| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (c) 2017-2018 MediaTek Inc. |
| |
| /* |
| * Driver for MediaTek High-Speed DMA Controller |
| * |
| * Author: Sean Wang <sean.wang@mediatek.com> |
| * |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/iopoll.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/refcount.h> |
| #include <linux/slab.h> |
| |
| #include "../virt-dma.h" |
| |
| #define MTK_HSDMA_USEC_POLL 20 |
| #define MTK_HSDMA_TIMEOUT_POLL 200000 |
| #define MTK_HSDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
| |
| /* The default number of virtual channel */ |
| #define MTK_HSDMA_NR_VCHANS 3 |
| |
| /* Only one physical channel supported */ |
| #define MTK_HSDMA_NR_MAX_PCHANS 1 |
| |
| /* Macro for physical descriptor (PD) manipulation */ |
| /* The number of PD which must be 2 of power */ |
| #define MTK_DMA_SIZE 64 |
| #define MTK_HSDMA_NEXT_DESP_IDX(x, y) (((x) + 1) & ((y) - 1)) |
| #define MTK_HSDMA_LAST_DESP_IDX(x, y) (((x) - 1) & ((y) - 1)) |
| #define MTK_HSDMA_MAX_LEN 0x3f80 |
| #define MTK_HSDMA_ALIGN_SIZE 4 |
| #define MTK_HSDMA_PLEN_MASK 0x3fff |
| #define MTK_HSDMA_DESC_PLEN(x) (((x) & MTK_HSDMA_PLEN_MASK) << 16) |
| #define MTK_HSDMA_DESC_PLEN_GET(x) (((x) >> 16) & MTK_HSDMA_PLEN_MASK) |
| |
| /* Registers for underlying ring manipulation */ |
| #define MTK_HSDMA_TX_BASE 0x0 |
| #define MTK_HSDMA_TX_CNT 0x4 |
| #define MTK_HSDMA_TX_CPU 0x8 |
| #define MTK_HSDMA_TX_DMA 0xc |
| #define MTK_HSDMA_RX_BASE 0x100 |
| #define MTK_HSDMA_RX_CNT 0x104 |
| #define MTK_HSDMA_RX_CPU 0x108 |
| #define MTK_HSDMA_RX_DMA 0x10c |
| |
| /* Registers for global setup */ |
| #define MTK_HSDMA_GLO 0x204 |
| #define MTK_HSDMA_GLO_MULTI_DMA BIT(10) |
| #define MTK_HSDMA_TX_WB_DDONE BIT(6) |
| #define MTK_HSDMA_BURST_64BYTES (0x2 << 4) |
| #define MTK_HSDMA_GLO_RX_BUSY BIT(3) |
| #define MTK_HSDMA_GLO_RX_DMA BIT(2) |
| #define MTK_HSDMA_GLO_TX_BUSY BIT(1) |
| #define MTK_HSDMA_GLO_TX_DMA BIT(0) |
| #define MTK_HSDMA_GLO_DMA (MTK_HSDMA_GLO_TX_DMA | \ |
| MTK_HSDMA_GLO_RX_DMA) |
| #define MTK_HSDMA_GLO_BUSY (MTK_HSDMA_GLO_RX_BUSY | \ |
| MTK_HSDMA_GLO_TX_BUSY) |
| #define MTK_HSDMA_GLO_DEFAULT (MTK_HSDMA_GLO_TX_DMA | \ |
| MTK_HSDMA_GLO_RX_DMA | \ |
| MTK_HSDMA_TX_WB_DDONE | \ |
| MTK_HSDMA_BURST_64BYTES | \ |
| MTK_HSDMA_GLO_MULTI_DMA) |
| |
| /* Registers for reset */ |
| #define MTK_HSDMA_RESET 0x208 |
| #define MTK_HSDMA_RST_TX BIT(0) |
| #define MTK_HSDMA_RST_RX BIT(16) |
| |
| /* Registers for interrupt control */ |
| #define MTK_HSDMA_DLYINT 0x20c |
| #define MTK_HSDMA_RXDLY_INT_EN BIT(15) |
| |
| /* Interrupt fires when the pending number's more than the specified */ |
| #define MTK_HSDMA_RXMAX_PINT(x) (((x) & 0x7f) << 8) |
| |
| /* Interrupt fires when the pending time's more than the specified in 20 us */ |
| #define MTK_HSDMA_RXMAX_PTIME(x) ((x) & 0x7f) |
| #define MTK_HSDMA_DLYINT_DEFAULT (MTK_HSDMA_RXDLY_INT_EN | \ |
| MTK_HSDMA_RXMAX_PINT(20) | \ |
| MTK_HSDMA_RXMAX_PTIME(20)) |
| #define MTK_HSDMA_INT_STATUS 0x220 |
| #define MTK_HSDMA_INT_ENABLE 0x228 |
| #define MTK_HSDMA_INT_RXDONE BIT(16) |
| |
| enum mtk_hsdma_vdesc_flag { |
| MTK_HSDMA_VDESC_FINISHED = 0x01, |
| }; |
| |
| #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED) |
| |
| /** |
| * struct mtk_hsdma_pdesc - This is the struct holding info describing physical |
| * descriptor (PD) and its placement must be kept at |
| * 4-bytes alignment in little endian order. |
| * @desc1: | The control pad used to indicate hardware how to |
| * @desc2: | deal with the descriptor such as source and |
| * @desc3: | destination address and data length. The maximum |
| * @desc4: | data length each pdesc can handle is 0x3f80 bytes |
| */ |
| struct mtk_hsdma_pdesc { |
| __le32 desc1; |
| __le32 desc2; |
| __le32 desc3; |
| __le32 desc4; |
| } __packed __aligned(4); |
