| /* |
| * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/gfp.h> |
| #include <linux/in.h> |
| #include <linux/ipv6.h> |
| #include <linux/poll.h> |
| #include <net/sock.h> |
| |
| #include "rds.h" |
| |
| /* this is just used for stats gathering :/ */ |
| static DEFINE_SPINLOCK(rds_sock_lock); |
| static unsigned long rds_sock_count; |
| static LIST_HEAD(rds_sock_list); |
| DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq); |
| |
| /* |
| * This is called as the final descriptor referencing this socket is closed. |
| * We have to unbind the socket so that another socket can be bound to the |
| * address it was using. |
| * |
| * We have to be careful about racing with the incoming path. sock_orphan() |
| * sets SOCK_DEAD and we use that as an indicator to the rx path that new |
| * messages shouldn't be queued. |
| */ |
| static int rds_release(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| struct rds_sock *rs; |
| |
| if (!sk) |
| goto out; |
| |
| rs = rds_sk_to_rs(sk); |
| |
| sock_orphan(sk); |
| /* Note - rds_clear_recv_queue grabs rs_recv_lock, so |
| * that ensures the recv path has completed messing |
| * with the socket. */ |
| rds_clear_recv_queue(rs); |
| rds_cong_remove_socket(rs); |
| |
| rds_remove_bound(rs); |
| |
| rds_send_drop_to(rs, NULL); |
| rds_rdma_drop_keys(rs); |
| rds_notify_queue_get(rs, NULL); |
| rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue); |
| |
| spin_lock_bh(&rds_sock_lock); |
| list_del_init(&rs->rs_item); |
| rds_sock_count--; |
| spin_unlock_bh(&rds_sock_lock); |
| |
| rds_trans_put(rs->rs_transport); |
| |
| sock->sk = NULL; |
| sock_put(sk); |
| out: |
| return 0; |
| } |
| |
| /* |
| * Careful not to race with rds_release -> sock_orphan which clears sk_sleep. |
| * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK |
| * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but |
| * this seems more conservative. |
| * NB - normally, one would use sk_callback_lock for this, but we can |
| * get here from interrupts, whereas the network code grabs sk_callback_lock |
| * with _lock_bh only - so relying on sk_callback_lock introduces livelocks. |
| */ |
| void rds_wake_sk_sleep(struct rds_sock *rs) |
| { |
| unsigned long flags; |
| |
| read_lock_irqsave(&rs->rs_recv_lock, flags); |
| __rds_wake_sk_sleep(rds_rs_to_sk(rs)); |
| read_unlock_irqrestore(&rs->rs_recv_lock, flags); |
| } |
| |
| static int rds_getname(struct socket *sock, struct sockaddr *uaddr, |
| int peer) |
| { |
| struct rds_sock *rs = rds_sk_to_rs(sock->sk); |
| struct sockaddr_in6 *sin6; |
| struct sockaddr_in *sin; |
| int uaddr_len; |
| |
| /* racey, don't care */ |
| if (peer) { |
| if (ipv6_addr_any(&rs->rs_conn_addr)) |
| return -ENOTCONN; |
| |
| if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) { |
| sin = (struct sockaddr_in *)uaddr; |
| memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); |
| sin->sin_family = AF_INET; |
| sin->sin_port = rs->rs_conn_port; |
| sin->sin_addr.s_addr = rs->rs_conn_addr_v4; |
| uaddr_len = sizeof(*sin); |
| } else { |
| sin6 = (struct sockaddr_in6 *)uaddr; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_port = rs->rs_conn_port; |
| sin6->sin6_addr = rs->rs_conn_addr; |
| sin6->sin6_flowinfo = 0; |
| /* scope_id is the same as in the bound address. */ |
| sin6->sin6_scope_id = rs->rs_bound_scope_id; |
| uaddr_len = sizeof(*sin6); |
| } |
| } else { |
| /* If socket is not yet bound and the socket is connected, |
| * set the return address family to be the same as the |
