| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2020 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include "gaudiP.h" |
| #include "../include/hw_ip/mmu/mmu_general.h" |
| #include "../include/hw_ip/mmu/mmu_v1_1.h" |
| #include "../include/gaudi/gaudi_masks.h" |
| #include "../include/gaudi/gaudi_fw_if.h" |
| #include "../include/gaudi/gaudi_reg_map.h" |
| #include "../include/gaudi/gaudi_async_ids_map_extended.h" |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/firmware.h> |
| #include <linux/hwmon.h> |
| #include <linux/iommu.h> |
| #include <linux/seq_file.h> |
| |
| /* |
| * Gaudi security scheme: |
| * |
| * 1. Host is protected by: |
| * - Range registers |
| * - MMU |
| * |
| * 2. DDR is protected by: |
| * - Range registers (protect the first 512MB) |
| * |
| * 3. Configuration is protected by: |
| * - Range registers |
| * - Protection bits |
| * |
| * MMU is always enabled. |
| * |
| * QMAN DMA channels 0,1 (PCI DMAN): |
| * - DMA is not secured. |
| * - PQ and CQ are secured. |
| * - CP is secured: The driver needs to parse CB but WREG should be allowed |
| * because of TDMA (tensor DMA). Hence, WREG is always not |
| * secured. |
| * |
| * When the driver needs to use DMA it will check that Gaudi is idle, set DMA |
| * channel 0 to be secured, execute the DMA and change it back to not secured. |
| * Currently, the driver doesn't use the DMA while there are compute jobs |
| * running. |
| * |
| * The current use cases for the driver to use the DMA are: |
| * - Clear SRAM on context switch (happens on context switch when device is |
| * idle) |
| * - MMU page tables area clear (happens on init) |
| * |
| * QMAN DMA 2-7, TPC, MME, NIC: |
| * PQ is secured and is located on the Host (HBM CON TPC3 bug) |
| * CQ, CP and the engine are not secured |
| * |
| */ |
| |
| #define GAUDI_BOOT_FIT_FILE "habanalabs/gaudi/gaudi-boot-fit.itb" |
| #define GAUDI_LINUX_FW_FILE "habanalabs/gaudi/gaudi-fit.itb" |
| #define GAUDI_TPC_FW_FILE "habanalabs/gaudi/gaudi_tpc.bin" |
| |
| #define GAUDI_DMA_POOL_BLK_SIZE 0x100 /* 256 bytes */ |
| |
| #define GAUDI_RESET_TIMEOUT_MSEC 2000 /* 2000ms */ |
| #define GAUDI_RESET_WAIT_MSEC 1 /* 1ms */ |
| #define GAUDI_CPU_RESET_WAIT_MSEC 200 /* 200ms */ |
| #define GAUDI_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */ |
| |
| #define GAUDI_PLDM_RESET_WAIT_MSEC 1000 /* 1s */ |
| #define GAUDI_PLDM_HRESET_TIMEOUT_MSEC 20000 /* 20s */ |
| #define GAUDI_PLDM_TEST_QUEUE_WAIT_USEC 1000000 /* 1s */ |
| #define GAUDI_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100) |
| #define GAUDI_PLDM_QMAN0_TIMEOUT_USEC (HL_DEVICE_TIMEOUT_USEC * 30) |
| #define GAUDI_PLDM_TPC_KERNEL_WAIT_USEC (HL_DEVICE_TIMEOUT_USEC * 30) |
| #define GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC 4000000 /* 4s */ |
| #define GAUDI_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */ |
| #define GAUDI_WAIT_FOR_BL_TIMEOUT_USEC 15000000 /* 15s */ |
| |
| #define GAUDI_QMAN0_FENCE_VAL 0x72E91AB9 |
| |
| #define GAUDI_MAX_STRING_LEN 20 |
| |
| #define GAUDI_CB_POOL_CB_CNT 512 |
| #define GAUDI_CB_POOL_CB_SIZE 0x20000 /* 128KB */ |
| |
| #define GAUDI_ALLOC_CPU_MEM_RETRY_CNT 3 |
| |
| #define GAUDI_NUM_OF_TPC_INTR_CAUSE 20 |
| |
| #define GAUDI_NUM_OF_QM_ERR_CAUSE 16 |
| |
| #define GAUDI_NUM_OF_QM_ARB_ERR_CAUSE 3 |
| |
| #define GAUDI_ARB_WDT_TIMEOUT 0x1000000 |
| |
| #define GAUDI_CLK_GATE_DEBUGFS_MASK (\ |
| BIT(GAUDI_ENGINE_ID_MME_0) |\ |
| BIT(GAUDI_ENGINE_ID_MME_2) |\ |
| GENMASK_ULL(GAUDI_ENGINE_ID_TPC_7, GAUDI_ENGINE_ID_TPC_0)) |
| |
| #define HBM_SCRUBBING_TIMEOUT_US 1000000 /* 1s */ |
| |
| #define GAUDI_PLL_MAX 10 |
| |
| #define BIN_REG_STRING_SIZE sizeof("0b10101010101010101010101010101010") |
| |
| #define MONITOR_SOB_STRING_SIZE 256 |
| |
| static u32 gaudi_stream_master[GAUDI_STREAM_MASTER_ARR_SIZE] = { |
| GAUDI_QUEUE_ID_DMA_0_0, |
| GAUDI_QUEUE_ID_DMA_0_1, |
| GAUDI_QUEUE_ID_DMA_0_2, |
| GAUDI_QUEUE_ID_DMA_0_3, |
| GAUDI_QUEUE_ID_DMA_1_0, |
| GAUDI_QUEUE_ID_DMA_1_1, |
| GAUDI_QUEUE_ID_DMA_1_2, |
| GAUDI_QUEUE_ID_DMA_1_3 |
| }; |
| |
| static const char gaudi_irq_name[GAUDI_MSI_ENTRIES][GAUDI_MAX_STRING_LEN] = { |
| "gaudi cq 0_0", "gaudi cq 0_1", "gaudi cq 0_2", "gaudi cq 0_3", |
| "gaudi cq 1_0", "gaudi cq 1_1", "gaudi cq 1_2", "gaudi cq 1_3", |
| "gaudi cq 5_0", "gaudi cq 5_1", "gaudi cq 5_2", "gaudi cq 5_3", |
| "gaudi cpu eq" |
| }; |
| |
| static const u8 gaudi_dma_assignment[GAUDI_DMA_MAX] = { |
| [GAUDI_PCI_DMA_1] = GAUDI_ENGINE_ID_DMA_0, |
| [GAUDI_PCI_DMA_2] = GAUDI_ENGINE_ID_DMA_1, |
| [GAUDI_HBM_DMA_1] = GAUDI_ENGINE_ID_DMA_2, |
| [GAUDI_HBM_DMA_2] = GAUDI_ENGINE_ID_DMA_3, |
| [GAUDI_HBM_DMA_3] = GAUDI_ENGINE_ID_DMA_4, |
| [GAUDI_HBM_DMA_4] = GAUDI_ENGINE_ID_DMA_5, |
| [GAUDI_HBM_DMA_5] = GAUDI_ENGINE_ID_DMA_6, |
| [GAUDI_HBM_DMA_6] = GAUDI_ENGINE_ID_DMA_7 |
| }; |
| |
| static const u8 gaudi_cq_assignment[NUMBER_OF_CMPLT_QUEUES] = { |
| [0] = GAUDI_QUEUE_ID_DMA_0_0, |
| [1] = GAUDI_QUEUE_ID_DMA_0_1, |
| [2] = GAUDI_QUEUE_ID_DMA_0_2, |
| [3] = GAUDI_QUEUE_ID_DMA_0_3, |
| [4] = GAUDI_QUEUE_ID_DMA_1_0, |
| [5] = GAUDI_QUEUE_ID_DMA_1_1, |
| [6] = GAUDI_QUEUE_ID_DMA_1_2, |
| [7] = GAUDI_QUEUE_ID_DMA_1_3, |
| }; |
| |
| static const u16 gaudi_packet_sizes[MAX_PACKET_ID] = { |
| [PACKET_WREG_32] = sizeof(struct packet_wreg32), |
| [PACKET_WREG_BULK] = sizeof(struct packet_wreg_bulk), |
| [PACKET_MSG_LONG] = sizeof(struct packet_msg_long), |
| [PACKET_MSG_SHORT] = sizeof(struct packet_msg_short), |
| [PACKET_CP_DMA] = sizeof(struct packet_cp_dma), |
| [PACKET_REPEAT] = sizeof(struct packet_repeat), |
| [PACKET_MSG_PROT] = sizeof(struct packet_msg_prot), |
| [PACKET_FENCE] = sizeof(struct packet_fence), |
| [PACKET_LIN_DMA] = sizeof(struct packet_lin_dma), |
| [PACKET_NOP] = sizeof(struct packet_nop), |
| [PACKET_STOP] = sizeof(struct packet_stop), |
| [PACKET_ARB_POINT] = sizeof(struct packet_arb_point), |
| [PACKET_WAIT] = sizeof(struct packet_wait), |
| [PACKET_LOAD_AND_EXE] = sizeof(struct packet_load_and_exe) |
| }; |
| |
| static inline bool validate_packet_id(enum packet_id id) |
| { |
| switch (id) { |
| case PACKET_WREG_32: |
| case PACKET_WREG_BULK: |
| case PACKET_MSG_LONG: |
| case PACKET_MSG_SHORT: |
| case PACKET_CP_DMA: |
| case PACKET_REPEAT: |
| case PACKET_MSG_PROT: |
| case PACKET_FENCE: |
| case PACKET_LIN_DMA: |
| case PACKET_NOP: |
| case PACKET_STOP: |
| case PACKET_ARB_POINT: |
| case PACKET_WAIT: |
| case PACKET_LOAD_AND_EXE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static const char * const |
| gaudi_tpc_interrupts_cause[GAUDI_NUM_OF_TPC_INTR_CAUSE] = { |
| "tpc_address_exceed_slm", |
| "tpc_div_by_0", |
| "tpc_spu_mac_overflow", |
| "tpc_spu_addsub_overflow", |
| "tpc_spu_abs_overflow", |
| "tpc_spu_fp_dst_nan_inf", |
| "tpc_spu_fp_dst_denorm", |
| "tpc_vpu_mac_overflow", |
| "tpc_vpu_addsub_overflow", |
| "tpc_vpu_abs_overflow", |
| "tpc_vpu_fp_dst_nan_inf", |
| "tpc_vpu_fp_dst_denorm", |
| "tpc_assertions", |
| "tpc_illegal_instruction", |
| "tpc_pc_wrap_around", |
| "tpc_qm_sw_err", |
| "tpc_hbw_rresp_err", |
| "tpc_hbw_bresp_err", |
| "tpc_lbw_rresp_err", |
| "tpc_lbw_bresp_err" |
| }; |
| |
| static const char * const |
| gaudi_qman_error_cause[GAUDI_NUM_OF_QM_ERR_CAUSE] = { |
| "PQ AXI HBW error", |
| "CQ AXI HBW error", |
| "CP AXI HBW error", |
| "CP error due to undefined OPCODE", |
| "CP encountered STOP OPCODE", |
| "CP AXI LBW error", |
| "CP WRREG32 or WRBULK returned error", |
| "N/A", |
| "FENCE 0 inc over max value and clipped", |
| "FENCE 1 inc over max value and clipped", |
| "FENCE 2 inc over max value and clipped", |
| "FENCE 3 inc over max value and clipped", |
| "FENCE 0 dec under min value and clipped", |
| "FENCE 1 dec under min value and clipped", |
| "FENCE 2 dec under min value and clipped", |
| "FENCE 3 dec under min value and clipped" |
| }; |
| |
| static const char * const |
| gaudi_qman_arb_error_cause[GAUDI_NUM_OF_QM_ARB_ERR_CAUSE] = { |
| "Choice push while full error", |
| "Choice Q watchdog error", |
| "MSG AXI LBW returned with error" |
| }; |
| |
| enum gaudi_sm_sei_cause { |
| GAUDI_SM_SEI_SO_OVERFLOW, |
| GAUDI_SM_SEI_LBW_4B_UNALIGNED, |
| GAUDI_SM_SEI_AXI_RESPONSE_ERR |
| }; |
| |
| static enum hl_queue_type gaudi_queue_type[GAUDI_QUEUE_ID_SIZE] = { |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_0 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_1 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_2 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_3 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_0 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_1 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_2 */ |
| QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_3 */ |
| QUEUE_TYPE_CPU, /* GAUDI_QUEUE_ID_CPU_PQ */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_3 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_0 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_1 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_2 */ |
| QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_3 */ |
| }; |
| |
| static struct hl_hw_obj_name_entry gaudi_so_id_to_str[] = { |
| { .id = 0, .name = "SYNC_OBJ_DMA_DOWN_FEEDBACK" }, |
| { .id = 1, .name = "SYNC_OBJ_DMA_UP_FEEDBACK" }, |
| { .id = 2, .name = "SYNC_OBJ_DMA_STATIC_DRAM_SRAM_FEEDBACK" }, |
| { .id = 3, .name = "SYNC_OBJ_DMA_SRAM_DRAM_FEEDBACK" }, |
| { .id = 4, .name = "SYNC_OBJ_FIRST_COMPUTE_FINISH" }, |
| { .id = 5, .name = "SYNC_OBJ_HOST_DRAM_DONE" }, |
| { .id = 6, .name = "SYNC_OBJ_DBG_CTR_DEPRECATED" }, |
| { .id = 7, .name = "SYNC_OBJ_DMA_ACTIVATIONS_DRAM_SRAM_FEEDBACK" }, |
| { .id = 8, .name = "SYNC_OBJ_ENGINE_SEM_MME_0" }, |
| { .id = 9, .name = "SYNC_OBJ_ENGINE_SEM_MME_1" }, |
| { .id = 10, .name = "SYNC_OBJ_ENGINE_SEM_TPC_0" }, |
| { .id = 11, .name = "SYNC_OBJ_ENGINE_SEM_TPC_1" }, |
| { .id = 12, .name = "SYNC_OBJ_ENGINE_SEM_TPC_2" }, |
| { .id = 13, .name = "SYNC_OBJ_ENGINE_SEM_TPC_3" }, |
| { .id = 14, .name = "SYNC_OBJ_ENGINE_SEM_TPC_4" }, |
| { .id = 15, .name = "SYNC_OBJ_ENGINE_SEM_TPC_5" }, |
| { .id = 16, .name = "SYNC_OBJ_ENGINE_SEM_TPC_6" }, |
| { .id = 17, .name = "SYNC_OBJ_ENGINE_SEM_TPC_7" }, |
| { .id = 18, .name = "SYNC_OBJ_ENGINE_SEM_DMA_1" }, |
| { .id = 19, .name = "SYNC_OBJ_ENGINE_SEM_DMA_2" }, |
| { .id = 20, .name = "SYNC_OBJ_ENGINE_SEM_DMA_3" }, |
| { .id = 21, .name = "SYNC_OBJ_ENGINE_SEM_DMA_4" }, |
| { .id = 22, .name = "SYNC_OBJ_ENGINE_SEM_DMA_5" }, |
| { .id = 23, .name = "SYNC_OBJ_ENGINE_SEM_DMA_6" }, |
| { .id = 24, .name = "SYNC_OBJ_ENGINE_SEM_DMA_7" }, |
| { .id = 25, .name = "SYNC_OBJ_DBG_CTR_0" }, |
| { .id = 26, .name = "SYNC_OBJ_DBG_CTR_1" }, |
| }; |
| |
| static struct hl_hw_obj_name_entry gaudi_monitor_id_to_str[] = { |
| { .id = 200, .name = "MON_OBJ_DMA_DOWN_FEEDBACK_RESET" }, |
| { .id = 201, .name = "MON_OBJ_DMA_UP_FEEDBACK_RESET" }, |
| { .id = 203, .name = "MON_OBJ_DRAM_TO_SRAM_QUEUE_FENCE" }, |
| { .id = 204, .name = "MON_OBJ_TPC_0_CLK_GATE" }, |
| { .id = 205, .name = "MON_OBJ_TPC_1_CLK_GATE" }, |
| { .id = 206, .name = "MON_OBJ_TPC_2_CLK_GATE" }, |
| { .id = 207, .name = "MON_OBJ_TPC_3_CLK_GATE" }, |
| { .id = 208, .name = "MON_OBJ_TPC_4_CLK_GATE" }, |
| { .id = 209, .name = "MON_OBJ_TPC_5_CLK_GATE" }, |
| { .id = 210, .name = "MON_OBJ_TPC_6_CLK_GATE" }, |
| { .id = 211, .name = "MON_OBJ_TPC_7_CLK_GATE" }, |
| }; |
| |
| static s64 gaudi_state_dump_specs_props[] = { |
| [SP_SYNC_OBJ_BASE_ADDR] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0, |
| [SP_NEXT_SYNC_OBJ_ADDR] = NEXT_SYNC_OBJ_ADDR_INTERVAL, |
| [SP_SYNC_OBJ_AMOUNT] = NUM_OF_SOB_IN_BLOCK, |
| [SP_MON_OBJ_WR_ADDR_LOW] = |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0, |
| [SP_MON_OBJ_WR_ADDR_HIGH] = |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0, |
| [SP_MON_OBJ_WR_DATA] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_DATA_0, |
| [SP_MON_OBJ_ARM_DATA] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_ARM_0, |
| [SP_MON_OBJ_STATUS] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_STATUS_0, |
| [SP_MONITORS_AMOUNT] = NUM_OF_MONITORS_IN_BLOCK, |
| [SP_TPC0_CMDQ] = mmTPC0_QM_GLBL_CFG0, |
| [SP_TPC0_CFG_SO] = mmTPC0_CFG_QM_SYNC_OBJECT_ADDR, |
| [SP_NEXT_TPC] = mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0, |
| [SP_MME_CMDQ] = mmMME0_QM_GLBL_CFG0, |
| [SP_MME_CFG_SO] = mmMME0_CTRL_ARCH_DESC_SYNC_OBJECT_ADDR_LOW_LOCAL, |
| [SP_NEXT_MME] = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0, |
| [SP_DMA_CMDQ] = mmDMA0_QM_GLBL_CFG0, |
| [SP_DMA_CFG_SO] = mmDMA0_CORE_WR_COMP_ADDR_LO, |
| [SP_DMA_QUEUES_OFFSET] = mmDMA1_QM_GLBL_CFG0 - mmDMA0_QM_GLBL_CFG0, |
| [SP_NUM_OF_MME_ENGINES] = NUM_OF_MME_ENGINES, |
| [SP_SUB_MME_ENG_NUM] = NUM_OF_MME_SUB_ENGINES, |
| [SP_NUM_OF_DMA_ENGINES] = NUM_OF_DMA_ENGINES, |
| [SP_NUM_OF_TPC_ENGINES] = NUM_OF_TPC_ENGINES, |
| [SP_ENGINE_NUM_OF_QUEUES] = NUM_OF_QUEUES, |
| [SP_ENGINE_NUM_OF_STREAMS] = NUM_OF_STREAMS, |
| [SP_ENGINE_NUM_OF_FENCES] = NUM_OF_FENCES, |
| [SP_FENCE0_CNT_OFFSET] = |
| mmDMA0_QM_CP_FENCE0_CNT_0 - mmDMA0_QM_GLBL_CFG0, |
| [SP_FENCE0_RDATA_OFFSET] = |
| mmDMA0_QM_CP_FENCE0_RDATA_0 - mmDMA0_QM_GLBL_CFG0, |
| [SP_CP_STS_OFFSET] = mmDMA0_QM_CP_STS_0 - mmDMA0_QM_GLBL_CFG0, |
| [SP_NUM_CORES] = 1, |
| }; |
| |
| /* The order here is opposite to the order of the indexing in the h/w. |
| * i.e. SYNC_MGR_W_S is actually 0, SYNC_MGR_E_S is 1, etc. |
| */ |
| static const char * const gaudi_sync_manager_names[] = { |
| "SYNC_MGR_E_N", |
| "SYNC_MGR_W_N", |
| "SYNC_MGR_E_S", |
| "SYNC_MGR_W_S", |
| NULL |
| }; |
| |
| struct ecc_info_extract_params { |
| u64 block_address; |
| u32 num_memories; |
| bool derr; |
| bool disable_clock_gating; |
| }; |
| |
| static int gaudi_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid, |
| u64 phys_addr); |
| static int gaudi_send_job_on_qman0(struct hl_device *hdev, |
| struct hl_cs_job *job); |
| static int gaudi_memset_device_memory(struct hl_device *hdev, u64 addr, |
| u32 size, u64 val); |
| static int gaudi_memset_registers(struct hl_device *hdev, u64 reg_base, |
| u32 num_regs, u32 val); |
| static int gaudi_run_tpc_kernel(struct hl_device *hdev, u64 tpc_kernel, |
| u32 tpc_id); |
| static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev); |
| static int gaudi_cpucp_info_get(struct hl_device *hdev); |
| static void gaudi_disable_clock_gating(struct hl_device *hdev); |
| static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid); |
| static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, |
| u32 size, bool eb); |
| static u32 gaudi_gen_wait_cb(struct hl_device *hdev, |
| struct hl_gen_wait_properties *prop); |
| static inline enum hl_collective_mode |
| get_collective_mode(struct hl_device *hdev, u32 queue_id) |
| { |
| if (gaudi_queue_type[queue_id] == QUEUE_TYPE_EXT) |
| return HL_COLLECTIVE_MASTER; |
| |
| if (queue_id >= GAUDI_QUEUE_ID_DMA_5_0 && |
| queue_id <= GAUDI_QUEUE_ID_DMA_5_3) |
| return HL_COLLECTIVE_SLAVE; |
| |
| if (queue_id >= GAUDI_QUEUE_ID_TPC_7_0 && |
| queue_id <= GAUDI_QUEUE_ID_TPC_7_3) |
| return HL_COLLECTIVE_SLAVE; |
| |
| if (queue_id >= GAUDI_QUEUE_ID_NIC_0_0 && |
| queue_id <= GAUDI_QUEUE_ID_NIC_9_3) |
| return HL_COLLECTIVE_SLAVE; |
| |
| return HL_COLLECTIVE_NOT_SUPPORTED; |
| } |
| |
| static inline void set_default_power_values(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| if (hdev->card_type == cpucp_card_type_pmc) { |
| prop->max_power_default = MAX_POWER_DEFAULT_PMC; |
| |
| if (prop->fw_security_enabled) |
| prop->dc_power_default = DC_POWER_DEFAULT_PMC_SEC; |
| else |
| prop->dc_power_default = DC_POWER_DEFAULT_PMC; |
| } else { |
| prop->max_power_default = MAX_POWER_DEFAULT_PCI; |
| prop->dc_power_default = DC_POWER_DEFAULT_PCI; |
| } |
| } |
| |
| static int gaudi_set_fixed_properties(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 num_sync_stream_queues = 0; |
| int i; |
| |
| prop->max_queues = GAUDI_QUEUE_ID_SIZE; |
| prop->hw_queues_props = kcalloc(prop->max_queues, |
| sizeof(struct hw_queue_properties), |
| GFP_KERNEL); |
| |
| if (!prop->hw_queues_props) |
| return -ENOMEM; |
| |
| for (i = 0 ; i < prop->max_queues ; i++) { |
| if (gaudi_queue_type[i] == QUEUE_TYPE_EXT) { |
| prop->hw_queues_props[i].type = QUEUE_TYPE_EXT; |
| prop->hw_queues_props[i].driver_only = 0; |
| prop->hw_queues_props[i].supports_sync_stream = 1; |
| prop->hw_queues_props[i].cb_alloc_flags = |
| CB_ALLOC_KERNEL; |
| num_sync_stream_queues++; |
| } else if (gaudi_queue_type[i] == QUEUE_TYPE_CPU) { |
| prop->hw_queues_props[i].type = QUEUE_TYPE_CPU; |
| prop->hw_queues_props[i].driver_only = 1; |
| prop->hw_queues_props[i].supports_sync_stream = 0; |
| prop->hw_queues_props[i].cb_alloc_flags = |
| CB_ALLOC_KERNEL; |
| } else if (gaudi_queue_type[i] == QUEUE_TYPE_INT) { |
| prop->hw_queues_props[i].type = QUEUE_TYPE_INT; |
| prop->hw_queues_props[i].driver_only = 0; |
| prop->hw_queues_props[i].supports_sync_stream = 0; |
| prop->hw_queues_props[i].cb_alloc_flags = |
| CB_ALLOC_USER; |
| |
| } |
| prop->hw_queues_props[i].collective_mode = |
| get_collective_mode(hdev, i); |
| } |
| |
| prop->device_dma_offset_for_host_access = HOST_PHYS_BASE; |
| prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES; |
| prop->collective_first_sob = 0; |
| prop->collective_first_mon = 0; |
| |
| /* 2 SOBs per internal queue stream are reserved for collective */ |
| prop->sync_stream_first_sob = |
| ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR) |
| * QMAN_STREAMS * HL_RSVD_SOBS; |
| |
| /* 1 monitor per internal queue stream are reserved for collective |
| * 2 monitors per external queue stream are reserved for collective |
| */ |
| prop->sync_stream_first_mon = |
| (NUMBER_OF_COLLECTIVE_QUEUES * QMAN_STREAMS) + |
| (NUMBER_OF_EXT_HW_QUEUES * 2); |
| |
| prop->dram_base_address = DRAM_PHYS_BASE; |
| prop->dram_size = GAUDI_HBM_SIZE_32GB; |
| prop->dram_end_address = prop->dram_base_address + |
| prop->dram_size; |
| prop->dram_user_base_address = DRAM_BASE_ADDR_USER; |
| |
| prop->sram_base_address = SRAM_BASE_ADDR; |
| prop->sram_size = SRAM_SIZE; |
| prop->sram_end_address = prop->sram_base_address + |
| prop->sram_size; |
| prop->sram_user_base_address = prop->sram_base_address + |
| SRAM_USER_BASE_OFFSET; |
| |
| prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR; |
| if (hdev->pldm) |
| prop->mmu_pgt_size = 0x800000; /* 8MB */ |
| else |
| prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE; |
| prop->mmu_pte_size = HL_PTE_SIZE; |
| prop->mmu_hop_table_size = HOP_TABLE_SIZE; |
| prop->mmu_hop0_tables_total_size = HOP0_TABLES_TOTAL_SIZE; |
| prop->dram_page_size = PAGE_SIZE_2MB; |
| prop->dram_supports_virtual_memory = false; |
| |
| prop->pmmu.hop0_shift = HOP0_SHIFT; |
| prop->pmmu.hop1_shift = HOP1_SHIFT; |
| prop->pmmu.hop2_shift = HOP2_SHIFT; |
| prop->pmmu.hop3_shift = HOP3_SHIFT; |
| prop->pmmu.hop4_shift = HOP4_SHIFT; |
| prop->pmmu.hop0_mask = HOP0_MASK; |
| prop->pmmu.hop1_mask = HOP1_MASK; |
| prop->pmmu.hop2_mask = HOP2_MASK; |
| prop->pmmu.hop3_mask = HOP3_MASK; |
| prop->pmmu.hop4_mask = HOP4_MASK; |
| prop->pmmu.start_addr = VA_HOST_SPACE_START; |
| prop->pmmu.end_addr = |
| (VA_HOST_SPACE_START + VA_HOST_SPACE_SIZE / 2) - 1; |
| prop->pmmu.page_size = PAGE_SIZE_4KB; |
| prop->pmmu.num_hops = MMU_ARCH_5_HOPS; |
| |
| /* PMMU and HPMMU are the same except of page size */ |
| memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu)); |
| prop->pmmu_huge.page_size = PAGE_SIZE_2MB; |
| |
| /* shifts and masks are the same in PMMU and DMMU */ |
| memcpy(&prop->dmmu, &prop->pmmu, sizeof(prop->pmmu)); |
| prop->dmmu.start_addr = (VA_HOST_SPACE_START + VA_HOST_SPACE_SIZE / 2); |
| prop->dmmu.end_addr = VA_HOST_SPACE_END; |
| prop->dmmu.page_size = PAGE_SIZE_2MB; |
| |
| prop->cfg_size = CFG_SIZE; |
| prop->max_asid = MAX_ASID; |
| prop->num_of_events = GAUDI_EVENT_SIZE; |
| prop->tpc_enabled_mask = TPC_ENABLED_MASK; |
| |
| set_default_power_values(hdev); |
| |
| prop->cb_pool_cb_cnt = GAUDI_CB_POOL_CB_CNT; |
| prop->cb_pool_cb_size = GAUDI_CB_POOL_CB_SIZE; |
| |
| prop->pcie_dbi_base_address = mmPCIE_DBI_BASE; |
| prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI; |
| |
| strncpy(prop->cpucp_info.card_name, GAUDI_DEFAULT_CARD_NAME, |
| CARD_NAME_MAX_LEN); |
| |
| prop->max_pending_cs = GAUDI_MAX_PENDING_CS; |
| |
| prop->first_available_user_sob[HL_GAUDI_WS_DCORE] = |
| prop->sync_stream_first_sob + |
| (num_sync_stream_queues * HL_RSVD_SOBS); |
| prop->first_available_user_mon[HL_GAUDI_WS_DCORE] = |
| prop->sync_stream_first_mon + |
| (num_sync_stream_queues * HL_RSVD_MONS); |
| |
| prop->first_available_user_msix_interrupt = USHRT_MAX; |
| |
| for (i = 0 ; i < HL_MAX_DCORES ; i++) |
| prop->first_available_cq[i] = USHRT_MAX; |
| |
| prop->fw_cpu_boot_dev_sts0_valid = false; |
| prop->fw_cpu_boot_dev_sts1_valid = false; |
| prop->hard_reset_done_by_fw = false; |
| prop->gic_interrupts_enable = true; |
| |
| prop->server_type = HL_SERVER_TYPE_UNKNOWN; |
| |
| prop->clk_pll_index = HL_GAUDI_MME_PLL; |
| prop->max_freq_value = GAUDI_MAX_CLK_FREQ; |
| |
| return 0; |
| } |
| |
| static int gaudi_pci_bars_map(struct hl_device *hdev) |
| { |
| static const char * const name[] = {"SRAM", "CFG", "HBM"}; |
| bool is_wc[3] = {false, false, true}; |
| int rc; |
| |
| rc = hl_pci_bars_map(hdev, name, is_wc); |
| if (rc) |
| return rc; |
| |
| hdev->rmmio = hdev->pcie_bar[CFG_BAR_ID] + |
| (CFG_BASE - SPI_FLASH_BASE_ADDR); |
| |
| return 0; |
| } |
| |
| static u64 gaudi_set_hbm_bar_base(struct hl_device *hdev, u64 addr) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct hl_inbound_pci_region pci_region; |
| u64 old_addr = addr; |
| int rc; |
| |
| if ((gaudi) && (gaudi->hbm_bar_cur_addr == addr)) |
| return old_addr; |
| |
| if (hdev->asic_prop.iatu_done_by_fw) |
| return U64_MAX; |
| |
| /* Inbound Region 2 - Bar 4 - Point to HBM */ |
| pci_region.mode = PCI_BAR_MATCH_MODE; |
| pci_region.bar = HBM_BAR_ID; |
| pci_region.addr = addr; |
| rc = hl_pci_set_inbound_region(hdev, 2, &pci_region); |
| if (rc) |
| return U64_MAX; |
| |
| if (gaudi) { |
| old_addr = gaudi->hbm_bar_cur_addr; |
| gaudi->hbm_bar_cur_addr = addr; |
| } |
| |
| return old_addr; |
| } |
| |
| static int gaudi_init_iatu(struct hl_device *hdev) |
| { |
| struct hl_inbound_pci_region inbound_region; |
| struct hl_outbound_pci_region outbound_region; |
| int rc; |
| |
| if (hdev->asic_prop.iatu_done_by_fw) |
| return 0; |
| |
| /* Inbound Region 0 - Bar 0 - Point to SRAM + CFG */ |
| inbound_region.mode = PCI_BAR_MATCH_MODE; |
| inbound_region.bar = SRAM_BAR_ID; |
| inbound_region.addr = SRAM_BASE_ADDR; |
| rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region); |
| if (rc) |
| goto done; |
| |
| /* Inbound Region 1 - Bar 2 - Point to SPI FLASH */ |
| inbound_region.mode = PCI_BAR_MATCH_MODE; |
| inbound_region.bar = CFG_BAR_ID; |
| inbound_region.addr = SPI_FLASH_BASE_ADDR; |
| rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region); |
| if (rc) |
| goto done; |
| |
| /* Inbound Region 2 - Bar 4 - Point to HBM */ |
| inbound_region.mode = PCI_BAR_MATCH_MODE; |
| inbound_region.bar = HBM_BAR_ID; |
| inbound_region.addr = DRAM_PHYS_BASE; |
| rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region); |
| if (rc) |
| goto done; |
| |
| hdev->asic_funcs->set_dma_mask_from_fw(hdev); |
| |
| /* Outbound Region 0 - Point to Host */ |
| outbound_region.addr = HOST_PHYS_BASE; |
| outbound_region.size = HOST_PHYS_SIZE; |
| rc = hl_pci_set_outbound_region(hdev, &outbound_region); |
| |
| done: |
| return rc; |
| } |
| |
| static enum hl_device_hw_state gaudi_get_hw_state(struct hl_device *hdev) |
| { |
| return RREG32(mmHW_STATE); |
| } |
| |
| static int gaudi_early_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct pci_dev *pdev = hdev->pdev; |
| u32 fw_boot_status; |
| int rc; |
| |
| rc = gaudi_set_fixed_properties(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed setting fixed properties\n"); |
| return rc; |
| } |
| |
| /* Check BAR sizes */ |
| if (pci_resource_len(pdev, SRAM_BAR_ID) != SRAM_BAR_SIZE) { |
| dev_err(hdev->dev, |
| "Not " HL_NAME "? BAR %d size %llu, expecting %llu\n", |
| SRAM_BAR_ID, |
| (unsigned long long) pci_resource_len(pdev, |
| SRAM_BAR_ID), |
| SRAM_BAR_SIZE); |
| rc = -ENODEV; |
| goto free_queue_props; |
| } |
| |
| if (pci_resource_len(pdev, CFG_BAR_ID) != CFG_BAR_SIZE) { |
| dev_err(hdev->dev, |
| "Not " HL_NAME "? BAR %d size %llu, expecting %llu\n", |
| CFG_BAR_ID, |
| (unsigned long long) pci_resource_len(pdev, |
| CFG_BAR_ID), |
| CFG_BAR_SIZE); |
| rc = -ENODEV; |
| goto free_queue_props; |
| } |
| |
| prop->dram_pci_bar_size = pci_resource_len(pdev, HBM_BAR_ID); |
| hdev->dram_pci_bar_start = pci_resource_start(pdev, HBM_BAR_ID); |
| |
| /* If FW security is enabled at this point it means no access to ELBI */ |
| if (hdev->asic_prop.fw_security_enabled) { |
| hdev->asic_prop.iatu_done_by_fw = true; |
| |
| /* |
| * GIC-security-bit can ONLY be set by CPUCP, so in this stage |
| * decision can only be taken based on PCI ID security. |
| */ |
| hdev->asic_prop.gic_interrupts_enable = false; |
| goto pci_init; |
| } |
| |
| rc = hl_pci_elbi_read(hdev, CFG_BASE + mmCPU_BOOT_DEV_STS0, |
| &fw_boot_status); |
| if (rc) |
| goto free_queue_props; |
| |
| /* Check whether FW is configuring iATU */ |
| if ((fw_boot_status & CPU_BOOT_DEV_STS0_ENABLED) && |
| (fw_boot_status & CPU_BOOT_DEV_STS0_FW_IATU_CONF_EN)) |
| hdev->asic_prop.iatu_done_by_fw = true; |
| |
| pci_init: |
| rc = hl_pci_init(hdev); |
| if (rc) |
| goto free_queue_props; |
| |
| /* Before continuing in the initialization, we need to read the preboot |
| * version to determine whether we run with a security-enabled firmware |
| */ |
| rc = hl_fw_read_preboot_status(hdev, mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS, |
| mmCPU_BOOT_DEV_STS0, |
| mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0, |
| mmCPU_BOOT_ERR1, |
| GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC); |
| if (rc) { |
| if (hdev->reset_on_preboot_fail) |
| hdev->asic_funcs->hw_fini(hdev, true, false); |
| goto pci_fini; |
| } |
| |
| if (gaudi_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) { |
| dev_info(hdev->dev, |
| "H/W state is dirty, must reset before initializing\n"); |
| hdev->asic_funcs->hw_fini(hdev, true, false); |
| } |
| |
| return 0; |
| |
| pci_fini: |
| hl_pci_fini(hdev); |
| free_queue_props: |
| kfree(hdev->asic_prop.hw_queues_props); |
| return rc; |
| } |
| |
| static int gaudi_early_fini(struct hl_device *hdev) |
| { |
| kfree(hdev->asic_prop.hw_queues_props); |
| hl_pci_fini(hdev); |
| |
| return 0; |
| } |
| |
| /** |
| * gaudi_fetch_psoc_frequency - Fetch PSOC frequency values |
| * |
| * @hdev: pointer to hl_device structure |
| * |
| */ |
| static int gaudi_fetch_psoc_frequency(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 nr = 0, nf = 0, od = 0, div_fctr = 0, pll_clk, div_sel; |
| u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS], freq; |
| int rc; |
| |
| if (hdev->asic_prop.fw_security_enabled) { |
| rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI_CPU_PLL, pll_freq_arr); |
| |
| if (rc) |
| return rc; |
| |
| freq = pll_freq_arr[2]; |
| } else { |
| /* Backward compatibility */ |
| div_fctr = RREG32(mmPSOC_CPU_PLL_DIV_FACTOR_2); |
| div_sel = RREG32(mmPSOC_CPU_PLL_DIV_SEL_2); |
| nr = RREG32(mmPSOC_CPU_PLL_NR); |
| nf = RREG32(mmPSOC_CPU_PLL_NF); |
| od = RREG32(mmPSOC_CPU_PLL_OD); |
| |
| if (div_sel == DIV_SEL_REF_CLK || |
| div_sel == DIV_SEL_DIVIDED_REF) { |
| if (div_sel == DIV_SEL_REF_CLK) |
| freq = PLL_REF_CLK; |
| else |
| freq = PLL_REF_CLK / (div_fctr + 1); |
| } else if (div_sel == DIV_SEL_PLL_CLK || |
| div_sel == DIV_SEL_DIVIDED_PLL) { |
| pll_clk = PLL_REF_CLK * (nf + 1) / |
| ((nr + 1) * (od + 1)); |
| if (div_sel == DIV_SEL_PLL_CLK) |
| freq = pll_clk; |
| else |
| freq = pll_clk / (div_fctr + 1); |
| } else { |
| dev_warn(hdev->dev, |
| "Received invalid div select value: %d", |
| div_sel); |
| freq = 0; |
| } |
| } |
| |
| prop->psoc_timestamp_frequency = freq; |
| prop->psoc_pci_pll_nr = nr; |
| prop->psoc_pci_pll_nf = nf; |
| prop->psoc_pci_pll_od = od; |
| prop->psoc_pci_pll_div_factor = div_fctr; |
| |
| return 0; |
| } |
| |
| static int _gaudi_init_tpc_mem(struct hl_device *hdev, |
| dma_addr_t tpc_kernel_src_addr, u32 tpc_kernel_size) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct packet_lin_dma *init_tpc_mem_pkt; |
| struct hl_cs_job *job; |
| struct hl_cb *cb; |
| u64 dst_addr; |
| u32 cb_size, ctl; |
| u8 tpc_id; |
| int rc; |
| |
| cb = hl_cb_kernel_create(hdev, PAGE_SIZE, false); |
| if (!cb) |
| return -EFAULT; |
| |
| init_tpc_mem_pkt = cb->kernel_address; |
| cb_size = sizeof(*init_tpc_mem_pkt); |
| memset(init_tpc_mem_pkt, 0, cb_size); |
| |
| init_tpc_mem_pkt->tsize = cpu_to_le32(tpc_kernel_size); |
| |
| ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA); |
| ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_LIN_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| init_tpc_mem_pkt->ctl = cpu_to_le32(ctl); |
| |
| init_tpc_mem_pkt->src_addr = cpu_to_le64(tpc_kernel_src_addr); |