| |
| /** |
| * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual |
| * descriptor (VD) |
| * @vd: An instance for struct virt_dma_desc |
| * @len: The total data size device wants to move |
| * @residue: The remaining data size device will move |
| * @dest: The destination address device wants to move to |
| * @src: The source address device wants to move from |
| */ |
| struct mtk_hsdma_vdesc { |
| struct virt_dma_desc vd; |
| size_t len; |
| size_t residue; |
| dma_addr_t dest; |
| dma_addr_t src; |
| }; |
| |
| /** |
| * struct mtk_hsdma_cb - This is the struct holding extra info required for RX |
| * ring to know what relevant VD the the PD is being |
| * mapped to. |
| * @vd: Pointer to the relevant VD. |
| * @flag: Flag indicating what action should be taken when VD |
| * is completed. |
| */ |
| struct mtk_hsdma_cb { |
| struct virt_dma_desc *vd; |
| enum mtk_hsdma_vdesc_flag flag; |
| }; |
| |
| /** |
| * struct mtk_hsdma_ring - This struct holds info describing underlying ring |
| * space |
| * @txd: The descriptor TX ring which describes DMA source |
| * information |
| * @rxd: The descriptor RX ring which describes DMA |
| * destination information |
| * @cb: The extra information pointed at by RX ring |
| * @tphys: The physical addr of TX ring |
| * @rphys: The physical addr of RX ring |
| * @cur_tptr: Pointer to the next free descriptor used by the host |
| * @cur_rptr: Pointer to the last done descriptor by the device |
| */ |
| struct mtk_hsdma_ring { |
| struct mtk_hsdma_pdesc *txd; |
| struct mtk_hsdma_pdesc *rxd; |
| struct mtk_hsdma_cb *cb; |
| dma_addr_t tphys; |
| dma_addr_t rphys; |
| u16 cur_tptr; |
| u16 cur_rptr; |
| }; |
| |
| /** |
| * struct mtk_hsdma_pchan - This is the struct holding info describing physical |
| * channel (PC) |
| * @ring: An instance for the underlying ring |
| * @sz_ring: Total size allocated for the ring |
| * @nr_free: Total number of free rooms in the ring. It would |
| * be accessed and updated frequently between IRQ |
| * context and user context to reflect whether ring |
| * can accept requests from VD. |
| */ |
| struct mtk_hsdma_pchan { |
| struct mtk_hsdma_ring ring; |
| size_t sz_ring; |
| atomic_t nr_free; |
| }; |
| |
| /** |
| * struct mtk_hsdma_vchan - This is the struct holding info describing virtual |
| * channel (VC) |
| * @vc: An instance for struct virt_dma_chan |
| * @issue_completion: The wait for all issued descriptors completited |
| * @issue_synchronize: Bool indicating channel synchronization starts |
| * @desc_hw_processing: List those descriptors the hardware is processing, |
| * which is protected by vc.lock |
| */ |
| struct mtk_hsdma_vchan { |
| struct virt_dma_chan vc; |
| struct completion issue_completion; |
| bool issue_synchronize; |
| struct list_head desc_hw_processing; |
| }; |
| |
| /** |
| * struct mtk_hsdma_soc - This is the struct holding differences among SoCs |
| * @ddone: Bit mask for DDONE |
| * @ls0: Bit mask for LS0 |
| */ |
| struct mtk_hsdma_soc { |
| __le32 ddone; |
| __le32 ls0; |
| }; |
| |
| /** |
| * struct mtk_hsdma_device - This is the struct holding info describing HSDMA |
| * device |
| * @ddev: An instance for struct dma_device |
| * @base: The mapped register I/O base |
| * @clk: The clock that device internal is using |
| * @irq: The IRQ that device are using |
| * @dma_requests: The number of VCs the device supports to |
| * @vc: The pointer to all available VCs |
| * @pc: The pointer to the underlying PC |
| * @pc_refcnt: Track how many VCs are using the PC |
| * @lock: Lock protect agaisting multiple VCs access PC |
| * @soc: The pointer to area holding differences among |
| * vaious platform |
| */ |
| struct mtk_hsdma_device { |
| struct dma_device ddev; |
| void __iomem *base; |
| struct clk *clk; |
| u32 irq; |