| * connected address, but with 0 address value. If it is not |
| * connected, set the family to be AF_UNSPEC (value 0) and |
| * the address size to be that of an IPv4 address. |
| */ |
| if (ipv6_addr_any(&rs->rs_bound_addr)) { |
| if (ipv6_addr_any(&rs->rs_conn_addr)) { |
| sin = (struct sockaddr_in *)uaddr; |
| memset(sin, 0, sizeof(*sin)); |
| sin->sin_family = AF_UNSPEC; |
| return sizeof(*sin); |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (!(ipv6_addr_type(&rs->rs_conn_addr) & |
| IPV6_ADDR_MAPPED)) { |
| sin6 = (struct sockaddr_in6 *)uaddr; |
| memset(sin6, 0, sizeof(*sin6)); |
| sin6->sin6_family = AF_INET6; |
| return sizeof(*sin6); |
| } |
| #endif |
| |
| sin = (struct sockaddr_in *)uaddr; |
| memset(sin, 0, sizeof(*sin)); |
| sin->sin_family = AF_INET; |
| return sizeof(*sin); |
| } |
| if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) { |
| sin = (struct sockaddr_in *)uaddr; |
| memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); |
| sin->sin_family = AF_INET; |
| sin->sin_port = rs->rs_bound_port; |
| sin->sin_addr.s_addr = rs->rs_bound_addr_v4; |
| uaddr_len = sizeof(*sin); |
| } else { |
| sin6 = (struct sockaddr_in6 *)uaddr; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_port = rs->rs_bound_port; |
| sin6->sin6_addr = rs->rs_bound_addr; |
| sin6->sin6_flowinfo = 0; |
| sin6->sin6_scope_id = rs->rs_bound_scope_id; |
| uaddr_len = sizeof(*sin6); |
| } |
| } |
| |
| return uaddr_len; |
| } |
| |
| /* |
| * RDS' poll is without a doubt the least intuitive part of the interface, |
| * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from |
| * a network protocol. |
| * |
| * EPOLLIN is asserted if |
| * - there is data on the receive queue. |
| * - to signal that a previously congested destination may have become |
| * uncongested |
| * - A notification has been queued to the socket (this can be a congestion |
| * update, or a RDMA completion, or a MSG_ZEROCOPY completion). |
| * |
| * EPOLLOUT is asserted if there is room on the send queue. This does not mean |
| * however, that the next sendmsg() call will succeed. If the application tries |
| * to send to a congested destination, the system call may still fail (and |
| * return ENOBUFS). |
| */ |
| static __poll_t rds_poll(struct file *file, struct socket *sock, |
| poll_table *wait) |
| { |
| struct sock *sk = sock->sk; |
| struct rds_sock *rs = rds_sk_to_rs(sk); |
| __poll_t mask = 0; |
| unsigned long flags; |
| |
| poll_wait(file, sk_sleep(sk), wait); |
| |
| if (rs->rs_seen_congestion) |
| poll_wait(file, &rds_poll_waitq, wait); |
| |
| read_lock_irqsave(&rs->rs_recv_lock, flags); |
| if (!rs->rs_cong_monitor) { |
| /* When a congestion map was updated, we signal EPOLLIN for |
| * "historical" reasons. Applications can also poll for |
| * WRBAND instead. */ |
| if (rds_cong_updated_since(&rs->rs_cong_track)) |
| mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND); |
| } else { |
| spin_lock(&rs->rs_lock); |
| if (rs->rs_cong_notify) |
| mask |= (EPOLLIN | EPOLLRDNORM); |
| spin_unlock(&rs->rs_lock); |
| } |
| if (!list_empty(&rs->rs_recv_queue) || |
| !list_empty(&rs->rs_notify_queue) || |
| !list_empty(&rs->rs_zcookie_queue.zcookie_head)) |
| mask |= (EPOLLIN | EPOLLRDNORM); |
| if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) |
| mask |= (EPOLLOUT | EPOLLWRNORM); |
| if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) |
| mask |= POLLERR; |
| read_unlock_irqrestore(&rs->rs_recv_lock, flags); |
| |