| dst_addr = (prop->sram_user_base_address & |
| GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >> |
| GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT; |
| init_tpc_mem_pkt->dst_addr |= cpu_to_le64(dst_addr); |
| |
| job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true); |
| if (!job) { |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| goto release_cb; |
| } |
| |
| job->id = 0; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0; |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = job->user_cb_size + sizeof(struct packet_msg_prot); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = gaudi_send_job_on_qman0(hdev, job); |
| |
| if (rc) |
| goto free_job; |
| |
| for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) { |
| rc = gaudi_run_tpc_kernel(hdev, dst_addr, tpc_id); |
| if (rc) |
| break; |
| } |
| |
| free_job: |
| hl_userptr_delete_list(hdev, &job->userptr_list); |
| hl_debugfs_remove_job(hdev, job); |
| kfree(job); |
| atomic_dec(&cb->cs_cnt); |
| |
| release_cb: |
| hl_cb_put(cb); |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); |
| |
| return rc; |
| } |
| |
| /* |
| * gaudi_init_tpc_mem() - Initialize TPC memories. |
| * @hdev: Pointer to hl_device structure. |
| * |
| * Copy TPC kernel fw from firmware file and run it to initialize TPC memories. |
| * |
| * Return: 0 for success, negative value for error. |
| */ |
| static int gaudi_init_tpc_mem(struct hl_device *hdev) |
| { |
| const struct firmware *fw; |
| size_t fw_size; |
| void *cpu_addr; |
| dma_addr_t dma_handle; |
| int rc, count = 5; |
| |
| again: |
| rc = request_firmware(&fw, GAUDI_TPC_FW_FILE, hdev->dev); |
| if (rc == -EINTR && count-- > 0) { |
| msleep(50); |
| goto again; |
| } |
| |
| if (rc) { |
| dev_err(hdev->dev, "Failed to load firmware file %s\n", |
| GAUDI_TPC_FW_FILE); |
| goto out; |
| } |
| |
| fw_size = fw->size; |
| cpu_addr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, fw_size, |
| &dma_handle, GFP_KERNEL | __GFP_ZERO); |
| if (!cpu_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate %zu of dma memory for TPC kernel\n", |
| fw_size); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| memcpy(cpu_addr, fw->data, fw_size); |
| |
| rc = _gaudi_init_tpc_mem(hdev, dma_handle, fw_size); |
| |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, fw->size, cpu_addr, |
| dma_handle); |
| |
| out: |
| release_firmware(fw); |
| return rc; |
| } |
| |
| static void gaudi_collective_map_sobs(struct hl_device *hdev, u32 stream) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_collective_properties *prop = &gaudi->collective_props; |
| struct hl_hw_queue *q; |
| u32 i, sob_id, sob_group_id, queue_id; |
| |
| /* Iterate through SOB groups and assign a SOB for each slave queue */ |
| sob_group_id = |
| stream * HL_RSVD_SOBS + prop->curr_sob_group_idx[stream]; |
| sob_id = prop->hw_sob_group[sob_group_id].base_sob_id; |
| |
| queue_id = GAUDI_QUEUE_ID_NIC_0_0 + stream; |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) { |
| q = &hdev->kernel_queues[queue_id + (4 * i)]; |
| q->sync_stream_prop.collective_sob_id = sob_id + i; |
| } |
| |
| /* Both DMA5 and TPC7 use the same resources since only a single |
| * engine need to participate in the reduction process |
| */ |
| queue_id = GAUDI_QUEUE_ID_DMA_5_0 + stream; |
| q = &hdev->kernel_queues[queue_id]; |
| q->sync_stream_prop.collective_sob_id = |
| sob_id + NIC_NUMBER_OF_ENGINES; |
| |
| queue_id = GAUDI_QUEUE_ID_TPC_7_0 + stream; |
| q = &hdev->kernel_queues[queue_id]; |
| q->sync_stream_prop.collective_sob_id = |
| sob_id + NIC_NUMBER_OF_ENGINES; |
| } |
| |
| static void gaudi_sob_group_hw_reset(struct kref *ref) |
| { |
| struct gaudi_hw_sob_group *hw_sob_group = |
| container_of(ref, struct gaudi_hw_sob_group, kref); |
| struct hl_device *hdev = hw_sob_group->hdev; |
| int i; |
| |
| for (i = 0 ; i < NUMBER_OF_SOBS_IN_GRP ; i++) |
| WREG32((mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 + |
| (hw_sob_group->base_sob_id * 4) + (i * 4)), 0); |
| |
| kref_init(&hw_sob_group->kref); |
| } |
| |
| static void gaudi_sob_group_reset_error(struct kref *ref) |
| { |
| struct gaudi_hw_sob_group *hw_sob_group = |
| container_of(ref, struct gaudi_hw_sob_group, kref); |
| struct hl_device *hdev = hw_sob_group->hdev; |
| |
| dev_crit(hdev->dev, |
| "SOB release shouldn't be called here, base_sob_id: %d\n", |
| hw_sob_group->base_sob_id); |
| } |
| |
| static void gaudi_collective_mstr_sob_mask_set(struct gaudi_device *gaudi) |
| { |
| struct gaudi_collective_properties *prop; |
| int i; |
| |
| prop = &gaudi->collective_props; |
| |
| memset(prop->mstr_sob_mask, 0, sizeof(prop->mstr_sob_mask)); |
| |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) |
| if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + i)) |
| prop->mstr_sob_mask[i / HL_MAX_SOBS_PER_MONITOR] |= |
| BIT(i % HL_MAX_SOBS_PER_MONITOR); |
| /* Set collective engine bit */ |
| prop->mstr_sob_mask[i / HL_MAX_SOBS_PER_MONITOR] |= |
| BIT(i % HL_MAX_SOBS_PER_MONITOR); |
| } |
| |
| static int gaudi_collective_init(struct hl_device *hdev) |
| { |
| u32 i, sob_id, reserved_sobs_per_group; |
| struct gaudi_collective_properties *prop; |
| struct gaudi_device *gaudi; |
| |
| gaudi = hdev->asic_specific; |
| prop = &gaudi->collective_props; |
| sob_id = hdev->asic_prop.collective_first_sob; |
| |
| /* First sob in group must be aligned to HL_MAX_SOBS_PER_MONITOR */ |
| reserved_sobs_per_group = |
| ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR); |
| |
| /* Init SOB groups */ |
| for (i = 0 ; i < NUM_SOB_GROUPS; i++) { |
| prop->hw_sob_group[i].hdev = hdev; |
| prop->hw_sob_group[i].base_sob_id = sob_id; |
| sob_id += reserved_sobs_per_group; |
| gaudi_sob_group_hw_reset(&prop->hw_sob_group[i].kref); |
| } |
| |
| for (i = 0 ; i < QMAN_STREAMS; i++) { |
| prop->next_sob_group_val[i] = 1; |
| prop->curr_sob_group_idx[i] = 0; |
| gaudi_collective_map_sobs(hdev, i); |
| } |
| |
| gaudi_collective_mstr_sob_mask_set(gaudi); |
| |
| return 0; |
| } |
| |
| static void gaudi_reset_sob_group(struct hl_device *hdev, u16 sob_group) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_collective_properties *cprop = &gaudi->collective_props; |
| |
| kref_put(&cprop->hw_sob_group[sob_group].kref, |
| gaudi_sob_group_hw_reset); |
| } |
| |
| static void gaudi_collective_master_init_job(struct hl_device *hdev, |
| struct hl_cs_job *job, u32 stream, u32 sob_group_offset) |
| { |
| u32 master_sob_base, master_monitor, queue_id, cb_size = 0; |
| struct gaudi_collective_properties *cprop; |
| struct hl_gen_wait_properties wait_prop; |
| struct hl_sync_stream_properties *prop; |
| struct gaudi_device *gaudi; |
| |
| gaudi = hdev->asic_specific; |
| cprop = &gaudi->collective_props; |
| queue_id = job->hw_queue_id; |
| prop = &hdev->kernel_queues[queue_id].sync_stream_prop; |
| |
| master_sob_base = |
| cprop->hw_sob_group[sob_group_offset].base_sob_id; |
| master_monitor = prop->collective_mstr_mon_id[0]; |
| |
| cprop->hw_sob_group[sob_group_offset].queue_id = queue_id; |
| |
| dev_dbg(hdev->dev, |
| "Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n", |
| master_sob_base, cprop->mstr_sob_mask[0], |
| cprop->next_sob_group_val[stream], |
| master_monitor, queue_id); |
| |
| wait_prop.data = (void *) job->patched_cb; |
| wait_prop.sob_base = master_sob_base; |
| wait_prop.sob_mask = cprop->mstr_sob_mask[0]; |
| wait_prop.sob_val = cprop->next_sob_group_val[stream]; |
| wait_prop.mon_id = master_monitor; |
| wait_prop.q_idx = queue_id; |
| wait_prop.size = cb_size; |
| cb_size += gaudi_gen_wait_cb(hdev, &wait_prop); |
| |
| master_sob_base += HL_MAX_SOBS_PER_MONITOR; |
| master_monitor = prop->collective_mstr_mon_id[1]; |
| |
| dev_dbg(hdev->dev, |
| "Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n", |
| master_sob_base, cprop->mstr_sob_mask[1], |
| cprop->next_sob_group_val[stream], |
| master_monitor, queue_id); |
| |
| wait_prop.sob_base = master_sob_base; |
| wait_prop.sob_mask = cprop->mstr_sob_mask[1]; |
| wait_prop.mon_id = master_monitor; |
| wait_prop.size = cb_size; |
| cb_size += gaudi_gen_wait_cb(hdev, &wait_prop); |
| } |
| |
| static void gaudi_collective_slave_init_job(struct hl_device *hdev, |
| struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl) |
| { |
| struct hl_gen_wait_properties wait_prop; |
| struct hl_sync_stream_properties *prop; |
| u32 queue_id, cb_size = 0; |
| |
| queue_id = job->hw_queue_id; |
| prop = &hdev->kernel_queues[queue_id].sync_stream_prop; |
| |
| if (job->cs->encaps_signals) { |
| /* use the encaps signal handle store earlier in the flow |
| * and set the SOB information from the encaps |
| * signals handle |
| */ |
| hl_hw_queue_encaps_sig_set_sob_info(hdev, job->cs, job, |
| cs_cmpl); |
| |
| dev_dbg(hdev->dev, "collective wait: Sequence %llu found, sob_id: %u, wait for sob_val: %u\n", |
| job->cs->sequence, |
| cs_cmpl->hw_sob->sob_id, |
| cs_cmpl->sob_val); |
| } |
| |
| /* Add to wait CBs using slave monitor */ |
| wait_prop.data = (void *) job->user_cb; |
| wait_prop.sob_base = cs_cmpl->hw_sob->sob_id; |
| wait_prop.sob_mask = 0x1; |
| wait_prop.sob_val = cs_cmpl->sob_val; |
| wait_prop.mon_id = prop->collective_slave_mon_id; |
| wait_prop.q_idx = queue_id; |
| wait_prop.size = cb_size; |
| |
| dev_dbg(hdev->dev, |
| "Generate slave wait CB, sob %d, val:%x, mon %d, q %d\n", |
| cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, |
| prop->collective_slave_mon_id, queue_id); |
| |
| cb_size += gaudi_gen_wait_cb(hdev, &wait_prop); |
| |
| dev_dbg(hdev->dev, |
| "generate signal CB, sob_id: %d, sob val: 1, q_idx: %d\n", |
| prop->collective_sob_id, queue_id); |
| |
| cb_size += gaudi_gen_signal_cb(hdev, job->user_cb, |
| prop->collective_sob_id, cb_size, false); |
| } |
| |
| static int gaudi_collective_wait_init_cs(struct hl_cs *cs) |
| { |
| struct hl_cs_compl *signal_cs_cmpl = |
| container_of(cs->signal_fence, struct hl_cs_compl, base_fence); |
| struct hl_cs_compl *cs_cmpl = |
| container_of(cs->fence, struct hl_cs_compl, base_fence); |
| struct gaudi_collective_properties *cprop; |
| u32 stream, queue_id, sob_group_offset; |
| struct gaudi_device *gaudi; |
| struct hl_device *hdev; |
| struct hl_cs_job *job; |
| struct hl_ctx *ctx; |
| |
| ctx = cs->ctx; |
| hdev = ctx->hdev; |
| gaudi = hdev->asic_specific; |
| cprop = &gaudi->collective_props; |
| |
| /* In encaps signals case the SOB info will be retrieved from |
| * the handle in gaudi_collective_slave_init_job. |
| */ |
| if (!cs->encaps_signals) { |
| /* copy the SOB id and value of the signal CS */ |
| cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob; |
| cs_cmpl->sob_val = signal_cs_cmpl->sob_val; |
| } |
| |
| /* check again if the signal cs already completed. |
| * if yes then don't send any wait cs since the hw_sob |
| * could be in reset already. if signal is not completed |
| * then get refcount to hw_sob to prevent resetting the sob |
| * while wait cs is not submitted. |
| * note that this check is protected by two locks, |
| * hw queue lock and completion object lock, |
| * and the same completion object lock also protects |
| * the hw_sob reset handler function. |
| * The hw_queue lock prevent out of sync of hw_sob |
| * refcount value, changed by signal/wait flows. |
| */ |
| spin_lock(&signal_cs_cmpl->lock); |
| |
| if (completion_done(&cs->signal_fence->completion)) { |
| spin_unlock(&signal_cs_cmpl->lock); |
| return -EINVAL; |
| } |
| /* Increment kref since all slave queues are now waiting on it */ |
| kref_get(&cs_cmpl->hw_sob->kref); |
| |
| spin_unlock(&signal_cs_cmpl->lock); |
| |
| /* Calculate the stream from collective master queue (1st job) */ |
| job = list_first_entry(&cs->job_list, struct hl_cs_job, cs_node); |
| stream = job->hw_queue_id % 4; |
| sob_group_offset = |
| stream * HL_RSVD_SOBS + cprop->curr_sob_group_idx[stream]; |
| |
| list_for_each_entry(job, &cs->job_list, cs_node) { |
| queue_id = job->hw_queue_id; |
| |
| if (hdev->kernel_queues[queue_id].collective_mode == |
| HL_COLLECTIVE_MASTER) |
| gaudi_collective_master_init_job(hdev, job, stream, |
| sob_group_offset); |
| else |
| gaudi_collective_slave_init_job(hdev, job, cs_cmpl); |
| } |
| |
| cs_cmpl->sob_group = sob_group_offset; |
| |
| /* Handle sob group kref and wraparound */ |
| kref_get(&cprop->hw_sob_group[sob_group_offset].kref); |
| cprop->next_sob_group_val[stream]++; |
| |
| if (cprop->next_sob_group_val[stream] == HL_MAX_SOB_VAL) { |
| /* |
| * Decrement as we reached the max value. |
| * The release function won't be called here as we've |
| * just incremented the refcount. |
| */ |
| kref_put(&cprop->hw_sob_group[sob_group_offset].kref, |
| gaudi_sob_group_reset_error); |
| cprop->next_sob_group_val[stream] = 1; |
| /* only two SOBs are currently in use */ |
| cprop->curr_sob_group_idx[stream] = |
| (cprop->curr_sob_group_idx[stream] + 1) & |
| (HL_RSVD_SOBS - 1); |
| |
| gaudi_collective_map_sobs(hdev, stream); |
| |
| dev_dbg(hdev->dev, "switched to SOB group %d, stream: %d\n", |
| cprop->curr_sob_group_idx[stream], stream); |
| } |
| |
| mb(); |
| hl_fence_put(cs->signal_fence); |
| cs->signal_fence = NULL; |
| |
| return 0; |
| } |
| |
| static int gaudi_collective_wait_create_job(struct hl_device *hdev, |
| struct hl_ctx *ctx, struct hl_cs *cs, |
| enum hl_collective_mode mode, u32 queue_id, u32 wait_queue_id, |
| u32 encaps_signal_offset) |
| { |
| struct hw_queue_properties *hw_queue_prop; |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_cs_job *job; |
| struct hl_cb *cb; |
| u32 cb_size; |
| bool patched_cb; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| |
| if (mode == HL_COLLECTIVE_MASTER) { |
| /* CB size of collective master queue contains |
| * 4 msg short packets for monitor 1 configuration |
| * 1 fence packet |
| * 4 msg short packets for monitor 2 configuration |
| * 1 fence packet |
| * 2 msg prot packets for completion and MSI-X |
| */ |
| cb_size = sizeof(struct packet_msg_short) * 8 + |
| sizeof(struct packet_fence) * 2 + |
| sizeof(struct packet_msg_prot) * 2; |
| patched_cb = true; |
| } else { |
| /* CB size of collective slave queues contains |
| * 4 msg short packets for monitor configuration |
| * 1 fence packet |
| * 1 additional msg short packet for sob signal |
| */ |
| cb_size = sizeof(struct packet_msg_short) * 5 + |
| sizeof(struct packet_fence); |
| patched_cb = false; |
| } |
| |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[queue_id]; |
| job = hl_cs_allocate_job(hdev, hw_queue_prop->type, true); |
| if (!job) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| return -ENOMEM; |
| } |
| |
| /* Allocate internal mapped CB for non patched CBs */ |
| cb = hl_cb_kernel_create(hdev, cb_size, |
| hdev->mmu_enable && !patched_cb); |
| if (!cb) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| kfree(job); |
| return -EFAULT; |
| } |
| |
| job->id = 0; |
| job->cs = cs; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = queue_id; |
| |
| /* since its guaranteed to have only one chunk in the collective wait |
| * cs, we can use this chunk to set the encapsulated signal offset |
| * in the jobs. |
| */ |
| if (cs->encaps_signals) |
| job->encaps_sig_wait_offset = encaps_signal_offset; |
| |
| /* |
| * No need in parsing, user CB is the patched CB. |
| * We call hl_cb_destroy() out of two reasons - we don't need |
| * the CB in the CB idr anymore and to decrement its refcount as |
| * it was incremented inside hl_cb_kernel_create(). |
| */ |
| if (patched_cb) |
| job->patched_cb = job->user_cb; |
| else |
| job->patched_cb = NULL; |
| |
| job->job_cb_size = job->user_cb_size; |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); |
| |
| /* increment refcount as for external queues we get completion */ |
| if (hw_queue_prop->type == QUEUE_TYPE_EXT) |
| cs_get(cs); |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| return 0; |
| } |
| |
| static int gaudi_collective_wait_create_jobs(struct hl_device *hdev, |
| struct hl_ctx *ctx, struct hl_cs *cs, |
| u32 wait_queue_id, u32 collective_engine_id, |
| u32 encaps_signal_offset) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct hw_queue_properties *hw_queue_prop; |
| u32 queue_id, collective_queue, num_jobs; |
| u32 stream, nic_queue, nic_idx = 0; |
| bool skip; |
| int i, rc = 0; |
| |
| /* Verify wait queue id is configured as master */ |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[wait_queue_id]; |
| if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { |
| dev_err(hdev->dev, |
| "Queue %d is not configured as collective master\n", |
| wait_queue_id); |
| return -EINVAL; |
| } |
| |
| /* Verify engine id is supported */ |
| if (collective_engine_id != GAUDI_ENGINE_ID_DMA_5 && |
| collective_engine_id != GAUDI_ENGINE_ID_TPC_7) { |
| dev_err(hdev->dev, |
| "Collective wait does not support engine %u\n", |
| collective_engine_id); |
| return -EINVAL; |
| } |
| |
| stream = wait_queue_id % 4; |
| |
| if (collective_engine_id == GAUDI_ENGINE_ID_DMA_5) |
| collective_queue = GAUDI_QUEUE_ID_DMA_5_0 + stream; |
| else |
| collective_queue = GAUDI_QUEUE_ID_TPC_7_0 + stream; |
| |
| num_jobs = NUMBER_OF_SOBS_IN_GRP + 1; |
| nic_queue = GAUDI_QUEUE_ID_NIC_0_0 + stream; |
| |
| /* First job goes to the collective master queue, it will wait for |
| * the collective slave queues to finish execution. |
| * The synchronization is done using two monitors: |
| * First monitor for NICs 0-7, second monitor for NICs 8-9 and the |
| * reduction engine (DMA5/TPC7). |
| * |
| * Rest of the jobs goes to the collective slave queues which will |
| * all wait for the user to signal sob 'cs_cmpl->sob_val'. |
| */ |
| for (i = 0 ; i < num_jobs ; i++) { |
| if (i == 0) { |
| queue_id = wait_queue_id; |
| rc = gaudi_collective_wait_create_job(hdev, ctx, cs, |
| HL_COLLECTIVE_MASTER, queue_id, |
| wait_queue_id, encaps_signal_offset); |
| } else { |
| if (nic_idx < NIC_NUMBER_OF_ENGINES) { |
| if (gaudi->hw_cap_initialized & |
| BIT(HW_CAP_NIC_SHIFT + nic_idx)) |
| skip = false; |
| else |
| skip = true; |
| |
| queue_id = nic_queue; |
| nic_queue += 4; |
| nic_idx++; |
| |
| if (skip) |
| continue; |
| } else { |
| queue_id = collective_queue; |
| } |
| |
| rc = gaudi_collective_wait_create_job(hdev, ctx, cs, |
| HL_COLLECTIVE_SLAVE, queue_id, |
| wait_queue_id, encaps_signal_offset); |
| } |
| |
| if (rc) |
| return rc; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_late_init(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int rc; |
| |
| rc = gaudi->cpucp_info_get(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to get cpucp info\n"); |
| return rc; |
| } |
| |
| if ((hdev->card_type == cpucp_card_type_pci) && |
| (hdev->nic_ports_mask & 0x3)) { |
| dev_info(hdev->dev, |
| "PCI card detected, only 8 ports are enabled\n"); |
| hdev->nic_ports_mask &= ~0x3; |
| |
| /* Stop and disable unused NIC QMANs */ |
| WREG32(mmNIC0_QM0_GLBL_CFG1, NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| WREG32(mmNIC0_QM1_GLBL_CFG1, NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| WREG32(mmNIC0_QM0_GLBL_CFG0, 0); |
| WREG32(mmNIC0_QM1_GLBL_CFG0, 0); |
| |
| gaudi->hw_cap_initialized &= ~(HW_CAP_NIC0 | HW_CAP_NIC1); |
| } |
| |
| rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to enable PCI access from CPU\n"); |
| return rc; |
| } |
| |
| /* Scrub both SRAM and DRAM */ |
| rc = hdev->asic_funcs->scrub_device_mem(hdev, 0, 0); |
| if (rc) |
| goto disable_pci_access; |
| |
| rc = gaudi_fetch_psoc_frequency(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to fetch psoc frequency\n"); |
| goto disable_pci_access; |
| } |
| |
| rc = gaudi_mmu_clear_pgt_range(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to clear MMU page tables range\n"); |
| goto disable_pci_access; |
| } |
| |
| rc = gaudi_init_tpc_mem(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to initialize TPC memories\n"); |
| goto disable_pci_access; |
| } |
| |
| rc = gaudi_collective_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to init collective\n"); |
| goto disable_pci_access; |
| } |
| |
| /* We only support a single ASID for the user, so for the sake of optimization, just |
| * initialize the ASID one time during device initialization with the fixed value of 1 |
| */ |
| gaudi_mmu_prepare(hdev, 1); |
| |
| return 0; |
| |
| disable_pci_access: |
| hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS); |
| |
| return rc; |
| } |
| |
| static void gaudi_late_fini(struct hl_device *hdev) |
| { |
| const struct hwmon_channel_info **channel_info_arr; |
| int i = 0; |
| |
| if (!hdev->hl_chip_info->info) |
| return; |
| |
| channel_info_arr = hdev->hl_chip_info->info; |
| |
| while (channel_info_arr[i]) { |
| kfree(channel_info_arr[i]->config); |
| kfree(channel_info_arr[i]); |
| i++; |
| } |
| |
| kfree(channel_info_arr); |
| |
| hdev->hl_chip_info->info = NULL; |
| } |
| |
| static int gaudi_alloc_cpu_accessible_dma_mem(struct hl_device *hdev) |
| { |
| dma_addr_t dma_addr_arr[GAUDI_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr; |
| void *virt_addr_arr[GAUDI_ALLOC_CPU_MEM_RETRY_CNT] = {}; |
| int i, j, rc = 0; |
| |
| /* |
| * The device CPU works with 40-bits addresses, while bit 39 must be set |
| * to '1' when accessing the host. |
| * Bits 49:39 of the full host address are saved for a later |
| * configuration of the HW to perform extension to 50 bits. |
| * Because there is a single HW register that holds the extension bits, |
| * these bits must be identical in all allocated range. |
| */ |
| |
| for (i = 0 ; i < GAUDI_ALLOC_CPU_MEM_RETRY_CNT ; i++) { |
| virt_addr_arr[i] = |
| hdev->asic_funcs->asic_dma_alloc_coherent(hdev, |
| HL_CPU_ACCESSIBLE_MEM_SIZE, |
| &dma_addr_arr[i], |
| GFP_KERNEL | __GFP_ZERO); |
| if (!virt_addr_arr[i]) { |
| rc = -ENOMEM; |
| goto free_dma_mem_arr; |
| } |
| |
| end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1; |
| if (GAUDI_CPU_PCI_MSB_ADDR(dma_addr_arr[i]) == |
| GAUDI_CPU_PCI_MSB_ADDR(end_addr)) |
| break; |
| } |
| |
| if (i == GAUDI_ALLOC_CPU_MEM_RETRY_CNT) { |
| dev_err(hdev->dev, |
| "MSB of CPU accessible DMA memory are not identical in all range\n"); |
| rc = -EFAULT; |
| goto free_dma_mem_arr; |
| } |
| |
| hdev->cpu_accessible_dma_mem = virt_addr_arr[i]; |
| hdev->cpu_accessible_dma_address = dma_addr_arr[i]; |
| hdev->cpu_pci_msb_addr = |
| GAUDI_CPU_PCI_MSB_ADDR(hdev->cpu_accessible_dma_address); |
| |
| if (!hdev->asic_prop.fw_security_enabled) |
| GAUDI_PCI_TO_CPU_ADDR(hdev->cpu_accessible_dma_address); |
| |
| free_dma_mem_arr: |
| for (j = 0 ; j < i ; j++) |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, |
| HL_CPU_ACCESSIBLE_MEM_SIZE, |
| virt_addr_arr[j], |
| dma_addr_arr[j]); |
| |
| return rc; |
| } |
| |
| static void gaudi_free_internal_qmans_pq_mem(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| u32 i; |
| |
| for (i = 0 ; i < GAUDI_QUEUE_ID_SIZE ; i++) { |
| q = &gaudi->internal_qmans[i]; |
| if (!q->pq_kernel_addr) |
| continue; |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, q->pq_size, |
| q->pq_kernel_addr, |
| q->pq_dma_addr); |
| } |
| } |
| |
| static int gaudi_alloc_internal_qmans_pq_mem(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| int rc, i; |
| |
| for (i = 0 ; i < GAUDI_QUEUE_ID_SIZE ; i++) { |
| if (gaudi_queue_type[i] != QUEUE_TYPE_INT) |
| continue; |
| |
| q = &gaudi->internal_qmans[i]; |
| |
| switch (i) { |
| case GAUDI_QUEUE_ID_DMA_2_0 ... GAUDI_QUEUE_ID_DMA_7_3: |
| q->pq_size = HBM_DMA_QMAN_SIZE_IN_BYTES; |
| break; |
| case GAUDI_QUEUE_ID_MME_0_0 ... GAUDI_QUEUE_ID_MME_1_3: |
| q->pq_size = MME_QMAN_SIZE_IN_BYTES; |
| break; |
| case GAUDI_QUEUE_ID_TPC_0_0 ... GAUDI_QUEUE_ID_TPC_7_3: |
| q->pq_size = TPC_QMAN_SIZE_IN_BYTES; |
| break; |
| case GAUDI_QUEUE_ID_NIC_0_0 ... GAUDI_QUEUE_ID_NIC_9_3: |
| q->pq_size = NIC_QMAN_SIZE_IN_BYTES; |
| break; |
| default: |
| dev_err(hdev->dev, "Bad internal queue index %d", i); |
| rc = -EINVAL; |
| goto free_internal_qmans_pq_mem; |
| } |
| |
| q->pq_kernel_addr = hdev->asic_funcs->asic_dma_alloc_coherent( |
| hdev, q->pq_size, |
| &q->pq_dma_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| if (!q->pq_kernel_addr) { |
| rc = -ENOMEM; |
| goto free_internal_qmans_pq_mem; |
| } |
| } |
| |
| return 0; |
| |
| free_internal_qmans_pq_mem: |
| gaudi_free_internal_qmans_pq_mem(hdev); |
| return rc; |
| } |
| |
| static void gaudi_set_pci_memory_regions(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct pci_mem_region *region; |
| |
| /* CFG */ |
| region = &hdev->pci_mem_region[PCI_REGION_CFG]; |
| region->region_base = CFG_BASE; |
| region->region_size = CFG_SIZE; |
| region->offset_in_bar = CFG_BASE - SPI_FLASH_BASE_ADDR; |
| region->bar_size = CFG_BAR_SIZE; |
| region->bar_id = CFG_BAR_ID; |
| region->used = 1; |
| |
| /* SRAM */ |
| region = &hdev->pci_mem_region[PCI_REGION_SRAM]; |
| region->region_base = SRAM_BASE_ADDR; |
| region->region_size = SRAM_SIZE; |
| region->offset_in_bar = 0; |
| region->bar_size = SRAM_BAR_SIZE; |
| region->bar_id = SRAM_BAR_ID; |
| region->used = 1; |
| |
| /* DRAM */ |
| region = &hdev->pci_mem_region[PCI_REGION_DRAM]; |
| region->region_base = DRAM_PHYS_BASE; |
| region->region_size = hdev->asic_prop.dram_size; |
| region->offset_in_bar = 0; |
| region->bar_size = prop->dram_pci_bar_size; |
| region->bar_id = HBM_BAR_ID; |
| region->used = 1; |
| |
| /* SP SRAM */ |
| region = &hdev->pci_mem_region[PCI_REGION_SP_SRAM]; |
| region->region_base = PSOC_SCRATCHPAD_ADDR; |
| region->region_size = PSOC_SCRATCHPAD_SIZE; |
| region->offset_in_bar = PSOC_SCRATCHPAD_ADDR - SPI_FLASH_BASE_ADDR; |
| region->bar_size = CFG_BAR_SIZE; |
| region->bar_id = CFG_BAR_ID; |
| region->used = 1; |
| } |
| |
| static int gaudi_sw_init(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi; |
| u32 i, event_id = 0; |
| int rc; |
| |
| /* Allocate device structure */ |
| gaudi = kzalloc(sizeof(*gaudi), GFP_KERNEL); |
| if (!gaudi) |
| return -ENOMEM; |
| |
| for (i = 0 ; i < ARRAY_SIZE(gaudi_irq_map_table) ; i++) { |
| if (gaudi_irq_map_table[i].valid) { |
| if (event_id == GAUDI_EVENT_SIZE) { |
| dev_err(hdev->dev, |
| "Event array exceeds the limit of %u events\n", |
| GAUDI_EVENT_SIZE); |
| rc = -EINVAL; |
| goto free_gaudi_device; |
| } |
| |
| gaudi->events[event_id++] = |
| gaudi_irq_map_table[i].fc_id; |
| } |
| } |
| |
| gaudi->cpucp_info_get = gaudi_cpucp_info_get; |
| |
| hdev->asic_specific = gaudi; |
| |
| /* Create DMA pool for small allocations */ |
| hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), |
| &hdev->pdev->dev, GAUDI_DMA_POOL_BLK_SIZE, 8, 0); |
| if (!hdev->dma_pool) { |
| dev_err(hdev->dev, "failed to create DMA pool\n"); |
| rc = -ENOMEM; |
| goto free_gaudi_device; |
| } |
| |
| rc = gaudi_alloc_cpu_accessible_dma_mem(hdev); |
| if (rc) |
| goto free_dma_pool; |
| |
| hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1); |
| if (!hdev->cpu_accessible_dma_pool) { |
| dev_err(hdev->dev, |
| "Failed to create CPU accessible DMA pool\n"); |
| rc = -ENOMEM; |
| goto free_cpu_dma_mem; |
| } |
| |
| rc = gen_pool_add(hdev->cpu_accessible_dma_pool, |
| (uintptr_t) hdev->cpu_accessible_dma_mem, |
| HL_CPU_ACCESSIBLE_MEM_SIZE, -1); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to add memory to CPU accessible DMA pool\n"); |
| rc = -EFAULT; |
| goto free_cpu_accessible_dma_pool; |
| } |
| |
| rc = gaudi_alloc_internal_qmans_pq_mem(hdev); |
| if (rc) |
| goto free_cpu_accessible_dma_pool; |
| |
| spin_lock_init(&gaudi->hw_queues_lock); |
| mutex_init(&gaudi->clk_gate_mutex); |
| |
| hdev->supports_sync_stream = true; |
| hdev->supports_coresight = true; |
| hdev->supports_staged_submission = true; |
| hdev->supports_wait_for_multi_cs = true; |
| |
| hdev->asic_funcs->set_pci_memory_regions(hdev); |
| hdev->stream_master_qid_arr = |
| hdev->asic_funcs->get_stream_master_qid_arr(); |
| hdev->stream_master_qid_arr_size = GAUDI_STREAM_MASTER_ARR_SIZE; |
| |
| return 0; |
| |
| free_cpu_accessible_dma_pool: |
| gen_pool_destroy(hdev->cpu_accessible_dma_pool); |
| free_cpu_dma_mem: |
| if (!hdev->asic_prop.fw_security_enabled) |
| GAUDI_CPU_TO_PCI_ADDR(hdev->cpu_accessible_dma_address, |
| hdev->cpu_pci_msb_addr); |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, |
| HL_CPU_ACCESSIBLE_MEM_SIZE, |
| hdev->cpu_accessible_dma_mem, |
| hdev->cpu_accessible_dma_address); |
| free_dma_pool: |
| dma_pool_destroy(hdev->dma_pool); |
| free_gaudi_device: |
| kfree(gaudi); |
| return rc; |
| } |
| |
| static int gaudi_sw_fini(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| gaudi_free_internal_qmans_pq_mem(hdev); |
| |
| gen_pool_destroy(hdev->cpu_accessible_dma_pool); |
| |
| if (!hdev->asic_prop.fw_security_enabled) |
| GAUDI_CPU_TO_PCI_ADDR(hdev->cpu_accessible_dma_address, |
| hdev->cpu_pci_msb_addr); |
| |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, |
| HL_CPU_ACCESSIBLE_MEM_SIZE, |
| hdev->cpu_accessible_dma_mem, |
| hdev->cpu_accessible_dma_address); |
| |
| dma_pool_destroy(hdev->dma_pool); |
| |
| mutex_destroy(&gaudi->clk_gate_mutex); |
| |
| kfree(gaudi); |
