| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <linux/elf.h> |
| #include <linux/ftrace.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/sort.h> |
| |
| static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc, |
| enum aarch64_insn_register reg) |
| { |
| u32 adrp, add; |
| |
| adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP); |
| add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_ADSB_ADD); |
| |
| return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) }; |
| } |
| |
| struct plt_entry get_plt_entry(u64 dst, void *pc) |
| { |
| struct plt_entry plt; |
| static u32 br; |
| |
| if (!br) |
| br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16, |
| AARCH64_INSN_BRANCH_NOLINK); |
| |
| plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16); |
| plt.br = cpu_to_le32(br); |
| |
| return plt; |
| } |
| |
| bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b) |
| { |
| u64 p, q; |
| |
| /* |
| * Check whether both entries refer to the same target: |
| * do the cheapest checks first. |
| * If the 'add' or 'br' opcodes are different, then the target |
| * cannot be the same. |
| */ |
| if (a->add != b->add || a->br != b->br) |
| return false; |
| |
| p = ALIGN_DOWN((u64)a, SZ_4K); |
| q = ALIGN_DOWN((u64)b, SZ_4K); |
| |
| /* |
| * If the 'adrp' opcodes are the same then we just need to check |
| * that they refer to the same 4k region. |
| */ |
| if (a->adrp == b->adrp && p == q) |
| return true; |
| |
| return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) == |
| (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp))); |
| } |
| |
| static bool in_init(const struct module *mod, void *loc) |
| { |
| return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size; |
| } |
| |
| u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs, |
| void *loc, const Elf64_Rela *rela, |
| Elf64_Sym *sym) |
| { |
| struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core : |
| &mod->arch.init; |
| struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr; |
| int i = pltsec->plt_num_entries; |
| int j = i - 1; |
| u64 val = sym->st_value + rela->r_addend; |
| |
| if (is_forbidden_offset_for_adrp(&plt[i].adrp)) |
| i++; |
| |
| plt[i] = get_plt_entry(val, &plt[i]); |
| |
| /* |
| * Check if the entry we just created is a duplicate. Given that the |
| * relocations are sorted, this will be the last entry we allocated. |
| * (if one exists). |
| */ |
| if (j >= 0 && plt_entries_equal(plt + i, plt + j)) |
| return (u64)&plt[j]; |
| |
| pltsec->plt_num_entries += i - j; |
| if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries)) |
| return 0; |
| |
| return (u64)&plt[i]; |
| } |
| |
| #ifdef CONFIG_ARM64_ERRATUM_843419 |
| u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs, |
| void *loc, u64 val) |
| { |
| struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core : |
| &mod->arch.init; |
| struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr; |
| int i = pltsec->plt_num_entries++; |
| u32 br; |
| int rd; |
| |
| if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries)) |
| return 0; |
| |
| if (is_forbidden_offset_for_adrp(&plt[i].adrp)) |
| i = pltsec->plt_num_entries++; |
| |
| /* get the destination register of the ADRP instruction */ |
| rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, |
| le32_to_cpup((__le32 *)loc)); |
| |
| br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4, |
| AARCH64_INSN_BRANCH_NOLINK); |
| |
| plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd); |
| plt[i].br = cpu_to_le32(br); |
| |
| return (u64)&plt[i]; |
| } |
| #endif |
| |
| #define cmp_3way(a, b) ((a) < (b) ? -1 : (a) > (b)) |
| |
| static int cmp_rela(const void *a, const void *b) |
| { |
| const Elf64_Rela *x = a, *y = b; |
| int i; |
| |
| /* sort by type, symbol index and addend */ |
| i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info)); |
| if (i == 0) |
| i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info)); |
| if (i == 0) |
| i = cmp_3way(x->r_addend, y->r_addend); |
| return i; |
| } |
| |
| static bool duplicate_rel(const Elf64_Rela *rela, int num) |
| { |
| /* |
| * Entries are sorted by type, symbol index and addend. That means |
| * that, if a duplicate entry exists, it must be in the preceding |
| * slot. |
| */ |
| return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0; |
| } |
| |
| static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num, |
| Elf64_Word dstidx, Elf_Shdr *dstsec) |
| { |
| unsigned int ret = 0; |
| Elf64_Sym *s; |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| u64 min_align; |
| |
| switch (ELF64_R_TYPE(rela[i].r_info)) { |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_CALL26: |
| if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) |
| break; |
| |
| /* |
| * We only have to consider branch targets that resolve |
| * to symbols that are defined in a different section. |
| * This is not simply a heuristic, it is a fundamental |
| * limitation, since there is no guaranteed way to emit |
| * PLT entries sufficiently close to the branch if the |
| * section size exceeds the range of a branch |
| * instruction. So ignore relocations against defined |
| * symbols if they live in the same section as the |
| * relocation target. |
| */ |
| s = syms + ELF64_R_SYM(rela[i].r_info); |
| if (s->st_shndx == dstidx) |
| break; |
| |
| /* |
| * Jump relocations with non-zero addends against |
| * undefined symbols are supported by the ELF spec, but |
| * do not occur in practice (e.g., 'jump n bytes past |
| * the entry point of undefined function symbol f'). |
| * So we need to support them, but there is no need to |
| * take them into consideration when trying to optimize |
| * this code. So let's only check for duplicates when |