| /* clear state any time we wake a seen-congested socket */ |
| if (mask) |
| rs->rs_seen_congestion = 0; |
| |
| return mask; |
| } |
| |
| static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
| { |
| struct rds_sock *rs = rds_sk_to_rs(sock->sk); |
| rds_tos_t utos, tos = 0; |
| |
| switch (cmd) { |
| case SIOCRDSSETTOS: |
| if (get_user(utos, (rds_tos_t __user *)arg)) |
| return -EFAULT; |
| |
| if (rs->rs_transport && |
| rs->rs_transport->get_tos_map) |
| tos = rs->rs_transport->get_tos_map(utos); |
| else |
| return -ENOIOCTLCMD; |
| |
| spin_lock_bh(&rds_sock_lock); |
| if (rs->rs_tos || rs->rs_conn) { |
| spin_unlock_bh(&rds_sock_lock); |
| return -EINVAL; |
| } |
| rs->rs_tos = tos; |
| spin_unlock_bh(&rds_sock_lock); |
| break; |
| case SIOCRDSGETTOS: |
| spin_lock_bh(&rds_sock_lock); |
| tos = rs->rs_tos; |
| spin_unlock_bh(&rds_sock_lock); |
| if (put_user(tos, (rds_tos_t __user *)arg)) |
| return -EFAULT; |
| break; |
| default: |
| return -ENOIOCTLCMD; |
| } |
| |
| return 0; |
| } |
| |
| static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len) |
| { |
| struct sockaddr_in6 sin6; |
| struct sockaddr_in sin; |
| int ret = 0; |
| |
| /* racing with another thread binding seems ok here */ |
| if (ipv6_addr_any(&rs->rs_bound_addr)) { |
| ret = -ENOTCONN; /* XXX not a great errno */ |
| goto out; |
| } |
| |
| if (len < sizeof(struct sockaddr_in)) { |
| ret = -EINVAL; |
| goto out; |
| } else if (len < sizeof(struct sockaddr_in6)) { |
| /* Assume IPv4 */ |
| if (copy_from_sockptr(&sin, optval, |
| sizeof(struct sockaddr_in))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr); |
| sin6.sin6_port = sin.sin_port; |
| } else { |
| if (copy_from_sockptr(&sin6, optval, |
| sizeof(struct sockaddr_in6))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| |
| rds_send_drop_to(rs, &sin6); |
| out: |
| return ret; |
| } |
| |
| static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval, |
| int optlen) |
| { |
| int value; |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| if (copy_from_sockptr(&value, optval, sizeof(int))) |
| return -EFAULT; |
| *optvar = !!value; |
| return 0; |
| } |
| |
| static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen) |
| { |
| int ret; |
| |
| ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen); |
| if (ret == 0) { |
| if (rs->rs_cong_monitor) { |
| rds_cong_add_socket(rs); |
| } else { |
| rds_cong_remove_socket(rs); |
| rs->rs_cong_mask = 0; |
| rs->rs_cong_notify = 0; |
| } |
| } |
| return ret; |
| } |
| |
| static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen) |
| { |
| int t_type; |
| |
| if (rs->rs_transport) |
| return -EOPNOTSUPP; /* previously attached to transport */ |
| |
| if (optlen != sizeof(int)) |
| return -EINVAL; |
| |
| if (copy_from_sockptr(&t_type, optval, sizeof(t_type))) |
| return -EFAULT; |
| |
| if (t_type < 0 || t_type >= RDS_TRANS_COUNT) |
| return -EINVAL; |
| |
| rs->rs_transport = rds_trans_get(t_type); |
| |
| return rs->rs_transport ? 0 : -ENOPROTOOPT; |
| } |
| |
| static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval, |
| int optlen, int optname) |
| { |
| int val, valbool; |
| |
| if (optlen != sizeof(int)) |
| return -EFAULT; |
| |
| if (copy_from_sockptr(&val, optval, sizeof(int))) |
| return -EFAULT; |
| |
| valbool = val ? 1 : 0; |
| |
| if (optname == SO_TIMESTAMP_NEW) |
| sock_set_flag(sk, SOCK_TSTAMP_NEW); |
| |
| if (valbool) |
| sock_set_flag(sk, SOCK_RCVTSTAMP); |
| else |
| sock_reset_flag(sk, SOCK_RCVTSTAMP); |
