blob: bbd272943c3fc081efd3aeaf9fd251251ee81fdb [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include "i915_drv.h"
#include "intel_lrc_reg.h"
#include "intel_sseu.h"
void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
u8 max_subslices, u8 max_eus_per_subslice)
{
sseu->max_slices = max_slices;
sseu->max_subslices = max_subslices;
sseu->max_eus_per_subslice = max_eus_per_subslice;
sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
}
unsigned int
intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
{
unsigned int i, total = 0;
for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
total += hweight8(sseu->subslice_mask[i]);
return total;
}
u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
{
int i, offset = slice * sseu->ss_stride;
u32 mask = 0;
GEM_BUG_ON(slice >= sseu->max_slices);
for (i = 0; i < sseu->ss_stride; i++)
mask |= (u32)sseu->subslice_mask[offset + i] <<
i * BITS_PER_BYTE;
return mask;
}
void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
u32 ss_mask)
{
int offset = slice * sseu->ss_stride;
memcpy(&sseu->subslice_mask[offset], &ss_mask, sseu->ss_stride);
}
unsigned int
intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
{
return hweight32(intel_sseu_get_subslices(sseu, slice));
}
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
int subslice)
{
int slice_stride = sseu->max_subslices * sseu->eu_stride;
return slice * slice_stride + subslice * sseu->eu_stride;
}
static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
int subslice)
{
int i, offset = sseu_eu_idx(sseu, slice, subslice);
u16 eu_mask = 0;
for (i = 0; i < sseu->eu_stride; i++)
eu_mask |=
((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
return eu_mask;
}
static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
u16 eu_mask)
{
int i, offset = sseu_eu_idx(sseu, slice, subslice);
for (i = 0; i < sseu->eu_stride; i++)
sseu->eu_mask[offset + i] =
(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
}
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
u16 i, total = 0;
for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
total += hweight8(sseu->eu_mask[i]);
return total;
}
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
u8 s_en, u32 ss_en, u16 eu_en)
{
int s, ss;
/* ss_en represents entire subslice mask across all slices */
GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
sizeof(ss_en) * BITS_PER_BYTE);
for (s = 0; s < sseu->max_slices; s++) {
if ((s_en & BIT(s)) == 0)
continue;
sseu->slice_mask |= BIT(s);
intel_sseu_set_subslices(sseu, s, ss_en);
for (ss = 0; ss < sseu->max_subslices; ss++)
if (intel_sseu_has_subslice(sseu, s, ss))
sseu_set_eus(sseu, s, ss, eu_en);
}
sseu->eu_per_subslice = hweight16(eu_en);
sseu->eu_total = compute_eu_total(sseu);
}
static void gen12_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
u32 dss_en;
u16 eu_en = 0;
u8 eu_en_fuse;
u8 s_en;
int eu;
/*
* Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
* Instead of splitting these, provide userspace with an array
* of DSS to more closely represent the hardware resource.
*
* In addition, the concept of slice has been removed in Xe_HP.
* To be compatible with prior generations, assume a single slice
* across the entire device. Then calculate out the DSS for each
* workload type within that software slice.
*/
if (IS_DG2(gt->i915) || IS_XEHPSDV(gt->i915))
intel_sseu_set_info(sseu, 1, 32, 16);
else
intel_sseu_set_info(sseu, 1, 6, 16);
/*
* As mentioned above, Xe_HP does not have the concept of a slice.
* Enable one for software backwards compatibility.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
s_en = 0x1;
else
s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
GEN11_GT_S_ENA_MASK;
dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
/* one bit per pair of EUs */
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
else
eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
GEN11_EU_DIS_MASK);
for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
if (eu_en_fuse & BIT(eu))
eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
/* TGL only supports slice-level power gating */
sseu->has_slice_pg = 1;
}
static void gen11_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
u32 ss_en;
u8 eu_en;
u8 s_en;
if (IS_JSL_EHL(gt->i915))
intel_sseu_set_info(sseu, 1, 4, 8);
else
intel_sseu_set_info(sseu, 1, 8, 8);
s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
GEN11_GT_S_ENA_MASK;
ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
GEN11_EU_DIS_MASK);
gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
/* ICL has no power gating restrictions. */
sseu->has_slice_pg = 1;
sseu->has_subslice_pg = 1;
sseu->has_eu_pg = 1;
}
static void cherryview_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
u32 fuse;
u8 subslice_mask = 0;
fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
sseu->slice_mask = BIT(0);
intel_sseu_set_info(sseu, 1, 2, 8);
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
subslice_mask |= BIT(0);
sseu_set_eus(sseu, 0, 0, ~disabled_mask);
}
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
subslice_mask |= BIT(1);
sseu_set_eus(sseu, 0, 1, ~disabled_mask);
}
intel_sseu_set_subslices(sseu, 0, subslice_mask);
sseu->eu_total = compute_eu_total(sseu);
/*
* CHV expected to always have a uniform distribution of EU
* across subslices.