| |
| u32 dma_requests; |
| struct mtk_hsdma_vchan *vc; |
| struct mtk_hsdma_pchan *pc; |
| refcount_t pc_refcnt; |
| |
| /* Lock used to protect against multiple VCs access PC */ |
| spinlock_t lock; |
| |
| const struct mtk_hsdma_soc *soc; |
| }; |
| |
| static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan) |
| { |
| return container_of(chan->device, struct mtk_hsdma_device, ddev); |
| } |
| |
| static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct mtk_hsdma_vchan, vc.chan); |
| } |
| |
| static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd) |
| { |
| return container_of(vd, struct mtk_hsdma_vdesc, vd); |
| } |
| |
| static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma) |
| { |
| return hsdma->ddev.dev; |
| } |
| |
| static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg) |
| { |
| return readl(hsdma->base + reg); |
| } |
| |
| static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) |
| { |
| writel(val, hsdma->base + reg); |
| } |
| |
| static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg, |
| u32 mask, u32 set) |
| { |
| u32 val; |
| |
| val = mtk_dma_read(hsdma, reg); |
| val &= ~mask; |
| val |= set; |
| mtk_dma_write(hsdma, reg, val); |
| } |
| |
| static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) |
| { |
| mtk_dma_rmw(hsdma, reg, 0, val); |
| } |
| |
| static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) |
| { |
| mtk_dma_rmw(hsdma, reg, val, 0); |
| } |
| |
| static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd) |
| { |
| kfree(container_of(vd, struct mtk_hsdma_vdesc, vd)); |
| } |
| |
| static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma) |
| { |
| u32 status = 0; |
| |
| return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status, |
| !(status & MTK_HSDMA_GLO_BUSY), |
| MTK_HSDMA_USEC_POLL, |
| MTK_HSDMA_TIMEOUT_POLL); |
| } |
| |
| static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma, |
| struct mtk_hsdma_pchan *pc) |
| { |
| struct mtk_hsdma_ring *ring = &pc->ring; |
| int err; |
| |
| memset(pc, 0, sizeof(*pc)); |
| |
| /* |
| * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring |
| * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring. |
| */ |
| pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd); |
| ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring, |
| &ring->tphys, GFP_NOWAIT); |
| if (!ring->txd) |
| return -ENOMEM; |
| |
| ring->rxd = &ring->txd[MTK_DMA_SIZE]; |
| ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd); |
| ring->cur_tptr = 0; |
| ring->cur_rptr = MTK_DMA_SIZE - 1; |
| |
| ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT); |
| if (!ring->cb) { |
| err = -ENOMEM; |
| goto err_free_dma; |
| } |
| |
| atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1); |
| |
| /* Disable HSDMA and wait for the completion */ |
| mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); |
| err = mtk_hsdma_busy_wait(hsdma); |
| if (err) |
| goto err_free_cb; |
| |
| /* Reset */ |
| mtk_dma_set(hsdma, MTK_HSDMA_RESET, |
| MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); |
| mtk_dma_clr(hsdma, MTK_HSDMA_RESET, |
| MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); |
| |
| /* Setup HSDMA initial pointer in the ring */ |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys); |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE); |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0); |
| |
| /* Enable HSDMA */ |
| mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); |
| |
| /* Setup delayed interrupt */ |
| mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT); |
| |
| /* Enable interrupt */ |
| mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| |
| return 0; |
| |
| err_free_cb: |
| kfree(ring->cb); |
| |
| err_free_dma: |
| dma_free_coherent(hsdma2dev(hsdma), |
