| /* |
| * linux/kernel/fork.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| */ |
| |
| /* |
| * 'fork.c' contains the help-routines for the 'fork' system call |
| * (see also entry.S and others). |
| * Fork is rather simple, once you get the hang of it, but the memory |
| * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/unistd.h> |
| #include <linux/smp_lock.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/completion.h> |
| #include <linux/namespace.h> |
| #include <linux/personality.h> |
| #include <linux/mempolicy.h> |
| #include <linux/sem.h> |
| #include <linux/file.h> |
| #include <linux/key.h> |
| #include <linux/binfmts.h> |
| #include <linux/mman.h> |
| #include <linux/fs.h> |
| #include <linux/capability.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/security.h> |
| #include <linux/swap.h> |
| #include <linux/syscalls.h> |
| #include <linux/jiffies.h> |
| #include <linux/futex.h> |
| #include <linux/rcupdate.h> |
| #include <linux/ptrace.h> |
| #include <linux/mount.h> |
| #include <linux/audit.h> |
| #include <linux/profile.h> |
| #include <linux/rmap.h> |
| #include <linux/acct.h> |
| #include <linux/cn_proc.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| |
| /* |
| * Protected counters by write_lock_irq(&tasklist_lock) |
| */ |
| unsigned long total_forks; /* Handle normal Linux uptimes. */ |
| int nr_threads; /* The idle threads do not count.. */ |
| |
| int max_threads; /* tunable limit on nr_threads */ |
| |
| DEFINE_PER_CPU(unsigned long, process_counts) = 0; |
| |
| __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ |
| |
| EXPORT_SYMBOL(tasklist_lock); |
| |
| int nr_processes(void) |
| { |
| int cpu; |
| int total = 0; |
| |
| for_each_online_cpu(cpu) |
| total += per_cpu(process_counts, cpu); |
| |
| return total; |
| } |
| |
| #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR |
| # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) |
| # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) |
| static kmem_cache_t *task_struct_cachep; |
| #endif |
| |
| /* SLAB cache for signal_struct structures (tsk->signal) */ |
| static kmem_cache_t *signal_cachep; |
| |
| /* SLAB cache for sighand_struct structures (tsk->sighand) */ |
| kmem_cache_t *sighand_cachep; |
| |
| /* SLAB cache for files_struct structures (tsk->files) */ |
| kmem_cache_t *files_cachep; |
| |
| /* SLAB cache for fs_struct structures (tsk->fs) */ |
| kmem_cache_t *fs_cachep; |
| |
| /* SLAB cache for vm_area_struct structures */ |
| kmem_cache_t *vm_area_cachep; |
| |
| /* SLAB cache for mm_struct structures (tsk->mm) */ |
| static kmem_cache_t *mm_cachep; |
| |
| void free_task(struct task_struct *tsk) |
| { |
| free_thread_info(tsk->thread_info); |
| free_task_struct(tsk); |
| } |
| EXPORT_SYMBOL(free_task); |
| |
| void __put_task_struct(struct task_struct *tsk) |
| { |
| WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE))); |
| WARN_ON(atomic_read(&tsk->usage)); |
| WARN_ON(tsk == current); |
| |
| security_task_free(tsk); |
| free_uid(tsk->user); |
| put_group_info(tsk->group_info); |
| |
| if (!profile_handoff_task(tsk)) |
| free_task(tsk); |
| } |
| |
| void __init fork_init(unsigned long mempages) |
| { |
| #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR |
| #ifndef ARCH_MIN_TASKALIGN |
| #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES |
| #endif |
| /* create a slab on which task_structs can be allocated */ |
| task_struct_cachep = |
| kmem_cache_create("task_struct", sizeof(struct task_struct), |
| ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL); |
| #endif |
| |
| /* |
| * The default maximum number of threads is set to a safe |
| * value: the thread structures can take up at most half |
| * of memory. |
| */ |
| max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); |
| |
| /* |
| * we need to allow at least 20 threads to boot a system |
| */ |
| if(max_threads < 20) |
| max_threads = 20; |
| |
| init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; |
| init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; |
| init_task.signal->rlim[RLIMIT_SIGPENDING] = |
| init_task.signal->rlim[RLIMIT_NPROC]; |
| } |
| |
| static struct task_struct *dup_task_struct(struct task_struct *orig) |
| { |
| struct task_struct *tsk; |
| struct thread_info *ti; |
| |
| prepare_to_copy(orig); |
| |
| tsk = alloc_task_struct(); |
| if (!tsk) |
| return NULL; |
| |
| ti = alloc_thread_info(tsk); |
| if (!ti) { |
| free_task_struct(tsk); |
| return NULL; |
| } |
| |
| *tsk = *orig; |
| tsk->thread_info = ti; |
| setup_thread_stack(tsk, orig); |
| |
| /* One for us, one for whoever does the "release_task()" (usually parent) */ |
| atomic_set(&tsk->usage,2); |
| atomic_set(&tsk->fs_excl, 0); |
| tsk->btrace_seq = 0; |
| tsk->splice_pipe = NULL; |
| return tsk; |
| } |
| |
| #ifdef CONFIG_MMU |
| static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) |
| { |
| struct vm_area_struct *mpnt, *tmp, **pprev; |
| struct rb_node **rb_link, *rb_parent; |
| int retval; |
| unsigned long charge; |
| struct mempolicy *pol; |
| |
| down_write(&oldmm->mmap_sem); |
| flush_cache_mm(oldmm); |
| down_write(&mm->mmap_sem); |
| |
| mm->locked_vm = 0; |
| mm->mmap = NULL; |
| mm->mmap_cache = NULL; |
| mm->free_area_cache = oldmm->mmap_base; |
| mm->cached_hole_size = ~0UL; |
| mm->map_count = 0; |
| cpus_clear(mm->cpu_vm_mask); |
| mm->mm_rb = RB_ROOT; |
| rb_link = &mm->mm_rb.rb_node; |
| rb_parent = NULL; |
| pprev = &mm->mmap; |
| |