*/
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
sseu->eu_total /
intel_sseu_subslice_total(sseu) :
0;
/*
* CHV supports subslice power gating on devices with more than
* one subslice, and supports EU power gating on devices with
* more than one EU pair per subslice.
*/
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
}
static void gen9_sseu_info_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_device_info *info = mkwrite_device_info(i915);
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
u32 fuse2, eu_disable, subslice_mask;
const u8 eu_mask = 0xff;
int s, ss;
fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
/* BXT has a single slice and at most 3 subslices. */
intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
IS_GEN9_LP(i915) ? 3 : 4, 8);
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = (1 << sseu->max_subslices) - 1;
subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
GEN9_F2_SS_DIS_SHIFT);
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
intel_sseu_set_subslices(sseu, s, subslice_mask);
eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
int eu_per_ss;
u8 eu_disabled_mask;
if (!intel_sseu_has_subslice(sseu, s, ss))
/* skip disabled subslice */
continue;
eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
eu_per_ss = sseu->max_eus_per_subslice -
hweight8(eu_disabled_mask);
/*
* Record which subslice(s) has(have) 7 EUs. we
* can tune the hash used to spread work among
* subslices if they are unbalanced.
*/
if (eu_per_ss == 7)
sseu->subslice_7eu[s] |= BIT(ss);
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* SKL is expected to always have a uniform distribution
* of EU across subslices with the exception that any one
* EU in any one subslice may be fused off for die
* recovery. BXT is expected to be perfectly uniform in EU
* distribution.
*/
sseu->eu_per_subslice =
intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
0;
/*
* SKL+ supports slice power gating on devices with more than
* one slice, and supports EU power gating on devices with
* more than one EU pair per subslice. BXT+ supports subslice
* power gating on devices with more than one subslice, and
* supports EU power gating on devices with more than one EU
* pair per subslice.
*/
sseu->has_slice_pg =
!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg =
IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
if (IS_GEN9_LP(i915)) {
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
sseu->min_eu_in_pool = 0;
if (info->has_pooled_eu) {
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
sseu->min_eu_in_pool = 3;
else if (IS_SS_DISABLED(1))
sseu->min_eu_in_pool = 6;
else
sseu->min_eu_in_pool = 9;
}
#undef IS_SS_DISABLED
}
}
static void bdw_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
int s, ss;
u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
u32 eu_disable0, eu_disable1, eu_disable2;
fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
intel_sseu_set_info(sseu, 3, 3, 8);
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
GEN8_F2_SS_DIS_SHIFT);
eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
(32 - GEN8_EU_DIS0_S1_SHIFT));
eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
(32 - GEN8_EU_DIS1_S2_SHIFT));
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
intel_sseu_set_subslices(sseu, s, subslice_mask);
for (ss = 0; ss < sseu->max_subslices; ss++) {
u8 eu_disabled_mask;
u32 n_disabled;
if (!intel_sseu_has_subslice(sseu, s, ss))
/* skip disabled subslice */
continue;
eu_disabled_mask =
eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
n_disabled = hweight8(eu_disabled_mask);
/*
* Record which subslices have 7 EUs.
*/
if (sseu->max_eus_per_subslice - n_disabled == 7)
sseu->subslice_7eu[s] |= 1 << ss;
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* BDW is expected to always have a uniform distribution of EU across
* subslices with the exception that any one EU in any one subslice may
* be fused off for die recovery.
*/
sseu->eu_per_subslice =
intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
0;
/*
* BDW supports slice power gating on devices with more than
* one slice.
*/
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
static void hsw_sseu_info_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct sseu_dev_info *sseu = &gt->info.sseu;
u32 fuse1;
u8 subslice_mask = 0;
int s, ss;
/*
* There isn't a register to tell us how many slices/subslices. We
* work off the PCI-ids here.