| |
| return 0; |
| } |
| |
| static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval, |
| int optlen) |
| { |
| struct rds_rx_trace_so trace; |
| int i; |
| |
| if (optlen != sizeof(struct rds_rx_trace_so)) |
| return -EFAULT; |
| |
| if (copy_from_sockptr(&trace, optval, sizeof(trace))) |
| return -EFAULT; |
| |
| if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX) |
| return -EFAULT; |
| |
| rs->rs_rx_traces = trace.rx_traces; |
| for (i = 0; i < rs->rs_rx_traces; i++) { |
| if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) { |
| rs->rs_rx_traces = 0; |
| return -EFAULT; |
| } |
| rs->rs_rx_trace[i] = trace.rx_trace_pos[i]; |
| } |
| |
| return 0; |
| } |
| |
| static int rds_setsockopt(struct socket *sock, int level, int optname, |
| sockptr_t optval, unsigned int optlen) |
| { |
| struct rds_sock *rs = rds_sk_to_rs(sock->sk); |
| int ret; |
| |
| if (level != SOL_RDS) { |
| ret = -ENOPROTOOPT; |
| goto out; |
| } |
| |
| switch (optname) { |
| case RDS_CANCEL_SENT_TO: |
| ret = rds_cancel_sent_to(rs, optval, optlen); |
| break; |
| case RDS_GET_MR: |
| ret = rds_get_mr(rs, optval, optlen); |
| break; |
| case RDS_GET_MR_FOR_DEST: |
| ret = rds_get_mr_for_dest(rs, optval, optlen); |
| break; |
| case RDS_FREE_MR: |
| ret = rds_free_mr(rs, optval, optlen); |
| break; |
| case RDS_RECVERR: |
| ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen); |
| break; |
| case RDS_CONG_MONITOR: |
| ret = rds_cong_monitor(rs, optval, optlen); |
| break; |
| case SO_RDS_TRANSPORT: |
| lock_sock(sock->sk); |
| ret = rds_set_transport(rs, optval, optlen); |
| release_sock(sock->sk); |
| break; |
| case SO_TIMESTAMP_OLD: |
| case SO_TIMESTAMP_NEW: |
| lock_sock(sock->sk); |
| ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname); |
| release_sock(sock->sk); |
| break; |
| case SO_RDS_MSG_RXPATH_LATENCY: |
| ret = rds_recv_track_latency(rs, optval, optlen); |
| break; |
| default: |
| ret = -ENOPROTOOPT; |
| } |
| out: |
| return ret; |
| } |
| |
| static int rds_getsockopt(struct socket *sock, int level, int optname, |
| char __user *optval, int __user *optlen) |
| { |
| struct rds_sock *rs = rds_sk_to_rs(sock->sk); |
| int ret = -ENOPROTOOPT, len; |
| int trans; |
| |
| if (level != SOL_RDS) |
| goto out; |
| |
| if (get_user(len, optlen)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| switch (optname) { |
| case RDS_INFO_FIRST ... RDS_INFO_LAST: |
| ret = rds_info_getsockopt(sock, optname, optval, |
| optlen); |
| break; |
| |
| case RDS_RECVERR: |
| if (len < sizeof(int)) |
| ret = -EINVAL; |
| else |
| if (put_user(rs->rs_recverr, (int __user *) optval) || |
| put_user(sizeof(int), optlen)) |
| ret = -EFAULT; |
| else |
| ret = 0; |
| break; |
| case SO_RDS_TRANSPORT: |
| if (len < sizeof(int)) { |
| ret = -EINVAL; |
| break; |
| } |
| trans = (rs->rs_transport ? rs->rs_transport->t_type : |
| RDS_TRANS_NONE); /* unbound */ |
| if (put_user(trans, (int __user *)optval) || |
| put_user(sizeof(int), optlen)) |
| ret = -EFAULT; |
| else |
| ret = 0; |
| break; |
| default: |
| break; |
| } |
| |
| out: |
| return ret; |
| |
| } |
| |
| static int rds_connect(struct socket *sock, struct sockaddr *uaddr, |
| int addr_len, int flags) |
| { |
| struct sock *sk = sock->sk; |
| struct sockaddr_in *sin; |
| struct rds_sock *rs = rds_sk_to_rs(sk); |
| int ret = 0; |
| |
| if (addr_len < offsetofend(struct sockaddr, sa_family)) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| |
| switch (uaddr->sa_family) { |
| case AF_INET: |