| for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
| struct file *file; |
| |
| if (mpnt->vm_flags & VM_DONTCOPY) { |
| long pages = vma_pages(mpnt); |
| mm->total_vm -= pages; |
| vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, |
| -pages); |
| continue; |
| } |
| charge = 0; |
| if (mpnt->vm_flags & VM_ACCOUNT) { |
| unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; |
| if (security_vm_enough_memory(len)) |
| goto fail_nomem; |
| charge = len; |
| } |
| tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); |
| if (!tmp) |
| goto fail_nomem; |
| *tmp = *mpnt; |
| pol = mpol_copy(vma_policy(mpnt)); |
| retval = PTR_ERR(pol); |
| if (IS_ERR(pol)) |
| goto fail_nomem_policy; |
| vma_set_policy(tmp, pol); |
| tmp->vm_flags &= ~VM_LOCKED; |
| tmp->vm_mm = mm; |
| tmp->vm_next = NULL; |
| anon_vma_link(tmp); |
| file = tmp->vm_file; |
| if (file) { |
| struct inode *inode = file->f_dentry->d_inode; |
| get_file(file); |
| if (tmp->vm_flags & VM_DENYWRITE) |
| atomic_dec(&inode->i_writecount); |
| |
| /* insert tmp into the share list, just after mpnt */ |
| spin_lock(&file->f_mapping->i_mmap_lock); |
| tmp->vm_truncate_count = mpnt->vm_truncate_count; |
| flush_dcache_mmap_lock(file->f_mapping); |
| vma_prio_tree_add(tmp, mpnt); |
| flush_dcache_mmap_unlock(file->f_mapping); |
| spin_unlock(&file->f_mapping->i_mmap_lock); |
| } |
| |
| /* |
| * Link in the new vma and copy the page table entries. |
| */ |
| *pprev = tmp; |
| pprev = &tmp->vm_next; |
| |
| __vma_link_rb(mm, tmp, rb_link, rb_parent); |
| rb_link = &tmp->vm_rb.rb_right; |
| rb_parent = &tmp->vm_rb; |
| |
| mm->map_count++; |
| retval = copy_page_range(mm, oldmm, mpnt); |
| |
| if (tmp->vm_ops && tmp->vm_ops->open) |
| tmp->vm_ops->open(tmp); |
| |
| if (retval) |
| goto out; |
| } |
| retval = 0; |
| out: |
| up_write(&mm->mmap_sem); |
| flush_tlb_mm(oldmm); |
| up_write(&oldmm->mmap_sem); |
| return retval; |
| fail_nomem_policy: |
| kmem_cache_free(vm_area_cachep, tmp); |
| fail_nomem: |
| retval = -ENOMEM; |
| vm_unacct_memory(charge); |
| goto out; |
| } |
| |
| static inline int mm_alloc_pgd(struct mm_struct * mm) |
| { |
| mm->pgd = pgd_alloc(mm); |
| if (unlikely(!mm->pgd)) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static inline void mm_free_pgd(struct mm_struct * mm) |
| { |
| pgd_free(mm->pgd); |
| } |
| #else |
| #define dup_mmap(mm, oldmm) (0) |
| #define mm_alloc_pgd(mm) (0) |
| #define mm_free_pgd(mm) |
| #endif /* CONFIG_MMU */ |
| |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); |
| |
| #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL)) |
| #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) |
| |
| #include <linux/init_task.h> |
| |
| static struct mm_struct * mm_init(struct mm_struct * mm) |
| { |
| atomic_set(&mm->mm_users, 1); |
| atomic_set(&mm->mm_count, 1); |
| init_rwsem(&mm->mmap_sem); |
| INIT_LIST_HEAD(&mm->mmlist); |
| mm->core_waiters = 0; |
| mm->nr_ptes = 0; |
| set_mm_counter(mm, file_rss, 0); |
| set_mm_counter(mm, anon_rss, 0); |
| spin_lock_init(&mm->page_table_lock); |
| rwlock_init(&mm->ioctx_list_lock); |
| mm->ioctx_list = NULL; |
| mm->free_area_cache = TASK_UNMAPPED_BASE; |
| mm->cached_hole_size = ~0UL; |
| |
| if (likely(!mm_alloc_pgd(mm))) { |
| mm->def_flags = 0; |
| return mm; |
| } |
| free_mm(mm); |
| return NULL; |
| } |
| |
| /* |
| * Allocate and initialize an mm_struct. |
| */ |
| struct mm_struct * mm_alloc(void) |
| { |
| struct mm_struct * mm; |
| |
| mm = allocate_mm(); |
| if (mm) { |
| memset(mm, 0, sizeof(*mm)); |
| mm = mm_init(mm); |
| } |
| return mm; |
| } |
| |
| /* |
| * Called when the last reference to the mm |
| * is dropped: either by a lazy thread or by |
| * mmput. Free the page directory and the mm. |
| */ |
| void fastcall __mmdrop(struct mm_struct *mm) |
| { |
| BUG_ON(mm == &init_mm); |
| mm_free_pgd(mm); |
| destroy_context(mm); |
| free_mm(mm); |
| } |
| |
| /* |
| * Decrement the use count and release all resources for an mm. |
| */ |
| void mmput(struct mm_struct *mm) |
| { |
| might_sleep(); |
| |
| if (atomic_dec_and_test(&mm->mm_users)) { |
| exit_aio(mm); |
| exit_mmap(mm); |
| if (!list_empty(&mm->mmlist)) { |
| spin_lock(&mmlist_lock); |
| list_del(&mm->mmlist); |
| spin_unlock(&mmlist_lock); |
| } |
| put_swap_token(mm); |
| mmdrop(mm); |
| } |
| } |
| EXPORT_SYMBOL_GPL(mmput); |
| |
| /** |
| * get_task_mm - acquire a reference to the task's mm |
| * |
| * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning |
| * this kernel workthread has transiently adopted a user mm with use_mm, |
| * to do its AIO) is not set and if so returns a reference to it, after |
| * bumping up the use count. User must release the mm via mmput() |
| * after use. Typically used by /proc and ptrace. |
| */ |
| struct mm_struct *get_task_mm(struct task_struct *task) |
| { |
| struct mm_struct *mm; |
| |
| task_lock(task); |
| mm = task->mm; |
| if (mm) { |
| if (task->flags & PF_BORROWED_MM) |
| mm = NULL; |
| else |
| atomic_inc(&mm->mm_users); |
| } |
| task_unlock(task); |
| return mm; |
| } |
| EXPORT_SYMBOL_GPL(get_task_mm); |
| |
| /* Please note the differences between mmput and mm_release. |
| * mmput is called whenever we stop holding onto a mm_struct, |
| * error success whatever. |
| * |
| * mm_release is called after a mm_struct has been removed |
| * from the current process. |
| * |
| * This difference is important for error handling, when we |
| * only half set up a mm_struct for a new process and need to restore |
