blob: 317eebf086c3f848cf37f1cd7ee86ae5bed11c5d [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2018 Intel Corporation
*/
#include <linux/sort.h>
#include "i915_drv.h"
#include "intel_gt_requests.h"
#include "i915_selftest.h"
#include "selftest_engine_heartbeat.h"
static void reset_heartbeat(struct intel_engine_cs *engine)
{
intel_engine_set_heartbeat(engine,
engine->defaults.heartbeat_interval_ms);
}
static int timeline_sync(struct intel_timeline *tl)
{
struct dma_fence *fence;
long timeout;
fence = i915_active_fence_get(&tl->last_request);
if (!fence)
return 0;
timeout = dma_fence_wait_timeout(fence, true, HZ / 2);
dma_fence_put(fence);
if (timeout < 0)
return timeout;
return 0;
}
static int engine_sync_barrier(struct intel_engine_cs *engine)
{
return timeline_sync(engine->kernel_context->timeline);
}
struct pulse {
struct i915_active active;
struct kref kref;
};
static int pulse_active(struct i915_active *active)
{
kref_get(&container_of(active, struct pulse, active)->kref);
return 0;
}
static void pulse_free(struct kref *kref)
{
struct pulse *p = container_of(kref, typeof(*p), kref);
i915_active_fini(&p->active);
kfree(p);
}
static void pulse_put(struct pulse *p)
{
kref_put(&p->kref, pulse_free);
}
static void pulse_retire(struct i915_active *active)
{
pulse_put(container_of(active, struct pulse, active));
}
static struct pulse *pulse_create(void)
{
struct pulse *p;
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return p;
kref_init(&p->kref);
i915_active_init(&p->active, pulse_active, pulse_retire, 0);
return p;
}
static void pulse_unlock_wait(struct pulse *p)
{
i915_active_unlock_wait(&p->active);
}
static int __live_idle_pulse(struct intel_engine_cs *engine,
int (*fn)(struct intel_engine_cs *cs))
{
struct pulse *p;
int err;
GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
p = pulse_create();
if (!p)
return -ENOMEM;
err = i915_active_acquire(&p->active);
if (err)
goto out;
err = i915_active_acquire_preallocate_barrier(&p->active, engine);
if (err) {
i915_active_release(&p->active);
goto out;
}
i915_active_acquire_barrier(&p->active);
i915_active_release(&p->active);
GEM_BUG_ON(i915_active_is_idle(&p->active));
GEM_BUG_ON(llist_empty(&engine->barrier_tasks));
err = fn(engine);
if (err)
goto out;
GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
if (engine_sync_barrier(engine)) {
struct drm_printer m = drm_err_printer("pulse");
pr_err("%s: no heartbeat pulse?\n", engine->name);
intel_engine_dump(engine, &m, "%s", engine->name);
err = -ETIME;
goto out;
}
GEM_BUG_ON(READ_ONCE(engine->serial) != engine->wakeref_serial);
pulse_unlock_wait(p); /* synchronize with the retirement callback */
if (!i915_active_is_idle(&p->active)) {
struct drm_printer m = drm_err_printer("pulse");
pr_err("%s: heartbeat pulse did not flush idle tasks\n",
engine->name);
i915_active_print(&p->active, &m);
err = -EINVAL;
goto out;
}
out:
pulse_put(p);
return err;
}
static int live_idle_flush(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/* Check that we can flush the idle barriers */
for_each_engine(engine, gt, id) {
st_engine_heartbeat_disable(engine);
err = __live_idle_pulse(engine, intel_engine_flush_barriers);
st_engine_heartbeat_enable(engine);
if (err)
break;
}
return err;
}
static int live_idle_pulse(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/* Check that heartbeat pulses flush the idle barriers */
for_each_engine(engine, gt, id) {
st_engine_heartbeat_disable(engine);
err = __live_idle_pulse(engine, intel_engine_pulse);
st_engine_heartbeat_enable(engine);
if (err && err != -ENODEV)
break;
err = 0;
}
return err;
}
static int cmp_u32(const void *_a, const void *_b)
{
const u32 *a = _a, *b = _b;
return *a - *b;
}
static int __live_heartbeat_fast(struct intel_engine_cs *engine)
{
const unsigned int error_threshold = max(20000u, jiffies_to_usecs(6));
struct intel_context *ce;
struct i915_request *rq;
ktime_t t0, t1;
u32 times[5];
int err;
int i;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
intel_engine_pm_get(engine);
err = intel_engine_set_heartbeat(engine, 1);
if (err)
goto err_pm;
for (i = 0; i < ARRAY_SIZE(times); i++) {
do {
/* Manufacture a tick */
intel_engine_park_heartbeat(engine);
GEM_BUG_ON(engine->heartbeat.systole);
engine->serial++; /* pretend we are not idle! */
intel_engine_unpark_heartbeat(engine);
flush_delayed_work(&engine->heartbeat.work);
if (!delayed_work_pending(&engine->heartbeat.work)) {
pr_err("%s: heartbeat %d did not start\n",
engine->name, i);
err = -EINVAL;
goto err_pm;
}
rcu_read_lock();
rq = READ_ONCE(engine->heartbeat.systole);
if (rq)
rq = i915_request_get_rcu(rq);
rcu_read_unlock();
} while (!rq);
t0 = ktime_get();
while (rq == READ_ONCE(engine->heartbeat.systole))
yield(); /* work is on the local cpu! */
t1 = ktime_get();
i915_request_put(rq);
times[i] = ktime_us_delta(t1, t0);
}
sort(times, ARRAY_SIZE(times), sizeof(times[0]), cmp_u32, NULL);
pr_info("%s: Heartbeat delay: %uus [%u, %u]\n",
engine->name,
times[ARRAY_SIZE(times) / 2],
times[0],
times[ARRAY_SIZE(times) - 1]);
/*
* Ideally, the upper bound on min work delay would be something like
* 2 * 2 (worst), +1 for scheduling, +1 for slack. In practice, we
* are, even with system_wq_highpri, at the mercy of the CPU scheduler
* and may be stuck behind some slow work for many millisecond. Such
* as our very own display workers.
