv) >= 12) {
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS,
"DDI %s%c/PHY %s%c",
port >= PORT_TC1 ? "TC" : "",
port >= PORT_TC1 ? port_tc_name(port) : port_name(port),
tc_port != TC_PORT_NONE ? "TC" : "",
tc_port != TC_PORT_NONE ? tc_port_name(tc_port) : phy_name(phy));
} else if (DISPLAY_VER(dev_priv) >= 11) {
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS,
"DDI %c%s/PHY %s%c",
port_name(port),
port >= PORT_C ? " (TC)" : "",
tc_port != TC_PORT_NONE ? "TC" : "",
tc_port != TC_PORT_NONE ? tc_port_name(tc_port) : phy_name(phy));
} else {
drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS,
"DDI %c/PHY %c", port_name(port), phy_name(phy));
}
mutex_init(&dig_port->hdcp_mutex);
dig_port->num_hdcp_streams = 0;
encoder->hotplug = intel_ddi_hotplug;
encoder->compute_output_type = intel_ddi_compute_output_type;
encoder->compute_config = intel_ddi_compute_config;
encoder->compute_config_late = intel_ddi_compute_config_late;
encoder->enable = intel_enable_ddi;
encoder->pre_pll_enable = intel_ddi_pre_pll_enable;
encoder->pre_enable = intel_ddi_pre_enable;
encoder->pre_disable = intel_pre_disable_ddi;
encoder->disable = intel_disable_ddi;
encoder->post_disable = intel_ddi_post_disable;
encoder->update_pipe = intel_ddi_update_pipe;
encoder->get_hw_state = intel_ddi_get_hw_state;
encoder->sync_state = intel_ddi_sync_state;
encoder->initial_fastset_check = intel_ddi_initial_fastset_check;
encoder->suspend = intel_ddi_encoder_suspend;
encoder->shutdown = intel_ddi_encoder_shutdown;
encoder->get_power_domains = intel_ddi_get_power_domains;
encoder->type = INTEL_OUTPUT_DDI;
encoder->power_domain = intel_port_to_power_domain(port);
encoder->port = port;
encoder->cloneable = 0;
encoder->pipe_mask = ~0;
if (IS_DG2(dev_priv)) {
encoder->enable_clock = intel_mpllb_enable;
encoder->disable_clock = intel_mpllb_disable;
encoder->get_config = dg2_ddi_get_config;
} else if (IS_ALDERLAKE_S(dev_priv)) {
encoder->enable_clock = adls_ddi_enable_clock;
encoder->disable_clock = adls_ddi_disable_clock;
encoder->is_clock_enabled = adls_ddi_is_clock_enabled;
encoder->get_config = adls_ddi_get_config;
} else if (IS_ROCKETLAKE(dev_priv)) {
encoder->enable_clock = rkl_ddi_enable_clock;
encoder->disable_clock = rkl_ddi_disable_clock;
encoder->is_clock_enabled = rkl_ddi_is_clock_enabled;
encoder->get_config = rkl_ddi_get_config;
} else if (IS_DG1(dev_priv)) {
encoder->enable_clock = dg1_ddi_enable_clock;
encoder->disable_clock = dg1_ddi_disable_clock;
encoder->is_clock_enabled = dg1_ddi_is_clock_enabled;
encoder->get_config = dg1_ddi_get_config;
} else if (IS_JSL_EHL(dev_priv)) {
if (intel_ddi_is_tc(dev_priv, port)) {
encoder->enable_clock = jsl_ddi_tc_enable_clock;
encoder->disable_clock = jsl_ddi_tc_disable_clock;
encoder->is_clock_enabled = jsl_ddi_tc_is_clock_enabled;
encoder->get_config = icl_ddi_combo_get_config;
} else {
encoder->enable_clock = icl_ddi_combo_enable_clock;
encoder->disable_clock = icl_ddi_combo_disable_clock;
encoder->is_clock_enabled = icl_ddi_combo_is_clock_enabled;
encoder->get_config = icl_ddi_combo_get_config;
}
} else if (DISPLAY_VER(dev_priv) >= 11) {
if (intel_ddi_is_tc(dev_priv, port)) {
encoder->enable_clock = icl_ddi_tc_enable_clock;
encoder->disable_clock = icl_ddi_tc_disable_clock;
encoder->is_clock_enabled = icl_ddi_tc_is_clock_enabled;
encoder->get_config = icl_ddi_tc_get_config;
} else {
encoder->enable_clock = icl_ddi_combo_enable_clock;
encoder->disable_clock = icl_ddi_combo_disable_clock;