| * the old one. Because we mmput the new mm_struct before |
| * restoring the old one. . . |
| * Eric Biederman 10 January 1998 |
| */ |
| void mm_release(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| struct completion *vfork_done = tsk->vfork_done; |
| |
| /* Get rid of any cached register state */ |
| deactivate_mm(tsk, mm); |
| |
| /* notify parent sleeping on vfork() */ |
| if (vfork_done) { |
| tsk->vfork_done = NULL; |
| complete(vfork_done); |
| } |
| if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) { |
| u32 __user * tidptr = tsk->clear_child_tid; |
| tsk->clear_child_tid = NULL; |
| |
| /* |
| * We don't check the error code - if userspace has |
| * not set up a proper pointer then tough luck. |
| */ |
| put_user(0, tidptr); |
| sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); |
| } |
| } |
| |
| /* |
| * Allocate a new mm structure and copy contents from the |
| * mm structure of the passed in task structure. |
| */ |
| static struct mm_struct *dup_mm(struct task_struct *tsk) |
| { |
| struct mm_struct *mm, *oldmm = current->mm; |
| int err; |
| |
| if (!oldmm) |
| return NULL; |
| |
| mm = allocate_mm(); |
| if (!mm) |
| goto fail_nomem; |
| |
| memcpy(mm, oldmm, sizeof(*mm)); |
| |
| if (!mm_init(mm)) |
| goto fail_nomem; |
| |
| if (init_new_context(tsk, mm)) |
| goto fail_nocontext; |
| |
| err = dup_mmap(mm, oldmm); |
| if (err) |
| goto free_pt; |
| |
| mm->hiwater_rss = get_mm_rss(mm); |
| mm->hiwater_vm = mm->total_vm; |
| |
| return mm; |
| |
| free_pt: |
| mmput(mm); |
| |
| fail_nomem: |
| return NULL; |
| |
| fail_nocontext: |
| /* |
| * If init_new_context() failed, we cannot use mmput() to free the mm |
| * because it calls destroy_context() |
| */ |
| mm_free_pgd(mm); |
| free_mm(mm); |
| return NULL; |
| } |
| |
| static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) |
| { |
| struct mm_struct * mm, *oldmm; |
| int retval; |
| |
| tsk->min_flt = tsk->maj_flt = 0; |
| tsk->nvcsw = tsk->nivcsw = 0; |
| |
| tsk->mm = NULL; |
| tsk->active_mm = NULL; |
| |
| /* |
| * Are we cloning a kernel thread? |
| * |
| * We need to steal a active VM for that.. |
| */ |
| oldmm = current->mm; |
| if (!oldmm) |
| return 0; |
| |
| if (clone_flags & CLONE_VM) { |
| atomic_inc(&oldmm->mm_users); |
| mm = oldmm; |
| goto good_mm; |
| } |
| |
| retval = -ENOMEM; |
| mm = dup_mm(tsk); |
| if (!mm) |
| goto fail_nomem; |
| |
| good_mm: |
| tsk->mm = mm; |
| tsk->active_mm = mm; |
| return 0; |
| |
| fail_nomem: |
| return retval; |
| } |
| |
| static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) |
| { |
| struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); |
| /* We don't need to lock fs - think why ;-) */ |
| if (fs) { |
| atomic_set(&fs->count, 1); |
| rwlock_init(&fs->lock); |
| fs->umask = old->umask; |
| read_lock(&old->lock); |
| fs->rootmnt = mntget(old->rootmnt); |
| fs->root = dget(old->root); |
| fs->pwdmnt = mntget(old->pwdmnt); |
| fs->pwd = dget(old->pwd); |
| if (old->altroot) { |
| fs->altrootmnt = mntget(old->altrootmnt); |
| fs->altroot = dget(old->altroot); |
| } else { |
| fs->altrootmnt = NULL; |
| fs->altroot = NULL; |
| } |
| read_unlock(&old->lock); |
| } |
| return fs; |
| } |
| |
| struct fs_struct *copy_fs_struct(struct fs_struct *old) |
| { |
| return __copy_fs_struct(old); |
| } |
| |
| EXPORT_SYMBOL_GPL(copy_fs_struct); |
| |
| static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) |
| { |
| if (clone_flags & CLONE_FS) { |
| atomic_inc(¤t->fs->count); |
| return 0; |
| } |
| tsk->fs = __copy_fs_struct(current->fs); |
| if (!tsk->fs) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int count_open_files(struct fdtable *fdt) |
| { |
| int size = fdt->max_fdset; |
| int i; |
| |
| /* Find the last open fd */ |
| for (i = size/(8*sizeof(long)); i > 0; ) { |
| if (fdt->open_fds->fds_bits[--i]) |
| break; |
| } |
| i = (i+1) * 8 * sizeof(long); |
| return i; |
| } |
| |
| static struct files_struct *alloc_files(void) |
| { |
| struct files_struct *newf; |
| struct fdtable *fdt; |
| |
| newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); |
| if (!newf) |
| goto out; |
| |
| atomic_set(&newf->count, 1); |
| |
| spin_lock_init(&newf->file_lock); |
| newf->next_fd = 0; |
| fdt = &newf->fdtab; |
| fdt->max_fds = NR_OPEN_DEFAULT; |
| fdt->max_fdset = EMBEDDED_FD_SET_SIZE; |
| fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; |
| fdt->open_fds = (fd_set *)&newf->open_fds_init; |
| fdt->fd = &newf->fd_array[0]; |
| INIT_RCU_HEAD(&fdt->rcu); |
| fdt->free_files = NULL; |
| fdt->next = NULL; |
| rcu_assign_pointer(newf->fdt, fdt); |
| out: |
| return newf; |
| } |
| |
| /* |
| * Allocate a new files structure and copy contents from the |
| * passed in files structure. |
| */ |
| static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) |
| { |
| struct files_struct *newf; |
| struct file **old_fds, **new_fds; |
| int open_files, size, i, expand; |
| struct fdtable *old_fdt, *new_fdt; |
| |
| newf = alloc_files(); |
| if (!newf) |
| goto out; |
| |
| spin_lock(&oldf->file_lock); |
| old_fdt = files_fdtable(oldf); |
| new_fdt = files_fdtable(newf); |
| size = old_fdt->max_fdset; |
| open_files = count_open_files(old_fdt); |
| expand = 0; |
| |
| /* |
| * Check whether we need to allocate a larger fd array or fd set. |
| * Note: we're not a clone task, so the open count won't change. |
| */ |
| if (open_files > new_fdt->max_fdset) { |
| new_fdt->max_fdset = 0; |