| |
| return 0; |
| } |
| |
| static irqreturn_t gaudi_irq_handler_single(int irq, void *arg) |
| { |
| struct hl_device *hdev = arg; |
| int i; |
| |
| if (hdev->disabled) |
| return IRQ_HANDLED; |
| |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| hl_irq_handler_cq(irq, &hdev->completion_queue[i]); |
| |
| hl_irq_handler_eq(irq, &hdev->event_queue); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * For backward compatibility, new MSI interrupts should be set after the |
| * existing CPU and NIC interrupts. |
| */ |
| static int gaudi_pci_irq_vector(struct hl_device *hdev, unsigned int nr, |
| bool cpu_eq) |
| { |
| int msi_vec; |
| |
| if ((nr != GAUDI_EVENT_QUEUE_MSI_IDX) && (cpu_eq)) |
| dev_crit(hdev->dev, "CPU EQ must use IRQ %d\n", |
| GAUDI_EVENT_QUEUE_MSI_IDX); |
| |
| msi_vec = ((nr < GAUDI_EVENT_QUEUE_MSI_IDX) || (cpu_eq)) ? nr : |
| (nr + NIC_NUMBER_OF_ENGINES + 1); |
| |
| return pci_irq_vector(hdev->pdev, msi_vec); |
| } |
| |
| static int gaudi_enable_msi_single(struct hl_device *hdev) |
| { |
| int rc, irq; |
| |
| dev_dbg(hdev->dev, "Working in single MSI IRQ mode\n"); |
| |
| irq = gaudi_pci_irq_vector(hdev, 0, false); |
| rc = request_irq(irq, gaudi_irq_handler_single, 0, |
| "gaudi single msi", hdev); |
| if (rc) |
| dev_err(hdev->dev, |
| "Failed to request single MSI IRQ\n"); |
| |
| return rc; |
| } |
| |
| static int gaudi_enable_msi_multi(struct hl_device *hdev) |
| { |
| int cq_cnt = hdev->asic_prop.completion_queues_count; |
| int rc, i, irq_cnt_init, irq; |
| |
| for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) { |
| irq = gaudi_pci_irq_vector(hdev, i, false); |
| rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi_irq_name[i], |
| &hdev->completion_queue[i]); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_irqs; |
| } |
| } |
| |
| irq = gaudi_pci_irq_vector(hdev, GAUDI_EVENT_QUEUE_MSI_IDX, true); |
| rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi_irq_name[cq_cnt], |
| &hdev->event_queue); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_irqs; |
| } |
| |
| return 0; |
| |
| free_irqs: |
| for (i = 0 ; i < irq_cnt_init ; i++) |
| free_irq(gaudi_pci_irq_vector(hdev, i, false), |
| &hdev->completion_queue[i]); |
| return rc; |
| } |
| |
| static int gaudi_enable_msi(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int rc; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_MSI) |
| return 0; |
| |
| rc = pci_alloc_irq_vectors(hdev->pdev, 1, 1, PCI_IRQ_MSI); |
| if (rc < 0) { |
| dev_err(hdev->dev, "MSI: Failed to enable support %d\n", rc); |
| return rc; |
| } |
| |
| if (rc < NUMBER_OF_INTERRUPTS) { |
| gaudi->multi_msi_mode = false; |
| rc = gaudi_enable_msi_single(hdev); |
| } else { |
| gaudi->multi_msi_mode = true; |
| rc = gaudi_enable_msi_multi(hdev); |
| } |
| |
| if (rc) |
| goto free_pci_irq_vectors; |
| |
| gaudi->hw_cap_initialized |= HW_CAP_MSI; |
| |
| return 0; |
| |
| free_pci_irq_vectors: |
| pci_free_irq_vectors(hdev->pdev); |
| return rc; |
| } |
| |
| static void gaudi_sync_irqs(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int i, cq_cnt = hdev->asic_prop.completion_queues_count; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MSI)) |
| return; |
| |
| /* Wait for all pending IRQs to be finished */ |
| if (gaudi->multi_msi_mode) { |
| for (i = 0 ; i < cq_cnt ; i++) |
| synchronize_irq(gaudi_pci_irq_vector(hdev, i, false)); |
| |
| synchronize_irq(gaudi_pci_irq_vector(hdev, |
| GAUDI_EVENT_QUEUE_MSI_IDX, |
| true)); |
| } else { |
| synchronize_irq(gaudi_pci_irq_vector(hdev, 0, false)); |
| } |
| } |
| |
| static void gaudi_disable_msi(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int i, irq, cq_cnt = hdev->asic_prop.completion_queues_count; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MSI)) |
| return; |
| |
| gaudi_sync_irqs(hdev); |
| |
| if (gaudi->multi_msi_mode) { |
| irq = gaudi_pci_irq_vector(hdev, GAUDI_EVENT_QUEUE_MSI_IDX, |
| true); |
| free_irq(irq, &hdev->event_queue); |
| |
| for (i = 0 ; i < cq_cnt ; i++) { |
| irq = gaudi_pci_irq_vector(hdev, i, false); |
| free_irq(irq, &hdev->completion_queue[i]); |
| } |
| } else { |
| free_irq(gaudi_pci_irq_vector(hdev, 0, false), hdev); |
| } |
| |
| pci_free_irq_vectors(hdev->pdev); |
| |
| gaudi->hw_cap_initialized &= ~HW_CAP_MSI; |
| } |
| |
| static void gaudi_init_scrambler_sram(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (hdev->asic_prop.fw_security_enabled) |
| return; |
| |
| if (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_SRAM_SCR_EN) |
| return; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_SRAM_SCRAMBLER) |
| return; |
| |
| if (!hdev->sram_scrambler_enable) |
| return; |
| |
| WREG32(mmNIF_RTR_CTRL_0_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_1_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_2_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_3_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_4_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_5_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_6_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_7_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_0_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_1_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_2_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_3_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_4_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_5_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_6_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_7_SCRAM_SRAM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_SCRAM_SRAM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT); |
| |
| gaudi->hw_cap_initialized |= HW_CAP_SRAM_SCRAMBLER; |
| } |
| |
| static void gaudi_init_scrambler_hbm(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (hdev->asic_prop.fw_security_enabled) |
| return; |
| |
| if (hdev->asic_prop.fw_bootfit_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_DRAM_SCR_EN) |
| return; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_HBM_SCRAMBLER) |
| return; |
| |
| if (!hdev->dram_scrambler_enable) |
| return; |
| |
| WREG32(mmNIF_RTR_CTRL_0_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_1_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_2_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_3_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_4_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_5_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_6_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_7_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_0_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_1_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_2_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_3_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_4_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_5_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_6_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_7_SCRAM_HBM_EN, |
| 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_SCRAM_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT); |
| |
| gaudi->hw_cap_initialized |= HW_CAP_HBM_SCRAMBLER; |
| } |
| |
| static void gaudi_init_e2e(struct hl_device *hdev) |
| { |
| if (hdev->asic_prop.fw_security_enabled) |
| return; |
| |
| if (hdev->asic_prop.fw_bootfit_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_E2E_CRED_EN) |
| return; |
| |
| WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_WR_SIZE, 247 >> 3); |
| WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_RD_SIZE, 785 >> 3); |
| WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_WR_SIZE, 49); |
| WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_RD_SIZE, 101); |
| |
| WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_WR_SIZE, 275 >> 3); |
| WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_RD_SIZE, 614 >> 3); |
| WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_RD_SIZE, 39); |
| |
| WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_WR_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_RD_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_WR_SIZE, 176 >> 3); |
| WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_RD_SIZE, 32 >> 3); |
| WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_WR_SIZE, 19); |
| WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_WR_SIZE, 176 >> 3); |
| WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_RD_SIZE, 32 >> 3); |
| WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_WR_SIZE, 19); |
| WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_WR_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_RD_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_WR_SIZE, 275 >> 3); |
| WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_RD_SIZE, 614 >> 3); |
| WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_RD_SIZE, 39); |
| |
| WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_WR_SIZE, 297 >> 3); |
| WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_RD_SIZE, 908 >> 3); |
| WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_WR_SIZE, 19); |
| WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_RD_SIZE, 19); |
| |
| WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_WR_SIZE, 318 >> 3); |
| WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_RD_SIZE, 956 >> 3); |
| WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_WR_SIZE, 79); |
| WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_RD_SIZE, 163); |
| |
| WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_WR_SIZE, 275 >> 3); |
| WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_RD_SIZE, 614 >> 3); |
| WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_RD_SIZE, 39); |
| |
| WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_WR_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_RD_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_WR_SIZE, 176 >> 3); |
| WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_RD_SIZE, 32 >> 3); |
| WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_WR_SIZE, 19); |
| WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_WR_SIZE, 176 >> 3); |
| WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_RD_SIZE, 32 >> 3); |
| WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_WR_SIZE, 19); |
| WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_WR_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_RD_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_RD_SIZE, 32); |
| |
| WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_WR_SIZE, 275 >> 3); |
| WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_RD_SIZE, 614 >> 3); |
| WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_WR_SIZE, 1); |
| WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_RD_SIZE, 39); |
| |
| WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_WR_SIZE, 318 >> 3); |
| WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_RD_SIZE, 956 >> 3); |
| WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_WR_SIZE, 79); |
| WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_RD_SIZE, 79); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_RD_SIZE, 338); |
| |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_WR_SIZE, 162); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_RD_SIZE, 338); |
| |
| if (!hdev->dram_scrambler_enable) { |
| WREG32(mmSIF_RTR_CTRL_0_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_0_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_0_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_0_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_1_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_1_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_1_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_1_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_2_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_2_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_2_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_2_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_3_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_3_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_3_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_3_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_4_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_4_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_4_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_4_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_5_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_5_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_5_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_5_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_6_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_6_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_6_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_6_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmSIF_RTR_CTRL_7_NL_HBM_SEL_0, 0x21); |
| WREG32(mmSIF_RTR_CTRL_7_NL_HBM_SEL_1, 0x22); |
| WREG32(mmSIF_RTR_CTRL_7_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmSIF_RTR_CTRL_7_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_0_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_0_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_0_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_0_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_1_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_1_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_1_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_1_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_2_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_2_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_2_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_2_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_3_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_3_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_3_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_3_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_4_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_4_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_4_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_4_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_5_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_5_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_5_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_5_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_6_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_6_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_6_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_6_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmNIF_RTR_CTRL_7_NL_HBM_SEL_0, 0x21); |
| WREG32(mmNIF_RTR_CTRL_7_NL_HBM_SEL_1, 0x22); |
| WREG32(mmNIF_RTR_CTRL_7_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmNIF_RTR_CTRL_7_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20); |
| |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_SEL_0, 0x21); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_SEL_1, 0x22); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20); |
| } |
| |
| WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_EN, |
| 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_EN, |
| 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT); |
| WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_EN, |
| 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT); |
| } |
| |
| static void gaudi_init_hbm_cred(struct hl_device *hdev) |
| { |
| u32 hbm0_wr, hbm1_wr, hbm0_rd, hbm1_rd; |
| |
| if (hdev->asic_prop.fw_security_enabled) |
| return; |
| |
| if (hdev->asic_prop.fw_bootfit_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_HBM_CRED_EN) |
| return; |
| |
| hbm0_wr = 0x33333333; |
| hbm0_rd = 0x77777777; |
| hbm1_wr = 0x55555555; |
| hbm1_rd = 0xDDDDDDDD; |
| |
| WREG32(mmDMA_IF_E_N_HBM0_WR_CRED_CNT, hbm0_wr); |
| WREG32(mmDMA_IF_E_N_HBM1_WR_CRED_CNT, hbm1_wr); |
| WREG32(mmDMA_IF_E_N_HBM0_RD_CRED_CNT, hbm0_rd); |
| WREG32(mmDMA_IF_E_N_HBM1_RD_CRED_CNT, hbm1_rd); |
| |
| WREG32(mmDMA_IF_E_S_HBM0_WR_CRED_CNT, hbm0_wr); |
| WREG32(mmDMA_IF_E_S_HBM1_WR_CRED_CNT, hbm1_wr); |
| WREG32(mmDMA_IF_E_S_HBM0_RD_CRED_CNT, hbm0_rd); |
| WREG32(mmDMA_IF_E_S_HBM1_RD_CRED_CNT, hbm1_rd); |
| |
| WREG32(mmDMA_IF_W_N_HBM0_WR_CRED_CNT, hbm0_wr); |
| WREG32(mmDMA_IF_W_N_HBM1_WR_CRED_CNT, hbm1_wr); |
| WREG32(mmDMA_IF_W_N_HBM0_RD_CRED_CNT, hbm0_rd); |
| WREG32(mmDMA_IF_W_N_HBM1_RD_CRED_CNT, hbm1_rd); |
| |
| WREG32(mmDMA_IF_W_S_HBM0_WR_CRED_CNT, hbm0_wr); |
| WREG32(mmDMA_IF_W_S_HBM1_WR_CRED_CNT, hbm1_wr); |
| WREG32(mmDMA_IF_W_S_HBM0_RD_CRED_CNT, hbm0_rd); |
| WREG32(mmDMA_IF_W_S_HBM1_RD_CRED_CNT, hbm1_rd); |
| |
| WREG32(mmDMA_IF_E_N_HBM_CRED_EN_0, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| WREG32(mmDMA_IF_E_S_HBM_CRED_EN_0, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| WREG32(mmDMA_IF_W_N_HBM_CRED_EN_0, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| WREG32(mmDMA_IF_W_S_HBM_CRED_EN_0, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| |
| WREG32(mmDMA_IF_E_N_HBM_CRED_EN_1, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| WREG32(mmDMA_IF_E_S_HBM_CRED_EN_1, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| WREG32(mmDMA_IF_W_N_HBM_CRED_EN_1, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| WREG32(mmDMA_IF_W_S_HBM_CRED_EN_1, |
| (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) | |
| (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT)); |
| } |
| |
| static void gaudi_init_golden_registers(struct hl_device *hdev) |
| { |
| u32 tpc_offset; |
| int tpc_id, i; |
| |
| gaudi_init_e2e(hdev); |
| gaudi_init_hbm_cred(hdev); |
| |
| for (tpc_id = 0, tpc_offset = 0; |
| tpc_id < TPC_NUMBER_OF_ENGINES; |
| tpc_id++, tpc_offset += TPC_CFG_OFFSET) { |
| /* Mask all arithmetic interrupts from TPC */ |
| WREG32(mmTPC0_CFG_TPC_INTR_MASK + tpc_offset, 0x8FFE); |
| /* Set 16 cache lines */ |
| WREG32_FIELD(TPC0_CFG_MSS_CONFIG, tpc_offset, |
| ICACHE_FETCH_LINE_NUM, 2); |
| } |
| |
| /* Make sure 1st 128 bytes in SRAM are 0 for Tensor DMA */ |
| for (i = 0 ; i < 128 ; i += 8) |
| writeq(0, hdev->pcie_bar[SRAM_BAR_ID] + i); |
| |
| WREG32(mmMME0_CTRL_EUS_ROLLUP_CNT_ADD, 3); |
| WREG32(mmMME1_CTRL_EUS_ROLLUP_CNT_ADD, 3); |
| WREG32(mmMME2_CTRL_EUS_ROLLUP_CNT_ADD, 3); |
| WREG32(mmMME3_CTRL_EUS_ROLLUP_CNT_ADD, 3); |
| } |
| |
| static void gaudi_init_pci_dma_qman(struct hl_device *hdev, int dma_id, |
| int qman_id, dma_addr_t qman_pq_addr) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi; |
| u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi; |
| u32 q_off, dma_qm_offset; |
| u32 dma_qm_err_cfg, irq_handler_offset; |
| |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| |
| mtr_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| mtr_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| q_off = dma_qm_offset + qman_id * 4; |
| |
| WREG32(mmDMA0_QM_PQ_BASE_LO_0 + q_off, lower_32_bits(qman_pq_addr)); |
| WREG32(mmDMA0_QM_PQ_BASE_HI_0 + q_off, upper_32_bits(qman_pq_addr)); |
| |
| WREG32(mmDMA0_QM_PQ_SIZE_0 + q_off, ilog2(HL_QUEUE_LENGTH)); |
| WREG32(mmDMA0_QM_PQ_PI_0 + q_off, 0); |
| WREG32(mmDMA0_QM_PQ_CI_0 + q_off, 0); |
| |
| WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, QMAN_LDMA_SIZE_OFFSET); |
| WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_SRC_OFFSET); |
| WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_DST_OFFSET); |
| |
| WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi); |
| WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi); |
| WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi); |
| WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi); |
| |
| WREG32(mmDMA0_QM_CP_BARRIER_CFG_0 + q_off, 0x100); |
| |
| /* The following configuration is needed only once per QMAN */ |
| if (qman_id == 0) { |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl); |
| |
| /* Configure RAZWI IRQ */ |
| dma_qm_err_cfg = PCI_DMA_QMAN_GLBL_ERR_CFG_MSG_EN_MASK; |
| if (hdev->stop_on_err) |
| dma_qm_err_cfg |= |
| PCI_DMA_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK; |
| |
| WREG32(mmDMA0_QM_GLBL_ERR_CFG + dma_qm_offset, dma_qm_err_cfg); |
| |
| WREG32(mmDMA0_QM_GLBL_ERR_ADDR_LO + dma_qm_offset, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(mmDMA0_QM_GLBL_ERR_ADDR_HI + dma_qm_offset, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(mmDMA0_QM_GLBL_ERR_WDATA + dma_qm_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_DMA0_QM].cpu_id + |
| dma_id); |
| |
| WREG32(mmDMA0_QM_ARB_ERR_MSG_EN + dma_qm_offset, |
| QM_ARB_ERR_MSG_EN_MASK); |
| |
| /* Increase ARB WDT to support streams architecture */ |
| WREG32(mmDMA0_QM_ARB_SLV_CHOISE_WDT + dma_qm_offset, |
| GAUDI_ARB_WDT_TIMEOUT); |
| |
| WREG32(mmDMA0_QM_GLBL_PROT + dma_qm_offset, |
| QMAN_EXTERNAL_MAKE_TRUSTED); |
| |
| WREG32(mmDMA0_QM_GLBL_CFG1 + dma_qm_offset, 0); |
| } |
| } |
| |
| static void gaudi_init_dma_core(struct hl_device *hdev, int dma_id) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 dma_err_cfg = 1 << DMA0_CORE_ERR_CFG_ERR_MSG_EN_SHIFT; |
| u32 dma_offset = dma_id * DMA_CORE_OFFSET; |
| u32 irq_handler_offset; |
| |
| /* Set to maximum possible according to physical size */ |
| WREG32(mmDMA0_CORE_RD_MAX_OUTSTAND + dma_offset, 0); |
| WREG32(mmDMA0_CORE_RD_MAX_SIZE + dma_offset, 0); |
| |
| /* WA for H/W bug H3-2116 */ |
| WREG32(mmDMA0_CORE_LBW_MAX_OUTSTAND + dma_offset, 15); |
| |
| /* STOP_ON bit implies no completion to operation in case of RAZWI */ |
| if (hdev->stop_on_err) |
| dma_err_cfg |= 1 << DMA0_CORE_ERR_CFG_STOP_ON_ERR_SHIFT; |
| |
| WREG32(mmDMA0_CORE_ERR_CFG + dma_offset, dma_err_cfg); |
| |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl); |
| |
| WREG32(mmDMA0_CORE_ERRMSG_ADDR_LO + dma_offset, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(mmDMA0_CORE_ERRMSG_ADDR_HI + dma_offset, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(mmDMA0_CORE_ERRMSG_WDATA + dma_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_DMA0_CORE].cpu_id + dma_id); |
| WREG32(mmDMA0_CORE_PROT + dma_offset, |
| 1 << DMA0_CORE_PROT_ERR_VAL_SHIFT); |
| /* If the channel is secured, it should be in MMU bypass mode */ |
| WREG32(mmDMA0_CORE_SECURE_PROPS + dma_offset, |
| 1 << DMA0_CORE_SECURE_PROPS_MMBP_SHIFT); |
| WREG32(mmDMA0_CORE_CFG_0 + dma_offset, 1 << DMA0_CORE_CFG_0_EN_SHIFT); |
| } |
| |
| static void gaudi_enable_qman(struct hl_device *hdev, int dma_id, |
| u32 enable_mask) |
| { |
| u32 dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| |
| WREG32(mmDMA0_QM_GLBL_CFG0 + dma_qm_offset, enable_mask); |
| } |
| |
| static void gaudi_init_pci_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct hl_hw_queue *q; |
| int i, j, dma_id, cpu_skip, nic_skip, cq_id = 0, q_idx, msi_vec = 0; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_PCI_DMA) |
| return; |
| |
| for (i = 0 ; i < PCI_DMA_NUMBER_OF_CHNLS ; i++) { |
| dma_id = gaudi_dma_assignment[i]; |
| /* |
| * For queues after the CPU Q need to add 1 to get the correct |
| * queue. In addition, need to add the CPU EQ and NIC IRQs in |
| * order to get the correct MSI register. |
| */ |
| if (dma_id > 1) { |
| cpu_skip = 1; |
| nic_skip = NIC_NUMBER_OF_ENGINES; |
| } else { |
| cpu_skip = 0; |
| nic_skip = 0; |
| } |
| |
| for (j = 0 ; j < QMAN_STREAMS ; j++) { |
| q_idx = 4 * dma_id + j + cpu_skip; |
| q = &hdev->kernel_queues[q_idx]; |
| q->cq_id = cq_id++; |
| q->msi_vec = nic_skip + cpu_skip + msi_vec++; |
| gaudi_init_pci_dma_qman(hdev, dma_id, j, |
| q->bus_address); |
| } |
| |
| gaudi_init_dma_core(hdev, dma_id); |
| |
| gaudi_enable_qman(hdev, dma_id, PCI_DMA_QMAN_ENABLE); |
| } |
| |
| gaudi->hw_cap_initialized |= HW_CAP_PCI_DMA; |
| } |
| |
| static void gaudi_init_hbm_dma_qman(struct hl_device *hdev, int dma_id, |
| int qman_id, u64 qman_base_addr) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi; |
| u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi; |
| u32 dma_qm_err_cfg, irq_handler_offset; |
| u32 q_off, dma_qm_offset; |
| |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| |
| mtr_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| mtr_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| q_off = dma_qm_offset + qman_id * 4; |
| |
| if (qman_id < 4) { |
| WREG32(mmDMA0_QM_PQ_BASE_LO_0 + q_off, |
| lower_32_bits(qman_base_addr)); |
| WREG32(mmDMA0_QM_PQ_BASE_HI_0 + q_off, |
| upper_32_bits(qman_base_addr)); |
| |
| WREG32(mmDMA0_QM_PQ_SIZE_0 + q_off, ilog2(HBM_DMA_QMAN_LENGTH)); |
| WREG32(mmDMA0_QM_PQ_PI_0 + q_off, 0); |
| WREG32(mmDMA0_QM_PQ_CI_0 + q_off, 0); |
| |
| WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_CPDMA_SIZE_OFFSET); |
| WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_CPDMA_SRC_OFFSET); |
| WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_CPDMA_DST_OFFSET); |
| } else { |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl); |
| |
| WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_LDMA_SIZE_OFFSET); |
| WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_SRC_OFFSET); |
| WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_DST_OFFSET); |
| |
| /* Configure RAZWI IRQ */ |
| dma_qm_err_cfg = HBM_DMA_QMAN_GLBL_ERR_CFG_MSG_EN_MASK; |
| if (hdev->stop_on_err) |
| dma_qm_err_cfg |= |
| HBM_DMA_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK; |
| |
| WREG32(mmDMA0_QM_GLBL_ERR_CFG + dma_qm_offset, dma_qm_err_cfg); |
| |
| WREG32(mmDMA0_QM_GLBL_ERR_ADDR_LO + dma_qm_offset, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(mmDMA0_QM_GLBL_ERR_ADDR_HI + dma_qm_offset, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(mmDMA0_QM_GLBL_ERR_WDATA + dma_qm_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_DMA0_QM].cpu_id + |
| dma_id); |
| |
| WREG32(mmDMA0_QM_ARB_ERR_MSG_EN + dma_qm_offset, |
| QM_ARB_ERR_MSG_EN_MASK); |
| |
| /* Increase ARB WDT to support streams architecture */ |
| WREG32(mmDMA0_QM_ARB_SLV_CHOISE_WDT + dma_qm_offset, |
| GAUDI_ARB_WDT_TIMEOUT); |
| |
| WREG32(mmDMA0_QM_GLBL_CFG1 + dma_qm_offset, 0); |
| WREG32(mmDMA0_QM_GLBL_PROT + dma_qm_offset, |
| QMAN_INTERNAL_MAKE_TRUSTED); |
| } |
| |
| WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi); |
| WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi); |
| |
| /* Configure DMA5 CP_MSG_BASE 2/3 for sync stream collective */ |
| if (gaudi_dma_assignment[dma_id] == GAUDI_ENGINE_ID_DMA_5) { |
| WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off, |
| mtr_base_ws_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off, |
| mtr_base_ws_hi); |
| WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off, |
| so_base_ws_lo); |
| WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off, |
| so_base_ws_hi); |
| } |
| } |
| |
| static void gaudi_init_hbm_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| u64 qman_base_addr; |
| int i, j, dma_id, internal_q_index; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_HBM_DMA) |
| return; |
| |
| for (i = 0 ; i < HBM_DMA_NUMBER_OF_CHNLS ; i++) { |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_1 + i]; |
| |
| for (j = 0 ; j < QMAN_STREAMS ; j++) { |
| /* |
| * Add the CPU queue in order to get the correct queue |
| * number as all internal queue are placed after it |
| */ |
| internal_q_index = dma_id * QMAN_STREAMS + j + 1; |
| |
| q = &gaudi->internal_qmans[internal_q_index]; |
| qman_base_addr = (u64) q->pq_dma_addr; |
| gaudi_init_hbm_dma_qman(hdev, dma_id, j, |
| qman_base_addr); |
| } |
| |
| /* Initializing lower CP for HBM DMA QMAN */ |
| gaudi_init_hbm_dma_qman(hdev, dma_id, 4, 0); |
| |
| gaudi_init_dma_core(hdev, dma_id); |
| |
| gaudi_enable_qman(hdev, dma_id, HBM_DMA_QMAN_ENABLE); |
| } |
| |
| gaudi->hw_cap_initialized |= HW_CAP_HBM_DMA; |
| } |
| |
| static void gaudi_init_mme_qman(struct hl_device *hdev, u32 mme_offset, |
| int qman_id, u64 qman_base_addr) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 mtr_base_lo, mtr_base_hi; |
| u32 so_base_lo, so_base_hi; |
| u32 irq_handler_offset; |
| u32 q_off, mme_id; |
| u32 mme_qm_err_cfg; |
| |
| mtr_base_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| q_off = mme_offset + qman_id * 4; |
| |
| if (qman_id < 4) { |
| WREG32(mmMME0_QM_PQ_BASE_LO_0 + q_off, |
| lower_32_bits(qman_base_addr)); |
| WREG32(mmMME0_QM_PQ_BASE_HI_0 + q_off, |
| upper_32_bits(qman_base_addr)); |
| |
| WREG32(mmMME0_QM_PQ_SIZE_0 + q_off, ilog2(MME_QMAN_LENGTH)); |
| WREG32(mmMME0_QM_PQ_PI_0 + q_off, 0); |
| WREG32(mmMME0_QM_PQ_CI_0 + q_off, 0); |
| |
| WREG32(mmMME0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_CPDMA_SIZE_OFFSET); |
| WREG32(mmMME0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_CPDMA_SRC_OFFSET); |
| WREG32(mmMME0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_CPDMA_DST_OFFSET); |
| } else { |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl); |
| |
| WREG32(mmMME0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_LDMA_SIZE_OFFSET); |