| pc->sz_ring, ring->txd, ring->tphys); |
| return err; |
| } |
| |
| static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma, |
| struct mtk_hsdma_pchan *pc) |
| { |
| struct mtk_hsdma_ring *ring = &pc->ring; |
| |
| /* Disable HSDMA and then wait for the completion */ |
| mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); |
| mtk_hsdma_busy_wait(hsdma); |
| |
| /* Reset pointer in the ring */ |
| mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1); |
| |
| kfree(ring->cb); |
| |
| dma_free_coherent(hsdma2dev(hsdma), |
| pc->sz_ring, ring->txd, ring->tphys); |
| } |
| |
| static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma, |
| struct mtk_hsdma_pchan *pc, |
| struct mtk_hsdma_vdesc *hvd) |
| { |
| struct mtk_hsdma_ring *ring = &pc->ring; |
| struct mtk_hsdma_pdesc *txd, *rxd; |
| u16 reserved, prev, tlen, num_sgs; |
| unsigned long flags; |
| |
| /* Protect against PC is accessed by multiple VCs simultaneously */ |
| spin_lock_irqsave(&hsdma->lock, flags); |
| |
| /* |
| * Reserve rooms, where pc->nr_free is used to track how many free |
| * rooms in the ring being updated in user and IRQ context. |
| */ |
| num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN); |
| reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free)); |
| |
| if (!reserved) { |
| spin_unlock_irqrestore(&hsdma->lock, flags); |
| return -ENOSPC; |
| } |
| |
| atomic_sub(reserved, &pc->nr_free); |
| |
| while (reserved--) { |
| /* Limit size by PD capability for valid data moving */ |
| tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ? |
| MTK_HSDMA_MAX_LEN : hvd->len; |
| |
| /* |
| * Setup PDs using the remaining VD info mapped on those |
| * reserved rooms. And since RXD is shared memory between the |
| * host and the device allocated by dma_alloc_coherent call, |
| * the helper macro WRITE_ONCE can ensure the data written to |
| * RAM would really happens. |
| */ |
| txd = &ring->txd[ring->cur_tptr]; |
| WRITE_ONCE(txd->desc1, hvd->src); |
| WRITE_ONCE(txd->desc2, |
| hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen)); |
| |
| rxd = &ring->rxd[ring->cur_tptr]; |
| WRITE_ONCE(rxd->desc1, hvd->dest); |
| WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen)); |
| |
| /* Associate VD, the PD belonged to */ |
| ring->cb[ring->cur_tptr].vd = &hvd->vd; |
| |
| /* Move forward the pointer of TX ring */ |
| ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr, |
| MTK_DMA_SIZE); |
| |
| /* Update VD with remaining data */ |
| hvd->src += tlen; |
| hvd->dest += tlen; |
| hvd->len -= tlen; |
| } |
| |
| /* |
| * Tagging flag for the last PD for VD will be responsible for |
| * completing VD. |
| */ |
| if (!hvd->len) { |
| prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE); |
| ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED; |
| } |
| |
| /* Ensure all changes indeed done before we're going on */ |
| wmb(); |
| |
| /* |
| * Updating into hardware the pointer of TX ring lets HSDMA to take |
| * action for those pending PDs. |
| */ |
| mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); |
| |
| spin_unlock_irqrestore(&hsdma->lock, flags); |
| |
| return 0; |
| } |
| |
| static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma, |
| struct mtk_hsdma_vchan *hvc) |
| { |
| struct virt_dma_desc *vd, *vd2; |
| int err; |
| |
| lockdep_assert_held(&hvc->vc.lock); |
| |
| list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) { |
| struct mtk_hsdma_vdesc *hvd; |
| |
| hvd = to_hsdma_vdesc(vd); |
| |
| /* Map VD into PC and all VCs shares a single PC */ |
| err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd); |
| |
| /* |
| * Move VD from desc_issued to desc_hw_processing when entire |
| * VD is fit into available PDs. Otherwise, the uncompleted |
| * VDs would stay in list desc_issued and then restart the |