| expand = 1; |
| } |
| if (open_files > new_fdt->max_fds) { |
| new_fdt->max_fds = 0; |
| expand = 1; |
| } |
| |
| /* if the old fdset gets grown now, we'll only copy up to "size" fds */ |
| if (expand) { |
| spin_unlock(&oldf->file_lock); |
| spin_lock(&newf->file_lock); |
| *errorp = expand_files(newf, open_files-1); |
| spin_unlock(&newf->file_lock); |
| if (*errorp < 0) |
| goto out_release; |
| new_fdt = files_fdtable(newf); |
| /* |
| * Reacquire the oldf lock and a pointer to its fd table |
| * who knows it may have a new bigger fd table. We need |
| * the latest pointer. |
| */ |
| spin_lock(&oldf->file_lock); |
| old_fdt = files_fdtable(oldf); |
| } |
| |
| old_fds = old_fdt->fd; |
| new_fds = new_fdt->fd; |
| |
| memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8); |
| memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8); |
| |
| for (i = open_files; i != 0; i--) { |
| struct file *f = *old_fds++; |
| if (f) { |
| get_file(f); |
| } else { |
| /* |
| * The fd may be claimed in the fd bitmap but not yet |
| * instantiated in the files array if a sibling thread |
| * is partway through open(). So make sure that this |
| * fd is available to the new process. |
| */ |
| FD_CLR(open_files - i, new_fdt->open_fds); |
| } |
| rcu_assign_pointer(*new_fds++, f); |
| } |
| spin_unlock(&oldf->file_lock); |
| |
| /* compute the remainder to be cleared */ |
| size = (new_fdt->max_fds - open_files) * sizeof(struct file *); |
| |
| /* This is long word aligned thus could use a optimized version */ |
| memset(new_fds, 0, size); |
| |
| if (new_fdt->max_fdset > open_files) { |
| int left = (new_fdt->max_fdset-open_files)/8; |
| int start = open_files / (8 * sizeof(unsigned long)); |
| |
| memset(&new_fdt->open_fds->fds_bits[start], 0, left); |
| memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); |
| } |
| |
| out: |
| return newf; |
| |
| out_release: |
| free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset); |
| free_fdset (new_fdt->open_fds, new_fdt->max_fdset); |
| free_fd_array(new_fdt->fd, new_fdt->max_fds); |
| kmem_cache_free(files_cachep, newf); |
| return NULL; |
| } |
| |
| static int copy_files(unsigned long clone_flags, struct task_struct * tsk) |
| { |
| struct files_struct *oldf, *newf; |
| int error = 0; |
| |
| /* |
| * A background process may not have any files ... |
| */ |
| oldf = current->files; |
| if (!oldf) |
| goto out; |
| |
| if (clone_flags & CLONE_FILES) { |
| atomic_inc(&oldf->count); |
| goto out; |
| } |
| |
| /* |
| * Note: we may be using current for both targets (See exec.c) |
| * This works because we cache current->files (old) as oldf. Don't |
| * break this. |
| */ |
| tsk->files = NULL; |
| error = -ENOMEM; |
| newf = dup_fd(oldf, &error); |
| if (!newf) |
| goto out; |
| |
| tsk->files = newf; |
| error = 0; |
| out: |
| return error; |
| } |
| |
| /* |
| * Helper to unshare the files of the current task. |
| * We don't want to expose copy_files internals to |
| * the exec layer of the kernel. |
| */ |
| |
| int unshare_files(void) |
| { |
| struct files_struct *files = current->files; |
| int rc; |
| |
| BUG_ON(!files); |
| |
| /* This can race but the race causes us to copy when we don't |
| need to and drop the copy */ |
| if(atomic_read(&files->count) == 1) |
| { |
| atomic_inc(&files->count); |
| return 0; |
| } |
| rc = copy_files(0, current); |
| if(rc) |
| current->files = files; |
| return rc; |
| } |
| |
| EXPORT_SYMBOL(unshare_files); |
| |
| static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) |
| { |
| struct sighand_struct *sig; |
| |
| if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { |
| atomic_inc(¤t->sighand->count); |
| return 0; |
| } |
| sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); |
| rcu_assign_pointer(tsk->sighand, sig); |
| if (!sig) |
| return -ENOMEM; |
| atomic_set(&sig->count, 1); |
| memcpy(sig->action, current->sighand->action, sizeof(sig->action)); |
| return 0; |
| } |
| |
| void __cleanup_sighand(struct sighand_struct *sighand) |
| { |
| if (atomic_dec_and_test(&sighand->count)) |
| kmem_cache_free(sighand_cachep, sighand); |
| } |
| |
| static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) |
| { |
| struct signal_struct *sig; |
| int ret; |
| |
| if (clone_flags & CLONE_THREAD) { |
| atomic_inc(¤t->signal->count); |
| atomic_inc(¤t->signal->live); |
| return 0; |
| } |
| sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); |
| tsk->signal = sig; |
| if (!sig) |
| return -ENOMEM; |
| |
| ret = copy_thread_group_keys(tsk); |
| if (ret < 0) { |
| kmem_cache_free(signal_cachep, sig); |
| return ret; |
| } |
| |
| atomic_set(&sig->count, 1); |
| atomic_set(&sig->live, 1); |
| init_waitqueue_head(&sig->wait_chldexit); |
| sig->flags = 0; |
| sig->group_exit_code = 0; |
| sig->group_exit_task = NULL; |
| sig->group_stop_count = 0; |
| sig->curr_target = NULL; |
| init_sigpending(&sig->shared_pending); |
| INIT_LIST_HEAD(&sig->posix_timers); |
| |
| hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL); |
| sig->it_real_incr.tv64 = 0; |
| sig->real_timer.function = it_real_fn; |
| sig->tsk = tsk; |
| |
| sig->it_virt_expires = cputime_zero; |
| sig->it_virt_incr = cputime_zero; |
| sig->it_prof_expires = cputime_zero; |
| sig->it_prof_incr = cputime_zero; |
| |
| sig->leader = 0; /* session leadership doesn't inherit */ |
| sig->tty_old_pgrp = 0; |
| |
| sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; |
| sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
| sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
| sig->sched_time = 0; |
| INIT_LIST_HEAD(&sig->cpu_timers[0]); |
| INIT_LIST_HEAD(&sig->cpu_timers[1]); |
| INIT_LIST_HEAD(&sig->cpu_timers[2]); |
| |
| task_lock(current->group_leader); |
| memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); |
| task_unlock(current->group_leader); |
| |
| if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
| /* |
| * New sole thread in the process gets an expiry time |
| * of the whole CPU time limit. |
| */ |
| tsk->it_prof_expires = |
| secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); |
| } |
| |
| return 0; |
| } |
| |
| void __cleanup_signal(struct signal_struct *sig) |
| { |
| exit_thread_group_keys(sig); |
| kmem_cache_free(signal_cachep, sig); |
| } |
| |
| static inline void cleanup_signal(struct task_struct *tsk) |
| { |
| struct signal_struct *sig = tsk->signal; |
| |
| atomic_dec(&sig->live); |
| |
| if (atomic_dec_and_test(&sig->count)) |
| __cleanup_signal(sig); |
| } |
| |
| static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) |
| { |
| unsigned long new_flags = p->flags; |
| |
| new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE); |
| new_flags |= PF_FORKNOEXEC; |
| if (!(clone_flags & CLONE_PTRACE)) |
| p->ptrace = 0; |
| p->flags = new_flags; |
| } |
| |
| asmlinkage long sys_set_tid_address(int __user *tidptr) |
| { |
| current->clear_child_tid = tidptr; |
| |
| return current->pid; |
| } |
| |
| /* |
| * This creates a new process as a copy of the old one, |
| * but does not actually start it yet. |
| * |
| * It copies the registers, and all the appropriate |
| * parts of the process environment (as per the clone |
| * flags). The actual kick-off is left to the caller. |
| */ |
| static task_t *copy_process(unsigned long clone_flags, |
| unsigned long stack_start, |
| struct pt_regs *regs, |
| unsigned long stack_size, |
| int __user *parent_tidptr, |
| int __user *child_tidptr, |
| int pid) |
| { |
| int retval; |
| struct task_struct *p = NULL; |
| |
| if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * Thread groups must share signals as well, and detached threads |
| * can only be started up within the thread group. |
| */ |
| if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * Shared signal handlers imply shared VM. By way of the above, |
| * thread groups also imply shared VM. Blocking this case allows |
| * for various simplifications in other code. |
| */ |
| if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
| return ERR_PTR(-EINVAL); |
| |
| retval = security_task_create(clone_flags); |
| if (retval) |
| goto fork_out; |
| |
| retval = -ENOMEM; |
| p = dup_task_struct(current); |
| if (!p) |
| goto fork_out; |
| |
| retval = -EAGAIN; |
| if (atomic_read(&p->user->processes) >= |
| p->signal->rlim[RLIMIT_NPROC].rlim_cur) { |
| if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && |
| p->user != &root_user) |
| goto bad_fork_free; |
| } |
| |
| atomic_inc(&p->user->__count); |
| atomic_inc(&p->user->processes); |
| get_group_info(p->group_info); |
| |
| /* |
| * If multiple threads are within copy_process(), then this check |
| * triggers too late. This doesn't hurt, the check is only there |
| * to stop root fork bombs. |
| */ |
| if (nr_threads >= max_threads) |
| goto bad_fork_cleanup_count; |
| |
| if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
| goto bad_fork_cleanup_count; |
| |
| if (p->binfmt && !try_module_get(p->binfmt->module)) |
| goto bad_fork_cleanup_put_domain; |
| |
| p->did_exec = 0; |
| copy_flags(clone_flags, p); |
| p->pid = pid; |
| retval = -EFAULT; |
| if (clone_flags & CLONE_PARENT_SETTID) |
| if (put_user(p->pid, parent_tidptr)) |
| goto bad_fork_cleanup; |
| |
| p->proc_dentry = NULL; |
| |
| INIT_LIST_HEAD(&p->children); |
| INIT_LIST_HEAD(&p->sibling); |
| p->vfork_done = NULL; |
| spin_lock_init(&p->alloc_lock); |
| spin_lock_init(&p->proc_lock); |
| |
| clear_tsk_thread_flag(p, TIF_SIGPENDING); |
| init_sigpending(&p->pending); |
| |
| p->utime = cputime_zero; |
| p->stime = cputime_zero; |
| p->sched_time = 0; |
| p->rchar = 0; /* I/O counter: bytes read */ |
| p->wchar = 0; /* I/O counter: bytes written */ |
| p->syscr = 0; /* I/O counter: read syscalls */ |
| p->syscw = 0; /* I/O counter: write syscalls */ |
| acct_clear_integrals(p); |
| |
| p->it_virt_expires = cputime_zero; |
| p->it_prof_expires = cputime_zero; |
| p->it_sched_expires = 0; |
| INIT_LIST_HEAD(&p->cpu_timers[0]); |
| INIT_LIST_HEAD(&p->cpu_timers[1]); |
| INIT_LIST_HEAD(&p->cpu_timers[2]); |
| |
| p->lock_depth = -1; /* -1 = no lock */ |
| do_posix_clock_monotonic_gettime(&p->start_time); |
| p->security = NULL; |
| p->io_context = NULL; |
| p->io_wait = NULL; |
| p->audit_context = NULL; |
| cpuset_fork(p); |
| #ifdef CONFIG_NUMA |
| p->mempolicy = mpol_copy(p->mempolicy); |
| if (IS_ERR(p->mempolicy)) { |
| retval = PTR_ERR(p->mempolicy); |
| p->mempolicy = NULL; |
| goto bad_fork_cleanup_cpuset; |
| } |
| mpol_fix_fork_child_flag(p); |
| #endif |
| |
| #ifdef CONFIG_DEBUG_MUTEXES |
| p->blocked_on = NULL; /* not blocked yet */ |
| #endif |
| |
| p->tgid = p->pid; |
| if (clone_flags & CLONE_THREAD) |
| p->tgid = current->tgid; |
| |
| if ((retval = security_task_alloc(p))) |
| goto bad_fork_cleanup_policy; |
| if ((retval = audit_alloc(p))) |
| goto bad_fork_cleanup_security; |
| /* copy all the process information */ |
| if ((retval = copy_semundo(clone_flags, p))) |