| sin = (struct sockaddr_in *)uaddr; |
| if (addr_len < sizeof(struct sockaddr_in)) { |
| ret = -EINVAL; |
| break; |
| } |
| if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) { |
| ret = -EDESTADDRREQ; |
| break; |
| } |
| if (ipv4_is_multicast(sin->sin_addr.s_addr) || |
| sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) { |
| ret = -EINVAL; |
| break; |
| } |
| ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr); |
| rs->rs_conn_port = sin->sin_port; |
| break; |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| case AF_INET6: { |
| struct sockaddr_in6 *sin6; |
| int addr_type; |
| |
| sin6 = (struct sockaddr_in6 *)uaddr; |
| if (addr_len < sizeof(struct sockaddr_in6)) { |
| ret = -EINVAL; |
| break; |
| } |
| addr_type = ipv6_addr_type(&sin6->sin6_addr); |
| if (!(addr_type & IPV6_ADDR_UNICAST)) { |
| __be32 addr4; |
| |
| if (!(addr_type & IPV6_ADDR_MAPPED)) { |
| ret = -EPROTOTYPE; |
| break; |
| } |
| |
| /* It is a mapped address. Need to do some sanity |
| * checks. |
| */ |
| addr4 = sin6->sin6_addr.s6_addr32[3]; |
| if (addr4 == htonl(INADDR_ANY) || |
| addr4 == htonl(INADDR_BROADCAST) || |
| ipv4_is_multicast(addr4)) { |
| ret = -EPROTOTYPE; |
| break; |
| } |
| } |
| |
| if (addr_type & IPV6_ADDR_LINKLOCAL) { |
| /* If socket is arleady bound to a link local address, |
| * the peer address must be on the same link. |
| */ |
| if (sin6->sin6_scope_id == 0 || |
| (!ipv6_addr_any(&rs->rs_bound_addr) && |
| rs->rs_bound_scope_id && |
| sin6->sin6_scope_id != rs->rs_bound_scope_id)) { |
| ret = -EINVAL; |
| break; |
| } |
| /* Remember the connected address scope ID. It will |
| * be checked against the binding local address when |
| * the socket is bound. |
| */ |
| rs->rs_bound_scope_id = sin6->sin6_scope_id; |
| } |
| rs->rs_conn_addr = sin6->sin6_addr; |
| rs->rs_conn_port = sin6->sin6_port; |
| break; |
| } |
| #endif |
| |
| default: |
| ret = -EAFNOSUPPORT; |
| break; |
| } |
| |
| release_sock(sk); |
| return ret; |
| } |
| |
| static struct proto rds_proto = { |
| .name = "RDS", |
| .owner = THIS_MODULE, |
| .obj_size = sizeof(struct rds_sock), |
| }; |
| |
| static const struct proto_ops rds_proto_ops = { |
| .family = AF_RDS, |
| .owner = THIS_MODULE, |
| .release = rds_release, |
| .bind = rds_bind, |
| .connect = rds_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = sock_no_accept, |
| .getname = rds_getname, |
| .poll = rds_poll, |
| .ioctl = rds_ioctl, |
| .listen = sock_no_listen, |
| .shutdown = sock_no_shutdown, |
| .setsockopt = rds_setsockopt, |
| .getsockopt = rds_getsockopt, |
| .sendmsg = rds_sendmsg, |
| .recvmsg = rds_recvmsg, |
| .mmap = sock_no_mmap, |
| .sendpage = sock_no_sendpage, |
| }; |
| |
| static void rds_sock_destruct(struct sock *sk) |
| { |
| struct rds_sock *rs = rds_sk_to_rs(sk); |
| |
| WARN_ON((&rs->rs_item != rs->rs_item.next || |
| &rs->rs_item != rs->rs_item.prev)); |
| } |
| |
| static int __rds_create(struct socket *sock, struct sock *sk, int protocol) |
| { |
| struct rds_sock *rs; |
| |
| sock_init_data(sock, sk); |
| sock->ops = &rds_proto_ops; |
| sk->sk_protocol = protocol; |
| sk->sk_destruct = rds_sock_destruct; |
| |
| rs = rds_sk_to_rs(sk); |
| spin_lock_init(&rs->rs_lock); |
| rwlock_init(&rs->rs_recv_lock); |
| INIT_LIST_HEAD(&rs->rs_send_queue); |
| INIT_LIST_HEAD(&rs->rs_recv_queue); |
| INIT_LIST_HEAD(&rs->rs_notify_queue); |
| INIT_LIST_HEAD(&rs->rs_cong_list); |
| rds_message_zcopy_queue_init(&rs->rs_zcookie_queue); |
| spin_lock_init(&rs->rs_rdma_lock); |