*/
if (times[ARRAY_SIZE(times) / 2] > error_threshold) {
pr_err("%s: Heartbeat delay was %uus, expected less than %dus\n",
engine->name,
times[ARRAY_SIZE(times) / 2],
error_threshold);
err = -EINVAL;
}
reset_heartbeat(engine);
err_pm:
intel_engine_pm_put(engine);
intel_context_put(ce);
return err;
}
static int live_heartbeat_fast(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/* Check that the heartbeat ticks at the desired rate. */
if (!IS_ACTIVE(CONFIG_DRM_I915_HEARTBEAT_INTERVAL))
return 0;
for_each_engine(engine, gt, id) {
err = __live_heartbeat_fast(engine);
if (err)
break;
}
return err;
}
static int __live_heartbeat_off(struct intel_engine_cs *engine)
{
int err;
intel_engine_pm_get(engine);
engine->serial++;
flush_delayed_work(&engine->heartbeat.work);
if (!delayed_work_pending(&engine->heartbeat.work)) {
pr_err("%s: heartbeat not running\n",
engine->name);
err = -EINVAL;
goto err_pm;
}
err = intel_engine_set_heartbeat(engine, 0);
if (err)
goto err_pm;
engine->serial++;
flush_delayed_work(&engine->heartbeat.work);
if (delayed_work_pending(&engine->heartbeat.work)) {
pr_err("%s: heartbeat still running\n",
engine->name);
err = -EINVAL;
goto err_beat;
}
if (READ_ONCE(engine->heartbeat.systole)) {
pr_err("%s: heartbeat still allocated\n",
engine->name);
err = -EINVAL;
goto err_beat;
}
err_beat:
reset_heartbeat(engine);
err_pm:
intel_engine_pm_put(engine);
return err;
}
static int live_heartbeat_off(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/* Check that we can turn off heartbeat and not interrupt VIP */
if (!IS_ACTIVE(CONFIG_DRM_I915_HEARTBEAT_INTERVAL))
return 0;
for_each_engine(engine, gt, id) {
if (!intel_engine_has_preemption(engine))
continue;
err = __live_heartbeat_off(engine);
if (err)
break;
}
return err;
}
int intel_heartbeat_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_idle_flush),
SUBTEST(live_idle_pulse),
SUBTEST(live_heartbeat_fast),
SUBTEST(live_heartbeat_off),
};
int saved_hangcheck;
int err;
if (intel_gt_is_wedged(&i915->gt))
return 0;
saved_hangcheck = i915->params.enable_hangcheck;
i915->params.enable_hangcheck = INT_MAX;
err = intel_gt_live_subtests(tests, &i915->gt);
i915->params.enable_hangcheck = saved_hangcheck;
return err;
}
void st_engine_heartbeat_disable(struct intel_engine_cs *engine)
{
engine->props.heartbeat_interval_ms = 0;
intel_engine_pm_get(engine);
intel_engine_park_heartbeat(engine);
}
void st_engine_heartbeat_enable(struct intel_engine_cs *engine)
{
intel_engine_pm_put(engine);
engine->props.heartbeat_interval_ms =
engine->defaults.heartbeat_interval_ms;
}
void st_engine_heartbeat_disable_no_pm(struct intel_engine_cs *engine)
{
engine->props.heartbeat_interval_ms = 0;
/*
* Park the heartbeat but without holding the PM lock as that
* makes the engines appear not-idle. Note that if/when unpark
* is called due to the PM lock being acquired later the
* heartbeat still won't be enabled because of the above = 0.
*/
if (intel_engine_pm_get_if_awake(engine)) {
intel_engine_park_heartbeat(engine);
intel_engine_pm_put(engine);
}
}
void st_engine_heartbeat_enable_no_pm(struct intel_engine_cs *engine)
{
engine->props.heartbeat_interval_ms =
engine->defaults.heartbeat_interval_ms;
}