| * processing as soon as possible once underlying ring space |
| * got freed. |
| */ |
| if (err == -ENOSPC || hvd->len > 0) |
| break; |
| |
| /* |
| * The extra list desc_hw_processing is used because |
| * hardware can't provide sufficient information allowing us |
| * to know what VDs are still working on the underlying ring. |
| * Through the additional list, it can help us to implement |
| * terminate_all, residue calculation and such thing needed |
| * to know detail descriptor status on the hardware. |
| */ |
| list_move_tail(&vd->node, &hvc->desc_hw_processing); |
| } |
| } |
| |
| static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma) |
| { |
| struct mtk_hsdma_vchan *hvc; |
| struct mtk_hsdma_pdesc *rxd; |
| struct mtk_hsdma_vdesc *hvd; |
| struct mtk_hsdma_pchan *pc; |
| struct mtk_hsdma_cb *cb; |
| int i = MTK_DMA_SIZE; |
| __le32 desc2; |
| u32 status; |
| u16 next; |
| |
| /* Read IRQ status */ |
| status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS); |
| if (unlikely(!(status & MTK_HSDMA_INT_RXDONE))) |
| goto rx_done; |
| |
| pc = hsdma->pc; |
| |
| /* |
| * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to |
| * reclaim these finished descriptors: The most number of PDs the ISR |
| * can handle at one time shouldn't be more than MTK_DMA_SIZE so we |
| * take it as limited count instead of just using a dangerous infinite |
| * poll. |
| */ |
| while (i--) { |
| next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr, |
| MTK_DMA_SIZE); |
| rxd = &pc->ring.rxd[next]; |
| |
| /* |
| * If MTK_HSDMA_DESC_DDONE is no specified, that means data |
| * moving for the PD is still under going. |
| */ |
| desc2 = READ_ONCE(rxd->desc2); |
| if (!(desc2 & hsdma->soc->ddone)) |
| break; |
| |
| cb = &pc->ring.cb[next]; |
| if (unlikely(!cb->vd)) { |
| dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n"); |
| break; |
| } |
| |
| /* Update residue of VD the associated PD belonged to */ |
| hvd = to_hsdma_vdesc(cb->vd); |
| hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2); |
| |
| /* Complete VD until the relevant last PD is finished */ |
| if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) { |
| hvc = to_hsdma_vchan(cb->vd->tx.chan); |
| |
| spin_lock(&hvc->vc.lock); |
| |
| /* Remove VD from list desc_hw_processing */ |
| list_del(&cb->vd->node); |
| |
| /* Add VD into list desc_completed */ |
| vchan_cookie_complete(cb->vd); |
| |
| if (hvc->issue_synchronize && |
| list_empty(&hvc->desc_hw_processing)) { |
| complete(&hvc->issue_completion); |
| hvc->issue_synchronize = false; |
| } |
| spin_unlock(&hvc->vc.lock); |
| |
| cb->flag = 0; |
| } |
| |
| cb->vd = 0; |
| |
| /* |
| * Recycle the RXD with the helper WRITE_ONCE that can ensure |
| * data written into RAM would really happens. |
| */ |
| WRITE_ONCE(rxd->desc1, 0); |
| WRITE_ONCE(rxd->desc2, 0); |
| pc->ring.cur_rptr = next; |
| |
| /* Release rooms */ |
| atomic_inc(&pc->nr_free); |
| } |
| |
| /* Ensure all changes indeed done before we're going on */ |
| wmb(); |
| |
| /* Update CPU pointer for those completed PDs */ |
| mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr); |
| |
| /* |
| * Acking the pending IRQ allows hardware no longer to keep the used |
| * IRQ line in certain trigger state when software has completed all |
| * the finished physical descriptors. |
| */ |
| if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1) |
| mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status); |
| |
| /* ASAP handles pending VDs in all VCs after freeing some rooms */ |
| for (i = 0; i < hsdma->dma_requests; i++) { |
| hvc = &hsdma->vc[i]; |
| spin_lock(&hvc->vc.lock); |
| mtk_hsdma_issue_vchan_pending(hsdma, hvc); |
| spin_unlock(&hvc->vc.lock); |
| } |
| |
| rx_done: |
| /* All completed PDs are cleaned up, so enable interrupt again */ |
| mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| } |
| |
| static irqreturn_t mtk_hsdma_irq(int irq, void *devid) |
| { |
| struct mtk_hsdma_device *hsdma = devid; |
| |
| /* |
| * Disable interrupt until all completed PDs are cleaned up in |
| * mtk_hsdma_free_rooms call. |
| */ |
| mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| |
| mtk_hsdma_free_rooms_in_ring(hsdma); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c, |
| dma_cookie_t cookie) |
| { |
| struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| struct virt_dma_desc *vd; |
| |
| list_for_each_entry(vd, &hvc->desc_hw_processing, node) |
| if (vd->tx.cookie == cookie) |
| return vd; |
| |
| list_for_each_entry(vd, &hvc->vc.desc_issued, node) |
| if (vd->tx.cookie == cookie) |
| return vd; |
| |
| return NULL; |
| } |
| |
| static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| struct mtk_hsdma_vdesc *hvd; |
| struct virt_dma_desc *vd; |
| enum dma_status ret; |
| unsigned long flags; |
| size_t bytes = 0; |
| |
| ret = dma_cookie_status(c, cookie, txstate); |
| if (ret == DMA_COMPLETE || !txstate) |
| return ret; |
| |
| spin_lock_irqsave(&hvc->vc.lock, flags); |
| vd = mtk_hsdma_find_active_desc(c, cookie); |
| spin_unlock_irqrestore(&hvc->vc.lock, flags); |
| |
| if (vd) { |
| hvd = to_hsdma_vdesc(vd); |
| bytes = hvd->residue; |
| } |
| |
| dma_set_residue(txstate, bytes); |
| |
| return ret; |
| } |
| |
| static void mtk_hsdma_issue_pending(struct dma_chan *c) |
| { |
| struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); |
| struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hvc->vc.lock, flags); |
| |
| if (vchan_issue_pending(&hvc->vc)) |
| mtk_hsdma_issue_vchan_pending(hsdma, hvc); |
| |
| spin_unlock_irqrestore(&hvc->vc.lock, flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, |
| dma_addr_t src, size_t len, unsigned long flags) |
| { |
| struct mtk_hsdma_vdesc *hvd; |
| |
| hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT); |
| if (!hvd) |
| return NULL; |
| |
| hvd->len = len; |
| hvd->residue = len; |
| hvd->src = src; |
| hvd->dest = dest; |
| |
| return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags); |
| } |
| |
| static int mtk_hsdma_free_inactive_desc(struct dma_chan *c) |
| { |
| struct virt_dma_chan *vc = to_virt_chan(c); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&vc->lock, flags); |
| list_splice_tail_init(&vc->desc_allocated, &head); |
| list_splice_tail_init(&vc->desc_submitted, &head); |
| list_splice_tail_init(&vc->desc_issued, &head); |
| spin_unlock_irqrestore(&vc->lock, flags); |
| |
| /* At the point, we don't expect users put descriptor into VC again */ |
| vchan_dma_desc_free_list(vc, &head); |
| |
| return 0; |
| } |
| |
| static void mtk_hsdma_free_active_desc(struct dma_chan *c) |
| { |
| struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| bool sync_needed = false; |
| |
| /* |
| * Once issue_synchronize is being set, which means once the hardware |
| * consumes all descriptors for the channel in the ring, the |
| * synchronization must be be notified immediately it is completed. |
| */ |
| spin_lock(&hvc->vc.lock); |
| if (!list_empty(&hvc->desc_hw_processing)) { |
| hvc->issue_synchronize = true; |
| sync_needed = true; |
| } |
| spin_unlock(&hvc->vc.lock); |
| |
| if (sync_needed) |
| wait_for_completion(&hvc->issue_completion); |
| /* |
| * At the point, we expect that all remaining descriptors in the ring |
| * for the channel should be all processing done. |
| */ |
| WARN_ONCE(!list_empty(&hvc->desc_hw_processing), |
| "Desc pending still in list desc_hw_processing\n"); |
| |
| /* Free all descriptors in list desc_completed */ |
| vchan_synchronize(&hvc->vc); |
| |
| WARN_ONCE(!list_empty(&hvc->vc.desc_completed), |