| rs->rs_rdma_keys = RB_ROOT; |
| rs->rs_rx_traces = 0; |
| rs->rs_tos = 0; |
| rs->rs_conn = NULL; |
| |
| spin_lock_bh(&rds_sock_lock); |
| list_add_tail(&rs->rs_item, &rds_sock_list); |
| rds_sock_count++; |
| spin_unlock_bh(&rds_sock_lock); |
| |
| return 0; |
| } |
| |
| static int rds_create(struct net *net, struct socket *sock, int protocol, |
| int kern) |
| { |
| struct sock *sk; |
| |
| if (sock->type != SOCK_SEQPACKET || protocol) |
| return -ESOCKTNOSUPPORT; |
| |
| sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern); |
| if (!sk) |
| return -ENOMEM; |
| |
| return __rds_create(sock, sk, protocol); |
| } |
| |
| void rds_sock_addref(struct rds_sock *rs) |
| { |
| sock_hold(rds_rs_to_sk(rs)); |
| } |
| |
| void rds_sock_put(struct rds_sock *rs) |
| { |
| sock_put(rds_rs_to_sk(rs)); |
| } |
| |
| static const struct net_proto_family rds_family_ops = { |
| .family = AF_RDS, |
| .create = rds_create, |
| .owner = THIS_MODULE, |
| }; |
| |
| static void rds_sock_inc_info(struct socket *sock, unsigned int len, |
| struct rds_info_iterator *iter, |
| struct rds_info_lengths *lens) |
| { |
| struct rds_sock *rs; |
| struct rds_incoming *inc; |
| unsigned int total = 0; |
| |
| len /= sizeof(struct rds_info_message); |
| |
| spin_lock_bh(&rds_sock_lock); |
| |
| list_for_each_entry(rs, &rds_sock_list, rs_item) { |
| /* This option only supports IPv4 sockets. */ |
| if (!ipv6_addr_v4mapped(&rs->rs_bound_addr)) |
| continue; |
| |
| read_lock(&rs->rs_recv_lock); |
| |
| /* XXX too lazy to maintain counts.. */ |
| list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { |
| total++; |
| if (total <= len) |
| rds_inc_info_copy(inc, iter, |
| inc->i_saddr.s6_addr32[3], |
| rs->rs_bound_addr_v4, |
| 1); |
| } |
| |
| read_unlock(&rs->rs_recv_lock); |
| } |
| |
| spin_unlock_bh(&rds_sock_lock); |
| |
| lens->nr = total; |
| lens->each = sizeof(struct rds_info_message); |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static void rds6_sock_inc_info(struct socket *sock, unsigned int len, |
| struct rds_info_iterator *iter, |
| struct rds_info_lengths *lens) |
| { |
| struct rds_incoming *inc; |
| unsigned int total = 0; |
| struct rds_sock *rs; |
| |
| len /= sizeof(struct rds6_info_message); |
| |
| spin_lock_bh(&rds_sock_lock); |
| |
| list_for_each_entry(rs, &rds_sock_list, rs_item) { |
| read_lock(&rs->rs_recv_lock); |
| |
| list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { |
| total++; |
| if (total <= len) |
| rds6_inc_info_copy(inc, iter, &inc->i_saddr, |
| &rs->rs_bound_addr, 1); |
| } |
| |
| read_unlock(&rs->rs_recv_lock); |
| } |
| |
| spin_unlock_bh(&rds_sock_lock); |
| |
| lens->nr = total; |
| lens->each = sizeof(struct rds6_info_message); |
| } |
| #endif |
| |
| static void rds_sock_info(struct socket *sock, unsigned int len, |
| struct rds_info_iterator *iter, |
| struct rds_info_lengths *lens) |
| { |
| struct rds_info_socket sinfo; |
| unsigned int cnt = 0; |
| struct rds_sock *rs; |
| |
| len /= sizeof(struct rds_info_socket); |
| |
| spin_lock_bh(&rds_sock_lock); |
| |
| if (len < rds_sock_count) { |
| cnt = rds_sock_count; |
| goto out; |
| } |
| |
| list_for_each_entry(rs, &rds_sock_list, rs_item) { |
| /* This option only supports IPv4 sockets. */ |
| if (!ipv6_addr_v4mapped(&rs->rs_bound_addr)) |
| continue; |
| sinfo.sndbuf = rds_sk_sndbuf(rs); |
| sinfo.rcvbuf = rds_sk_rcvbuf(rs); |
| sinfo.bound_addr = rs->rs_bound_addr_v4; |
| sinfo.connected_addr = rs->rs_conn_addr_v4; |