encoder->is_clock_enabled = icl_ddi_combo_is_clock_enabled;
encoder->get_config = icl_ddi_combo_get_config;
}
} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
/* BXT/GLK have fixed PLL->port mapping */
encoder->get_config = bxt_ddi_get_config;
} else if (DISPLAY_VER(dev_priv) == 9) {
encoder->enable_clock = skl_ddi_enable_clock;
encoder->disable_clock = skl_ddi_disable_clock;
encoder->is_clock_enabled = skl_ddi_is_clock_enabled;
encoder->get_config = skl_ddi_get_config;
} else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
encoder->enable_clock = hsw_ddi_enable_clock;
encoder->disable_clock = hsw_ddi_disable_clock;
encoder->is_clock_enabled = hsw_ddi_is_clock_enabled;
encoder->get_config = hsw_ddi_get_config;
}
intel_ddi_buf_trans_init(encoder);
if (DISPLAY_VER(dev_priv) >= 13)
encoder->hpd_pin = xelpd_hpd_pin(dev_priv, port);
else if (IS_DG1(dev_priv))
encoder->hpd_pin = dg1_hpd_pin(dev_priv, port);
else if (IS_ROCKETLAKE(dev_priv))
encoder->hpd_pin = rkl_hpd_pin(dev_priv, port);
else if (DISPLAY_VER(dev_priv) >= 12)
encoder->hpd_pin = tgl_hpd_pin(dev_priv, port);
else if (IS_JSL_EHL(dev_priv))
encoder->hpd_pin = ehl_hpd_pin(dev_priv, port);
else if (DISPLAY_VER(dev_priv) == 11)
encoder->hpd_pin = icl_hpd_pin(dev_priv, port);
else if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
encoder->hpd_pin = skl_hpd_pin(dev_priv, port);
else
encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
if (DISPLAY_VER(dev_priv) >= 11)
dig_port->saved_port_bits =
intel_de_read(dev_priv, DDI_BUF_CTL(port))
& DDI_BUF_PORT_REVERSAL;
else
dig_port->saved_port_bits =
intel_de_read(dev_priv, DDI_BUF_CTL(port))
& (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES);
if (intel_bios_is_lane_reversal_needed(dev_priv, port))
dig_port->saved_port_bits |= DDI_BUF_PORT_REVERSAL;
dig_port->dp.output_reg = INVALID_MMIO_REG;
dig_port->max_lanes = intel_ddi_max_lanes(dig_port);
dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
if (intel_phy_is_tc(dev_priv, phy)) {
bool is_legacy =
!intel_bios_encoder_supports_typec_usb(devdata) &&
!intel_bios_encoder_supports_tbt(devdata);
intel_tc_port_init(dig_port, is_legacy);
encoder->update_prepare = intel_ddi_update_prepare;
encoder->update_complete = intel_ddi_update_complete;
}
drm_WARN_ON(&dev_priv->drm, port > PORT_I);
dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_A_IO +
port - PORT_A;
if (init_dp) {
if (!intel_ddi_init_dp_connector(dig_port))
goto err;
dig_port->hpd_pulse = intel_dp_hpd_pulse;
if (dig_port->dp.mso_link_count)
encoder->pipe_mask = intel_ddi_splitter_pipe_mask(dev_priv);
}
/* In theory we don't need the encoder->type check, but leave it just in
* case we have some really bad VBTs... */
if (encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
if (!intel_ddi_init_hdmi_connector(dig_port))
goto err;
}
if (DISPLAY_VER(dev_priv) >= 11) {
if (intel_phy_is_tc(dev_priv, phy))
dig_port->connected = intel_tc_port_connected;
else
dig_port->connected = lpt_digital_port_connected;
} else if (DISPLAY_VER(dev_priv) >= 8) {
if (port == PORT_A || IS_GEMINILAKE(dev_priv) ||
IS_BROXTON(dev_priv))
dig_port->connected = bdw_digital_port_connected;
else
dig_port->connected = lpt_digital_port_connected;
} else {
if (port == PORT_A)
dig_port->connected = hsw_digital_port_connected;
else
dig_port->connected = lpt_digital_port_connected;
}
intel_infoframe_init(dig_port);
return;
err:
drm_encoder_cleanup(&encoder->base);
kfree(dig_port);
}