| WREG32(mmMME0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_SRC_OFFSET); |
| WREG32(mmMME0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_DST_OFFSET); |
| |
| /* Configure RAZWI IRQ */ |
| mme_id = mme_offset / |
| (mmMME1_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0) / 2; |
| |
| mme_qm_err_cfg = MME_QMAN_GLBL_ERR_CFG_MSG_EN_MASK; |
| if (hdev->stop_on_err) |
| mme_qm_err_cfg |= |
| MME_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK; |
| |
| WREG32(mmMME0_QM_GLBL_ERR_CFG + mme_offset, mme_qm_err_cfg); |
| |
| WREG32(mmMME0_QM_GLBL_ERR_ADDR_LO + mme_offset, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(mmMME0_QM_GLBL_ERR_ADDR_HI + mme_offset, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(mmMME0_QM_GLBL_ERR_WDATA + mme_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_MME0_QM].cpu_id + |
| mme_id); |
| |
| WREG32(mmMME0_QM_ARB_ERR_MSG_EN + mme_offset, |
| QM_ARB_ERR_MSG_EN_MASK); |
| |
| /* Increase ARB WDT to support streams architecture */ |
| WREG32(mmMME0_QM_ARB_SLV_CHOISE_WDT + mme_offset, |
| GAUDI_ARB_WDT_TIMEOUT); |
| |
| WREG32(mmMME0_QM_GLBL_CFG1 + mme_offset, 0); |
| WREG32(mmMME0_QM_GLBL_PROT + mme_offset, |
| QMAN_INTERNAL_MAKE_TRUSTED); |
| } |
| |
| WREG32(mmMME0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_lo); |
| WREG32(mmMME0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_hi); |
| WREG32(mmMME0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_lo); |
| WREG32(mmMME0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_hi); |
| } |
| |
| static void gaudi_init_mme_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| u64 qman_base_addr; |
| u32 mme_offset; |
| int i, internal_q_index; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_MME) |
| return; |
| |
| /* |
| * map GAUDI_QUEUE_ID_MME_0_X to the N_W_MME (mmMME2_QM_BASE) |
| * and GAUDI_QUEUE_ID_MME_1_X to the S_W_MME (mmMME0_QM_BASE) |
| */ |
| |
| mme_offset = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0; |
| |
| for (i = 0 ; i < MME_NUMBER_OF_QMANS ; i++) { |
| internal_q_index = GAUDI_QUEUE_ID_MME_0_0 + i; |
| q = &gaudi->internal_qmans[internal_q_index]; |
| qman_base_addr = (u64) q->pq_dma_addr; |
| gaudi_init_mme_qman(hdev, mme_offset, (i & 0x3), |
| qman_base_addr); |
| if (i == 3) |
| mme_offset = 0; |
| } |
| |
| /* Initializing lower CP for MME QMANs */ |
| mme_offset = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0; |
| gaudi_init_mme_qman(hdev, mme_offset, 4, 0); |
| gaudi_init_mme_qman(hdev, 0, 4, 0); |
| |
| WREG32(mmMME2_QM_GLBL_CFG0, QMAN_MME_ENABLE); |
| WREG32(mmMME0_QM_GLBL_CFG0, QMAN_MME_ENABLE); |
| |
| gaudi->hw_cap_initialized |= HW_CAP_MME; |
| } |
| |
| static void gaudi_init_tpc_qman(struct hl_device *hdev, u32 tpc_offset, |
| int qman_id, u64 qman_base_addr) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi; |
| u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi; |
| u32 tpc_qm_err_cfg, irq_handler_offset; |
| u32 q_off, tpc_id; |
| |
| mtr_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| mtr_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| q_off = tpc_offset + qman_id * 4; |
| |
| tpc_id = tpc_offset / |
| (mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0); |
| |
| if (qman_id < 4) { |
| WREG32(mmTPC0_QM_PQ_BASE_LO_0 + q_off, |
| lower_32_bits(qman_base_addr)); |
| WREG32(mmTPC0_QM_PQ_BASE_HI_0 + q_off, |
| upper_32_bits(qman_base_addr)); |
| |
| WREG32(mmTPC0_QM_PQ_SIZE_0 + q_off, ilog2(TPC_QMAN_LENGTH)); |
| WREG32(mmTPC0_QM_PQ_PI_0 + q_off, 0); |
| WREG32(mmTPC0_QM_PQ_CI_0 + q_off, 0); |
| |
| WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_CPDMA_SIZE_OFFSET); |
| WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_CPDMA_SRC_OFFSET); |
| WREG32(mmTPC0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_CPDMA_DST_OFFSET); |
| } else { |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl); |
| |
| WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_LDMA_SIZE_OFFSET); |
| WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_SRC_OFFSET); |
| WREG32(mmTPC0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_DST_OFFSET); |
| |
| /* Configure RAZWI IRQ */ |
| tpc_qm_err_cfg = TPC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK; |
| if (hdev->stop_on_err) |
| tpc_qm_err_cfg |= |
| TPC_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK; |
| |
| WREG32(mmTPC0_QM_GLBL_ERR_CFG + tpc_offset, tpc_qm_err_cfg); |
| |
| WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + tpc_offset, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + tpc_offset, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(mmTPC0_QM_GLBL_ERR_WDATA + tpc_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_TPC0_QM].cpu_id + |
| tpc_id); |
| |
| WREG32(mmTPC0_QM_ARB_ERR_MSG_EN + tpc_offset, |
| QM_ARB_ERR_MSG_EN_MASK); |
| |
| /* Increase ARB WDT to support streams architecture */ |
| WREG32(mmTPC0_QM_ARB_SLV_CHOISE_WDT + tpc_offset, |
| GAUDI_ARB_WDT_TIMEOUT); |
| |
| WREG32(mmTPC0_QM_GLBL_CFG1 + tpc_offset, 0); |
| WREG32(mmTPC0_QM_GLBL_PROT + tpc_offset, |
| QMAN_INTERNAL_MAKE_TRUSTED); |
| } |
| |
| WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo); |
| WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi); |
| WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo); |
| WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi); |
| |
| /* Configure TPC7 CP_MSG_BASE 2/3 for sync stream collective */ |
| if (tpc_id == 6) { |
| WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off, |
| mtr_base_ws_lo); |
| WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off, |
| mtr_base_ws_hi); |
| WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off, |
| so_base_ws_lo); |
| WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off, |
| so_base_ws_hi); |
| } |
| } |
| |
| static void gaudi_init_tpc_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| u64 qman_base_addr; |
| u32 so_base_hi, tpc_offset = 0; |
| u32 tpc_delta = mmTPC1_CFG_SM_BASE_ADDRESS_HIGH - |
| mmTPC0_CFG_SM_BASE_ADDRESS_HIGH; |
| int i, tpc_id, internal_q_index; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_TPC_MASK) |
| return; |
| |
| so_base_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) { |
| for (i = 0 ; i < QMAN_STREAMS ; i++) { |
| internal_q_index = GAUDI_QUEUE_ID_TPC_0_0 + |
| tpc_id * QMAN_STREAMS + i; |
| q = &gaudi->internal_qmans[internal_q_index]; |
| qman_base_addr = (u64) q->pq_dma_addr; |
| gaudi_init_tpc_qman(hdev, tpc_offset, i, |
| qman_base_addr); |
| |
| if (i == 3) { |
| /* Initializing lower CP for TPC QMAN */ |
| gaudi_init_tpc_qman(hdev, tpc_offset, 4, 0); |
| |
| /* Enable the QMAN and TPC channel */ |
| WREG32(mmTPC0_QM_GLBL_CFG0 + tpc_offset, |
| QMAN_TPC_ENABLE); |
| } |
| } |
| |
| WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + tpc_id * tpc_delta, |
| so_base_hi); |
| |
| tpc_offset += mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0; |
| |
| gaudi->hw_cap_initialized |= |
| FIELD_PREP(HW_CAP_TPC_MASK, 1 << tpc_id); |
| } |
| } |
| |
| static void gaudi_init_nic_qman(struct hl_device *hdev, u32 nic_offset, |
| int qman_id, u64 qman_base_addr, int nic_id) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi; |
| u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi; |
| u32 nic_qm_err_cfg, irq_handler_offset; |
| u32 q_off; |
| |
| mtr_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_en_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_en_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| mtr_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_ws_lo = lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_ws_hi = upper_32_bits(CFG_BASE + |
| mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| q_off = nic_offset + qman_id * 4; |
| |
| WREG32(mmNIC0_QM0_PQ_BASE_LO_0 + q_off, lower_32_bits(qman_base_addr)); |
| WREG32(mmNIC0_QM0_PQ_BASE_HI_0 + q_off, upper_32_bits(qman_base_addr)); |
| |
| WREG32(mmNIC0_QM0_PQ_SIZE_0 + q_off, ilog2(NIC_QMAN_LENGTH)); |
| WREG32(mmNIC0_QM0_PQ_PI_0 + q_off, 0); |
| WREG32(mmNIC0_QM0_PQ_CI_0 + q_off, 0); |
| |
| WREG32(mmNIC0_QM0_CP_LDMA_TSIZE_OFFSET_0 + q_off, |
| QMAN_LDMA_SIZE_OFFSET); |
| WREG32(mmNIC0_QM0_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_SRC_OFFSET); |
| WREG32(mmNIC0_QM0_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, |
| QMAN_LDMA_DST_OFFSET); |
| |
| WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo); |
| WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi); |
| WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo); |
| WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi); |
| |
| /* Configure NIC CP_MSG_BASE 2/3 for sync stream collective */ |
| WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo); |
| WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi); |
| WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo); |
| WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi); |
| |
| if (qman_id == 0) { |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl); |
| |
| /* Configure RAZWI IRQ */ |
| nic_qm_err_cfg = NIC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK; |
| if (hdev->stop_on_err) |
| nic_qm_err_cfg |= |
| NIC_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK; |
| |
| WREG32(mmNIC0_QM0_GLBL_ERR_CFG + nic_offset, nic_qm_err_cfg); |
| |
| WREG32(mmNIC0_QM0_GLBL_ERR_ADDR_LO + nic_offset, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(mmNIC0_QM0_GLBL_ERR_ADDR_HI + nic_offset, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(mmNIC0_QM0_GLBL_ERR_WDATA + nic_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_NIC0_QM0].cpu_id + |
| nic_id); |
| |
| WREG32(mmNIC0_QM0_ARB_ERR_MSG_EN + nic_offset, |
| QM_ARB_ERR_MSG_EN_MASK); |
| |
| /* Increase ARB WDT to support streams architecture */ |
| WREG32(mmNIC0_QM0_ARB_SLV_CHOISE_WDT + nic_offset, |
| GAUDI_ARB_WDT_TIMEOUT); |
| |
| WREG32(mmNIC0_QM0_GLBL_CFG1 + nic_offset, 0); |
| WREG32(mmNIC0_QM0_GLBL_PROT + nic_offset, |
| QMAN_INTERNAL_MAKE_TRUSTED); |
| } |
| } |
| |
| static void gaudi_init_nic_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| u64 qman_base_addr; |
| u32 nic_offset = 0; |
| u32 nic_delta_between_qmans = |
| mmNIC0_QM1_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0; |
| u32 nic_delta_between_nics = |
| mmNIC1_QM0_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0; |
| int i, nic_id, internal_q_index; |
| |
| if (!hdev->nic_ports_mask) |
| return; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC_MASK) |
| return; |
| |
| dev_dbg(hdev->dev, "Initializing NIC QMANs\n"); |
| |
| for (nic_id = 0 ; nic_id < NIC_NUMBER_OF_ENGINES ; nic_id++) { |
| if (!(hdev->nic_ports_mask & (1 << nic_id))) { |
| nic_offset += nic_delta_between_qmans; |
| if (nic_id & 1) { |
| nic_offset -= (nic_delta_between_qmans * 2); |
| nic_offset += nic_delta_between_nics; |
| } |
| continue; |
| } |
| |
| for (i = 0 ; i < QMAN_STREAMS ; i++) { |
| internal_q_index = GAUDI_QUEUE_ID_NIC_0_0 + |
| nic_id * QMAN_STREAMS + i; |
| q = &gaudi->internal_qmans[internal_q_index]; |
| qman_base_addr = (u64) q->pq_dma_addr; |
| gaudi_init_nic_qman(hdev, nic_offset, (i & 0x3), |
| qman_base_addr, nic_id); |
| } |
| |
| /* Enable the QMAN */ |
| WREG32(mmNIC0_QM0_GLBL_CFG0 + nic_offset, NIC_QMAN_ENABLE); |
| |
| nic_offset += nic_delta_between_qmans; |
| if (nic_id & 1) { |
| nic_offset -= (nic_delta_between_qmans * 2); |
| nic_offset += nic_delta_between_nics; |
| } |
| |
| gaudi->hw_cap_initialized |= 1 << (HW_CAP_NIC_SHIFT + nic_id); |
| } |
| } |
| |
| static void gaudi_disable_pci_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA)) |
| return; |
| |
| WREG32(mmDMA0_QM_GLBL_CFG0, 0); |
| WREG32(mmDMA1_QM_GLBL_CFG0, 0); |
| WREG32(mmDMA5_QM_GLBL_CFG0, 0); |
| } |
| |
| static void gaudi_disable_hbm_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA)) |
| return; |
| |
| WREG32(mmDMA2_QM_GLBL_CFG0, 0); |
| WREG32(mmDMA3_QM_GLBL_CFG0, 0); |
| WREG32(mmDMA4_QM_GLBL_CFG0, 0); |
| WREG32(mmDMA6_QM_GLBL_CFG0, 0); |
| WREG32(mmDMA7_QM_GLBL_CFG0, 0); |
| } |
| |
| static void gaudi_disable_mme_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MME)) |
| return; |
| |
| WREG32(mmMME2_QM_GLBL_CFG0, 0); |
| WREG32(mmMME0_QM_GLBL_CFG0, 0); |
| } |
| |
| static void gaudi_disable_tpc_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 tpc_offset = 0; |
| int tpc_id; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return; |
| |
| for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) { |
| WREG32(mmTPC0_QM_GLBL_CFG0 + tpc_offset, 0); |
| tpc_offset += mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0; |
| } |
| } |
| |
| static void gaudi_disable_nic_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 nic_mask, nic_offset = 0; |
| u32 nic_delta_between_qmans = |
| mmNIC0_QM1_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0; |
| u32 nic_delta_between_nics = |
| mmNIC1_QM0_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0; |
| int nic_id; |
| |
| for (nic_id = 0 ; nic_id < NIC_NUMBER_OF_ENGINES ; nic_id++) { |
| nic_mask = 1 << (HW_CAP_NIC_SHIFT + nic_id); |
| |
| if (gaudi->hw_cap_initialized & nic_mask) |
| WREG32(mmNIC0_QM0_GLBL_CFG0 + nic_offset, 0); |
| |
| nic_offset += nic_delta_between_qmans; |
| if (nic_id & 1) { |
| nic_offset -= (nic_delta_between_qmans * 2); |
| nic_offset += nic_delta_between_nics; |
| } |
| } |
| } |
| |
| static void gaudi_stop_pci_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA)) |
| return; |
| |
| /* Stop upper CPs of QMANs 0.0 to 1.3 and 5.0 to 5.3 */ |
| WREG32(mmDMA0_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmDMA1_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmDMA5_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| } |
| |
| static void gaudi_stop_hbm_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA)) |
| return; |
| |
| /* Stop CPs of HBM DMA QMANs */ |
| |
| WREG32(mmDMA2_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmDMA3_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmDMA4_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmDMA6_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmDMA7_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| } |
| |
| static void gaudi_stop_mme_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MME)) |
| return; |
| |
| /* Stop CPs of MME QMANs */ |
| WREG32(mmMME2_QM_GLBL_CFG1, 0x1F << MME0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmMME0_QM_GLBL_CFG1, 0x1F << MME0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| } |
| |
| static void gaudi_stop_tpc_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return; |
| |
| WREG32(mmTPC0_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC1_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC2_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC3_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC4_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC5_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC6_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| WREG32(mmTPC7_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| } |
| |
| static void gaudi_stop_nic_qmans(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| /* Stop upper CPs of QMANs */ |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC0) |
| WREG32(mmNIC0_QM0_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC1) |
| WREG32(mmNIC0_QM1_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC2) |
| WREG32(mmNIC1_QM0_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC3) |
| WREG32(mmNIC1_QM1_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC4) |
| WREG32(mmNIC2_QM0_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC5) |
| WREG32(mmNIC2_QM1_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC6) |
| WREG32(mmNIC3_QM0_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC7) |
| WREG32(mmNIC3_QM1_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC8) |
| WREG32(mmNIC4_QM0_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC9) |
| WREG32(mmNIC4_QM1_GLBL_CFG1, |
| NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK | |
| NIC0_QM0_GLBL_CFG1_CP_STOP_MASK); |
| } |
| |
| static void gaudi_pci_dma_stall(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA)) |
| return; |
| |
| WREG32(mmDMA0_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| WREG32(mmDMA1_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| WREG32(mmDMA5_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| } |
| |
| static void gaudi_hbm_dma_stall(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA)) |
| return; |
| |
| WREG32(mmDMA2_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| WREG32(mmDMA3_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| WREG32(mmDMA4_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| WREG32(mmDMA6_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| WREG32(mmDMA7_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT); |
| } |
| |
| static void gaudi_mme_stall(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MME)) |
| return; |
| |
| /* WA for H3-1800 bug: do ACC and SBAB writes twice */ |
| WREG32(mmMME0_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME0_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME0_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME0_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME1_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME1_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME1_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME1_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME2_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME2_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME2_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME2_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME3_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME3_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT); |
| WREG32(mmMME3_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| WREG32(mmMME3_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT); |
| } |
| |
| static void gaudi_tpc_stall(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return; |
| |
| WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); |
| } |
| |
| static void gaudi_set_clock_gating(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 qman_offset; |
| bool enable; |
| int i; |
| |
| /* In case we are during debug session, don't enable the clock gate |
| * as it may interfere |
| */ |
| if (hdev->in_debug) |
| return; |
| |
| if (hdev->asic_prop.fw_security_enabled) |
| return; |
| |
| for (i = GAUDI_PCI_DMA_1, qman_offset = 0 ; i < GAUDI_HBM_DMA_1 ; i++) { |
| enable = !!(hdev->clock_gating_mask & |
| (BIT_ULL(gaudi_dma_assignment[i]))); |
| |
| qman_offset = gaudi_dma_assignment[i] * DMA_QMAN_OFFSET; |
| WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset, |
| enable ? QMAN_CGM1_PWR_GATE_EN : 0); |
| WREG32(mmDMA0_QM_CGM_CFG + qman_offset, |
| enable ? QMAN_UPPER_CP_CGM_PWR_GATE_EN : 0); |
| } |
| |
| for (i = GAUDI_HBM_DMA_1 ; i < GAUDI_DMA_MAX ; i++) { |
| enable = !!(hdev->clock_gating_mask & |
| (BIT_ULL(gaudi_dma_assignment[i]))); |
| |
| /* GC sends work to DMA engine through Upper CP in DMA5 so |
| * we need to not enable clock gating in that DMA |
| */ |
| if (i == GAUDI_HBM_DMA_4) |
| enable = 0; |
| |
| qman_offset = gaudi_dma_assignment[i] * DMA_QMAN_OFFSET; |
| WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset, |
| enable ? QMAN_CGM1_PWR_GATE_EN : 0); |
| WREG32(mmDMA0_QM_CGM_CFG + qman_offset, |
| enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0); |
| } |
| |
| enable = !!(hdev->clock_gating_mask & (BIT_ULL(GAUDI_ENGINE_ID_MME_0))); |
| WREG32(mmMME0_QM_CGM_CFG1, enable ? QMAN_CGM1_PWR_GATE_EN : 0); |
| WREG32(mmMME0_QM_CGM_CFG, enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0); |
| |
| enable = !!(hdev->clock_gating_mask & (BIT_ULL(GAUDI_ENGINE_ID_MME_2))); |
| WREG32(mmMME2_QM_CGM_CFG1, enable ? QMAN_CGM1_PWR_GATE_EN : 0); |
| WREG32(mmMME2_QM_CGM_CFG, enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0); |
| |
| for (i = 0, qman_offset = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) { |
| enable = !!(hdev->clock_gating_mask & |
| (BIT_ULL(GAUDI_ENGINE_ID_TPC_0 + i))); |
| |
| WREG32(mmTPC0_QM_CGM_CFG1 + qman_offset, |
| enable ? QMAN_CGM1_PWR_GATE_EN : 0); |
| WREG32(mmTPC0_QM_CGM_CFG + qman_offset, |
| enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0); |
| |
| qman_offset += TPC_QMAN_OFFSET; |
| } |
| |
| gaudi->hw_cap_initialized |= HW_CAP_CLK_GATE; |
| } |
| |
| static void gaudi_disable_clock_gating(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 qman_offset; |
| int i; |
| |
| if (hdev->asic_prop.fw_security_enabled) |
| return; |
| |
| for (i = 0, qman_offset = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) { |
| WREG32(mmDMA0_QM_CGM_CFG + qman_offset, 0); |
| WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset, 0); |
| |
| qman_offset += (mmDMA1_QM_CGM_CFG - mmDMA0_QM_CGM_CFG); |
| } |
| |
| WREG32(mmMME0_QM_CGM_CFG, 0); |
| WREG32(mmMME0_QM_CGM_CFG1, 0); |
| WREG32(mmMME2_QM_CGM_CFG, 0); |
| WREG32(mmMME2_QM_CGM_CFG1, 0); |
| |
| for (i = 0, qman_offset = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) { |
| WREG32(mmTPC0_QM_CGM_CFG + qman_offset, 0); |
| WREG32(mmTPC0_QM_CGM_CFG1 + qman_offset, 0); |
| |
| qman_offset += (mmTPC1_QM_CGM_CFG - mmTPC0_QM_CGM_CFG); |
| } |
| |
| gaudi->hw_cap_initialized &= ~(HW_CAP_CLK_GATE); |
| } |
| |
| static void gaudi_enable_timestamp(struct hl_device *hdev) |
| { |
| /* Disable the timestamp counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0); |
| |
| /* Zero the lower/upper parts of the 64-bit counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0); |
| WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0); |
| |
| /* Enable the counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1); |
| } |
| |
| static void gaudi_disable_timestamp(struct hl_device *hdev) |
| { |
| /* Disable the timestamp counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0); |
| } |
| |
| static void gaudi_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset) |
| { |
| u32 wait_timeout_ms; |
| |
| dev_info(hdev->dev, |
| "Halting compute engines and disabling interrupts\n"); |
| |
| if (hdev->pldm) |
| wait_timeout_ms = GAUDI_PLDM_RESET_WAIT_MSEC; |
| else |
| wait_timeout_ms = GAUDI_RESET_WAIT_MSEC; |
| |
| if (fw_reset) |
| goto skip_engines; |
| |
| gaudi_stop_nic_qmans(hdev); |
| gaudi_stop_mme_qmans(hdev); |
| gaudi_stop_tpc_qmans(hdev); |
| gaudi_stop_hbm_dma_qmans(hdev); |
| gaudi_stop_pci_dma_qmans(hdev); |
| |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| msleep(wait_timeout_ms); |
| |
| gaudi_pci_dma_stall(hdev); |
| gaudi_hbm_dma_stall(hdev); |
| gaudi_tpc_stall(hdev); |
| gaudi_mme_stall(hdev); |
| |
| msleep(wait_timeout_ms); |
| |
| gaudi_disable_nic_qmans(hdev); |
| gaudi_disable_mme_qmans(hdev); |
| gaudi_disable_tpc_qmans(hdev); |
| gaudi_disable_hbm_dma_qmans(hdev); |
| gaudi_disable_pci_dma_qmans(hdev); |
| |
| gaudi_disable_timestamp(hdev); |
| |
| skip_engines: |
| gaudi_disable_msi(hdev); |
| } |
| |
| static int gaudi_mmu_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 hop0_addr; |
| int rc, i; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_MMU) |
| return 0; |
| |
| for (i = 0 ; i < prop->max_asid ; i++) { |
| hop0_addr = prop->mmu_pgt_addr + |
| (i * prop->mmu_hop_table_size); |
| |
| rc = gaudi_mmu_update_asid_hop0_addr(hdev, i, hop0_addr); |
| if (rc) { |
| dev_err(hdev->dev, |
| "failed to set hop0 addr for asid %d\n", i); |
| goto err; |
| } |
| } |
| |
| /* init MMU cache manage page */ |
| WREG32(mmSTLB_CACHE_INV_BASE_39_8, MMU_CACHE_MNG_ADDR >> 8); |
| WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR >> 40); |
| |
| /* mem cache invalidation */ |
| WREG32(mmSTLB_MEM_CACHE_INVALIDATION, 1); |
| |
| hdev->asic_funcs->mmu_invalidate_cache(hdev, true, 0); |
| |
| WREG32(mmMMU_UP_MMU_ENABLE, 1); |
| WREG32(mmMMU_UP_SPI_MASK, 0xF); |
| |
| WREG32(mmSTLB_HOP_CONFIGURATION, |
| hdev->mmu_huge_page_opt ? 0x30440 : 0x40440); |
| |
| /* |
| * The H/W expects the first PI after init to be 1. After wraparound |
| * we'll write 0. |
| */ |
| gaudi->mmu_cache_inv_pi = 1; |
| |
| gaudi->hw_cap_initialized |= HW_CAP_MMU; |
| |
| return 0; |
| |
| err: |
| return rc; |
| } |
| |
| static int gaudi_load_firmware_to_device(struct hl_device *hdev) |
| { |
| void __iomem *dst; |
| |
| dst = hdev->pcie_bar[HBM_BAR_ID] + LINUX_FW_OFFSET; |
| |
| return hl_fw_load_fw_to_device(hdev, GAUDI_LINUX_FW_FILE, dst, 0, 0); |
| } |
| |
| static int gaudi_load_boot_fit_to_device(struct hl_device *hdev) |
| { |
| void __iomem *dst; |
| |
| dst = hdev->pcie_bar[SRAM_BAR_ID] + BOOT_FIT_SRAM_OFFSET; |
| |
| return hl_fw_load_fw_to_device(hdev, GAUDI_BOOT_FIT_FILE, dst, 0, 0); |
| } |
| |
| static void gaudi_init_dynamic_firmware_loader(struct hl_device *hdev) |
| { |
| struct dynamic_fw_load_mgr *dynamic_loader; |
| struct cpu_dyn_regs *dyn_regs; |
| |
| dynamic_loader = &hdev->fw_loader.dynamic_loader; |
| |
| /* |
| * here we update initial values for few specific dynamic regs (as |
| * before reading the first descriptor from FW those value has to be |
| * hard-coded) in later stages of the protocol those values will be |
| * updated automatically by reading the FW descriptor so data there |
| * will always be up-to-date |
| */ |
| dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs; |
| dyn_regs->kmd_msg_to_cpu = |
| cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU); |
| dyn_regs->cpu_cmd_status_to_host = |
| cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST); |
| |
| dynamic_loader->wait_for_bl_timeout = GAUDI_WAIT_FOR_BL_TIMEOUT_USEC; |
| } |
| |
| static void gaudi_init_static_firmware_loader(struct hl_device *hdev) |
| { |
| struct static_fw_load_mgr *static_loader; |
| |
| static_loader = &hdev->fw_loader.static_loader; |
| |
| static_loader->preboot_version_max_off = SRAM_SIZE - VERSION_MAX_LEN; |
| static_loader->boot_fit_version_max_off = SRAM_SIZE - VERSION_MAX_LEN; |
| static_loader->kmd_msg_to_cpu_reg = mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU; |
| static_loader->cpu_cmd_status_to_host_reg = mmCPU_CMD_STATUS_TO_HOST; |
| static_loader->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS; |
| static_loader->cpu_boot_dev_status0_reg = mmCPU_BOOT_DEV_STS0; |
| static_loader->cpu_boot_dev_status1_reg = mmCPU_BOOT_DEV_STS1; |
| static_loader->boot_err0_reg = mmCPU_BOOT_ERR0; |
| static_loader->boot_err1_reg = mmCPU_BOOT_ERR1; |
| static_loader->preboot_version_offset_reg = mmPREBOOT_VER_OFFSET; |
| static_loader->boot_fit_version_offset_reg = mmUBOOT_VER_OFFSET; |
| static_loader->sram_offset_mask = ~(lower_32_bits(SRAM_BASE_ADDR)); |
| static_loader->cpu_reset_wait_msec = hdev->pldm ? |
| GAUDI_PLDM_RESET_WAIT_MSEC : |
| GAUDI_CPU_RESET_WAIT_MSEC; |
| } |
| |
| static void gaudi_init_firmware_loader(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct fw_load_mgr *fw_loader = &hdev->fw_loader; |
| |
| /* fill common fields */ |
| fw_loader->linux_loaded = false; |
| fw_loader->boot_fit_img.image_name = GAUDI_BOOT_FIT_FILE; |
| fw_loader->linux_img.image_name = GAUDI_LINUX_FW_FILE; |
| fw_loader->cpu_timeout = GAUDI_CPU_TIMEOUT_USEC; |
| fw_loader->boot_fit_timeout = GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC; |
| fw_loader->skip_bmc = !hdev->bmc_enable; |
| fw_loader->sram_bar_id = SRAM_BAR_ID; |
| fw_loader->dram_bar_id = HBM_BAR_ID; |
| |
| if (prop->dynamic_fw_load) |
| gaudi_init_dynamic_firmware_loader(hdev); |
| else |
| gaudi_init_static_firmware_loader(hdev); |
| } |
| |
| static int gaudi_init_cpu(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int rc; |
| |
| if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) |
| return 0; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_CPU) |
| return 0; |
| |
| /* |
| * The device CPU works with 40 bits addresses. |
| * This register sets the extension to 50 bits. |
| */ |
| if (!hdev->asic_prop.fw_security_enabled) |
| WREG32(mmCPU_IF_CPU_MSB_ADDR, hdev->cpu_pci_msb_addr); |
| |
| rc = hl_fw_init_cpu(hdev); |
| |
| if (rc) |
| return rc; |
| |
| gaudi->hw_cap_initialized |= HW_CAP_CPU; |
| |
| return 0; |
| } |
| |
| static int gaudi_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 status, irq_handler_offset; |
| struct hl_eq *eq; |
| struct hl_hw_queue *cpu_pq = |
| &hdev->kernel_queues[GAUDI_QUEUE_ID_CPU_PQ]; |
| int err; |
| |
| if (!hdev->cpu_queues_enable) |
| return 0; |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_CPU_Q) |
| return 0; |
| |
| eq = &hdev->event_queue; |
| |
| WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address)); |
| WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address)); |
| |
| WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address)); |
| WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address)); |
| |
| WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW, |
| lower_32_bits(hdev->cpu_accessible_dma_address)); |
| WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH, |
| upper_32_bits(hdev->cpu_accessible_dma_address)); |
| |
| WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES); |
| WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES); |
| WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE); |
| |
| /* Used for EQ CI */ |
| WREG32(mmCPU_IF_EQ_RD_OFFS, 0); |
| |
| WREG32(mmCPU_IF_PF_PQ_PI, 0); |
| |
| if (gaudi->multi_msi_mode) |
| WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP); |
| else |
| WREG32(mmCPU_IF_QUEUE_INIT, |
| PQ_INIT_STATUS_READY_FOR_CP_SINGLE_MSI); |
| |
| irq_handler_offset = prop->gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_host_pi_upd_irq); |
| |
| WREG32(irq_handler_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_PI_UPDATE].cpu_id); |
| |
| err = hl_poll_timeout( |
| hdev, |
| mmCPU_IF_QUEUE_INIT, |
| status, |
| (status == PQ_INIT_STATUS_READY_FOR_HOST), |
| 1000, |
| cpu_timeout); |
| |
| if (err) { |
| dev_err(hdev->dev, |
| "Failed to communicate with Device CPU (CPU-CP timeout)\n"); |
| return -EIO; |
| } |
| |
| /* update FW application security bits */ |
| if (prop->fw_cpu_boot_dev_sts0_valid) |
| prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0); |
| if (prop->fw_cpu_boot_dev_sts1_valid) |
| prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1); |
| |
| gaudi->hw_cap_initialized |= HW_CAP_CPU_Q; |
| return 0; |
| } |
| |
| static void gaudi_pre_hw_init(struct hl_device *hdev) |
| { |
| /* Perform read from the device to make sure device is up */ |
| RREG32(mmHW_STATE); |
| |
| if (!hdev->asic_prop.fw_security_enabled) { |
| /* Set the access through PCI bars (Linux driver only) as |
| * secured |
| */ |
| WREG32(mmPCIE_WRAP_LBW_PROT_OVR, |
| (PCIE_WRAP_LBW_PROT_OVR_RD_EN_MASK | |
| PCIE_WRAP_LBW_PROT_OVR_WR_EN_MASK)); |
| |
| /* Perform read to flush the waiting writes to ensure |
| * configuration was set in the device |
| */ |
| RREG32(mmPCIE_WRAP_LBW_PROT_OVR); |
| } |
| |
| /* |
| * Let's mark in the H/W that we have reached this point. We check |
| * this value in the reset_before_init function to understand whether |
| * we need to reset the chip before doing H/W init. This register is |
| * cleared by the H/W upon H/W reset |
| */ |
| WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY); |
| } |
| |
| static int gaudi_hw_init(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int rc; |
| |
| gaudi_pre_hw_init(hdev); |
| |
| /* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE. |
| * So we set it here and if anyone tries to move it later to |
| * a different address, there will be an error |
| */ |
| if (hdev->asic_prop.iatu_done_by_fw) |
| gaudi->hbm_bar_cur_addr = DRAM_PHYS_BASE; |
| |
| /* |
| * Before pushing u-boot/linux to device, need to set the hbm bar to |
| * base address of dram |
| */ |
| if (gaudi_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) { |
| dev_err(hdev->dev, |
| "failed to map HBM bar to DRAM base address\n"); |
| return -EIO; |
| } |
| |
| rc = gaudi_init_cpu(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize CPU\n"); |
| return rc; |
| } |
| |
| /* In case the clock gating was enabled in preboot we need to disable |
| * it here before touching the MME/TPC registers. |
| * There is no need to take clk gating mutex because when this function |
| * runs, no other relevant code can run |
| */ |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| /* SRAM scrambler must be initialized after CPU is running from HBM */ |
| gaudi_init_scrambler_sram(hdev); |
| |
| /* This is here just in case we are working without CPU */ |
| gaudi_init_scrambler_hbm(hdev); |
| |
| gaudi_init_golden_registers(hdev); |
| |
| rc = gaudi_mmu_init(hdev); |
| if (rc) |
| return rc; |
| |
| gaudi_init_security(hdev); |
| |
| gaudi_init_pci_dma_qmans(hdev); |
| |
| gaudi_init_hbm_dma_qmans(hdev); |
| |
| gaudi_init_mme_qmans(hdev); |
| |
| gaudi_init_tpc_qmans(hdev); |
| |
| gaudi_init_nic_qmans(hdev); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| |
| gaudi_enable_timestamp(hdev); |
| |
| /* MSI must be enabled before CPU queues and NIC are initialized */ |
| rc = gaudi_enable_msi(hdev); |
| if (rc) |
| goto disable_queues; |
| |
| /* must be called after MSI was enabled */ |
| rc = gaudi_init_cpu_queues(hdev, GAUDI_CPU_TIMEOUT_USEC); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n", |
| rc); |
| goto disable_msi; |
| } |
| |
| /* Perform read from the device to flush all configuration */ |
| RREG32(mmHW_STATE); |
| |
| return 0; |
| |
| disable_msi: |
| gaudi_disable_msi(hdev); |
| disable_queues: |
| gaudi_disable_mme_qmans(hdev); |
| gaudi_disable_pci_dma_qmans(hdev); |
| |
| return rc; |
| } |
| |
| static void gaudi_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 status, reset_timeout_ms, cpu_timeout_ms, irq_handler_offset; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| bool driver_performs_reset; |
| |
| if (!hard_reset) { |
| dev_err(hdev->dev, "GAUDI doesn't support soft-reset\n"); |
| return; |
| } |
| |
| if (hdev->pldm) { |
| reset_timeout_ms = GAUDI_PLDM_HRESET_TIMEOUT_MSEC; |
| cpu_timeout_ms = GAUDI_PLDM_RESET_WAIT_MSEC; |
| } else { |
| reset_timeout_ms = GAUDI_RESET_TIMEOUT_MSEC; |
| cpu_timeout_ms = GAUDI_CPU_RESET_WAIT_MSEC; |
| } |
| |
| if (fw_reset) { |
| dev_info(hdev->dev, |
| "Firmware performs HARD reset, going to wait %dms\n", |
| reset_timeout_ms); |
| |
| goto skip_reset; |
| } |
| |
| driver_performs_reset = !!(!hdev->asic_prop.fw_security_enabled && |
| !hdev->asic_prop.hard_reset_done_by_fw); |
| |
| /* Set device to handle FLR by H/W as we will put the device CPU to |
| * halt mode |
| */ |
| if (driver_performs_reset) |
| WREG32(mmPCIE_AUX_FLR_CTRL, (PCIE_AUX_FLR_CTRL_HW_CTRL_MASK | |
| PCIE_AUX_FLR_CTRL_INT_MASK_MASK)); |
| |
| /* If linux is loaded in the device CPU we need to communicate with it |
| * via the GIC. Otherwise, we need to use COMMS or the MSG_TO_CPU |
| * registers in case of old F/Ws |
| */ |
| if (hdev->fw_loader.linux_loaded) { |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_host_halt_irq); |
| |
| WREG32(irq_handler_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_HALT_MACHINE].cpu_id); |
| } else { |
| if (hdev->asic_prop.hard_reset_done_by_fw) |
| hl_fw_ask_hard_reset_without_linux(hdev); |
| else |
| hl_fw_ask_halt_machine_without_linux(hdev); |
| } |
| |
| if (driver_performs_reset) { |
| |
| /* Configure the reset registers. Must be done as early as |
| * possible in case we fail during H/W initialization |
| */ |
| WREG32(mmPSOC_GLOBAL_CONF_SOFT_RST_CFG_H, |
| (CFG_RST_H_DMA_MASK | |
| CFG_RST_H_MME_MASK | |
| CFG_RST_H_SM_MASK | |
| CFG_RST_H_TPC_7_MASK)); |
| |
| WREG32(mmPSOC_GLOBAL_CONF_SOFT_RST_CFG_L, CFG_RST_L_TPC_MASK); |
| |
| WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG_H, |
| (CFG_RST_H_HBM_MASK | |
| CFG_RST_H_TPC_7_MASK | |
| CFG_RST_H_NIC_MASK | |
| CFG_RST_H_SM_MASK | |
| CFG_RST_H_DMA_MASK | |
| CFG_RST_H_MME_MASK | |
| CFG_RST_H_CPU_MASK | |
| CFG_RST_H_MMU_MASK)); |
| |
| WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG_L, |
| (CFG_RST_L_IF_MASK | |
| CFG_RST_L_PSOC_MASK | |
| CFG_RST_L_TPC_MASK)); |
| |
| msleep(cpu_timeout_ms); |
| |
| /* Tell ASIC not to re-initialize PCIe */ |
| WREG32(mmPREBOOT_PCIE_EN, LKD_HARD_RESET_MAGIC); |
| |
| /* Restart BTL/BLR upon hard-reset */ |
| WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START, 1); |
| |
| WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST, |
| 1 << PSOC_GLOBAL_CONF_SW_ALL_RST_IND_SHIFT); |
| |
| dev_info(hdev->dev, |
| "Issued HARD reset command, going to wait %dms\n", |
| reset_timeout_ms); |
| } else { |
| dev_info(hdev->dev, |
| "Firmware performs HARD reset, going to wait %dms\n", |
| reset_timeout_ms); |
| } |
| |
| skip_reset: |
| /* |
| * After hard reset, we can't poll the BTM_FSM register because the PSOC |
| * itself is in reset. Need to wait until the reset is deasserted |
| */ |
| msleep(reset_timeout_ms); |
| |
| status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM); |
| if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK) |
| dev_err(hdev->dev, |
| "Timeout while waiting for device to reset 0x%x\n", |
| status); |
| |
| if (gaudi) { |
| gaudi->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q | |
| HW_CAP_HBM | HW_CAP_PCI_DMA | |
| HW_CAP_MME | HW_CAP_TPC_MASK | |
| HW_CAP_HBM_DMA | HW_CAP_PLL | |
| HW_CAP_NIC_MASK | HW_CAP_MMU | |
| HW_CAP_SRAM_SCRAMBLER | |
| HW_CAP_HBM_SCRAMBLER | |
| HW_CAP_CLK_GATE); |
| |
| memset(gaudi->events_stat, 0, sizeof(gaudi->events_stat)); |
| |
| hdev->device_cpu_is_halted = false; |
| } |
| } |
| |
| static int gaudi_suspend(struct hl_device *hdev) |
| { |
| int rc; |
| |
| rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS); |
| if (rc) |
| dev_err(hdev->dev, "Failed to disable PCI access from CPU\n"); |
| |
| return rc; |
| } |
| |
| static int gaudi_resume(struct hl_device *hdev) |
| { |
| return gaudi_init_iatu(hdev); |
| } |
| |
| static int gaudi_mmap(struct hl_device *hdev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size) |
| { |
| int rc; |
| |
| vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | |
| VM_DONTCOPY | VM_NORESERVE; |
| |
| rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, |
| (dma_addr - HOST_PHYS_BASE), size); |
| if (rc) |
| dev_err(hdev->dev, "dma_mmap_coherent error %d", rc); |
| |
| return rc; |
| } |
| |
| static void gaudi_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 db_reg_offset, db_value, dma_qm_offset, q_off, irq_handler_offset; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| bool invalid_queue = false; |
| int dma_id; |
| |
| switch (hw_queue_id) { |
| case GAUDI_QUEUE_ID_DMA_0_0...GAUDI_QUEUE_ID_DMA_0_3: |
| dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_1]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + (hw_queue_id & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_1_0...GAUDI_QUEUE_ID_DMA_1_3: |
| dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_2]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + (hw_queue_id & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_2_0...GAUDI_QUEUE_ID_DMA_2_3: |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_1]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_3_0...GAUDI_QUEUE_ID_DMA_3_3: |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_2]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_4_0...GAUDI_QUEUE_ID_DMA_4_3: |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_3]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_5_0...GAUDI_QUEUE_ID_DMA_5_3: |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_4]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_6_0...GAUDI_QUEUE_ID_DMA_6_3: |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_5]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_DMA_7_0...GAUDI_QUEUE_ID_DMA_7_3: |
| dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_6]; |
| dma_qm_offset = dma_id * DMA_QMAN_OFFSET; |
| q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_CPU_PQ: |
| if (gaudi->hw_cap_initialized & HW_CAP_CPU_Q) |
| db_reg_offset = mmCPU_IF_PF_PQ_PI; |
| else |
| invalid_queue = true; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_0_0: |
| db_reg_offset = mmMME2_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_0_1: |
| db_reg_offset = mmMME2_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_0_2: |
| db_reg_offset = mmMME2_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_0_3: |
| db_reg_offset = mmMME2_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_1_0: |
| db_reg_offset = mmMME0_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_1_1: |
| db_reg_offset = mmMME0_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_1_2: |
| db_reg_offset = mmMME0_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_MME_1_3: |
| db_reg_offset = mmMME0_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_0_0: |
| db_reg_offset = mmTPC0_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_0_1: |
| db_reg_offset = mmTPC0_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_0_2: |
| db_reg_offset = mmTPC0_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_0_3: |
| db_reg_offset = mmTPC0_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_1_0: |
| db_reg_offset = mmTPC1_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_1_1: |
| db_reg_offset = mmTPC1_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_1_2: |
| db_reg_offset = mmTPC1_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_1_3: |
| db_reg_offset = mmTPC1_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_2_0: |
| db_reg_offset = mmTPC2_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_2_1: |
| db_reg_offset = mmTPC2_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_2_2: |
| db_reg_offset = mmTPC2_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_2_3: |
| db_reg_offset = mmTPC2_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_3_0: |
| db_reg_offset = mmTPC3_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_3_1: |
| db_reg_offset = mmTPC3_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_3_2: |
| db_reg_offset = mmTPC3_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_3_3: |
| db_reg_offset = mmTPC3_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_4_0: |
| db_reg_offset = mmTPC4_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_4_1: |
| db_reg_offset = mmTPC4_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_4_2: |
| db_reg_offset = mmTPC4_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_4_3: |
| db_reg_offset = mmTPC4_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_5_0: |
| db_reg_offset = mmTPC5_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_5_1: |
| db_reg_offset = mmTPC5_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_5_2: |
| db_reg_offset = mmTPC5_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_5_3: |
| db_reg_offset = mmTPC5_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_6_0: |
| db_reg_offset = mmTPC6_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_6_1: |
| db_reg_offset = mmTPC6_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_6_2: |
| db_reg_offset = mmTPC6_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_6_3: |
| db_reg_offset = mmTPC6_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_7_0: |
| db_reg_offset = mmTPC7_QM_PQ_PI_0; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_7_1: |
| db_reg_offset = mmTPC7_QM_PQ_PI_1; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_7_2: |
| db_reg_offset = mmTPC7_QM_PQ_PI_2; |
| break; |
| |
| case GAUDI_QUEUE_ID_TPC_7_3: |
| db_reg_offset = mmTPC7_QM_PQ_PI_3; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_0_0...GAUDI_QUEUE_ID_NIC_0_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC0)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC0_QM0_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_1_0...GAUDI_QUEUE_ID_NIC_1_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC1)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC0_QM1_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_2_0...GAUDI_QUEUE_ID_NIC_2_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC2)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC1_QM0_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_3_0...GAUDI_QUEUE_ID_NIC_3_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC3)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC1_QM1_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_4_0...GAUDI_QUEUE_ID_NIC_4_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC4)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC2_QM0_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_5_0...GAUDI_QUEUE_ID_NIC_5_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC5)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC2_QM1_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_6_0...GAUDI_QUEUE_ID_NIC_6_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC6)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC3_QM0_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_7_0...GAUDI_QUEUE_ID_NIC_7_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC7)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC3_QM1_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_8_0...GAUDI_QUEUE_ID_NIC_8_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC8)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC4_QM0_PQ_PI_0 + q_off; |
| break; |
| |
| case GAUDI_QUEUE_ID_NIC_9_0...GAUDI_QUEUE_ID_NIC_9_3: |
| if (!(gaudi->hw_cap_initialized & HW_CAP_NIC9)) |
| invalid_queue = true; |
| |
| q_off = ((hw_queue_id - 1) & 0x3) * 4; |
| db_reg_offset = mmNIC4_QM1_PQ_PI_0 + q_off; |
| break; |
| |
| default: |
| invalid_queue = true; |
| } |
| |
| if (invalid_queue) { |
| /* Should never get here */ |
| dev_err(hdev->dev, "h/w queue %d is invalid. Can't set pi\n", |
| hw_queue_id); |
| return; |
| } |
| |
| db_value = pi; |
| |
| /* ring the doorbell */ |
| WREG32(db_reg_offset, db_value); |
| |
| if (hw_queue_id == GAUDI_QUEUE_ID_CPU_PQ) { |
| /* make sure device CPU will read latest data from host */ |
| mb(); |
| |
| irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_host_pi_upd_irq); |
| |
| WREG32(irq_handler_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_PI_UPDATE].cpu_id); |
| } |
| } |
| |
| static void gaudi_pqe_write(struct hl_device *hdev, __le64 *pqe, |
| struct hl_bd *bd) |
| { |
| __le64 *pbd = (__le64 *) bd; |
| |
| /* The QMANs are on the host memory so a simple copy suffice */ |
| pqe[0] = pbd[0]; |
| pqe[1] = pbd[1]; |
| } |
| |
| static void *gaudi_dma_alloc_coherent(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flags) |
| { |
| void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size, |
| dma_handle, flags); |
| |
| /* Shift to the device's base physical address of host memory */ |
| if (kernel_addr) |
| *dma_handle += HOST_PHYS_BASE; |
| |
| return kernel_addr; |
| } |
| |
| static void gaudi_dma_free_coherent(struct hl_device *hdev, size_t size, |
| void *cpu_addr, dma_addr_t dma_handle) |
| { |
| /* Cancel the device's base physical address of host memory */ |
| dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE; |
| |
| dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle); |
| } |
| |
| static int gaudi_hbm_scrubbing(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 cur_addr = DRAM_BASE_ADDR_USER; |
| u32 val; |
| u32 chunk_size; |
| int rc, dma_id; |
| |
| while (cur_addr < prop->dram_end_address) { |
| for (dma_id = 0 ; dma_id < DMA_NUMBER_OF_CHANNELS ; dma_id++) { |
| u32 dma_offset = dma_id * DMA_CORE_OFFSET; |
| |
| chunk_size = |
| min((u64)SZ_2G, prop->dram_end_address - cur_addr); |
| |
| dev_dbg(hdev->dev, |
| "Doing HBM scrubbing for 0x%09llx - 0x%09llx\n", |
| cur_addr, cur_addr + chunk_size); |
| |
| WREG32(mmDMA0_CORE_SRC_BASE_LO + dma_offset, 0xdeadbeaf); |
| WREG32(mmDMA0_CORE_SRC_BASE_HI + dma_offset, 0xdeadbeaf); |
| WREG32(mmDMA0_CORE_DST_BASE_LO + dma_offset, |
| lower_32_bits(cur_addr)); |
| WREG32(mmDMA0_CORE_DST_BASE_HI + dma_offset, |
| upper_32_bits(cur_addr)); |
| WREG32(mmDMA0_CORE_DST_TSIZE_0 + dma_offset, |
| chunk_size); |
| WREG32(mmDMA0_CORE_COMMIT + dma_offset, |
| ((1 << DMA0_CORE_COMMIT_LIN_SHIFT) | |
| (1 << DMA0_CORE_COMMIT_MEM_SET_SHIFT))); |
| |
| cur_addr += chunk_size; |
| |
| if (cur_addr == prop->dram_end_address) |
| break; |
| } |
| |
| for (dma_id = 0 ; dma_id < DMA_NUMBER_OF_CHANNELS ; dma_id++) { |
| u32 dma_offset = dma_id * DMA_CORE_OFFSET; |
| |
| rc = hl_poll_timeout( |
| hdev, |
| mmDMA0_CORE_STS0 + dma_offset, |
| val, |
| ((val & DMA0_CORE_STS0_BUSY_MASK) == 0), |
| 1000, |
| HBM_SCRUBBING_TIMEOUT_US); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "DMA Timeout during HBM scrubbing of DMA #%d\n", |
| dma_id); |
| return -EIO; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi_scrub_device_mem(struct hl_device *hdev, u64 addr, u64 size) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int rc = 0; |
| u64 val = 0; |
| |
| if (!hdev->memory_scrub) |
| return 0; |
| |
| if (!addr && !size) { |
| /* Wait till device is idle */ |
| rc = hl_poll_timeout( |
| hdev, |
| mmDMA0_CORE_STS0/* dummy */, |
| val/* dummy */, |
| (hdev->asic_funcs->is_device_idle(hdev, NULL, |
| 0, NULL)), |
| 1000, |
| HBM_SCRUBBING_TIMEOUT_US); |
| if (rc) { |
| dev_err(hdev->dev, "waiting for idle timeout\n"); |
| return -EIO; |
| } |
| |
| /* Scrub SRAM */ |
| addr = prop->sram_user_base_address; |
| size = hdev->pldm ? 0x10000 : |
| (prop->sram_size - SRAM_USER_BASE_OFFSET); |
| val = 0x7777777777777777ull; |
| |
| rc = gaudi_memset_device_memory(hdev, addr, size, val); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to clear SRAM in mem scrub all\n"); |
| return rc; |
| } |
| |
| mutex_lock(&gaudi->clk_gate_mutex); |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| /* Scrub HBM using all DMA channels in parallel */ |
| rc = gaudi_hbm_scrubbing(hdev); |
| if (rc) |
| dev_err(hdev->dev, |
| "Failed to clear HBM in mem scrub all\n"); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| } |
| |
| return rc; |
| } |
| |
| static void *gaudi_get_int_queue_base(struct hl_device *hdev, |
| u32 queue_id, dma_addr_t *dma_handle, |
| u16 *queue_len) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct gaudi_internal_qman_info *q; |
| |
| if (queue_id >= GAUDI_QUEUE_ID_SIZE || |
| gaudi_queue_type[queue_id] != QUEUE_TYPE_INT) { |
| dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id); |
| return NULL; |
| } |
| |
| q = &gaudi->internal_qmans[queue_id]; |
| *dma_handle = q->pq_dma_addr; |
| *queue_len = q->pq_size / QMAN_PQ_ENTRY_SIZE; |
| |
| return q->pq_kernel_addr; |
| } |
| |
| static int gaudi_send_cpu_message(struct hl_device *hdev, u32 *msg, |
| u16 len, u32 timeout, u64 *result) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) { |
| if (result) |
| *result = 0; |
| return 0; |
| } |
| |
| if (!timeout) |
| timeout = GAUDI_MSG_TO_CPU_TIMEOUT_USEC; |
| |
| return hl_fw_send_cpu_message(hdev, GAUDI_QUEUE_ID_CPU_PQ, msg, len, |
| timeout, result); |
| } |
| |
| static int gaudi_test_queue(struct hl_device *hdev, u32 hw_queue_id) |
| { |
| struct packet_msg_prot *fence_pkt; |
| dma_addr_t pkt_dma_addr; |
| u32 fence_val, tmp, timeout_usec; |
| dma_addr_t fence_dma_addr; |
| u32 *fence_ptr; |
| int rc; |
| |
| if (hdev->pldm) |
| timeout_usec = GAUDI_PLDM_TEST_QUEUE_WAIT_USEC; |
| else |
| timeout_usec = GAUDI_TEST_QUEUE_WAIT_USEC; |
| |
| fence_val = GAUDI_QMAN0_FENCE_VAL; |
| |
| fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, |
| &fence_dma_addr); |
| if (!fence_ptr) { |
| dev_err(hdev->dev, |
| "Failed to allocate memory for H/W queue %d testing\n", |
| hw_queue_id); |
| return -ENOMEM; |
| } |
| |
| *fence_ptr = 0; |
| |
| fence_pkt = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, |
| sizeof(struct packet_msg_prot), |
| GFP_KERNEL, &pkt_dma_addr); |
| if (!fence_pkt) { |
| dev_err(hdev->dev, |
| "Failed to allocate packet for H/W queue %d testing\n", |
| hw_queue_id); |
| rc = -ENOMEM; |
| goto free_fence_ptr; |
| } |
| |
| tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT); |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1); |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| fence_pkt->ctl = cpu_to_le32(tmp); |
| fence_pkt->value = cpu_to_le32(fence_val); |
| fence_pkt->addr = cpu_to_le64(fence_dma_addr); |
| |
| rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, |
| sizeof(struct packet_msg_prot), |
| pkt_dma_addr); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to send fence packet to H/W queue %d\n", |
| hw_queue_id); |
| goto free_pkt; |
| } |
| |
| rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val), |
| 1000, timeout_usec, true); |
| |
| hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, |
| "H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n", |
| hw_queue_id, (unsigned long long) fence_dma_addr, tmp); |
| rc = -EIO; |
| } |
| |
| free_pkt: |
| hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_pkt, |
| pkt_dma_addr); |
| free_fence_ptr: |
| hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr, |
| fence_dma_addr); |
| return rc; |
| } |
| |
| static int gaudi_test_cpu_queue(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| /* |
| * check capability here as send_cpu_message() won't update the result |
| * value if no capability |
| */ |
| if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_test_cpu_queue(hdev); |
| } |
| |
| static int gaudi_test_queues(struct hl_device *hdev) |
| { |
| int i, rc, ret_val = 0; |
| |
| for (i = 0 ; i < hdev->asic_prop.max_queues ; i++) { |
| if (hdev->asic_prop.hw_queues_props[i].type == QUEUE_TYPE_EXT) { |
| rc = gaudi_test_queue(hdev, i); |
| if (rc) |
| ret_val = -EINVAL; |
| } |
| } |
| |
| rc = gaudi_test_cpu_queue(hdev); |
| if (rc) |
| ret_val = -EINVAL; |
| |
| return ret_val; |
| } |
| |
| static void *gaudi_dma_pool_zalloc(struct hl_device *hdev, size_t size, |
| gfp_t mem_flags, dma_addr_t *dma_handle) |
| { |
| void *kernel_addr; |
| |
| if (size > GAUDI_DMA_POOL_BLK_SIZE) |
| return NULL; |
| |
| kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle); |
| |
| /* Shift to the device's base physical address of host memory */ |
| if (kernel_addr) |
| *dma_handle += HOST_PHYS_BASE; |
| |
| return kernel_addr; |
| } |
| |
| static void gaudi_dma_pool_free(struct hl_device *hdev, void *vaddr, |
| dma_addr_t dma_addr) |
| { |
| /* Cancel the device's base physical address of host memory */ |
| dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE; |
| |
| dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr); |
| } |
| |
| static void *gaudi_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, |
| size_t size, dma_addr_t *dma_handle) |
| { |
| return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); |
| } |
| |
| static void gaudi_cpu_accessible_dma_pool_free(struct hl_device *hdev, |
| size_t size, void *vaddr) |
| { |
| hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr); |
| } |
| |
| static int gaudi_dma_map_sg(struct hl_device *hdev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| if (!dma_map_sg(&hdev->pdev->dev, sgl, nents, dir)) |
| return -ENOMEM; |
| |
| /* Shift to the device's base physical address of host memory */ |
| for_each_sg(sgl, sg, nents, i) |
| sg->dma_address += HOST_PHYS_BASE; |
| |
| return 0; |
| } |
| |
| static void gaudi_dma_unmap_sg(struct hl_device *hdev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| /* Cancel the device's base physical address of host memory */ |
| for_each_sg(sgl, sg, nents, i) |
| sg->dma_address -= HOST_PHYS_BASE; |
| |
| dma_unmap_sg(&hdev->pdev->dev, sgl, nents, dir); |
| } |
| |
| static u32 gaudi_get_dma_desc_list_size(struct hl_device *hdev, |
| struct sg_table *sgt) |
| { |
| struct scatterlist *sg, *sg_next_iter; |
| u32 count, dma_desc_cnt; |
| u64 len, len_next; |
| dma_addr_t addr, addr_next; |
| |
| dma_desc_cnt = 0; |
| |
| for_each_sg(sgt->sgl, sg, sgt->nents, count) { |
| |
| len = sg_dma_len(sg); |
| addr = sg_dma_address(sg); |
| |
| if (len == 0) |
| break; |
| |
| while ((count + 1) < sgt->nents) { |
| sg_next_iter = sg_next(sg); |
| len_next = sg_dma_len(sg_next_iter); |
| addr_next = sg_dma_address(sg_next_iter); |
| |
| if (len_next == 0) |
| break; |
| |
| if ((addr + len == addr_next) && |
| (len + len_next <= DMA_MAX_TRANSFER_SIZE)) { |
| len += len_next; |
| count++; |
| sg = sg_next_iter; |
| } else { |
| break; |
| } |
| } |
| |
| dma_desc_cnt++; |
| } |
| |
| return dma_desc_cnt * sizeof(struct packet_lin_dma); |
| } |
| |
| static int gaudi_pin_memory_before_cs(struct hl_device *hdev, |
| struct hl_cs_parser *parser, |
| struct packet_lin_dma *user_dma_pkt, |
| u64 addr, enum dma_data_direction dir) |
| { |
| struct hl_userptr *userptr; |
| int rc; |
| |
| if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize), |
| parser->job_userptr_list, &userptr)) |
| goto already_pinned; |
| |
| userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); |
| if (!userptr) |
| return -ENOMEM; |
| |
| rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize), |
| userptr); |
| if (rc) |
| goto free_userptr; |
| |
| list_add_tail(&userptr->job_node, parser->job_userptr_list); |
| |
| rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl, |
| userptr->sgt->nents, dir); |
| if (rc) { |
| dev_err(hdev->dev, "failed to map sgt with DMA region\n"); |
| goto unpin_memory; |
| } |
| |
| userptr->dma_mapped = true; |
| userptr->dir = dir; |
| |
| already_pinned: |
| parser->patched_cb_size += |
| gaudi_get_dma_desc_list_size(hdev, userptr->sgt); |
| |
| return 0; |
| |
| unpin_memory: |
| list_del(&userptr->job_node); |
| hl_unpin_host_memory(hdev, userptr); |
| free_userptr: |
| kfree(userptr); |
| return rc; |
| } |
| |
| static int gaudi_validate_dma_pkt_host(struct hl_device *hdev, |
| struct hl_cs_parser *parser, |
| struct packet_lin_dma *user_dma_pkt, |
| bool src_in_host) |
| { |
| enum dma_data_direction dir; |
| bool skip_host_mem_pin = false, user_memset; |
| u64 addr; |
| int rc = 0; |
| |