| "Desc pending still in list desc_completed\n"); |
| } |
| |
| static int mtk_hsdma_terminate_all(struct dma_chan *c) |
| { |
| /* |
| * Free pending descriptors not processed yet by hardware that have |
| * previously been submitted to the channel. |
| */ |
| mtk_hsdma_free_inactive_desc(c); |
| |
| /* |
| * However, the DMA engine doesn't provide any way to stop these |
| * descriptors being processed currently by hardware. The only way is |
| * to just waiting until these descriptors are all processed completely |
| * through mtk_hsdma_free_active_desc call. |
| */ |
| mtk_hsdma_free_active_desc(c); |
| |
| return 0; |
| } |
| |
| static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c) |
| { |
| struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); |
| int err; |
| |
| /* |
| * Since HSDMA has only one PC, the resource for PC is being allocated |
| * when the first VC is being created and the other VCs would run on |
| * the same PC. |
| */ |
| if (!refcount_read(&hsdma->pc_refcnt)) { |
| err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc); |
| if (err) |
| return err; |
| /* |
| * refcount_inc would complain increment on 0; use-after-free. |
| * Thus, we need to explicitly set it as 1 initially. |
| */ |
| refcount_set(&hsdma->pc_refcnt, 1); |
| } else { |
| refcount_inc(&hsdma->pc_refcnt); |
| } |
| |
| return 0; |
| } |
| |
| static void mtk_hsdma_free_chan_resources(struct dma_chan *c) |
| { |
| struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); |
| |
| /* Free all descriptors in all lists on the VC */ |
| mtk_hsdma_terminate_all(c); |
| |
| /* The resource for PC is not freed until all the VCs are destroyed */ |
| if (!refcount_dec_and_test(&hsdma->pc_refcnt)) |
| return; |
| |
| mtk_hsdma_free_pchan(hsdma, hsdma->pc); |
| } |
| |
| static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma) |
| { |
| int err; |
| |
| pm_runtime_enable(hsdma2dev(hsdma)); |
| pm_runtime_get_sync(hsdma2dev(hsdma)); |
| |
| err = clk_prepare_enable(hsdma->clk); |
| if (err) |
| return err; |
| |
| mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); |
| mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT); |
| |
| return 0; |
| } |
| |
| static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma) |
| { |
| mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0); |
| |
| clk_disable_unprepare(hsdma->clk); |
| |
| pm_runtime_put_sync(hsdma2dev(hsdma)); |
| pm_runtime_disable(hsdma2dev(hsdma)); |
| |
| return 0; |
| } |
| |
| static const struct mtk_hsdma_soc mt7623_soc = { |
| .ddone = BIT(31), |
| .ls0 = BIT(30), |
| }; |
| |
| static const struct mtk_hsdma_soc mt7622_soc = { |
| .ddone = BIT(15), |
| .ls0 = BIT(14), |
| }; |
| |
| static const struct of_device_id mtk_hsdma_match[] = { |
| { .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc}, |
| { .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc}, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, mtk_hsdma_match); |
| |
| static int mtk_hsdma_probe(struct platform_device *pdev) |
| { |
| struct mtk_hsdma_device *hsdma; |
| struct mtk_hsdma_vchan *vc; |
| struct dma_device *dd; |
| struct resource *res; |
| int i, err; |
| |
| hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL); |
| if (!hsdma) |
| return -ENOMEM; |
| |
| dd = &hsdma->ddev; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| hsdma->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(hsdma->base)) |
| return PTR_ERR(hsdma->base); |
| |
| hsdma->soc = of_device_get_match_data(&pdev->dev); |
| if (!hsdma->soc) { |
| dev_err(&pdev->dev, "No device match found\n"); |
| return -ENODEV; |
| } |
| |
| hsdma->clk = devm_clk_get(&pdev->dev, "hsdma"); |
| if (IS_ERR(hsdma->clk)) { |
| dev_err(&pdev->dev, "No clock for %s\n", |
| dev_name(&pdev->dev)); |