| sinfo.bound_port = rs->rs_bound_port; |
| sinfo.connected_port = rs->rs_conn_port; |
| sinfo.inum = sock_i_ino(rds_rs_to_sk(rs)); |
| |
| rds_info_copy(iter, &sinfo, sizeof(sinfo)); |
| cnt++; |
| } |
| |
| out: |
| lens->nr = cnt; |
| lens->each = sizeof(struct rds_info_socket); |
| |
| spin_unlock_bh(&rds_sock_lock); |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static void rds6_sock_info(struct socket *sock, unsigned int len, |
| struct rds_info_iterator *iter, |
| struct rds_info_lengths *lens) |
| { |
| struct rds6_info_socket sinfo6; |
| struct rds_sock *rs; |
| |
| len /= sizeof(struct rds6_info_socket); |
| |
| spin_lock_bh(&rds_sock_lock); |
| |
| if (len < rds_sock_count) |
| goto out; |
| |
| list_for_each_entry(rs, &rds_sock_list, rs_item) { |
| sinfo6.sndbuf = rds_sk_sndbuf(rs); |
| sinfo6.rcvbuf = rds_sk_rcvbuf(rs); |
| sinfo6.bound_addr = rs->rs_bound_addr; |
| sinfo6.connected_addr = rs->rs_conn_addr; |
| sinfo6.bound_port = rs->rs_bound_port; |
| sinfo6.connected_port = rs->rs_conn_port; |
| sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs)); |
| |
| rds_info_copy(iter, &sinfo6, sizeof(sinfo6)); |
| } |
| |
| out: |
| lens->nr = rds_sock_count; |
| lens->each = sizeof(struct rds6_info_socket); |
| |
| spin_unlock_bh(&rds_sock_lock); |
| } |
| #endif |
| |
| static void rds_exit(void) |
| { |
| sock_unregister(rds_family_ops.family); |
| proto_unregister(&rds_proto); |
| rds_conn_exit(); |
| rds_cong_exit(); |
| rds_sysctl_exit(); |
| rds_threads_exit(); |
| rds_stats_exit(); |
| rds_page_exit(); |
| rds_bind_lock_destroy(); |
| rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info); |
| rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); |
| #if IS_ENABLED(CONFIG_IPV6) |
| rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info); |
| rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info); |
| #endif |
| } |
| module_exit(rds_exit); |
| |
| u32 rds_gen_num; |
| |
| static int rds_init(void) |
| { |
| int ret; |
| |
| net_get_random_once(&rds_gen_num, sizeof(rds_gen_num)); |
| |
| ret = rds_bind_lock_init(); |
| if (ret) |
| goto out; |
| |
| ret = rds_conn_init(); |
| if (ret) |
| goto out_bind; |
| |
| ret = rds_threads_init(); |
| if (ret) |
| goto out_conn; |
| ret = rds_sysctl_init(); |
| if (ret) |
| goto out_threads; |
| ret = rds_stats_init(); |
| if (ret) |
| goto out_sysctl; |
| ret = proto_register(&rds_proto, 1); |
| if (ret) |
| goto out_stats; |
| ret = sock_register(&rds_family_ops); |
| if (ret) |
| goto out_proto; |
| |
| rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info); |
| rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); |
| #if IS_ENABLED(CONFIG_IPV6) |
| rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info); |
| rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info); |
| #endif |
| |
| goto out; |
| |
| out_proto: |
| proto_unregister(&rds_proto); |
| out_stats: |
| rds_stats_exit(); |
| out_sysctl: |
| rds_sysctl_exit(); |
| out_threads: |
| rds_threads_exit(); |
| out_conn: |
| rds_conn_exit(); |
| rds_cong_exit(); |
| rds_page_exit(); |
| out_bind: |
| rds_bind_lock_destroy(); |
| out: |
| return ret; |
| } |
| module_init(rds_init); |
| |
| #define DRV_VERSION "4.0" |
| #define DRV_RELDATE "Feb 12, 2009" |
| |
| MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); |
| MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets" |
| " v" DRV_VERSION " (" DRV_RELDATE ")"); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_ALIAS_NETPROTO(PF_RDS); |