| user_memset = (le32_to_cpu(user_dma_pkt->ctl) & |
| GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK) >> |
| GAUDI_PKT_LIN_DMA_CTL_MEMSET_SHIFT; |
| |
| if (src_in_host) { |
| if (user_memset) |
| skip_host_mem_pin = true; |
| |
| dev_dbg(hdev->dev, "DMA direction is HOST --> DEVICE\n"); |
| dir = DMA_TO_DEVICE; |
| addr = le64_to_cpu(user_dma_pkt->src_addr); |
| } else { |
| dev_dbg(hdev->dev, "DMA direction is DEVICE --> HOST\n"); |
| dir = DMA_FROM_DEVICE; |
| addr = (le64_to_cpu(user_dma_pkt->dst_addr) & |
| GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >> |
| GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT; |
| } |
| |
| if (skip_host_mem_pin) |
| parser->patched_cb_size += sizeof(*user_dma_pkt); |
| else |
| rc = gaudi_pin_memory_before_cs(hdev, parser, user_dma_pkt, |
| addr, dir); |
| |
| return rc; |
| } |
| |
| static int gaudi_validate_dma_pkt_no_mmu(struct hl_device *hdev, |
| struct hl_cs_parser *parser, |
| struct packet_lin_dma *user_dma_pkt) |
| { |
| bool src_in_host = false; |
| u64 dst_addr = (le64_to_cpu(user_dma_pkt->dst_addr) & |
| GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >> |
| GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT; |
| |
| dev_dbg(hdev->dev, "DMA packet details:\n"); |
| dev_dbg(hdev->dev, "source == 0x%llx\n", |
| le64_to_cpu(user_dma_pkt->src_addr)); |
| dev_dbg(hdev->dev, "destination == 0x%llx\n", dst_addr); |
| dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize)); |
| |
| /* |
| * Special handling for DMA with size 0. Bypass all validations |
| * because no transactions will be done except for WR_COMP, which |
| * is not a security issue |
| */ |
| if (!le32_to_cpu(user_dma_pkt->tsize)) { |
| parser->patched_cb_size += sizeof(*user_dma_pkt); |
| return 0; |
| } |
| |
| if (parser->hw_queue_id <= GAUDI_QUEUE_ID_DMA_0_3) |
| src_in_host = true; |
| |
| return gaudi_validate_dma_pkt_host(hdev, parser, user_dma_pkt, |
| src_in_host); |
| } |
| |
| static int gaudi_validate_load_and_exe_pkt(struct hl_device *hdev, |
| struct hl_cs_parser *parser, |
| struct packet_load_and_exe *user_pkt) |
| { |
| u32 cfg; |
| |
| cfg = le32_to_cpu(user_pkt->cfg); |
| |
| if (cfg & GAUDI_PKT_LOAD_AND_EXE_CFG_DST_MASK) { |
| dev_err(hdev->dev, |
| "User not allowed to use Load and Execute\n"); |
| return -EPERM; |
| } |
| |
| parser->patched_cb_size += sizeof(struct packet_load_and_exe); |
| |
| return 0; |
| } |
| |
| static int gaudi_validate_cb(struct hl_device *hdev, |
| struct hl_cs_parser *parser, bool is_mmu) |
| { |
| u32 cb_parsed_length = 0; |
| int rc = 0; |
| |
| parser->patched_cb_size = 0; |
| |
| /* cb_user_size is more than 0 so loop will always be executed */ |
| while (cb_parsed_length < parser->user_cb_size) { |
| enum packet_id pkt_id; |
| u16 pkt_size; |
| struct gaudi_packet *user_pkt; |
| |
| user_pkt = parser->user_cb->kernel_address + cb_parsed_length; |
| |
| pkt_id = (enum packet_id) ( |
| (le64_to_cpu(user_pkt->header) & |
| PACKET_HEADER_PACKET_ID_MASK) >> |
| PACKET_HEADER_PACKET_ID_SHIFT); |
| |
| if (!validate_packet_id(pkt_id)) { |
| dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id); |
| rc = -EINVAL; |
| break; |
| } |
| |
| pkt_size = gaudi_packet_sizes[pkt_id]; |
| cb_parsed_length += pkt_size; |
| if (cb_parsed_length > parser->user_cb_size) { |
| dev_err(hdev->dev, |
| "packet 0x%x is out of CB boundary\n", pkt_id); |
| rc = -EINVAL; |
| break; |
| } |
| |
| switch (pkt_id) { |
| case PACKET_MSG_PROT: |
| dev_err(hdev->dev, |
| "User not allowed to use MSG_PROT\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_CP_DMA: |
| dev_err(hdev->dev, "User not allowed to use CP_DMA\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_STOP: |
| dev_err(hdev->dev, "User not allowed to use STOP\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_WREG_BULK: |
| dev_err(hdev->dev, |
| "User not allowed to use WREG_BULK\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_LOAD_AND_EXE: |
| rc = gaudi_validate_load_and_exe_pkt(hdev, parser, |
| (struct packet_load_and_exe *) user_pkt); |
| break; |
| |
| case PACKET_LIN_DMA: |
| parser->contains_dma_pkt = true; |
| if (is_mmu) |
| parser->patched_cb_size += pkt_size; |
| else |
| rc = gaudi_validate_dma_pkt_no_mmu(hdev, parser, |
| (struct packet_lin_dma *) user_pkt); |
| break; |
| |
| case PACKET_WREG_32: |
| case PACKET_MSG_LONG: |
| case PACKET_MSG_SHORT: |
| case PACKET_REPEAT: |
| case PACKET_FENCE: |
| case PACKET_NOP: |
| case PACKET_ARB_POINT: |
| parser->patched_cb_size += pkt_size; |
| break; |
| |
| default: |
| dev_err(hdev->dev, "Invalid packet header 0x%x\n", |
| pkt_id); |
| rc = -EINVAL; |
| break; |
| } |
| |
| if (rc) |
| break; |
| } |
| |
| /* |
| * The new CB should have space at the end for two MSG_PROT packets: |
| * 1. A packet that will act as a completion packet |
| * 2. A packet that will generate MSI-X interrupt |
| */ |
| if (parser->completion) |
| parser->patched_cb_size += sizeof(struct packet_msg_prot) * 2; |
| |
| return rc; |
| } |
| |
| static int gaudi_patch_dma_packet(struct hl_device *hdev, |
| struct hl_cs_parser *parser, |
| struct packet_lin_dma *user_dma_pkt, |
| struct packet_lin_dma *new_dma_pkt, |
| u32 *new_dma_pkt_size) |
| { |
| struct hl_userptr *userptr; |
| struct scatterlist *sg, *sg_next_iter; |
| u32 count, dma_desc_cnt, user_wrcomp_en_mask, ctl; |
| u64 len, len_next; |
| dma_addr_t dma_addr, dma_addr_next; |
| u64 device_memory_addr, addr; |
| enum dma_data_direction dir; |
| struct sg_table *sgt; |
| bool src_in_host = false; |
| bool skip_host_mem_pin = false; |
| bool user_memset; |
| |
| ctl = le32_to_cpu(user_dma_pkt->ctl); |
| |
| if (parser->hw_queue_id <= GAUDI_QUEUE_ID_DMA_0_3) |
| src_in_host = true; |
| |
| user_memset = (ctl & GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK) >> |
| GAUDI_PKT_LIN_DMA_CTL_MEMSET_SHIFT; |
| |
| if (src_in_host) { |
| addr = le64_to_cpu(user_dma_pkt->src_addr); |
| device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr); |
| dir = DMA_TO_DEVICE; |
| if (user_memset) |
| skip_host_mem_pin = true; |
| } else { |
| addr = le64_to_cpu(user_dma_pkt->dst_addr); |
| device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr); |
| dir = DMA_FROM_DEVICE; |
| } |
| |
| if ((!skip_host_mem_pin) && |
| (!hl_userptr_is_pinned(hdev, addr, |
| le32_to_cpu(user_dma_pkt->tsize), |
| parser->job_userptr_list, &userptr))) { |
| dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n", |
| addr, user_dma_pkt->tsize); |
| return -EFAULT; |
| } |
| |
| if ((user_memset) && (dir == DMA_TO_DEVICE)) { |
| memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt)); |
| *new_dma_pkt_size = sizeof(*user_dma_pkt); |
| return 0; |
| } |
| |
| user_wrcomp_en_mask = ctl & GAUDI_PKT_LIN_DMA_CTL_WRCOMP_EN_MASK; |
| |
| sgt = userptr->sgt; |
| dma_desc_cnt = 0; |
| |
| for_each_sg(sgt->sgl, sg, sgt->nents, count) { |
| len = sg_dma_len(sg); |
| dma_addr = sg_dma_address(sg); |
| |
| if (len == 0) |
| break; |
| |
| while ((count + 1) < sgt->nents) { |
| sg_next_iter = sg_next(sg); |
| len_next = sg_dma_len(sg_next_iter); |
| dma_addr_next = sg_dma_address(sg_next_iter); |
| |
| if (len_next == 0) |
| break; |
| |
| if ((dma_addr + len == dma_addr_next) && |
| (len + len_next <= DMA_MAX_TRANSFER_SIZE)) { |
| len += len_next; |
| count++; |
| sg = sg_next_iter; |
| } else { |
| break; |
| } |
| } |
| |
| ctl = le32_to_cpu(user_dma_pkt->ctl); |
| if (likely(dma_desc_cnt)) |
| ctl &= ~GAUDI_PKT_CTL_EB_MASK; |
| ctl &= ~GAUDI_PKT_LIN_DMA_CTL_WRCOMP_EN_MASK; |
| new_dma_pkt->ctl = cpu_to_le32(ctl); |
| new_dma_pkt->tsize = cpu_to_le32(len); |
| |
| if (dir == DMA_TO_DEVICE) { |
| new_dma_pkt->src_addr = cpu_to_le64(dma_addr); |
| new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr); |
| } else { |
| new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr); |
| new_dma_pkt->dst_addr = cpu_to_le64(dma_addr); |
| } |
| |
| if (!user_memset) |
| device_memory_addr += len; |
| dma_desc_cnt++; |
| new_dma_pkt++; |
| } |
| |
| if (!dma_desc_cnt) { |
| dev_err(hdev->dev, |
| "Error of 0 SG entries when patching DMA packet\n"); |
| return -EFAULT; |
| } |
| |
| /* Fix the last dma packet - wrcomp must be as user set it */ |
| new_dma_pkt--; |
| new_dma_pkt->ctl |= cpu_to_le32(user_wrcomp_en_mask); |
| |
| *new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma); |
| |
| return 0; |
| } |
| |
| static int gaudi_patch_cb(struct hl_device *hdev, |
| struct hl_cs_parser *parser) |
| { |
| u32 cb_parsed_length = 0; |
| u32 cb_patched_cur_length = 0; |
| int rc = 0; |
| |
| /* cb_user_size is more than 0 so loop will always be executed */ |
| while (cb_parsed_length < parser->user_cb_size) { |
| enum packet_id pkt_id; |
| u16 pkt_size; |
| u32 new_pkt_size = 0; |
| struct gaudi_packet *user_pkt, *kernel_pkt; |
| |
| user_pkt = parser->user_cb->kernel_address + cb_parsed_length; |
| kernel_pkt = parser->patched_cb->kernel_address + |
| cb_patched_cur_length; |
| |
| pkt_id = (enum packet_id) ( |
| (le64_to_cpu(user_pkt->header) & |
| PACKET_HEADER_PACKET_ID_MASK) >> |
| PACKET_HEADER_PACKET_ID_SHIFT); |
| |
| if (!validate_packet_id(pkt_id)) { |
| dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id); |
| rc = -EINVAL; |
| break; |
| } |
| |
| pkt_size = gaudi_packet_sizes[pkt_id]; |
| cb_parsed_length += pkt_size; |
| if (cb_parsed_length > parser->user_cb_size) { |
| dev_err(hdev->dev, |
| "packet 0x%x is out of CB boundary\n", pkt_id); |
| rc = -EINVAL; |
| break; |
| } |
| |
| switch (pkt_id) { |
| case PACKET_LIN_DMA: |
| rc = gaudi_patch_dma_packet(hdev, parser, |
| (struct packet_lin_dma *) user_pkt, |
| (struct packet_lin_dma *) kernel_pkt, |
| &new_pkt_size); |
| cb_patched_cur_length += new_pkt_size; |
| break; |
| |
| case PACKET_MSG_PROT: |
| dev_err(hdev->dev, |
| "User not allowed to use MSG_PROT\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_CP_DMA: |
| dev_err(hdev->dev, "User not allowed to use CP_DMA\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_STOP: |
| dev_err(hdev->dev, "User not allowed to use STOP\n"); |
| rc = -EPERM; |
| break; |
| |
| case PACKET_WREG_32: |
| case PACKET_WREG_BULK: |
| case PACKET_MSG_LONG: |
| case PACKET_MSG_SHORT: |
| case PACKET_REPEAT: |
| case PACKET_FENCE: |
| case PACKET_NOP: |
| case PACKET_ARB_POINT: |
| case PACKET_LOAD_AND_EXE: |
| memcpy(kernel_pkt, user_pkt, pkt_size); |
| cb_patched_cur_length += pkt_size; |
| break; |
| |
| default: |
| dev_err(hdev->dev, "Invalid packet header 0x%x\n", |
| pkt_id); |
| rc = -EINVAL; |
| break; |
| } |
| |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_parse_cb_mmu(struct hl_device *hdev, |
| struct hl_cs_parser *parser) |
| { |
| u64 patched_cb_handle; |
| u32 patched_cb_size; |
| struct hl_cb *user_cb; |
| int rc; |
| |
| /* |
| * The new CB should have space at the end for two MSG_PROT pkt: |
| * 1. A packet that will act as a completion packet |
| * 2. A packet that will generate MSI interrupt |
| */ |
| if (parser->completion) |
| parser->patched_cb_size = parser->user_cb_size + |
| sizeof(struct packet_msg_prot) * 2; |
| else |
| parser->patched_cb_size = parser->user_cb_size; |
| |
| rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, |
| parser->patched_cb_size, false, false, |
| &patched_cb_handle); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to allocate patched CB for DMA CS %d\n", |
| rc); |
| return rc; |
| } |
| |
| patched_cb_handle >>= PAGE_SHIFT; |
| parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, |
| (u32) patched_cb_handle); |
| /* hl_cb_get should never fail */ |
| if (!parser->patched_cb) { |
| dev_crit(hdev->dev, "DMA CB handle invalid 0x%x\n", |
| (u32) patched_cb_handle); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| /* |
| * The check that parser->user_cb_size <= parser->user_cb->size was done |
| * in validate_queue_index(). |
| */ |
| memcpy(parser->patched_cb->kernel_address, |
| parser->user_cb->kernel_address, |
| parser->user_cb_size); |
| |
| patched_cb_size = parser->patched_cb_size; |
| |
| /* Validate patched CB instead of user CB */ |
| user_cb = parser->user_cb; |
| parser->user_cb = parser->patched_cb; |
| rc = gaudi_validate_cb(hdev, parser, true); |
| parser->user_cb = user_cb; |
| |
| if (rc) { |
| hl_cb_put(parser->patched_cb); |
| goto out; |
| } |
| |
| if (patched_cb_size != parser->patched_cb_size) { |
| dev_err(hdev->dev, "user CB size mismatch\n"); |
| hl_cb_put(parser->patched_cb); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| out: |
| /* |
| * Always call cb destroy here because we still have 1 reference |
| * to it by calling cb_get earlier. After the job will be completed, |
| * cb_put will release it, but here we want to remove it from the |
| * idr |
| */ |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, |
| patched_cb_handle << PAGE_SHIFT); |
| |
| return rc; |
| } |
| |
| static int gaudi_parse_cb_no_mmu(struct hl_device *hdev, |
| struct hl_cs_parser *parser) |
| { |
| u64 patched_cb_handle; |
| int rc; |
| |
| rc = gaudi_validate_cb(hdev, parser, false); |
| |
| if (rc) |
| goto free_userptr; |
| |
| rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, |
| parser->patched_cb_size, false, false, |
| &patched_cb_handle); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to allocate patched CB for DMA CS %d\n", rc); |
| goto free_userptr; |
| } |
| |
| patched_cb_handle >>= PAGE_SHIFT; |
| parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, |
| (u32) patched_cb_handle); |
| /* hl_cb_get should never fail here */ |
| if (!parser->patched_cb) { |
| dev_crit(hdev->dev, "DMA CB handle invalid 0x%x\n", |
| (u32) patched_cb_handle); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| rc = gaudi_patch_cb(hdev, parser); |
| |
| if (rc) |
| hl_cb_put(parser->patched_cb); |
| |
| out: |
| /* |
| * Always call cb destroy here because we still have 1 reference |
| * to it by calling cb_get earlier. After the job will be completed, |
| * cb_put will release it, but here we want to remove it from the |
| * idr |
| */ |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, |
| patched_cb_handle << PAGE_SHIFT); |
| |
| free_userptr: |
| if (rc) |
| hl_userptr_delete_list(hdev, parser->job_userptr_list); |
| return rc; |
| } |
| |
| static int gaudi_parse_cb_no_ext_queue(struct hl_device *hdev, |
| struct hl_cs_parser *parser) |
| { |
| struct asic_fixed_properties *asic_prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 nic_mask_q_id = 1 << (HW_CAP_NIC_SHIFT + |
| ((parser->hw_queue_id - GAUDI_QUEUE_ID_NIC_0_0) >> 2)); |
| |
| if ((parser->hw_queue_id >= GAUDI_QUEUE_ID_NIC_0_0) && |
| (parser->hw_queue_id <= GAUDI_QUEUE_ID_NIC_9_3) && |
| (!(gaudi->hw_cap_initialized & nic_mask_q_id))) { |
| dev_err(hdev->dev, "h/w queue %d is disabled\n", |
| parser->hw_queue_id); |
| return -EINVAL; |
| } |
| |
| /* For internal queue jobs just check if CB address is valid */ |
| if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->sram_user_base_address, |
| asic_prop->sram_end_address)) |
| return 0; |
| |
| if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->dram_user_base_address, |
| asic_prop->dram_end_address)) |
| return 0; |
| |
| /* PMMU and HPMMU addresses are equal, check only one of them */ |
| if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->pmmu.start_addr, |
| asic_prop->pmmu.end_addr)) |
| return 0; |
| |
| dev_err(hdev->dev, |
| "CB address 0x%px + 0x%x for internal QMAN is not valid\n", |
| parser->user_cb, parser->user_cb_size); |
| |
| return -EFAULT; |
| } |
| |
| static int gaudi_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (parser->queue_type == QUEUE_TYPE_INT) |
| return gaudi_parse_cb_no_ext_queue(hdev, parser); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_MMU) |
| return gaudi_parse_cb_mmu(hdev, parser); |
| else |
| return gaudi_parse_cb_no_mmu(hdev, parser); |
| } |
| |
| static void gaudi_add_end_of_cb_packets(struct hl_device *hdev, |
| void *kernel_address, u32 len, |
| u64 cq_addr, u32 cq_val, u32 msi_vec, |
| bool eb) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct packet_msg_prot *cq_pkt; |
| u64 msi_addr; |
| u32 tmp; |
| |
| cq_pkt = kernel_address + len - (sizeof(struct packet_msg_prot) * 2); |
| |
| tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT); |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| if (eb) |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1); |
| |
| cq_pkt->ctl = cpu_to_le32(tmp); |
| cq_pkt->value = cpu_to_le32(cq_val); |
| cq_pkt->addr = cpu_to_le64(cq_addr); |
| |
| cq_pkt++; |
| |
| tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT); |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| cq_pkt->ctl = cpu_to_le32(tmp); |
| cq_pkt->value = cpu_to_le32(1); |
| |
| if (gaudi->multi_msi_mode) |
| msi_addr = mmPCIE_MSI_INTR_0 + msi_vec * 4; |
| else |
| msi_addr = mmPCIE_CORE_MSI_REQ; |
| |
| cq_pkt->addr = cpu_to_le64(CFG_BASE + msi_addr); |
| } |
| |
| static void gaudi_update_eq_ci(struct hl_device *hdev, u32 val) |
| { |
| WREG32(mmCPU_IF_EQ_RD_OFFS, val); |
| } |
| |
| static int gaudi_memset_device_memory(struct hl_device *hdev, u64 addr, |
| u32 size, u64 val) |
| { |
| struct packet_lin_dma *lin_dma_pkt; |
| struct hl_cs_job *job; |
| u32 cb_size, ctl, err_cause; |
| struct hl_cb *cb; |
| u64 id; |
| int rc; |
| |
| cb = hl_cb_kernel_create(hdev, PAGE_SIZE, false); |
| if (!cb) |
| return -EFAULT; |
| |
| lin_dma_pkt = cb->kernel_address; |
| memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt)); |
| cb_size = sizeof(*lin_dma_pkt); |
| |
| ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA); |
| ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_LIN_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| |
| lin_dma_pkt->ctl = cpu_to_le32(ctl); |
| lin_dma_pkt->src_addr = cpu_to_le64(val); |
| lin_dma_pkt->dst_addr |= cpu_to_le64(addr); |
| lin_dma_pkt->tsize = cpu_to_le32(size); |
| |
| job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true); |
| if (!job) { |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| goto release_cb; |
| } |
| |
| /* Verify DMA is OK */ |
| err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE); |
| if (err_cause && !hdev->init_done) { |
| dev_dbg(hdev->dev, |
| "Clearing DMA0 engine from errors (cause 0x%x)\n", |
| err_cause); |
| WREG32(mmDMA0_CORE_ERR_CAUSE, err_cause); |
| } |
| |
| job->id = 0; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0; |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = job->user_cb_size + sizeof(struct packet_msg_prot); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = gaudi_send_job_on_qman0(hdev, job); |
| hl_debugfs_remove_job(hdev, job); |
| kfree(job); |
| atomic_dec(&cb->cs_cnt); |
| |
| /* Verify DMA is OK */ |
| err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE); |
| if (err_cause) { |
| dev_err(hdev->dev, "DMA Failed, cause 0x%x\n", err_cause); |
| rc = -EIO; |
| if (!hdev->init_done) { |
| dev_dbg(hdev->dev, |
| "Clearing DMA0 engine from errors (cause 0x%x)\n", |
| err_cause); |
| WREG32(mmDMA0_CORE_ERR_CAUSE, err_cause); |
| } |
| } |
| |
| release_cb: |
| id = cb->id; |
| hl_cb_put(cb); |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, id << PAGE_SHIFT); |
| |
| return rc; |
| } |
| |
| static int gaudi_memset_registers(struct hl_device *hdev, u64 reg_base, |
| u32 num_regs, u32 val) |
| { |
| struct packet_msg_long *pkt; |
| struct hl_cs_job *job; |
| u32 cb_size, ctl; |
| struct hl_cb *cb; |
| int i, rc; |
| |
| cb_size = (sizeof(*pkt) * num_regs) + sizeof(struct packet_msg_prot); |
| |
| if (cb_size > SZ_2M) { |
| dev_err(hdev->dev, "CB size must be smaller than %uMB", SZ_2M); |
| return -ENOMEM; |
| } |
| |
| cb = hl_cb_kernel_create(hdev, cb_size, false); |
| if (!cb) |
| return -EFAULT; |
| |
| pkt = cb->kernel_address; |
| |
| ctl = FIELD_PREP(GAUDI_PKT_LONG_CTL_OP_MASK, 0); /* write the value */ |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_LONG); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| for (i = 0; i < num_regs ; i++, pkt++) { |
| pkt->ctl = cpu_to_le32(ctl); |
| pkt->value = cpu_to_le32(val); |
| pkt->addr = cpu_to_le64(reg_base + (i * 4)); |
| } |
| |
| job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true); |
| if (!job) { |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| goto release_cb; |
| } |
| |
| job->id = 0; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0; |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = cb_size; |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = gaudi_send_job_on_qman0(hdev, job); |
| hl_debugfs_remove_job(hdev, job); |
| kfree(job); |
| atomic_dec(&cb->cs_cnt); |
| |
| release_cb: |
| hl_cb_put(cb); |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); |
| |
| return rc; |
| } |
| |
| static int gaudi_restore_sm_registers(struct hl_device *hdev) |
| { |
| u64 base_addr; |
| u32 num_regs; |
| int rc; |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0; |
| num_regs = NUM_OF_SOB_IN_BLOCK; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_E_S_SYNC_MNGR_OBJS_SOB_OBJ_0; |
| num_regs = NUM_OF_SOB_IN_BLOCK; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_W_N_SYNC_MNGR_OBJS_SOB_OBJ_0; |
| num_regs = NUM_OF_SOB_IN_BLOCK; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_STATUS_0; |
| num_regs = NUM_OF_MONITORS_IN_BLOCK; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_E_S_SYNC_MNGR_OBJS_MON_STATUS_0; |
| num_regs = NUM_OF_MONITORS_IN_BLOCK; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_W_N_SYNC_MNGR_OBJS_MON_STATUS_0; |
| num_regs = NUM_OF_MONITORS_IN_BLOCK; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 + |
| (GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT * 4); |
| num_regs = NUM_OF_SOB_IN_BLOCK - GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| base_addr = CFG_BASE + mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0 + |
| (GAUDI_FIRST_AVAILABLE_W_S_MONITOR * 4); |
| num_regs = NUM_OF_MONITORS_IN_BLOCK - GAUDI_FIRST_AVAILABLE_W_S_MONITOR; |
| rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0); |
| if (rc) { |
| dev_err(hdev->dev, "failed resetting SM registers"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void gaudi_restore_dma_registers(struct hl_device *hdev) |
| { |
| u32 sob_delta = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_1 - |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0; |
| int i; |
| |
| for (i = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) { |
| u64 sob_addr = CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0 + |
| (i * sob_delta); |
| u32 dma_offset = i * DMA_CORE_OFFSET; |
| |
| WREG32(mmDMA0_CORE_WR_COMP_ADDR_LO + dma_offset, |
| lower_32_bits(sob_addr)); |
| WREG32(mmDMA0_CORE_WR_COMP_ADDR_HI + dma_offset, |
| upper_32_bits(sob_addr)); |
| WREG32(mmDMA0_CORE_WR_COMP_WDATA + dma_offset, 0x80000001); |
| |
| /* For DMAs 2-7, need to restore WR_AWUSER_31_11 as it can be |
| * modified by the user for SRAM reduction |
| */ |
| if (i > 1) |
| WREG32(mmDMA0_CORE_WR_AWUSER_31_11 + dma_offset, |
| 0x00000001); |
| } |
| } |
| |
| static void gaudi_restore_qm_registers(struct hl_device *hdev) |
| { |
| u32 qman_offset; |
| int i; |
| |
| for (i = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) { |
| qman_offset = i * DMA_QMAN_OFFSET; |
| WREG32(mmDMA0_QM_ARB_CFG_0 + qman_offset, 0); |
| } |
| |
| for (i = 0 ; i < MME_NUMBER_OF_MASTER_ENGINES ; i++) { |
| qman_offset = i * (mmMME2_QM_BASE - mmMME0_QM_BASE); |
| WREG32(mmMME0_QM_ARB_CFG_0 + qman_offset, 0); |
| } |
| |
| for (i = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) { |
| qman_offset = i * TPC_QMAN_OFFSET; |
| WREG32(mmTPC0_QM_ARB_CFG_0 + qman_offset, 0); |
| } |
| |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) { |
| qman_offset = (i >> 1) * NIC_MACRO_QMAN_OFFSET + |
| (i & 0x1) * NIC_ENGINE_QMAN_OFFSET; |
| WREG32(mmNIC0_QM0_ARB_CFG_0 + qman_offset, 0); |
| } |
| } |
| |
| static int gaudi_restore_user_registers(struct hl_device *hdev) |
| { |
| int rc; |
| |
| rc = gaudi_restore_sm_registers(hdev); |
| if (rc) |
| return rc; |
| |
| gaudi_restore_dma_registers(hdev); |
| gaudi_restore_qm_registers(hdev); |
| |
| return 0; |
| } |
| |
| static int gaudi_context_switch(struct hl_device *hdev, u32 asid) |
| { |
| return 0; |
| } |
| |
| static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 addr = prop->mmu_pgt_addr; |
| u32 size = prop->mmu_pgt_size + MMU_CACHE_MNG_SIZE; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MMU)) |
| return 0; |
| |
| return gaudi_memset_device_memory(hdev, addr, size, 0); |
| } |
| |
| static void gaudi_restore_phase_topology(struct hl_device *hdev) |
| { |
| |
| } |
| |
| static int gaudi_debugfs_read32(struct hl_device *hdev, u64 addr, |
| bool user_address, u32 *val) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 hbm_bar_addr, host_phys_end; |
| int rc = 0; |
| |
| host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; |
| |
| if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) { |
| |
| if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) && |
| (hdev->clock_gating_mask & |
| GAUDI_CLK_GATE_DEBUGFS_MASK)) { |
| |
| dev_err_ratelimited(hdev->dev, |
| "Can't read register - clock gating is enabled!\n"); |
| rc = -EFAULT; |
| } else { |
| *val = RREG32(addr - CFG_BASE); |
| } |
| |
| } else if ((addr >= SRAM_BASE_ADDR) && |
| (addr < SRAM_BASE_ADDR + SRAM_BAR_SIZE)) { |
| *val = readl(hdev->pcie_bar[SRAM_BAR_ID] + |
| (addr - SRAM_BASE_ADDR)); |
| } else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) { |
| u64 bar_base_addr = DRAM_PHYS_BASE + |
| (addr & ~(prop->dram_pci_bar_size - 0x1ull)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr); |
| if (hbm_bar_addr != U64_MAX) { |
| *val = readl(hdev->pcie_bar[HBM_BAR_ID] + |
| (addr - bar_base_addr)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, |
| hbm_bar_addr); |
| } |
| if (hbm_bar_addr == U64_MAX) |
| rc = -EIO; |
| } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && |
| user_address && !iommu_present(&pci_bus_type)) { |
| *val = *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE); |
| } else { |
| rc = -EFAULT; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_debugfs_write32(struct hl_device *hdev, u64 addr, |
| bool user_address, u32 val) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 hbm_bar_addr, host_phys_end; |
| int rc = 0; |
| |
| host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; |
| |
| if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) { |
| |
| if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) && |
| (hdev->clock_gating_mask & |
| GAUDI_CLK_GATE_DEBUGFS_MASK)) { |
| |
| dev_err_ratelimited(hdev->dev, |
| "Can't write register - clock gating is enabled!\n"); |
| rc = -EFAULT; |
| } else { |
| WREG32(addr - CFG_BASE, val); |
| } |
| |
| } else if ((addr >= SRAM_BASE_ADDR) && |
| (addr < SRAM_BASE_ADDR + SRAM_BAR_SIZE)) { |
| writel(val, hdev->pcie_bar[SRAM_BAR_ID] + |
| (addr - SRAM_BASE_ADDR)); |
| } else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) { |
| u64 bar_base_addr = DRAM_PHYS_BASE + |
| (addr & ~(prop->dram_pci_bar_size - 0x1ull)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr); |
| if (hbm_bar_addr != U64_MAX) { |
| writel(val, hdev->pcie_bar[HBM_BAR_ID] + |
| (addr - bar_base_addr)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, |
| hbm_bar_addr); |
| } |
| if (hbm_bar_addr == U64_MAX) |
| rc = -EIO; |
| } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && |
| user_address && !iommu_present(&pci_bus_type)) { |
| *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE) = val; |
| } else { |
| rc = -EFAULT; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_debugfs_read64(struct hl_device *hdev, u64 addr, |
| bool user_address, u64 *val) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 hbm_bar_addr, host_phys_end; |
| int rc = 0; |
| |
| host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; |
| |
| if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) { |
| |
| if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) && |
| (hdev->clock_gating_mask & |
| GAUDI_CLK_GATE_DEBUGFS_MASK)) { |
| |
| dev_err_ratelimited(hdev->dev, |
| "Can't read register - clock gating is enabled!\n"); |
| rc = -EFAULT; |
| } else { |
| u32 val_l = RREG32(addr - CFG_BASE); |
| u32 val_h = RREG32(addr + sizeof(u32) - CFG_BASE); |
| |
| *val = (((u64) val_h) << 32) | val_l; |
| } |
| |
| } else if ((addr >= SRAM_BASE_ADDR) && |
| (addr <= SRAM_BASE_ADDR + SRAM_BAR_SIZE - sizeof(u64))) { |
| *val = readq(hdev->pcie_bar[SRAM_BAR_ID] + |
| (addr - SRAM_BASE_ADDR)); |
| } else if (addr <= |
| DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) { |
| u64 bar_base_addr = DRAM_PHYS_BASE + |
| (addr & ~(prop->dram_pci_bar_size - 0x1ull)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr); |
| if (hbm_bar_addr != U64_MAX) { |
| *val = readq(hdev->pcie_bar[HBM_BAR_ID] + |
| (addr - bar_base_addr)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, |
| hbm_bar_addr); |
| } |
| if (hbm_bar_addr == U64_MAX) |
| rc = -EIO; |
| } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && |
| user_address && !iommu_present(&pci_bus_type)) { |
| *val = *(u64 *) phys_to_virt(addr - HOST_PHYS_BASE); |
| } else { |
| rc = -EFAULT; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_debugfs_write64(struct hl_device *hdev, u64 addr, |
| bool user_address, u64 val) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 hbm_bar_addr, host_phys_end; |
| int rc = 0; |
| |
| host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; |
| |
| if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) { |
| |
| if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) && |
| (hdev->clock_gating_mask & |
| GAUDI_CLK_GATE_DEBUGFS_MASK)) { |
| |
| dev_err_ratelimited(hdev->dev, |
| "Can't write register - clock gating is enabled!\n"); |
| rc = -EFAULT; |
| } else { |
| WREG32(addr - CFG_BASE, lower_32_bits(val)); |
| WREG32(addr + sizeof(u32) - CFG_BASE, |
| upper_32_bits(val)); |
| } |
| |
| } else if ((addr >= SRAM_BASE_ADDR) && |
| (addr <= SRAM_BASE_ADDR + SRAM_BAR_SIZE - sizeof(u64))) { |
| writeq(val, hdev->pcie_bar[SRAM_BAR_ID] + |
| (addr - SRAM_BASE_ADDR)); |
| } else if (addr <= |
| DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) { |
| u64 bar_base_addr = DRAM_PHYS_BASE + |
| (addr & ~(prop->dram_pci_bar_size - 0x1ull)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr); |
| if (hbm_bar_addr != U64_MAX) { |
| writeq(val, hdev->pcie_bar[HBM_BAR_ID] + |
| (addr - bar_base_addr)); |
| |
| hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, |
| hbm_bar_addr); |
| } |
| if (hbm_bar_addr == U64_MAX) |
| rc = -EIO; |
| } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && |
| user_address && !iommu_present(&pci_bus_type)) { |
| *(u64 *) phys_to_virt(addr - HOST_PHYS_BASE) = val; |
| } else { |
| rc = -EFAULT; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_dma_core_transfer(struct hl_device *hdev, int dma_id, u64 addr, |
| u32 size_to_dma, dma_addr_t dma_addr) |
| { |
| u32 err_cause, val; |
| u64 dma_offset; |
| int rc; |
| |
| dma_offset = dma_id * DMA_CORE_OFFSET; |
| |
| WREG32(mmDMA0_CORE_SRC_BASE_LO + dma_offset, lower_32_bits(addr)); |
| WREG32(mmDMA0_CORE_SRC_BASE_HI + dma_offset, upper_32_bits(addr)); |
| WREG32(mmDMA0_CORE_DST_BASE_LO + dma_offset, lower_32_bits(dma_addr)); |
| WREG32(mmDMA0_CORE_DST_BASE_HI + dma_offset, upper_32_bits(dma_addr)); |
| WREG32(mmDMA0_CORE_DST_TSIZE_0 + dma_offset, size_to_dma); |
| WREG32(mmDMA0_CORE_COMMIT + dma_offset, |
| (1 << DMA0_CORE_COMMIT_LIN_SHIFT)); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| mmDMA0_CORE_STS0 + dma_offset, |
| val, |
| ((val & DMA0_CORE_STS0_BUSY_MASK) == 0), |
| 0, |
| 1000000); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "DMA %d timed-out during reading of 0x%llx\n", |
| dma_id, addr); |
| return -EIO; |
| } |
| |
| /* Verify DMA is OK */ |
| err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset); |
| if (err_cause) { |
| dev_err(hdev->dev, "DMA Failed, cause 0x%x\n", err_cause); |
| dev_dbg(hdev->dev, |
| "Clearing DMA0 engine from errors (cause 0x%x)\n", |
| err_cause); |
| WREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset, err_cause); |
| |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, |
| void *blob_addr) |
| { |
| u32 dma_core_sts0, err_cause, cfg1, size_left, pos, size_to_dma; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 dma_offset, qm_offset; |
| dma_addr_t dma_addr; |
| void *kernel_addr; |
| bool is_eng_idle; |
| int rc = 0, dma_id; |
| |
| kernel_addr = hdev->asic_funcs->asic_dma_alloc_coherent( |
| hdev, SZ_2M, |
| &dma_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| |
| if (!kernel_addr) |
| return -ENOMEM; |
| |
| mutex_lock(&gaudi->clk_gate_mutex); |
| |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| hdev->asic_funcs->hw_queues_lock(hdev); |
| |
| dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_1]; |
| dma_offset = dma_id * DMA_CORE_OFFSET; |
| qm_offset = dma_id * DMA_QMAN_OFFSET; |
| dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + dma_offset); |
| is_eng_idle = IS_DMA_IDLE(dma_core_sts0); |
| |
| if (!is_eng_idle) { |
| dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_2]; |
| dma_offset = dma_id * DMA_CORE_OFFSET; |
| qm_offset = dma_id * DMA_QMAN_OFFSET; |
| dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + dma_offset); |
| is_eng_idle = IS_DMA_IDLE(dma_core_sts0); |
| |
| if (!is_eng_idle) { |
| dev_err_ratelimited(hdev->dev, |
| "Can't read via DMA because it is BUSY\n"); |
| rc = -EAGAIN; |
| goto out; |
| } |
| } |
| |
| cfg1 = RREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset); |
| WREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset, |
| 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT); |
| |
| /* TODO: remove this by mapping the DMA temporary buffer to the MMU |
| * using the compute ctx ASID, if exists. If not, use the kernel ctx |
| * ASID |
| */ |
| WREG32_OR(mmDMA0_CORE_PROT + dma_offset, BIT(DMA0_CORE_PROT_VAL_SHIFT)); |
| |
| /* Verify DMA is OK */ |
| err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset); |
| if (err_cause) { |
| dev_dbg(hdev->dev, |
| "Clearing DMA0 engine from errors (cause 0x%x)\n", |
| err_cause); |
| WREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset, err_cause); |
| } |
| |
| pos = 0; |
| size_left = size; |
| size_to_dma = SZ_2M; |
| |
| while (size_left > 0) { |
| |
| if (size_left < SZ_2M) |
| size_to_dma = size_left; |
| |
| rc = gaudi_dma_core_transfer(hdev, dma_id, addr, size_to_dma, |
| dma_addr); |
| if (rc) |
| break; |
| |
| memcpy(blob_addr + pos, kernel_addr, size_to_dma); |
| |
| if (size_left <= SZ_2M) |
| break; |
| |
| pos += SZ_2M; |
| addr += SZ_2M; |
| size_left -= SZ_2M; |
| } |
| |
| /* TODO: remove this by mapping the DMA temporary buffer to the MMU |
| * using the compute ctx ASID, if exists. If not, use the kernel ctx |
| * ASID |
| */ |
| WREG32_AND(mmDMA0_CORE_PROT + dma_offset, |
| ~BIT(DMA0_CORE_PROT_VAL_SHIFT)); |
| |
| WREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset, cfg1); |
| |
| out: |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, SZ_2M, kernel_addr, |
| dma_addr); |
| |
| return rc; |
| } |
| |
| static u64 gaudi_read_pte(struct hl_device *hdev, u64 addr) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (hdev->hard_reset_pending) |
| return U64_MAX; |
| |
| return readq(hdev->pcie_bar[HBM_BAR_ID] + |
| (addr - gaudi->hbm_bar_cur_addr)); |
| } |
| |
| static void gaudi_write_pte(struct hl_device *hdev, u64 addr, u64 val) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (hdev->hard_reset_pending) |
| return; |
| |
| writeq(val, hdev->pcie_bar[HBM_BAR_ID] + |
| (addr - gaudi->hbm_bar_cur_addr)); |
| } |
| |
| void gaudi_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid) |
| { |
| /* mask to zero the MMBP and ASID bits */ |
| WREG32_AND(reg, ~0x7FF); |
| WREG32_OR(reg, asid); |
| } |
| |
| static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MMU)) |
| return; |
| |
| if (asid & ~DMA0_QM_GLBL_NON_SECURE_PROPS_0_ASID_MASK) { |
| dev_crit(hdev->dev, "asid %u is too big\n", asid); |
| return; |
| } |
| |
| mutex_lock(&gaudi->clk_gate_mutex); |
| |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmDMA0_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA1_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA2_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA3_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA4_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA5_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA6_CORE_NON_SECURE_PROPS, asid); |
| gaudi_mmu_prepare_reg(hdev, mmDMA7_CORE_NON_SECURE_PROPS, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC0_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC1_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC2_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC3_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC4_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC5_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC6_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_CFG_ARUSER_LO, asid); |
| gaudi_mmu_prepare_reg(hdev, mmTPC7_CFG_AWUSER_LO, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_2, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_3, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_4, asid); |
| |
| gaudi_mmu_prepare_reg(hdev, mmMME0_SBAB_ARUSER0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME0_SBAB_ARUSER1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME1_SBAB_ARUSER0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME1_SBAB_ARUSER1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_SBAB_ARUSER0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_SBAB_ARUSER1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME3_SBAB_ARUSER0, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME3_SBAB_ARUSER1, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME0_ACC_WBC, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME1_ACC_WBC, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME2_ACC_WBC, asid); |
| gaudi_mmu_prepare_reg(hdev, mmMME3_ACC_WBC, asid); |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC0) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC1) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC2) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC3) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC4) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC5) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC6) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC7) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC8) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| if (gaudi->hw_cap_initialized & HW_CAP_NIC9) { |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_0, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_1, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_2, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_3, |
| asid); |
| gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_4, |
| asid); |
| } |
| |
| gaudi_mmu_prepare_reg(hdev, mmPSOC_GLOBAL_CONF_TRACE_ARUSER, asid); |
| gaudi_mmu_prepare_reg(hdev, mmPSOC_GLOBAL_CONF_TRACE_AWUSER, asid); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| } |
| |
| static int gaudi_send_job_on_qman0(struct hl_device *hdev, |
| struct hl_cs_job *job) |
| { |
| struct packet_msg_prot *fence_pkt; |
| u32 *fence_ptr; |
| dma_addr_t fence_dma_addr; |
| struct hl_cb *cb; |
| u32 tmp, timeout, dma_offset; |
| int rc; |
| |
| if (hdev->pldm) |
| timeout = GAUDI_PLDM_QMAN0_TIMEOUT_USEC; |
| else |
| timeout = HL_DEVICE_TIMEOUT_USEC; |
| |
| if (!hdev->asic_funcs->is_device_idle(hdev, NULL, 0, NULL)) { |
| dev_err_ratelimited(hdev->dev, |
| "Can't send driver job on QMAN0 because the device is not idle\n"); |
| return -EBUSY; |
| } |
| |
| fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, |
| &fence_dma_addr); |
| if (!fence_ptr) { |
| dev_err(hdev->dev, |
| "Failed to allocate fence memory for QMAN0\n"); |
| return -ENOMEM; |
| } |
| |
| cb = job->patched_cb; |
| |
| fence_pkt = cb->kernel_address + |
| job->job_cb_size - sizeof(struct packet_msg_prot); |
| |
| tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT); |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1); |
| tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| fence_pkt->ctl = cpu_to_le32(tmp); |
| fence_pkt->value = cpu_to_le32(GAUDI_QMAN0_FENCE_VAL); |
| fence_pkt->addr = cpu_to_le64(fence_dma_addr); |
| |
| dma_offset = gaudi_dma_assignment[GAUDI_PCI_DMA_1] * DMA_CORE_OFFSET; |
| |
| WREG32(mmDMA0_CORE_PROT + dma_offset, |
| BIT(DMA0_CORE_PROT_ERR_VAL_SHIFT) | BIT(DMA0_CORE_PROT_VAL_SHIFT)); |
| |
| rc = hl_hw_queue_send_cb_no_cmpl(hdev, GAUDI_QUEUE_ID_DMA_0_0, |
| job->job_cb_size, cb->bus_address); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc); |
| goto free_fence_ptr; |
| } |
| |
| rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, |
| (tmp == GAUDI_QMAN0_FENCE_VAL), 1000, |
| timeout, true); |
| |
| hl_hw_queue_inc_ci_kernel(hdev, GAUDI_QUEUE_ID_DMA_0_0); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp); |
| goto free_fence_ptr; |
| } |
| |
| free_fence_ptr: |
| WREG32(mmDMA0_CORE_PROT + dma_offset, BIT(DMA0_CORE_PROT_ERR_VAL_SHIFT)); |
| |
| hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr, |
| fence_dma_addr); |
| return rc; |
| } |
| |
| static void gaudi_get_event_desc(u16 event_type, char *desc, size_t size) |
| { |
| if (event_type >= GAUDI_EVENT_SIZE) |
| goto event_not_supported; |
| |
| if (!gaudi_irq_map_table[event_type].valid) |
| goto event_not_supported; |
| |
| snprintf(desc, size, gaudi_irq_map_table[event_type].name); |
| |
| return; |
| |
| event_not_supported: |
| snprintf(desc, size, "N/A"); |
| } |
| |
| static const char *gaudi_get_razwi_initiator_dma_name(struct hl_device *hdev, |
| u32 x_y, bool is_write) |
| { |
| u32 dma_id[2], dma_offset, err_cause[2], mask, i; |
| |
| mask = is_write ? DMA0_CORE_ERR_CAUSE_HBW_WR_ERR_MASK : |
| DMA0_CORE_ERR_CAUSE_HBW_RD_ERR_MASK; |
| |
| switch (x_y) { |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1: |
| dma_id[0] = 0; |
| dma_id[1] = 2; |
| break; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1: |
| dma_id[0] = 1; |
| dma_id[1] = 3; |
| break; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1: |
| dma_id[0] = 4; |
| dma_id[1] = 6; |
| break; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1: |
| dma_id[0] = 5; |
| dma_id[1] = 7; |
| break; |
| default: |
| goto unknown_initiator; |
| } |
| |
| for (i = 0 ; i < 2 ; i++) { |
| dma_offset = dma_id[i] * DMA_CORE_OFFSET; |
| err_cause[i] = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset); |
| } |
| |
| switch (x_y) { |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1: |
| if ((err_cause[0] & mask) && !(err_cause[1] & mask)) |
| return "DMA0"; |
| else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) |
| return "DMA2"; |
| else |
| return "DMA0 or DMA2"; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1: |
| if ((err_cause[0] & mask) && !(err_cause[1] & mask)) |
| return "DMA1"; |
| else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) |
| return "DMA3"; |
| else |
| return "DMA1 or DMA3"; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1: |
| if ((err_cause[0] & mask) && !(err_cause[1] & mask)) |
| return "DMA4"; |
| else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) |
| return "DMA6"; |
| else |
| return "DMA4 or DMA6"; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1: |
| if ((err_cause[0] & mask) && !(err_cause[1] & mask)) |
| return "DMA5"; |
| else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) |
| return "DMA7"; |
| else |
| return "DMA5 or DMA7"; |
| } |
| |
| unknown_initiator: |
| return "unknown initiator"; |
| } |
| |
| static const char *gaudi_get_razwi_initiator_name(struct hl_device *hdev, |
| bool is_write) |
| { |
| u32 val, x_y, axi_id; |
| |
| val = is_write ? RREG32(mmMMU_UP_RAZWI_WRITE_ID) : |
| RREG32(mmMMU_UP_RAZWI_READ_ID); |
| x_y = val & ((RAZWI_INITIATOR_Y_MASK << RAZWI_INITIATOR_Y_SHIFT) | |
| (RAZWI_INITIATOR_X_MASK << RAZWI_INITIATOR_X_SHIFT)); |
| axi_id = val & (RAZWI_INITIATOR_AXI_ID_MASK << |
| RAZWI_INITIATOR_AXI_ID_SHIFT); |
| |
| switch (x_y) { |
| case RAZWI_INITIATOR_ID_X_Y_TPC0_NIC0: |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) |
| return "TPC0"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC)) |
| return "NIC0"; |
| break; |
| case RAZWI_INITIATOR_ID_X_Y_TPC1: |
| return "TPC1"; |
| case RAZWI_INITIATOR_ID_X_Y_MME0_0: |
| case RAZWI_INITIATOR_ID_X_Y_MME0_1: |
| return "MME0"; |
| case RAZWI_INITIATOR_ID_X_Y_MME1_0: |
| case RAZWI_INITIATOR_ID_X_Y_MME1_1: |
| return "MME1"; |
| case RAZWI_INITIATOR_ID_X_Y_TPC2: |
| return "TPC2"; |
| case RAZWI_INITIATOR_ID_X_Y_TPC3_PCI_CPU_PSOC: |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) |
| return "TPC3"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_PCI)) |
| return "PCI"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_CPU)) |
| return "CPU"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_PSOC)) |
| return "PSOC"; |
| break; |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0: |
| case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1: |
| return gaudi_get_razwi_initiator_dma_name(hdev, x_y, is_write); |
| case RAZWI_INITIATOR_ID_X_Y_TPC4_NIC1_NIC2: |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) |
| return "TPC4"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC)) |
| return "NIC1"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC_FT)) |
| return "NIC2"; |
| break; |
| case RAZWI_INITIATOR_ID_X_Y_TPC5: |
| return "TPC5"; |
| case RAZWI_INITIATOR_ID_X_Y_MME2_0: |
| case RAZWI_INITIATOR_ID_X_Y_MME2_1: |
| return "MME2"; |
| case RAZWI_INITIATOR_ID_X_Y_MME3_0: |
| case RAZWI_INITIATOR_ID_X_Y_MME3_1: |
| return "MME3"; |
| case RAZWI_INITIATOR_ID_X_Y_TPC6: |
| return "TPC6"; |
| case RAZWI_INITIATOR_ID_X_Y_TPC7_NIC4_NIC5: |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) |
| return "TPC7"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC)) |
| return "NIC4"; |
| if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC_FT)) |
| return "NIC5"; |
| break; |
| default: |
| break; |
| } |
| |
| dev_err(hdev->dev, |
| "Unknown RAZWI initiator ID 0x%x [Y=%d, X=%d, AXI_ID=%d]\n", |
| val, |
| (val >> RAZWI_INITIATOR_Y_SHIFT) & RAZWI_INITIATOR_Y_MASK, |
| (val >> RAZWI_INITIATOR_X_SHIFT) & RAZWI_INITIATOR_X_MASK, |
| (val >> RAZWI_INITIATOR_AXI_ID_SHIFT) & |
| RAZWI_INITIATOR_AXI_ID_MASK); |
| |
| return "unknown initiator"; |
| } |
| |
| static void gaudi_print_razwi_info(struct hl_device *hdev) |
| { |
| if (RREG32(mmMMU_UP_RAZWI_WRITE_VLD)) { |
| dev_err_ratelimited(hdev->dev, |
| "RAZWI event caused by illegal write of %s\n", |
| gaudi_get_razwi_initiator_name(hdev, true)); |
| WREG32(mmMMU_UP_RAZWI_WRITE_VLD, 0); |
| } |
| |
| if (RREG32(mmMMU_UP_RAZWI_READ_VLD)) { |
| dev_err_ratelimited(hdev->dev, |
| "RAZWI event caused by illegal read of %s\n", |
| gaudi_get_razwi_initiator_name(hdev, false)); |
| WREG32(mmMMU_UP_RAZWI_READ_VLD, 0); |
| } |
| } |
| |
| static void gaudi_print_mmu_error_info(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 addr; |
| u32 val; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MMU)) |
| return; |
| |
| val = RREG32(mmMMU_UP_PAGE_ERROR_CAPTURE); |
| if (val & MMU_UP_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) { |
| addr = val & MMU_UP_PAGE_ERROR_CAPTURE_VA_49_32_MASK; |
| addr <<= 32; |
| addr |= RREG32(mmMMU_UP_PAGE_ERROR_CAPTURE_VA); |
| |
| dev_err_ratelimited(hdev->dev, "MMU page fault on va 0x%llx\n", |
| addr); |
| |
| WREG32(mmMMU_UP_PAGE_ERROR_CAPTURE, 0); |
| } |
| |
| val = RREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE); |
| if (val & MMU_UP_ACCESS_ERROR_CAPTURE_ENTRY_VALID_MASK) { |
| addr = val & MMU_UP_ACCESS_ERROR_CAPTURE_VA_49_32_MASK; |
| addr <<= 32; |
| addr |= RREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE_VA); |
| |
| dev_err_ratelimited(hdev->dev, |
| "MMU access error on va 0x%llx\n", addr); |
| |
| WREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE, 0); |
| } |
| } |
| |
| /* |
| * +-------------------+------------------------------------------------------+ |
| * | Configuration Reg | Description | |
| * | Address | | |
| * +-------------------+------------------------------------------------------+ |
| * | 0xF30 - 0xF3F |ECC single error indication (1 bit per memory wrapper)| |
| * | |0xF30 memory wrappers 31:0 (MSB to LSB) | |
| * | |0xF34 memory wrappers 63:32 | |
| * | |0xF38 memory wrappers 95:64 | |
| * | |0xF3C memory wrappers 127:96 | |
| * +-------------------+------------------------------------------------------+ |
| * | 0xF40 - 0xF4F |ECC double error indication (1 bit per memory wrapper)| |
| * | |0xF40 memory wrappers 31:0 (MSB to LSB) | |
| * | |0xF44 memory wrappers 63:32 | |
| * | |0xF48 memory wrappers 95:64 | |
| * | |0xF4C memory wrappers 127:96 | |
| * +-------------------+------------------------------------------------------+ |
| */ |
| static int gaudi_extract_ecc_info(struct hl_device *hdev, |
| struct ecc_info_extract_params *params, u64 *ecc_address, |
| u64 *ecc_syndrom, u8 *memory_wrapper_idx) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 i, num_mem_regs, reg, err_bit; |
| u64 err_addr, err_word = 0; |
| int rc = 0; |
| |
| num_mem_regs = params->num_memories / 32 + |
| ((params->num_memories % 32) ? 1 : 0); |
| |
| if (params->block_address >= CFG_BASE) |
| params->block_address -= CFG_BASE; |
| |
| if (params->derr) |
| err_addr = params->block_address + GAUDI_ECC_DERR0_OFFSET; |
| else |
| err_addr = params->block_address + GAUDI_ECC_SERR0_OFFSET; |
| |
| if (params->disable_clock_gating) { |
| mutex_lock(&gaudi->clk_gate_mutex); |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| } |
| |
| /* Set invalid wrapper index */ |
| *memory_wrapper_idx = 0xFF; |
| |
| /* Iterate through memory wrappers, a single bit must be set */ |
| for (i = 0 ; i < num_mem_regs ; i++) { |
| err_addr += i * 4; |
| err_word = RREG32(err_addr); |
| if (err_word) { |
| err_bit = __ffs(err_word); |
| *memory_wrapper_idx = err_bit + (32 * i); |
| break; |
| } |
| } |
| |
| if (*memory_wrapper_idx == 0xFF) { |
| dev_err(hdev->dev, "ECC error information cannot be found\n"); |
| rc = -EINVAL; |
| goto enable_clk_gate; |
| } |
| |
| WREG32(params->block_address + GAUDI_ECC_MEM_SEL_OFFSET, |
| *memory_wrapper_idx); |
| |
| *ecc_address = |
| RREG32(params->block_address + GAUDI_ECC_ADDRESS_OFFSET); |
| *ecc_syndrom = |
| RREG32(params->block_address + GAUDI_ECC_SYNDROME_OFFSET); |
| |
| /* Clear error indication */ |
| reg = RREG32(params->block_address + GAUDI_ECC_MEM_INFO_CLR_OFFSET); |
| if (params->derr) |
| reg |= FIELD_PREP(GAUDI_ECC_MEM_INFO_CLR_DERR_MASK, 1); |
| else |
| reg |= FIELD_PREP(GAUDI_ECC_MEM_INFO_CLR_SERR_MASK, 1); |
| |
| WREG32(params->block_address + GAUDI_ECC_MEM_INFO_CLR_OFFSET, reg); |
| |
| enable_clk_gate: |
| if (params->disable_clock_gating) { |
| hdev->asic_funcs->set_clock_gating(hdev); |
| |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * gaudi_queue_idx_dec - decrement queue index (pi/ci) and handle wrap |
| * |
| * @idx: the current pi/ci value |
| * @q_len: the queue length (power of 2) |
| * |
| * @return the cyclically decremented index |
| */ |
| static inline u32 gaudi_queue_idx_dec(u32 idx, u32 q_len) |
| { |
| u32 mask = q_len - 1; |
| |
| /* |
| * modular decrement is equivalent to adding (queue_size -1) |
| * later we take LSBs to make sure the value is in the |
| * range [0, queue_len - 1] |
| */ |
| return (idx + q_len - 1) & mask; |
| } |
| |
| /** |
| * gaudi_print_sw_config_stream_data - print SW config stream data |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @stream: the QMAN's stream |
| * @qman_base: base address of QMAN registers block |
| */ |
| static void gaudi_print_sw_config_stream_data(struct hl_device *hdev, u32 stream, |
| u64 qman_base) |
| { |
| u64 cq_ptr_lo, cq_ptr_hi, cq_tsize, cq_ptr; |
| u32 cq_ptr_lo_off, size; |
| |
| cq_ptr_lo_off = mmTPC0_QM_CQ_PTR_LO_1 - mmTPC0_QM_CQ_PTR_LO_0; |
| |
| cq_ptr_lo = qman_base + (mmTPC0_QM_CQ_PTR_LO_0 - mmTPC0_QM_BASE) + |
| stream * cq_ptr_lo_off; |
| cq_ptr_hi = cq_ptr_lo + |
| (mmTPC0_QM_CQ_PTR_HI_0 - mmTPC0_QM_CQ_PTR_LO_0); |
| cq_tsize = cq_ptr_lo + |
| (mmTPC0_QM_CQ_TSIZE_0 - mmTPC0_QM_CQ_PTR_LO_0); |
| |
| cq_ptr = (((u64) RREG32(cq_ptr_hi)) << 32) | RREG32(cq_ptr_lo); |
| size = RREG32(cq_tsize); |
| dev_info(hdev->dev, "stop on err: stream: %u, addr: %#llx, size: %u\n", |
| stream, cq_ptr, size); |
| } |
| |
| /** |
| * gaudi_print_last_pqes_on_err - print last PQEs on error |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @qid_base: first QID of the QMAN (out of 4 streams) |
| * @stream: the QMAN's stream |
| * @qman_base: base address of QMAN registers block |
| * @pr_sw_conf: if true print the SW config stream data (CQ PTR and SIZE) |
| */ |
| static void gaudi_print_last_pqes_on_err(struct hl_device *hdev, u32 qid_base, |
| u32 stream, u64 qman_base, |
| bool pr_sw_conf) |
| { |
| u32 ci, qm_ci_stream_off, queue_len; |
| struct hl_hw_queue *q; |
| u64 pq_ci; |
| int i; |
| |
| q = &hdev->kernel_queues[qid_base + stream]; |
| |
| qm_ci_stream_off = mmTPC0_QM_PQ_CI_1 - mmTPC0_QM_PQ_CI_0; |
| pq_ci = qman_base + (mmTPC0_QM_PQ_CI_0 - mmTPC0_QM_BASE) + |
| stream * qm_ci_stream_off; |
| |
| queue_len = (q->queue_type == QUEUE_TYPE_INT) ? |
| q->int_queue_len : HL_QUEUE_LENGTH; |
| |
| hdev->asic_funcs->hw_queues_lock(hdev); |
| |
| if (pr_sw_conf) |
| gaudi_print_sw_config_stream_data(hdev, stream, qman_base); |
| |
| ci = RREG32(pq_ci); |
| |
| /* we should start printing form ci -1 */ |
| ci = gaudi_queue_idx_dec(ci, queue_len); |
| |
| for (i = 0; i < PQ_FETCHER_CACHE_SIZE; i++) { |
| struct hl_bd *bd; |
| u64 addr; |
| u32 len; |
| |
| bd = q->kernel_address; |
| bd += ci; |
| |
| len = le32_to_cpu(bd->len); |
| /* len 0 means uninitialized entry- break */ |
| if (!len) |
| break; |
| |
| addr = le64_to_cpu(bd->ptr); |
| |
| dev_info(hdev->dev, "stop on err PQE(stream %u): ci: %u, addr: %#llx, size: %u\n", |
| stream, ci, addr, len); |
| |
| /* get previous ci, wrap if needed */ |
| ci = gaudi_queue_idx_dec(ci, queue_len); |
| } |
| |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| } |
| |
| /** |
| * print_qman_data_on_err - extract QMAN data on error |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @qid_base: first QID of the QMAN (out of 4 streams) |
| * @stream: the QMAN's stream |
| * @qman_base: base address of QMAN registers block |
| * |
| * This function attempt to exatract as much data as possible on QMAN error. |
| * On upper CP print the SW config stream data and last 8 PQEs. |
| * On lower CP print SW config data and last PQEs of ALL 4 upper CPs |
| */ |
| static void print_qman_data_on_err(struct hl_device *hdev, u32 qid_base, |
| u32 stream, u64 qman_base) |
| { |
| u32 i; |
| |
| if (stream != QMAN_STREAMS) { |
| gaudi_print_last_pqes_on_err(hdev, qid_base, stream, qman_base, |
| true); |
| return; |
| } |
| |
| gaudi_print_sw_config_stream_data(hdev, stream, qman_base); |
| |
| for (i = 0; i < QMAN_STREAMS; i++) |
| gaudi_print_last_pqes_on_err(hdev, qid_base, i, qman_base, |
| false); |
| } |
| |
| static void gaudi_handle_qman_err_generic(struct hl_device *hdev, |
| const char *qm_name, |
| u64 qman_base, |
| u32 qid_base) |
| { |
| u32 i, j, glbl_sts_val, arb_err_val, glbl_sts_clr_val; |
| u64 glbl_sts_addr, arb_err_addr; |
| char reg_desc[32]; |
| |
| glbl_sts_addr = qman_base + (mmTPC0_QM_GLBL_STS1_0 - mmTPC0_QM_BASE); |
| arb_err_addr = qman_base + (mmTPC0_QM_ARB_ERR_CAUSE - mmTPC0_QM_BASE); |
| |
| /* Iterate through all stream GLBL_STS1 registers + Lower CP */ |
| for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) { |
| glbl_sts_clr_val = 0; |
| glbl_sts_val = RREG32(glbl_sts_addr + 4 * i); |
| |
| if (!glbl_sts_val) |
| continue; |
| |
| if (i == QMAN_STREAMS) |
| snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP"); |
| else |
| snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i); |
| |
| for (j = 0 ; j < GAUDI_NUM_OF_QM_ERR_CAUSE ; j++) { |
| if (glbl_sts_val & BIT(j)) { |
| dev_err_ratelimited(hdev->dev, |
| "%s %s. err cause: %s\n", |
| qm_name, reg_desc, |
| gaudi_qman_error_cause[j]); |
| glbl_sts_clr_val |= BIT(j); |
| } |
| } |
| |
| /* Write 1 clear errors */ |
| if (!hdev->stop_on_err) |
| WREG32(glbl_sts_addr + 4 * i, glbl_sts_clr_val); |
| else |
| print_qman_data_on_err(hdev, qid_base, i, qman_base); |
| } |
| |
| arb_err_val = RREG32(arb_err_addr); |
| |
| if (!arb_err_val) |
| return; |
| |
| for (j = 0 ; j < GAUDI_NUM_OF_QM_ARB_ERR_CAUSE ; j++) { |
| if (arb_err_val & BIT(j)) { |
| dev_err_ratelimited(hdev->dev, |
| "%s ARB_ERR. err cause: %s\n", |
| qm_name, |
| gaudi_qman_arb_error_cause[j]); |
| } |
| } |
| } |
| |
| static void gaudi_print_sm_sei_info(struct hl_device *hdev, u16 event_type, |
| struct hl_eq_sm_sei_data *sei_data) |
| { |
| u32 index = event_type - GAUDI_EVENT_DMA_IF_SEI_0; |
| |
| /* Flip the bits as the enum is ordered in the opposite way */ |
| index = (index ^ 0x3) & 0x3; |
| |
| switch (sei_data->sei_cause) { |
| case SM_SEI_SO_OVERFLOW: |
| dev_err_ratelimited(hdev->dev, |
| "%s SEI Error: SOB Group %u overflow/underflow", |
| gaudi_sync_manager_names[index], |
| le32_to_cpu(sei_data->sei_log)); |
| break; |
| case SM_SEI_LBW_4B_UNALIGNED: |
| dev_err_ratelimited(hdev->dev, |
| "%s SEI Error: Unaligned 4B LBW access, monitor agent address low - %#x", |
| gaudi_sync_manager_names[index], |
| le32_to_cpu(sei_data->sei_log)); |
| break; |
| case SM_SEI_AXI_RESPONSE_ERR: |
| dev_err_ratelimited(hdev->dev, |
| "%s SEI Error: AXI ID %u response error", |
| gaudi_sync_manager_names[index], |
| le32_to_cpu(sei_data->sei_log)); |
| break; |
| default: |
| dev_err_ratelimited(hdev->dev, "Unknown SM SEI cause %u", |
| le32_to_cpu(sei_data->sei_log)); |
| break; |
| } |
| } |
| |