| return PTR_ERR(hsdma->clk); |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (!res) { |
| dev_err(&pdev->dev, "No irq resource for %s\n", |
| dev_name(&pdev->dev)); |
| return -EINVAL; |
| } |
| hsdma->irq = res->start; |
| |
| refcount_set(&hsdma->pc_refcnt, 0); |
| spin_lock_init(&hsdma->lock); |
| |
| dma_cap_set(DMA_MEMCPY, dd->cap_mask); |
| |
| dd->copy_align = MTK_HSDMA_ALIGN_SIZE; |
| dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources; |
| dd->device_free_chan_resources = mtk_hsdma_free_chan_resources; |
| dd->device_tx_status = mtk_hsdma_tx_status; |
| dd->device_issue_pending = mtk_hsdma_issue_pending; |
| dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy; |
| dd->device_terminate_all = mtk_hsdma_terminate_all; |
| dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; |
| dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; |
| dd->directions = BIT(DMA_MEM_TO_MEM); |
| dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; |
| dd->dev = &pdev->dev; |
| INIT_LIST_HEAD(&dd->channels); |
| |
| hsdma->dma_requests = MTK_HSDMA_NR_VCHANS; |
| if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, |
| "dma-requests", |
| &hsdma->dma_requests)) { |
| dev_info(&pdev->dev, |
| "Using %u as missing dma-requests property\n", |
| MTK_HSDMA_NR_VCHANS); |
| } |
| |
| hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS, |
| sizeof(*hsdma->pc), GFP_KERNEL); |
| if (!hsdma->pc) |
| return -ENOMEM; |
| |
| hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests, |
| sizeof(*hsdma->vc), GFP_KERNEL); |
| if (!hsdma->vc) |
| return -ENOMEM; |
| |
| for (i = 0; i < hsdma->dma_requests; i++) { |
| vc = &hsdma->vc[i]; |
| vc->vc.desc_free = mtk_hsdma_vdesc_free; |
| vchan_init(&vc->vc, dd); |
| init_completion(&vc->issue_completion); |
| INIT_LIST_HEAD(&vc->desc_hw_processing); |
| } |
| |
| err = dma_async_device_register(dd); |
| if (err) |
| return err; |
| |
| err = of_dma_controller_register(pdev->dev.of_node, |
| of_dma_xlate_by_chan_id, hsdma); |
| if (err) { |
| dev_err(&pdev->dev, |
| "MediaTek HSDMA OF registration failed %d\n", err); |
| goto err_unregister; |
| } |
| |
| mtk_hsdma_hw_init(hsdma); |
| |
| err = devm_request_irq(&pdev->dev, hsdma->irq, |
| mtk_hsdma_irq, 0, |
| dev_name(&pdev->dev), hsdma); |
| if (err) { |
| dev_err(&pdev->dev, |
| "request_irq failed with err %d\n", err); |
| goto err_free; |
| } |
| |
| platform_set_drvdata(pdev, hsdma); |
| |
| dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n"); |
| |
| return 0; |
| |
| err_free: |
| mtk_hsdma_hw_deinit(hsdma); |
| of_dma_controller_free(pdev->dev.of_node); |
| err_unregister: |
| dma_async_device_unregister(dd); |
| |
| return err; |
| } |
| |
| static int mtk_hsdma_remove(struct platform_device *pdev) |
| { |
| struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev); |
| struct mtk_hsdma_vchan *vc; |
| int i; |
| |
| /* Kill VC task */ |
| for (i = 0; i < hsdma->dma_requests; i++) { |
| vc = &hsdma->vc[i]; |
| |
| list_del(&vc->vc.chan.device_node); |
| tasklet_kill(&vc->vc.task); |
| } |
| |
| /* Disable DMA interrupt */ |
| mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); |
| |
| /* Waits for any pending IRQ handlers to complete */ |
| synchronize_irq(hsdma->irq); |
| |
| /* Disable hardware */ |
| mtk_hsdma_hw_deinit(hsdma); |
| |
| dma_async_device_unregister(&hsdma->ddev); |
| of_dma_controller_free(pdev->dev.of_node); |
| |
| return 0; |
| } |
| |
| static struct platform_driver mtk_hsdma_driver = { |
| .probe = mtk_hsdma_probe, |
| .remove = mtk_hsdma_remove, |
| .driver = { |
| .name = KBUILD_MODNAME, |
| .of_match_table = mtk_hsdma_match, |
| }, |
| }; |
| module_platform_driver(mtk_hsdma_driver); |
| |
| MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver"); |
| MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); |
| MODULE_LICENSE("GPL v2"); |