| goto bad_fork_cleanup_audit; |
| if ((retval = copy_files(clone_flags, p))) |
| goto bad_fork_cleanup_semundo; |
| if ((retval = copy_fs(clone_flags, p))) |
| goto bad_fork_cleanup_files; |
| if ((retval = copy_sighand(clone_flags, p))) |
| goto bad_fork_cleanup_fs; |
| if ((retval = copy_signal(clone_flags, p))) |
| goto bad_fork_cleanup_sighand; |
| if ((retval = copy_mm(clone_flags, p))) |
| goto bad_fork_cleanup_signal; |
| if ((retval = copy_keys(clone_flags, p))) |
| goto bad_fork_cleanup_mm; |
| if ((retval = copy_namespace(clone_flags, p))) |
| goto bad_fork_cleanup_keys; |
| retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); |
| if (retval) |
| goto bad_fork_cleanup_namespace; |
| |
| p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; |
| /* |
| * Clear TID on mm_release()? |
| */ |
| p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; |
| p->robust_list = NULL; |
| #ifdef CONFIG_COMPAT |
| p->compat_robust_list = NULL; |
| #endif |
| /* |
| * sigaltstack should be cleared when sharing the same VM |
| */ |
| if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) |
| p->sas_ss_sp = p->sas_ss_size = 0; |
| |
| /* |
| * Syscall tracing should be turned off in the child regardless |
| * of CLONE_PTRACE. |
| */ |
| clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); |
| #ifdef TIF_SYSCALL_EMU |
| clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); |
| #endif |
| |
| /* Our parent execution domain becomes current domain |
| These must match for thread signalling to apply */ |
| |
| p->parent_exec_id = p->self_exec_id; |
| |
| /* ok, now we should be set up.. */ |
| p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); |
| p->pdeath_signal = 0; |
| p->exit_state = 0; |
| |
| /* |
| * Ok, make it visible to the rest of the system. |
| * We dont wake it up yet. |
| */ |
| p->group_leader = p; |
| INIT_LIST_HEAD(&p->thread_group); |
| INIT_LIST_HEAD(&p->ptrace_children); |
| INIT_LIST_HEAD(&p->ptrace_list); |
| |
| /* Perform scheduler related setup. Assign this task to a CPU. */ |
| sched_fork(p, clone_flags); |
| |
| /* Need tasklist lock for parent etc handling! */ |
| write_lock_irq(&tasklist_lock); |
| |
| /* |
| * The task hasn't been attached yet, so its cpus_allowed mask will |
| * not be changed, nor will its assigned CPU. |
| * |
| * The cpus_allowed mask of the parent may have changed after it was |
| * copied first time - so re-copy it here, then check the child's CPU |
| * to ensure it is on a valid CPU (and if not, just force it back to |
| * parent's CPU). This avoids alot of nasty races. |
| */ |
| p->cpus_allowed = current->cpus_allowed; |
| if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || |
| !cpu_online(task_cpu(p)))) |
| set_task_cpu(p, smp_processor_id()); |
| |
| /* CLONE_PARENT re-uses the old parent */ |
| if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) |
| p->real_parent = current->real_parent; |
| else |
| p->real_parent = current; |
| p->parent = p->real_parent; |
| |
| spin_lock(¤t->sighand->siglock); |
| |
| /* |
| * Process group and session signals need to be delivered to just the |
| * parent before the fork or both the parent and the child after the |
| * fork. Restart if a signal comes in before we add the new process to |
| * it's process group. |
| * A fatal signal pending means that current will exit, so the new |
| * thread can't slip out of an OOM kill (or normal SIGKILL). |
| */ |
| recalc_sigpending(); |
| if (signal_pending(current)) { |
| spin_unlock(¤t->sighand->siglock); |
| write_unlock_irq(&tasklist_lock); |
| retval = -ERESTARTNOINTR; |
| goto bad_fork_cleanup_namespace; |
| } |
| |
| if (clone_flags & CLONE_THREAD) { |
| /* |
| * Important: if an exit-all has been started then |
| * do not create this new thread - the whole thread |
| * group is supposed to exit anyway. |
| */ |
| if (current->signal->flags & SIGNAL_GROUP_EXIT) { |
| spin_unlock(¤t->sighand->siglock); |
| write_unlock_irq(&tasklist_lock); |
| retval = -EAGAIN; |
| goto bad_fork_cleanup_namespace; |
| } |
| |
| p->group_leader = current->group_leader; |
| list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); |
| |
| if (!cputime_eq(current->signal->it_virt_expires, |
| cputime_zero) || |
| !cputime_eq(current->signal->it_prof_expires, |
| cputime_zero) || |
| current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || |
| !list_empty(¤t->signal->cpu_timers[0]) || |
| !list_empty(¤t->signal->cpu_timers[1]) || |
| !list_empty(¤t->signal->cpu_timers[2])) { |
| /* |
| * Have child wake up on its first tick to check |
| * for process CPU timers. |
| */ |
| p->it_prof_expires = jiffies_to_cputime(1); |
| } |
| } |
| |
| /* |
| * inherit ioprio |
| */ |
| p->ioprio = current->ioprio; |
| |
| if (likely(p->pid)) { |
| add_parent(p); |
| if (unlikely(p->ptrace & PT_PTRACED)) |
| __ptrace_link(p, current->parent); |
| |
| if (thread_group_leader(p)) { |
| p->signal->tty = current->signal->tty; |
| p->signal->pgrp = process_group(current); |
| p->signal->session = current->signal->session; |
| attach_pid(p, PIDTYPE_PGID, process_group(p)); |
| attach_pid(p, PIDTYPE_SID, p->signal->session); |
| |
| list_add_tail_rcu(&p->tasks, &init_task.tasks); |
| __get_cpu_var(process_counts)++; |
| } |
| attach_pid(p, PIDTYPE_PID, p->pid); |
| nr_threads++; |
| } |
| |
| total_forks++; |
| spin_unlock(¤t->sighand->siglock); |
| write_unlock_irq(&tasklist_lock); |
| proc_fork_connector(p); |
| return p; |
| |
| bad_fork_cleanup_namespace: |