*/
switch (INTEL_INFO(i915)->gt) {
default:
MISSING_CASE(INTEL_INFO(i915)->gt);
fallthrough;
case 1:
sseu->slice_mask = BIT(0);
subslice_mask = BIT(0);
break;
case 2:
sseu->slice_mask = BIT(0);
subslice_mask = BIT(0) | BIT(1);
break;
case 3:
sseu->slice_mask = BIT(0) | BIT(1);
subslice_mask = BIT(0) | BIT(1);
break;
}
fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
default:
MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
HSW_F1_EU_DIS_SHIFT);
fallthrough;
case HSW_F1_EU_DIS_10EUS:
sseu->eu_per_subslice = 10;
break;
case HSW_F1_EU_DIS_8EUS:
sseu->eu_per_subslice = 8;
break;
case HSW_F1_EU_DIS_6EUS:
sseu->eu_per_subslice = 6;
break;
}
intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
hweight8(subslice_mask),
sseu->eu_per_subslice);
for (s = 0; s < sseu->max_slices; s++) {
intel_sseu_set_subslices(sseu, s, subslice_mask);
for (ss = 0; ss < sseu->max_subslices; ss++) {
sseu_set_eus(sseu, s, ss,
(1UL << sseu->eu_per_subslice) - 1);
}
}
sseu->eu_total = compute_eu_total(sseu);
/* No powergating for you. */
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
void intel_sseu_info_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
if (IS_HASWELL(i915))
hsw_sseu_info_init(gt);
else if (IS_CHERRYVIEW(i915))
cherryview_sseu_info_init(gt);
else if (IS_BROADWELL(i915))
bdw_sseu_info_init(gt);
else if (GRAPHICS_VER(i915) == 9)
gen9_sseu_info_init(gt);
else if (GRAPHICS_VER(i915) == 11)
gen11_sseu_info_init(gt);
else if (GRAPHICS_VER(i915) >= 12)
gen12_sseu_info_init(gt);
}
u32 intel_sseu_make_rpcs(struct intel_gt *gt,
const struct intel_sseu *req_sseu)
{
struct drm_i915_private *i915 = gt->i915;
const struct sseu_dev_info *sseu = &gt->info.sseu;
bool subslice_pg = sseu->has_subslice_pg;
u8 slices, subslices;
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (GRAPHICS_VER(i915) < 9)
return 0;
/*
* If i915/perf is active, we want a stable powergating configuration
* on the system. Use the configuration pinned by i915/perf.
*/
if (i915->perf.exclusive_stream)
req_sseu = &i915->perf.sseu;
slices = hweight8(req_sseu->slice_mask);
subslices = hweight8(req_sseu->subslice_mask);
/*
* Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
* wide and Icelake has up to eight subslices, specfial programming is
* needed in order to correctly enable all subslices.
*
* According to documentation software must consider the configuration
* as 2x4x8 and hardware will translate this to 1x8x8.
*
* Furthemore, even though SScount is three bits, maximum documented
* value for it is four. From this some rules/restrictions follow:
*
* 1.
* If enabled subslice count is greater than four, two whole slices must
* be enabled instead.
*
* 2.
* When more than one slice is enabled, hardware ignores the subslice
* count altogether.
*
* From these restrictions it follows that it is not possible to enable
* a count of subslices between the SScount maximum of four restriction,
* and the maximum available number on a particular SKU. Either all
* subslices are enabled, or a count between one and four on the first
* slice.
*/
if (GRAPHICS_VER(i915) == 11 &&
slices == 1 &&
subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
GEM_BUG_ON(subslices & 1);
subslice_pg = false;
slices *= 2;
}
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (sseu->has_slice_pg) {
u32 mask, val = slices;
if (GRAPHICS_VER(i915) >= 11) {
mask = GEN11_RPCS_S_CNT_MASK;
val <<= GEN11_RPCS_S_CNT_SHIFT;
} else {
mask = GEN8_RPCS_S_CNT_MASK;
val <<= GEN8_RPCS_S_CNT_SHIFT;
}
GEM_BUG_ON(val & ~mask);
val &= mask;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
}
if (subslice_pg) {
u32 val = subslices;
val <<= GEN8_RPCS_SS_CNT_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
val &= GEN8_RPCS_SS_CNT_MASK;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
}
if (sseu->has_eu_pg) {
u32 val;
val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
val &= GEN8_RPCS_EU_MIN_MASK;
rpcs |= val;
val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
val &= GEN8_RPCS_EU_MAX_MASK;
rpcs |= val;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
int s;
drm_printf(p, "slice total: %u, mask=%04x\n",
hweight8(sseu->slice_mask), sseu->slice_mask);
drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
s, intel_sseu_subslices_per_slice(sseu, s),
intel_sseu_get_subslices(sseu, s));
}
drm_printf(p, "EU total: %u\n", sseu->eu_total);
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
drm_printf(p, "has slice power gating: %s\n",
yesno(sseu->has_slice_pg));
drm_printf(p, "has subslice power gating: %s\n",
yesno(sseu->has_subslice_pg));
drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}
void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
struct drm_printer *p)
{
int s, ss;
if (sseu->max_slices == 0) {
drm_printf(p, "Unavailable\n");
return;
}
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
s, intel_sseu_subslices_per_slice(sseu, s),
intel_sseu_get_subslices(sseu, s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
u16 enabled_eus = sseu_get_eus(sseu, s, ss);
drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
ss, hweight16(enabled_eus), enabled_eus);
}
}
}
u16 intel_slicemask_from_dssmask(u64 dss_mask, int dss_per_slice)
{
u16 slice_mask = 0;
int i;
WARN_ON(sizeof(dss_mask) * 8 / dss_per_slice > 8 * sizeof(slice_mask));
for (i = 0; dss_mask; i++) {
if (dss_mask & GENMASK(dss_per_slice - 1, 0))
slice_mask |= BIT(i);
dss_mask >>= dss_per_slice;
}
return slice_mask;
}