| * the addend is zero: this allows us to record the PLT |
| * entry address in the symbol table itself, rather than |
| * having to search the list for duplicates each time we |
| * emit one. |
| */ |
| if (rela[i].r_addend != 0 || !duplicate_rel(rela, i)) |
| ret++; |
| break; |
| case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| case R_AARCH64_ADR_PREL_PG_HI21: |
| if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) || |
| !cpus_have_const_cap(ARM64_WORKAROUND_843419)) |
| break; |
| |
| /* |
| * Determine the minimal safe alignment for this ADRP |
| * instruction: the section alignment at which it is |
| * guaranteed not to appear at a vulnerable offset. |
| * |
| * This comes down to finding the least significant zero |
| * bit in bits [11:3] of the section offset, and |
| * increasing the section's alignment so that the |
| * resulting address of this instruction is guaranteed |
| * to equal the offset in that particular bit (as well |
| * as all less signficant bits). This ensures that the |
| * address modulo 4 KB != 0xfff8 or 0xfffc (which would |
| * have all ones in bits [11:3]) |
| */ |
| min_align = 2ULL << ffz(rela[i].r_offset | 0x7); |
| |
| /* |
| * Allocate veneer space for each ADRP that may appear |
| * at a vulnerable offset nonetheless. At relocation |
| * time, some of these will remain unused since some |
| * ADRP instructions can be patched to ADR instructions |
| * instead. |
| */ |
| if (min_align > SZ_4K) |
| ret++; |
| else |
| dstsec->sh_addralign = max(dstsec->sh_addralign, |
| min_align); |
| break; |
| } |
| } |
| |
| if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) && |
| cpus_have_const_cap(ARM64_WORKAROUND_843419)) |
| /* |
| * Add some slack so we can skip PLT slots that may trigger |
| * the erratum due to the placement of the ADRP instruction. |
| */ |
| ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry))); |
| |
| return ret; |
| } |
| |
| static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela, |
| Elf64_Word dstidx) |
| { |
| |
| Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info); |
| |
| if (s->st_shndx == dstidx) |
| return false; |
| |
| return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 || |
| ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26; |
| } |
| |
| /* Group branch PLT relas at the front end of the array. */ |
| static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela, |
| int numrels, Elf64_Word dstidx) |
| { |
| int i = 0, j = numrels - 1; |
| |
| if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) |
| return 0; |
| |
| while (i < j) { |
| if (branch_rela_needs_plt(syms, &rela[i], dstidx)) |
| i++; |
| else if (branch_rela_needs_plt(syms, &rela[j], dstidx)) |
| swap(rela[i], rela[j]); |
| else |
| j--; |
| } |
| |
| return i; |
| } |
| |
| int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, |
| char *secstrings, struct module *mod) |
| { |
| unsigned long core_plts = 0; |
| unsigned long init_plts = 0; |
| Elf64_Sym *syms = NULL; |
| Elf_Shdr *pltsec, *tramp = NULL; |
| int i; |
| |
| /* |
| * Find the empty .plt section so we can expand it to store the PLT |
| * entries. Record the symtab address as well. |
| */ |
| for (i = 0; i < ehdr->e_shnum; i++) { |
| if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt")) |
| mod->arch.core.plt_shndx = i; |
| else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt")) |
| mod->arch.init.plt_shndx = i; |
| else if (!strcmp(secstrings + sechdrs[i].sh_name, |
| ".text.ftrace_trampoline")) |
| tramp = sechdrs + i; |
| else if (sechdrs[i].sh_type == SHT_SYMTAB) |
| syms = (Elf64_Sym *)sechdrs[i].sh_addr; |
| } |
| |
| if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) { |
| pr_err("%s: module PLT section(s) missing\n", mod->name); |
| return -ENOEXEC; |
| } |
| if (!syms) { |
| pr_err("%s: module symtab section missing\n", mod->name); |
| return -ENOEXEC; |
| } |
| |
| for (i = 0; i < ehdr->e_shnum; i++) { |
| Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset; |
| int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela); |
| Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info; |
| |
| if (sechdrs[i].sh_type != SHT_RELA) |
| continue; |
| |
| /* ignore relocations that operate on non-exec sections */ |
| if (!(dstsec->sh_flags & SHF_EXECINSTR)) |
| continue; |
| |
| /* |
| * sort branch relocations requiring a PLT by type, symbol index |
| * and addend |
| */ |
| nents = partition_branch_plt_relas(syms, rels, numrels, |
| sechdrs[i].sh_info); |
| if (nents) |
| sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL); |
| |
| if (!str_has_prefix(secstrings + dstsec->sh_name, ".init")) |
| core_plts += count_plts(syms, rels, numrels, |
| sechdrs[i].sh_info, dstsec); |
| else |
| init_plts += count_plts(syms, rels, numrels, |
| sechdrs[i].sh_info, dstsec); |
| } |
| |
| pltsec = sechdrs + mod->arch.core.plt_shndx; |
| pltsec->sh_type = SHT_NOBITS; |
| pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC; |
| pltsec->sh_addralign = L1_CACHE_BYTES; |
| pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry); |
| mod->arch.core.plt_num_entries = 0; |
| mod->arch.core.plt_max_entries = core_plts; |
| |
| pltsec = sechdrs + mod->arch.init.plt_shndx; |
| pltsec->sh_type = SHT_NOBITS; |
| pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC; |
| pltsec->sh_addralign = L1_CACHE_BYTES; |
| pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry); |
| mod->arch.init.plt_num_entries = 0; |
| mod->arch.init.plt_max_entries = init_plts; |
| |
| if (tramp) { |
| tramp->sh_type = SHT_NOBITS; |
| tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC; |
| tramp->sh_addralign = __alignof__(struct plt_entry); |
| tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry); |
| } |
| |
| return 0; |
| } |