| exit_namespace(p); |
| bad_fork_cleanup_keys: |
| exit_keys(p); |
| bad_fork_cleanup_mm: |
| if (p->mm) |
| mmput(p->mm); |
| bad_fork_cleanup_signal: |
| cleanup_signal(p); |
| bad_fork_cleanup_sighand: |
| __cleanup_sighand(p->sighand); |
| bad_fork_cleanup_fs: |
| exit_fs(p); /* blocking */ |
| bad_fork_cleanup_files: |
| exit_files(p); /* blocking */ |
| bad_fork_cleanup_semundo: |
| exit_sem(p); |
| bad_fork_cleanup_audit: |
| audit_free(p); |
| bad_fork_cleanup_security: |
| security_task_free(p); |
| bad_fork_cleanup_policy: |
| #ifdef CONFIG_NUMA |
| mpol_free(p->mempolicy); |
| bad_fork_cleanup_cpuset: |
| #endif |
| cpuset_exit(p); |
| bad_fork_cleanup: |
| if (p->binfmt) |
| module_put(p->binfmt->module); |
| bad_fork_cleanup_put_domain: |
| module_put(task_thread_info(p)->exec_domain->module); |
| bad_fork_cleanup_count: |
| put_group_info(p->group_info); |
| atomic_dec(&p->user->processes); |
| free_uid(p->user); |
| bad_fork_free: |
| free_task(p); |
| fork_out: |
| return ERR_PTR(retval); |
| } |
| |
| struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) |
| { |
| memset(regs, 0, sizeof(struct pt_regs)); |
| return regs; |
| } |
| |
| task_t * __devinit fork_idle(int cpu) |
| { |
| task_t *task; |
| struct pt_regs regs; |
| |
| task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 0); |
| if (!task) |
| return ERR_PTR(-ENOMEM); |
| init_idle(task, cpu); |
| |
| return task; |
| } |
| |
| static inline int fork_traceflag (unsigned clone_flags) |
| { |
| if (clone_flags & CLONE_UNTRACED) |
| return 0; |
| else if (clone_flags & CLONE_VFORK) { |
| if (current->ptrace & PT_TRACE_VFORK) |
| return PTRACE_EVENT_VFORK; |
| } else if ((clone_flags & CSIGNAL) != SIGCHLD) { |
| if (current->ptrace & PT_TRACE_CLONE) |
| return PTRACE_EVENT_CLONE; |
| } else if (current->ptrace & PT_TRACE_FORK) |
| return PTRACE_EVENT_FORK; |
| |
| return 0; |
| } |
| |
| /* |
| * Ok, this is the main fork-routine. |
| * |
| * It copies the process, and if successful kick-starts |
| * it and waits for it to finish using the VM if required. |
| */ |
| long do_fork(unsigned long clone_flags, |
| unsigned long stack_start, |
| struct pt_regs *regs, |
| unsigned long stack_size, |
| int __user *parent_tidptr, |
| int __user *child_tidptr) |
| { |
| struct task_struct *p; |
| int trace = 0; |
| struct pid *pid = alloc_pid(); |
| long nr; |
| |
| if (!pid) |
| return -EAGAIN; |
| nr = pid->nr; |
| if (unlikely(current->ptrace)) { |
| trace = fork_traceflag (clone_flags); |
| if (trace) |
| clone_flags |= CLONE_PTRACE; |
| } |
| |
| p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr); |
| /* |
| * Do this prior waking up the new thread - the thread pointer |
| * might get invalid after that point, if the thread exits quickly. |
| */ |
| if (!IS_ERR(p)) { |
| struct completion vfork; |
| |
| if (clone_flags & CLONE_VFORK) { |
| p->vfork_done = &vfork; |
| init_completion(&vfork); |
| } |
| |
| if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { |
| /* |
| * We'll start up with an immediate SIGSTOP. |
| */ |
| sigaddset(&p->pending.signal, SIGSTOP); |
| set_tsk_thread_flag(p, TIF_SIGPENDING); |
| } |
| |
| if (!(clone_flags & CLONE_STOPPED)) |
| wake_up_new_task(p, clone_flags); |
| else |
| p->state = TASK_STOPPED; |
| |
| if (unlikely (trace)) { |
| current->ptrace_message = nr; |
| ptrace_notify ((trace << 8) | SIGTRAP); |
| } |
| |
| if (clone_flags & CLONE_VFORK) { |
| wait_for_completion(&vfork); |
| if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) |
| ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); |
| } |
| } else { |
| free_pid(pid); |
| nr = PTR_ERR(p); |
| } |
| return nr; |
| } |
| |
| #ifndef ARCH_MIN_MMSTRUCT_ALIGN |
| #define ARCH_MIN_MMSTRUCT_ALIGN 0 |
| #endif |
| |
| static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) |
| { |
| struct sighand_struct *sighand = data; |
| |
| if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == |
| SLAB_CTOR_CONSTRUCTOR) |
| spin_lock_init(&sighand->siglock); |
| } |
| |
| void __init proc_caches_init(void) |
| { |
| sighand_cachep = kmem_cache_create("sighand_cache", |
| sizeof(struct sighand_struct), 0, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, |
| sighand_ctor, NULL); |
| signal_cachep = kmem_cache_create("signal_cache", |
| sizeof(struct signal_struct), 0, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); |
| files_cachep = kmem_cache_create("files_cache", |
| sizeof(struct files_struct), 0, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); |
| fs_cachep = kmem_cache_create("fs_cache", |
| sizeof(struct fs_struct), 0, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); |
| vm_area_cachep = kmem_cache_create("vm_area_struct", |
| sizeof(struct vm_area_struct), 0, |
| SLAB_PANIC, NULL, NULL); |
| mm_cachep = kmem_cache_create("mm_struct", |
| sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); |
| } |
| |
| |
| /* |
| * Check constraints on flags passed to the unshare system call and |
| * force unsharing of additional process context as appropriate. |
| */ |
| static inline void check_unshare_flags(unsigned long *flags_ptr) |
| { |
| /* |
| * If unsharing a thread from a thread group, must also |
| * unshare vm. |
| */ |
| if (*flags_ptr & CLONE_THREAD) |
| *flags_ptr |= CLONE_VM; |
| |
| /* |
| * If unsharing vm, must also unshare signal handlers. |
| */ |
| if (*flags_ptr & CLONE_VM) |
| *flags_ptr |= CLONE_SIGHAND; |
| |
| /* |
| * If unsharing signal handlers and the task was created |
| * using CLONE_THREAD, then must unshare the thread |
| */ |
| if ((*flags_ptr & CLONE_SIGHAND) && |
| (atomic_read(¤t->signal->count) > 1)) |
| *flags_ptr |= CLONE_THREAD; |
| |
| /* |
| * If unsharing namespace, must also unshare filesystem information. |
| */ |
| if (*flags_ptr & CLONE_NEWNS) |
| *flags_ptr |= CLONE_FS; |
| } |
| |
| /* |
| * Unsharing of tasks created with CLONE_THREAD is not supported yet |
| */ |
| static int unshare_thread(unsigned long unshare_flags) |
| { |
| if (unshare_flags & CLONE_THREAD) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Unshare the filesystem structure if it is being shared |
| */ |
| static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) |
| { |
| struct fs_struct *fs = current->fs; |
| |
| if ((unshare_flags & CLONE_FS) && |
| (fs && atomic_read(&fs->count) > 1)) { |
| *new_fsp = __copy_fs_struct(current->fs); |
| if (!*new_fsp) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Unshare the namespace structure if it is being shared |
| */ |
| static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs) |
| { |
| struct namespace *ns = current->namespace; |
| |
| if ((unshare_flags & CLONE_NEWNS) && |
| (ns && atomic_read(&ns->count) > 1)) { |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs); |
| if (!*new_nsp) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Unsharing of sighand for tasks created with CLONE_SIGHAND is not |
| * supported yet |
| */ |
| static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) |
| { |
| struct sighand_struct *sigh = current->sighand; |
| |
| if ((unshare_flags & CLONE_SIGHAND) && |
| (sigh && atomic_read(&sigh->count) > 1)) |
| return -EINVAL; |
| else |
| return 0; |
| } |
| |
| /* |
| * Unshare vm if it is being shared |
| */ |
| static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) |
| { |
| struct mm_struct *mm = current->mm; |
| |
| if ((unshare_flags & CLONE_VM) && |
| (mm && atomic_read(&mm->mm_users) > 1)) { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Unshare file descriptor table if it is being shared |
| */ |
| static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) |
| { |
| struct files_struct *fd = current->files; |
| int error = 0; |
| |
| if ((unshare_flags & CLONE_FILES) && |
| (fd && atomic_read(&fd->count) > 1)) { |
| *new_fdp = dup_fd(fd, &error); |
| if (!*new_fdp) |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not |
| * supported yet |
| */ |
| static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp) |
| { |
| if (unshare_flags & CLONE_SYSVSEM) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * unshare allows a process to 'unshare' part of the process |
| * context which was originally shared using clone. copy_* |
| * functions used by do_fork() cannot be used here directly |
| * because they modify an inactive task_struct that is being |
| * constructed. Here we are modifying the current, active, |
| * task_struct. |
| */ |
| asmlinkage long sys_unshare(unsigned long unshare_flags) |
| { |
| int err = 0; |
| struct fs_struct *fs, *new_fs = NULL; |
| struct namespace *ns, *new_ns = NULL; |
| struct sighand_struct *sigh, *new_sigh = NULL; |
| struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; |
| struct files_struct *fd, *new_fd = NULL; |
| struct sem_undo_list *new_ulist = NULL; |
| |
| check_unshare_flags(&unshare_flags); |
| |
| /* Return -EINVAL for all unsupported flags */ |
| err = -EINVAL; |
| if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| |
| CLONE_VM|CLONE_FILES|CLONE_SYSVSEM)) |
| goto bad_unshare_out; |
| |
| if ((err = unshare_thread(unshare_flags))) |
| goto bad_unshare_out; |
| if ((err = unshare_fs(unshare_flags, &new_fs))) |
| goto bad_unshare_cleanup_thread; |
| if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs))) |
| goto bad_unshare_cleanup_fs; |
| if ((err = unshare_sighand(unshare_flags, &new_sigh))) |
| goto bad_unshare_cleanup_ns; |
| if ((err = unshare_vm(unshare_flags, &new_mm))) |
| goto bad_unshare_cleanup_sigh; |
| if ((err = unshare_fd(unshare_flags, &new_fd))) |
| goto bad_unshare_cleanup_vm; |
| if ((err = unshare_semundo(unshare_flags, &new_ulist))) |
| goto bad_unshare_cleanup_fd; |
| |
| if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) { |
| |
| task_lock(current); |
| |
| if (new_fs) { |
| fs = current->fs; |
| current->fs = new_fs; |
| new_fs = fs; |
| } |
| |
| if (new_ns) { |
| ns = current->namespace; |
| current->namespace = new_ns; |
| new_ns = ns; |
| } |
| |
| if (new_sigh) { |
| sigh = current->sighand; |
| rcu_assign_pointer(current->sighand, new_sigh); |
| new_sigh = sigh; |
| } |
| |
| if (new_mm) { |
| mm = current->mm; |
| active_mm = current->active_mm; |
| current->mm = new_mm; |
| current->active_mm = new_mm; |
| activate_mm(active_mm, new_mm); |
| new_mm = mm; |
| } |
| |
| if (new_fd) { |
| fd = current->files; |
| current->files = new_fd; |
| new_fd = fd; |
| } |
| |
| task_unlock(current); |
| } |
| |
| bad_unshare_cleanup_fd: |
| if (new_fd) |
| put_files_struct(new_fd); |
| |
| bad_unshare_cleanup_vm: |
| if (new_mm) |
| mmput(new_mm); |
| |
| bad_unshare_cleanup_sigh: |
| if (new_sigh) |
| if (atomic_dec_and_test(&new_sigh->count)) |
| kmem_cache_free(sighand_cachep, new_sigh); |
| |
| bad_unshare_cleanup_ns: |
| if (new_ns) |
| put_namespace(new_ns); |
| |
| bad_unshare_cleanup_fs: |
| if (new_fs) |
| put_fs_struct(new_fs); |
| |
| bad_unshare_cleanup_thread: |
| bad_unshare_out: |
| return err; |
| } |