| static void gaudi_handle_ecc_event(struct hl_device *hdev, u16 event_type, |
| struct hl_eq_ecc_data *ecc_data) |
| { |
| struct ecc_info_extract_params params; |
| u64 ecc_address = 0, ecc_syndrom = 0; |
| u8 index, memory_wrapper_idx = 0; |
| bool extract_info_from_fw; |
| int rc; |
| |
| if (hdev->asic_prop.fw_security_enabled) { |
| extract_info_from_fw = true; |
| goto extract_ecc_info; |
| } |
| |
| switch (event_type) { |
| case GAUDI_EVENT_PCIE_CORE_SERR ... GAUDI_EVENT_PCIE_PHY_DERR: |
| case GAUDI_EVENT_DMA0_SERR_ECC ... GAUDI_EVENT_MMU_DERR: |
| extract_info_from_fw = true; |
| break; |
| case GAUDI_EVENT_TPC0_SERR ... GAUDI_EVENT_TPC7_SERR: |
| index = event_type - GAUDI_EVENT_TPC0_SERR; |
| params.block_address = mmTPC0_CFG_BASE + index * TPC_CFG_OFFSET; |
| params.num_memories = 90; |
| params.derr = false; |
| params.disable_clock_gating = true; |
| extract_info_from_fw = false; |
| break; |
| case GAUDI_EVENT_TPC0_DERR ... GAUDI_EVENT_TPC7_DERR: |
| index = event_type - GAUDI_EVENT_TPC0_DERR; |
| params.block_address = |
| mmTPC0_CFG_BASE + index * TPC_CFG_OFFSET; |
| params.num_memories = 90; |
| params.derr = true; |
| params.disable_clock_gating = true; |
| extract_info_from_fw = false; |
| break; |
| case GAUDI_EVENT_MME0_ACC_SERR: |
| case GAUDI_EVENT_MME1_ACC_SERR: |
| case GAUDI_EVENT_MME2_ACC_SERR: |
| case GAUDI_EVENT_MME3_ACC_SERR: |
| index = (event_type - GAUDI_EVENT_MME0_ACC_SERR) / 4; |
| params.block_address = mmMME0_ACC_BASE + index * MME_ACC_OFFSET; |
| params.num_memories = 128; |
| params.derr = false; |
| params.disable_clock_gating = true; |
| extract_info_from_fw = false; |
| break; |
| case GAUDI_EVENT_MME0_ACC_DERR: |
| case GAUDI_EVENT_MME1_ACC_DERR: |
| case GAUDI_EVENT_MME2_ACC_DERR: |
| case GAUDI_EVENT_MME3_ACC_DERR: |
| index = (event_type - GAUDI_EVENT_MME0_ACC_DERR) / 4; |
| params.block_address = mmMME0_ACC_BASE + index * MME_ACC_OFFSET; |
| params.num_memories = 128; |
| params.derr = true; |
| params.disable_clock_gating = true; |
| extract_info_from_fw = false; |
| break; |
| case GAUDI_EVENT_MME0_SBAB_SERR: |
| case GAUDI_EVENT_MME1_SBAB_SERR: |
| case GAUDI_EVENT_MME2_SBAB_SERR: |
| case GAUDI_EVENT_MME3_SBAB_SERR: |
| index = (event_type - GAUDI_EVENT_MME0_SBAB_SERR) / 4; |
| params.block_address = |
| mmMME0_SBAB_BASE + index * MME_ACC_OFFSET; |
| params.num_memories = 33; |
| params.derr = false; |
| params.disable_clock_gating = true; |
| extract_info_from_fw = false; |
| break; |
| case GAUDI_EVENT_MME0_SBAB_DERR: |
| case GAUDI_EVENT_MME1_SBAB_DERR: |
| case GAUDI_EVENT_MME2_SBAB_DERR: |
| case GAUDI_EVENT_MME3_SBAB_DERR: |
| index = (event_type - GAUDI_EVENT_MME0_SBAB_DERR) / 4; |
| params.block_address = |
| mmMME0_SBAB_BASE + index * MME_ACC_OFFSET; |
| params.num_memories = 33; |
| params.derr = true; |
| params.disable_clock_gating = true; |
| extract_info_from_fw = false; |
| break; |
| default: |
| return; |
| } |
| |
| extract_ecc_info: |
| if (extract_info_from_fw) { |
| ecc_address = le64_to_cpu(ecc_data->ecc_address); |
| ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom); |
| memory_wrapper_idx = ecc_data->memory_wrapper_idx; |
| } else { |
| rc = gaudi_extract_ecc_info(hdev, ¶ms, &ecc_address, |
| &ecc_syndrom, &memory_wrapper_idx); |
| if (rc) |
| return; |
| } |
| |
| dev_err(hdev->dev, |
| "ECC error detected. address: %#llx. Syndrom: %#llx. block id %u\n", |
| ecc_address, ecc_syndrom, memory_wrapper_idx); |
| } |
| |
| static void gaudi_handle_qman_err(struct hl_device *hdev, u16 event_type) |
| { |
| u64 qman_base; |
| char desc[32]; |
| u32 qid_base; |
| u8 index; |
| |
| switch (event_type) { |
| case GAUDI_EVENT_TPC0_QM ... GAUDI_EVENT_TPC7_QM: |
| index = event_type - GAUDI_EVENT_TPC0_QM; |
| qid_base = GAUDI_QUEUE_ID_TPC_0_0 + index * QMAN_STREAMS; |
| qman_base = mmTPC0_QM_BASE + index * TPC_QMAN_OFFSET; |
| snprintf(desc, ARRAY_SIZE(desc), "%s%d", "TPC_QM", index); |
| break; |
| case GAUDI_EVENT_MME0_QM ... GAUDI_EVENT_MME2_QM: |
| index = event_type - GAUDI_EVENT_MME0_QM; |
| qid_base = GAUDI_QUEUE_ID_MME_0_0 + index * QMAN_STREAMS; |
| qman_base = mmMME0_QM_BASE + index * MME_QMAN_OFFSET; |
| snprintf(desc, ARRAY_SIZE(desc), "%s%d", "MME_QM", index); |
| break; |
| case GAUDI_EVENT_DMA0_QM ... GAUDI_EVENT_DMA7_QM: |
| index = event_type - GAUDI_EVENT_DMA0_QM; |
| qid_base = GAUDI_QUEUE_ID_DMA_0_0 + index * QMAN_STREAMS; |
| /* skip GAUDI_QUEUE_ID_CPU_PQ if necessary */ |
| if (index > 1) |
| qid_base++; |
| qman_base = mmDMA0_QM_BASE + index * DMA_QMAN_OFFSET; |
| snprintf(desc, ARRAY_SIZE(desc), "%s%d", "DMA_QM", index); |
| break; |
| case GAUDI_EVENT_NIC0_QM0: |
| qid_base = GAUDI_QUEUE_ID_NIC_0_0; |
| qman_base = mmNIC0_QM0_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC0_QM0"); |
| break; |
| case GAUDI_EVENT_NIC0_QM1: |
| qid_base = GAUDI_QUEUE_ID_NIC_1_0; |
| qman_base = mmNIC0_QM1_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC0_QM1"); |
| break; |
| case GAUDI_EVENT_NIC1_QM0: |
| qid_base = GAUDI_QUEUE_ID_NIC_2_0; |
| qman_base = mmNIC1_QM0_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC1_QM0"); |
| break; |
| case GAUDI_EVENT_NIC1_QM1: |
| qid_base = GAUDI_QUEUE_ID_NIC_3_0; |
| qman_base = mmNIC1_QM1_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC1_QM1"); |
| break; |
| case GAUDI_EVENT_NIC2_QM0: |
| qid_base = GAUDI_QUEUE_ID_NIC_4_0; |
| qman_base = mmNIC2_QM0_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC2_QM0"); |
| break; |
| case GAUDI_EVENT_NIC2_QM1: |
| qid_base = GAUDI_QUEUE_ID_NIC_5_0; |
| qman_base = mmNIC2_QM1_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC2_QM1"); |
| break; |
| case GAUDI_EVENT_NIC3_QM0: |
| qid_base = GAUDI_QUEUE_ID_NIC_6_0; |
| qman_base = mmNIC3_QM0_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC3_QM0"); |
| break; |
| case GAUDI_EVENT_NIC3_QM1: |
| qid_base = GAUDI_QUEUE_ID_NIC_7_0; |
| qman_base = mmNIC3_QM1_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC3_QM1"); |
| break; |
| case GAUDI_EVENT_NIC4_QM0: |
| qid_base = GAUDI_QUEUE_ID_NIC_8_0; |
| qman_base = mmNIC4_QM0_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC4_QM0"); |
| break; |
| case GAUDI_EVENT_NIC4_QM1: |
| qid_base = GAUDI_QUEUE_ID_NIC_9_0; |
| qman_base = mmNIC4_QM1_BASE; |
| snprintf(desc, ARRAY_SIZE(desc), "NIC4_QM1"); |
| break; |
| default: |
| return; |
| } |
| |
| gaudi_handle_qman_err_generic(hdev, desc, qman_base, qid_base); |
| } |
| |
| static void gaudi_print_irq_info(struct hl_device *hdev, u16 event_type, |
| bool razwi) |
| { |
| char desc[64] = ""; |
| |
| gaudi_get_event_desc(event_type, desc, sizeof(desc)); |
| dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n", |
| event_type, desc); |
| |
| if (razwi) { |
| gaudi_print_razwi_info(hdev); |
| gaudi_print_mmu_error_info(hdev); |
| } |
| } |
| |
| static void gaudi_print_out_of_sync_info(struct hl_device *hdev, |
| struct cpucp_pkt_sync_err *sync_err) |
| { |
| struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI_QUEUE_ID_CPU_PQ]; |
| |
| dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%u\n", |
| sync_err->pi, sync_err->ci, q->pi, atomic_read(&q->ci)); |
| } |
| |
| static void gaudi_print_fw_alive_info(struct hl_device *hdev, |
| struct hl_eq_fw_alive *fw_alive) |
| { |
| dev_err(hdev->dev, |
| "FW alive report: severity=%s, process_id=%u, thread_id=%u, uptime=%llu seconds\n", |
| (fw_alive->severity == FW_ALIVE_SEVERITY_MINOR) ? |
| "Minor" : "Critical", fw_alive->process_id, |
| fw_alive->thread_id, fw_alive->uptime_seconds); |
| } |
| |
| static int gaudi_soft_reset_late_init(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| /* Unmask all IRQs since some could have been received |
| * during the soft reset |
| */ |
| return hl_fw_unmask_irq_arr(hdev, gaudi->events, sizeof(gaudi->events)); |
| } |
| |
| static int gaudi_hbm_read_interrupts(struct hl_device *hdev, int device, |
| struct hl_eq_hbm_ecc_data *hbm_ecc_data) |
| { |
| u32 base, val, val2, wr_par, rd_par, ca_par, derr, serr, type, ch; |
| int rc = 0; |
| |
| if (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_HBM_ECC_EN) { |
| if (!hbm_ecc_data) { |
| dev_err(hdev->dev, "No FW ECC data"); |
| return 0; |
| } |
| |
| wr_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_WR_PAR_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| rd_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_RD_PAR_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| ca_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_CA_PAR_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| derr = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_DERR_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| serr = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_SERR_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| type = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_TYPE_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| ch = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_HBM_CH_MASK, |
| le32_to_cpu(hbm_ecc_data->hbm_ecc_info)); |
| |
| dev_err(hdev->dev, |
| "HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n", |
| device, ch, wr_par, rd_par, ca_par, serr, derr); |
| dev_err(hdev->dev, |
| "HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%u, SEC_CNT=%d, DEC_CNT=%d\n", |
| device, ch, hbm_ecc_data->first_addr, type, |
| hbm_ecc_data->sec_cont_cnt, hbm_ecc_data->sec_cnt, |
| hbm_ecc_data->dec_cnt); |
| return 0; |
| } |
| |
| if (hdev->asic_prop.fw_security_enabled) { |
| dev_info(hdev->dev, "Cannot access MC regs for ECC data while security is enabled\n"); |
| return 0; |
| } |
| |
| base = GAUDI_HBM_CFG_BASE + device * GAUDI_HBM_CFG_OFFSET; |
| for (ch = 0 ; ch < GAUDI_HBM_CHANNELS ; ch++) { |
| val = RREG32_MASK(base + ch * 0x1000 + 0x06C, 0x0000FFFF); |
| val = (val & 0xFF) | ((val >> 8) & 0xFF); |
| if (val) { |
| rc = -EIO; |
| dev_err(hdev->dev, |
| "HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n", |
| device, ch * 2, val & 0x1, (val >> 1) & 0x1, |
| (val >> 2) & 0x1, (val >> 3) & 0x1, |
| (val >> 4) & 0x1); |
| |
| val2 = RREG32(base + ch * 0x1000 + 0x060); |
| dev_err(hdev->dev, |
| "HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%d, SEC_CNT=%d, DEC_CNT=%d\n", |
| device, ch * 2, |
| RREG32(base + ch * 0x1000 + 0x064), |
| (val2 & 0x200) >> 9, (val2 & 0xFC00) >> 10, |
| (val2 & 0xFF0000) >> 16, |
| (val2 & 0xFF000000) >> 24); |
| } |
| |
| val = RREG32_MASK(base + ch * 0x1000 + 0x07C, 0x0000FFFF); |
| val = (val & 0xFF) | ((val >> 8) & 0xFF); |
| if (val) { |
| rc = -EIO; |
| dev_err(hdev->dev, |
| "HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n", |
| device, ch * 2 + 1, val & 0x1, (val >> 1) & 0x1, |
| (val >> 2) & 0x1, (val >> 3) & 0x1, |
| (val >> 4) & 0x1); |
| |
| val2 = RREG32(base + ch * 0x1000 + 0x070); |
| dev_err(hdev->dev, |
| "HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%d, SEC_CNT=%d, DEC_CNT=%d\n", |
| device, ch * 2 + 1, |
| RREG32(base + ch * 0x1000 + 0x074), |
| (val2 & 0x200) >> 9, (val2 & 0xFC00) >> 10, |
| (val2 & 0xFF0000) >> 16, |
| (val2 & 0xFF000000) >> 24); |
| } |
| |
| /* Clear interrupts */ |
| RMWREG32(base + (ch * 0x1000) + 0x060, 0x1C8, 0x1FF); |
| RMWREG32(base + (ch * 0x1000) + 0x070, 0x1C8, 0x1FF); |
| WREG32(base + (ch * 0x1000) + 0x06C, 0x1F1F); |
| WREG32(base + (ch * 0x1000) + 0x07C, 0x1F1F); |
| RMWREG32(base + (ch * 0x1000) + 0x060, 0x0, 0xF); |
| RMWREG32(base + (ch * 0x1000) + 0x070, 0x0, 0xF); |
| } |
| |
| val = RREG32(base + 0x8F30); |
| val2 = RREG32(base + 0x8F34); |
| if (val | val2) { |
| rc = -EIO; |
| dev_err(hdev->dev, |
| "HBM %d MC SRAM SERR info: Reg 0x8F30=0x%x, Reg 0x8F34=0x%x\n", |
| device, val, val2); |
| } |
| val = RREG32(base + 0x8F40); |
| val2 = RREG32(base + 0x8F44); |
| if (val | val2) { |
| rc = -EIO; |
| dev_err(hdev->dev, |
| "HBM %d MC SRAM DERR info: Reg 0x8F40=0x%x, Reg 0x8F44=0x%x\n", |
| device, val, val2); |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_hbm_event_to_dev(u16 hbm_event_type) |
| { |
| switch (hbm_event_type) { |
| case GAUDI_EVENT_HBM0_SPI_0: |
| case GAUDI_EVENT_HBM0_SPI_1: |
| return 0; |
| case GAUDI_EVENT_HBM1_SPI_0: |
| case GAUDI_EVENT_HBM1_SPI_1: |
| return 1; |
| case GAUDI_EVENT_HBM2_SPI_0: |
| case GAUDI_EVENT_HBM2_SPI_1: |
| return 2; |
| case GAUDI_EVENT_HBM3_SPI_0: |
| case GAUDI_EVENT_HBM3_SPI_1: |
| return 3; |
| default: |
| break; |
| } |
| |
| /* Should never happen */ |
| return 0; |
| } |
| |
| static bool gaudi_tpc_read_interrupts(struct hl_device *hdev, u8 tpc_id, |
| char *interrupt_name) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 tpc_offset = tpc_id * TPC_CFG_OFFSET, tpc_interrupts_cause, i; |
| bool soft_reset_required = false; |
| |
| /* Accessing the TPC_INTR_CAUSE registers requires disabling the clock |
| * gating, and thus cannot be done in CPU-CP and should be done instead |
| * by the driver. |
| */ |
| |
| mutex_lock(&gaudi->clk_gate_mutex); |
| |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| tpc_interrupts_cause = RREG32(mmTPC0_CFG_TPC_INTR_CAUSE + tpc_offset) & |
| TPC0_CFG_TPC_INTR_CAUSE_CAUSE_MASK; |
| |
| for (i = 0 ; i < GAUDI_NUM_OF_TPC_INTR_CAUSE ; i++) |
| if (tpc_interrupts_cause & BIT(i)) { |
| dev_err_ratelimited(hdev->dev, |
| "TPC%d_%s interrupt cause: %s\n", |
| tpc_id, interrupt_name, |
| gaudi_tpc_interrupts_cause[i]); |
| /* If this is QM error, we need to soft-reset */ |
| if (i == 15) |
| soft_reset_required = true; |
| } |
| |
| /* Clear interrupts */ |
| WREG32(mmTPC0_CFG_TPC_INTR_CAUSE + tpc_offset, 0); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| |
| return soft_reset_required; |
| } |
| |
| static int tpc_dec_event_to_tpc_id(u16 tpc_dec_event_type) |
| { |
| return (tpc_dec_event_type - GAUDI_EVENT_TPC0_DEC) >> 1; |
| } |
| |
| static int tpc_krn_event_to_tpc_id(u16 tpc_dec_event_type) |
| { |
| return (tpc_dec_event_type - GAUDI_EVENT_TPC0_KRN_ERR) / 6; |
| } |
| |
| static void gaudi_print_clk_change_info(struct hl_device *hdev, |
| u16 event_type) |
| { |
| switch (event_type) { |
| case GAUDI_EVENT_FIX_POWER_ENV_S: |
| hdev->clk_throttling_reason |= HL_CLK_THROTTLE_POWER; |
| dev_info_ratelimited(hdev->dev, |
| "Clock throttling due to power consumption\n"); |
| break; |
| |
| case GAUDI_EVENT_FIX_POWER_ENV_E: |
| hdev->clk_throttling_reason &= ~HL_CLK_THROTTLE_POWER; |
| dev_info_ratelimited(hdev->dev, |
| "Power envelop is safe, back to optimal clock\n"); |
| break; |
| |
| case GAUDI_EVENT_FIX_THERMAL_ENV_S: |
| hdev->clk_throttling_reason |= HL_CLK_THROTTLE_THERMAL; |
| dev_info_ratelimited(hdev->dev, |
| "Clock throttling due to overheating\n"); |
| break; |
| |
| case GAUDI_EVENT_FIX_THERMAL_ENV_E: |
| hdev->clk_throttling_reason &= ~HL_CLK_THROTTLE_THERMAL; |
| dev_info_ratelimited(hdev->dev, |
| "Thermal envelop is safe, back to optimal clock\n"); |
| break; |
| |
| default: |
| dev_err(hdev->dev, "Received invalid clock change event %d\n", |
| event_type); |
| break; |
| } |
| } |
| |
| static void gaudi_handle_eqe(struct hl_device *hdev, |
| struct hl_eq_entry *eq_entry) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 ctl = le32_to_cpu(eq_entry->hdr.ctl); |
| u32 fw_fatal_err_flag = 0; |
| u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) |
| >> EQ_CTL_EVENT_TYPE_SHIFT); |
| bool reset_required; |
| u8 cause; |
| int rc; |
| |
| if (event_type >= GAUDI_EVENT_SIZE) { |
| dev_err(hdev->dev, "Event type %u exceeds maximum of %u", |
| event_type, GAUDI_EVENT_SIZE - 1); |
| return; |
| } |
| |
| gaudi->events_stat[event_type]++; |
| gaudi->events_stat_aggregate[event_type]++; |
| |
| switch (event_type) { |
| case GAUDI_EVENT_PCIE_CORE_DERR: |
| case GAUDI_EVENT_PCIE_IF_DERR: |
| case GAUDI_EVENT_PCIE_PHY_DERR: |
| case GAUDI_EVENT_TPC0_DERR ... GAUDI_EVENT_TPC7_DERR: |
| case GAUDI_EVENT_MME0_ACC_DERR: |
| case GAUDI_EVENT_MME0_SBAB_DERR: |
| case GAUDI_EVENT_MME1_ACC_DERR: |
| case GAUDI_EVENT_MME1_SBAB_DERR: |
| case GAUDI_EVENT_MME2_ACC_DERR: |
| case GAUDI_EVENT_MME2_SBAB_DERR: |
| case GAUDI_EVENT_MME3_ACC_DERR: |
| case GAUDI_EVENT_MME3_SBAB_DERR: |
| case GAUDI_EVENT_DMA0_DERR_ECC ... GAUDI_EVENT_DMA7_DERR_ECC: |
| fallthrough; |
| case GAUDI_EVENT_CPU_IF_ECC_DERR: |
| case GAUDI_EVENT_PSOC_MEM_DERR: |
| case GAUDI_EVENT_PSOC_CORESIGHT_DERR: |
| case GAUDI_EVENT_SRAM0_DERR ... GAUDI_EVENT_SRAM28_DERR: |
| case GAUDI_EVENT_DMA_IF0_DERR ... GAUDI_EVENT_DMA_IF3_DERR: |
| case GAUDI_EVENT_HBM_0_DERR ... GAUDI_EVENT_HBM_3_DERR: |
| case GAUDI_EVENT_MMU_DERR: |
| case GAUDI_EVENT_NIC0_CS_DBG_DERR ... GAUDI_EVENT_NIC4_CS_DBG_DERR: |
| gaudi_print_irq_info(hdev, event_type, true); |
| gaudi_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data); |
| fw_fatal_err_flag = HL_RESET_FW_FATAL_ERR; |
| goto reset_device; |
| |
| case GAUDI_EVENT_GIC500: |
| case GAUDI_EVENT_AXI_ECC: |
| case GAUDI_EVENT_L2_RAM_ECC: |
| case GAUDI_EVENT_PLL0 ... GAUDI_EVENT_PLL17: |
| gaudi_print_irq_info(hdev, event_type, false); |
| fw_fatal_err_flag = HL_RESET_FW_FATAL_ERR; |
| goto reset_device; |
| |
| case GAUDI_EVENT_HBM0_SPI_0: |
| case GAUDI_EVENT_HBM1_SPI_0: |
| case GAUDI_EVENT_HBM2_SPI_0: |
| case GAUDI_EVENT_HBM3_SPI_0: |
| gaudi_print_irq_info(hdev, event_type, false); |
| gaudi_hbm_read_interrupts(hdev, |
| gaudi_hbm_event_to_dev(event_type), |
| &eq_entry->hbm_ecc_data); |
| fw_fatal_err_flag = HL_RESET_FW_FATAL_ERR; |
| goto reset_device; |
| |
| case GAUDI_EVENT_HBM0_SPI_1: |
| case GAUDI_EVENT_HBM1_SPI_1: |
| case GAUDI_EVENT_HBM2_SPI_1: |
| case GAUDI_EVENT_HBM3_SPI_1: |
| gaudi_print_irq_info(hdev, event_type, false); |
| gaudi_hbm_read_interrupts(hdev, |
| gaudi_hbm_event_to_dev(event_type), |
| &eq_entry->hbm_ecc_data); |
| hl_fw_unmask_irq(hdev, event_type); |
| break; |
| |
| case GAUDI_EVENT_TPC0_DEC: |
| case GAUDI_EVENT_TPC1_DEC: |
| case GAUDI_EVENT_TPC2_DEC: |
| case GAUDI_EVENT_TPC3_DEC: |
| case GAUDI_EVENT_TPC4_DEC: |
| case GAUDI_EVENT_TPC5_DEC: |
| case GAUDI_EVENT_TPC6_DEC: |
| case GAUDI_EVENT_TPC7_DEC: |
| gaudi_print_irq_info(hdev, event_type, true); |
| reset_required = gaudi_tpc_read_interrupts(hdev, |
| tpc_dec_event_to_tpc_id(event_type), |
| "AXI_SLV_DEC_Error"); |
| if (reset_required) { |
| dev_err(hdev->dev, "reset required due to %s\n", |
| gaudi_irq_map_table[event_type].name); |
| |
| hl_device_reset(hdev, 0); |
| } else { |
| hl_fw_unmask_irq(hdev, event_type); |
| } |
| break; |
| |
| case GAUDI_EVENT_TPC0_KRN_ERR: |
| case GAUDI_EVENT_TPC1_KRN_ERR: |
| case GAUDI_EVENT_TPC2_KRN_ERR: |
| case GAUDI_EVENT_TPC3_KRN_ERR: |
| case GAUDI_EVENT_TPC4_KRN_ERR: |
| case GAUDI_EVENT_TPC5_KRN_ERR: |
| case GAUDI_EVENT_TPC6_KRN_ERR: |
| case GAUDI_EVENT_TPC7_KRN_ERR: |
| gaudi_print_irq_info(hdev, event_type, true); |
| reset_required = gaudi_tpc_read_interrupts(hdev, |
| tpc_krn_event_to_tpc_id(event_type), |
| "KRN_ERR"); |
| if (reset_required) { |
| dev_err(hdev->dev, "reset required due to %s\n", |
| gaudi_irq_map_table[event_type].name); |
| |
| hl_device_reset(hdev, 0); |
| } else { |
| hl_fw_unmask_irq(hdev, event_type); |
| } |
| break; |
| |
| case GAUDI_EVENT_PCIE_CORE_SERR: |
| case GAUDI_EVENT_PCIE_IF_SERR: |
| case GAUDI_EVENT_PCIE_PHY_SERR: |
| case GAUDI_EVENT_TPC0_SERR ... GAUDI_EVENT_TPC7_SERR: |
| case GAUDI_EVENT_MME0_ACC_SERR: |
| case GAUDI_EVENT_MME0_SBAB_SERR: |
| case GAUDI_EVENT_MME1_ACC_SERR: |
| case GAUDI_EVENT_MME1_SBAB_SERR: |
| case GAUDI_EVENT_MME2_ACC_SERR: |
| case GAUDI_EVENT_MME2_SBAB_SERR: |
| case GAUDI_EVENT_MME3_ACC_SERR: |
| case GAUDI_EVENT_MME3_SBAB_SERR: |
| case GAUDI_EVENT_DMA0_SERR_ECC ... GAUDI_EVENT_DMA7_SERR_ECC: |
| case GAUDI_EVENT_CPU_IF_ECC_SERR: |
| case GAUDI_EVENT_PSOC_MEM_SERR: |
| case GAUDI_EVENT_PSOC_CORESIGHT_SERR: |
| case GAUDI_EVENT_SRAM0_SERR ... GAUDI_EVENT_SRAM28_SERR: |
| case GAUDI_EVENT_DMA_IF0_SERR ... GAUDI_EVENT_DMA_IF3_SERR: |
| case GAUDI_EVENT_HBM_0_SERR ... GAUDI_EVENT_HBM_3_SERR: |
| fallthrough; |
| case GAUDI_EVENT_MMU_SERR: |
| gaudi_print_irq_info(hdev, event_type, true); |
| gaudi_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data); |
| hl_fw_unmask_irq(hdev, event_type); |
| break; |
| |
| case GAUDI_EVENT_PCIE_DEC: |
| case GAUDI_EVENT_MME0_WBC_RSP: |
| case GAUDI_EVENT_MME0_SBAB0_RSP: |
| case GAUDI_EVENT_MME1_WBC_RSP: |
| case GAUDI_EVENT_MME1_SBAB0_RSP: |
| case GAUDI_EVENT_MME2_WBC_RSP: |
| case GAUDI_EVENT_MME2_SBAB0_RSP: |
| case GAUDI_EVENT_MME3_WBC_RSP: |
| case GAUDI_EVENT_MME3_SBAB0_RSP: |
| case GAUDI_EVENT_CPU_AXI_SPLITTER: |
| case GAUDI_EVENT_PSOC_AXI_DEC: |
| case GAUDI_EVENT_PSOC_PRSTN_FALL: |
| case GAUDI_EVENT_MMU_PAGE_FAULT: |
| case GAUDI_EVENT_MMU_WR_PERM: |
| case GAUDI_EVENT_RAZWI_OR_ADC: |
| case GAUDI_EVENT_TPC0_QM ... GAUDI_EVENT_TPC7_QM: |
| case GAUDI_EVENT_MME0_QM ... GAUDI_EVENT_MME2_QM: |
| case GAUDI_EVENT_DMA0_QM ... GAUDI_EVENT_DMA7_QM: |
| fallthrough; |
| case GAUDI_EVENT_NIC0_QM0: |
| case GAUDI_EVENT_NIC0_QM1: |
| case GAUDI_EVENT_NIC1_QM0: |
| case GAUDI_EVENT_NIC1_QM1: |
| case GAUDI_EVENT_NIC2_QM0: |
| case GAUDI_EVENT_NIC2_QM1: |
| case GAUDI_EVENT_NIC3_QM0: |
| case GAUDI_EVENT_NIC3_QM1: |
| case GAUDI_EVENT_NIC4_QM0: |
| case GAUDI_EVENT_NIC4_QM1: |
| case GAUDI_EVENT_DMA0_CORE ... GAUDI_EVENT_DMA7_CORE: |
| gaudi_print_irq_info(hdev, event_type, true); |
| gaudi_handle_qman_err(hdev, event_type); |
| hl_fw_unmask_irq(hdev, event_type); |
| break; |
| |
| case GAUDI_EVENT_RAZWI_OR_ADC_SW: |
| gaudi_print_irq_info(hdev, event_type, true); |
| goto reset_device; |
| |
| case GAUDI_EVENT_TPC0_BMON_SPMU: |
| case GAUDI_EVENT_TPC1_BMON_SPMU: |
| case GAUDI_EVENT_TPC2_BMON_SPMU: |
| case GAUDI_EVENT_TPC3_BMON_SPMU: |
| case GAUDI_EVENT_TPC4_BMON_SPMU: |
| case GAUDI_EVENT_TPC5_BMON_SPMU: |
| case GAUDI_EVENT_TPC6_BMON_SPMU: |
| case GAUDI_EVENT_TPC7_BMON_SPMU: |
| case GAUDI_EVENT_DMA_BM_CH0 ... GAUDI_EVENT_DMA_BM_CH7: |
| gaudi_print_irq_info(hdev, event_type, false); |
| hl_fw_unmask_irq(hdev, event_type); |
| break; |
| |
| case GAUDI_EVENT_DMA_IF_SEI_0 ... GAUDI_EVENT_DMA_IF_SEI_3: |
| gaudi_print_irq_info(hdev, event_type, false); |
| gaudi_print_sm_sei_info(hdev, event_type, |
| &eq_entry->sm_sei_data); |
| rc = hl_state_dump(hdev); |
| if (rc) |
| dev_err(hdev->dev, |
| "Error during system state dump %d\n", rc); |
| hl_fw_unmask_irq(hdev, event_type); |
| break; |
| |
| case GAUDI_EVENT_FIX_POWER_ENV_S ... GAUDI_EVENT_FIX_THERMAL_ENV_E: |
| gaudi_print_clk_change_info(hdev, event_type); |
| hl_fw_unmask_irq(hdev, event_type); |
| break; |
| |
| case GAUDI_EVENT_PSOC_GPIO_U16_0: |
| cause = le64_to_cpu(eq_entry->data[0]) & 0xFF; |
| dev_err(hdev->dev, |
| "Received high temp H/W interrupt %d (cause %d)\n", |
| event_type, cause); |
| break; |
| |
| case GAUDI_EVENT_DEV_RESET_REQ: |
| gaudi_print_irq_info(hdev, event_type, false); |
| goto reset_device; |
| |
| case GAUDI_EVENT_PKT_QUEUE_OUT_SYNC: |
| gaudi_print_irq_info(hdev, event_type, false); |
| gaudi_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err); |
| goto reset_device; |
| |
| case GAUDI_EVENT_FW_ALIVE_S: |
| gaudi_print_irq_info(hdev, event_type, false); |
| gaudi_print_fw_alive_info(hdev, &eq_entry->fw_alive); |
| goto reset_device; |
| |
| default: |
| dev_err(hdev->dev, "Received invalid H/W interrupt %d\n", |
| event_type); |
| break; |
| } |
| |
| return; |
| |
| reset_device: |
| if (hdev->asic_prop.fw_security_enabled) |
| hl_device_reset(hdev, HL_RESET_HARD | HL_RESET_FW | fw_fatal_err_flag); |
| else if (hdev->hard_reset_on_fw_events) |
| hl_device_reset(hdev, HL_RESET_HARD | fw_fatal_err_flag); |
| else |
| hl_fw_unmask_irq(hdev, event_type); |
| } |
| |
| static void *gaudi_get_events_stat(struct hl_device *hdev, bool aggregate, |
| u32 *size) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (aggregate) { |
| *size = (u32) sizeof(gaudi->events_stat_aggregate); |
| return gaudi->events_stat_aggregate; |
| } |
| |
| *size = (u32) sizeof(gaudi->events_stat); |
| return gaudi->events_stat; |
| } |
| |
| static int gaudi_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, |
| u32 flags) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u32 status, timeout_usec; |
| int rc; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MMU) || |
| hdev->hard_reset_pending) |
| return 0; |
| |
| if (hdev->pldm) |
| timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC; |
| else |
| timeout_usec = MMU_CONFIG_TIMEOUT_USEC; |
| |
| /* L0 & L1 invalidation */ |
| WREG32(mmSTLB_INV_PS, 3); |
| WREG32(mmSTLB_CACHE_INV, gaudi->mmu_cache_inv_pi++); |
| WREG32(mmSTLB_INV_PS, 2); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| mmSTLB_INV_PS, |
| status, |
| !status, |
| 1000, |
| timeout_usec); |
| |
| WREG32(mmSTLB_INV_SET, 0); |
| |
| if (rc) { |
| dev_err_ratelimited(hdev->dev, |
| "MMU cache invalidation timeout\n"); |
| hl_device_reset(hdev, HL_RESET_HARD); |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi_mmu_invalidate_cache_range(struct hl_device *hdev, |
| bool is_hard, u32 flags, |
| u32 asid, u64 va, u64 size) |
| { |
| /* Treat as invalidate all because there is no range invalidation |
| * in Gaudi |
| */ |
| return hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); |
| } |
| |
| static int gaudi_mmu_update_asid_hop0_addr(struct hl_device *hdev, |
| u32 asid, u64 phys_addr) |
| { |
| u32 status, timeout_usec; |
| int rc; |
| |
| if (hdev->pldm) |
| timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC; |
| else |
| timeout_usec = MMU_CONFIG_TIMEOUT_USEC; |
| |
| WREG32(MMU_ASID, asid); |
| WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT); |
| WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT); |
| WREG32(MMU_BUSY, 0x80000000); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| MMU_BUSY, |
| status, |
| !(status & 0x80000000), |
| 1000, |
| timeout_usec); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Timeout during MMU hop0 config of asid %d\n", asid); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi_send_heartbeat(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_send_heartbeat(hdev); |
| } |
| |
| static int gaudi_cpucp_info_get(struct hl_device *hdev) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, |
| mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0, |
| mmCPU_BOOT_ERR1); |
| if (rc) |
| return rc; |
| |
| if (!strlen(prop->cpucp_info.card_name)) |
| strncpy(prop->cpucp_info.card_name, GAUDI_DEFAULT_CARD_NAME, |
| CARD_NAME_MAX_LEN); |
| |
| hdev->card_type = le32_to_cpu(hdev->asic_prop.cpucp_info.card_type); |
| |
| set_default_power_values(hdev); |
| |
| hdev->max_power = prop->max_power_default; |
| |
| return 0; |
| } |
| |
| static bool gaudi_is_device_idle(struct hl_device *hdev, u64 *mask_arr, |
| u8 mask_len, struct seq_file *s) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| const char *fmt = "%-5d%-9s%#-14x%#-12x%#x\n"; |
| const char *mme_slave_fmt = "%-5d%-9s%-14s%-12s%#x\n"; |
| const char *nic_fmt = "%-5d%-9s%#-14x%#x\n"; |
| unsigned long *mask = (unsigned long *)mask_arr; |
| u32 qm_glbl_sts0, qm_cgm_sts, dma_core_sts0, tpc_cfg_sts, mme_arch_sts; |
| bool is_idle = true, is_eng_idle, is_slave; |
| u64 offset; |
| int i, dma_id, port; |
| |
| mutex_lock(&gaudi->clk_gate_mutex); |
| |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| if (s) |
| seq_puts(s, |
| "\nDMA is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_STS0\n" |
| "--- ------- ------------ ---------- -------------\n"); |
| |
| for (i = 0 ; i < DMA_NUMBER_OF_CHNLS ; i++) { |
| dma_id = gaudi_dma_assignment[i]; |
| offset = dma_id * DMA_QMAN_OFFSET; |
| |
| qm_glbl_sts0 = RREG32(mmDMA0_QM_GLBL_STS0 + offset); |
| qm_cgm_sts = RREG32(mmDMA0_QM_CGM_STS + offset); |
| dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + offset); |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) && |
| IS_DMA_IDLE(dma_core_sts0); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(GAUDI_ENGINE_ID_DMA_0 + dma_id, mask); |
| if (s) |
| seq_printf(s, fmt, dma_id, |
| is_eng_idle ? "Y" : "N", qm_glbl_sts0, |
| qm_cgm_sts, dma_core_sts0); |
| } |
| |
| if (s) |
| seq_puts(s, |
| "\nTPC is_idle QM_GLBL_STS0 QM_CGM_STS CFG_STATUS\n" |
| "--- ------- ------------ ---------- ----------\n"); |
| |
| for (i = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) { |
| offset = i * TPC_QMAN_OFFSET; |
| qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + offset); |
| qm_cgm_sts = RREG32(mmTPC0_QM_CGM_STS + offset); |
| tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + offset); |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) && |
| IS_TPC_IDLE(tpc_cfg_sts); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(GAUDI_ENGINE_ID_TPC_0 + i, mask); |
| if (s) |
| seq_printf(s, fmt, i, |
| is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts); |
| } |
| |
| if (s) |
| seq_puts(s, |
| "\nMME is_idle QM_GLBL_STS0 QM_CGM_STS ARCH_STATUS\n" |
| "--- ------- ------------ ---------- -----------\n"); |
| |
| for (i = 0 ; i < MME_NUMBER_OF_ENGINES ; i++) { |
| offset = i * MME_QMAN_OFFSET; |
| mme_arch_sts = RREG32(mmMME0_CTRL_ARCH_STATUS + offset); |
| is_eng_idle = IS_MME_IDLE(mme_arch_sts); |
| |
| /* MME 1 & 3 are slaves, no need to check their QMANs */ |
| is_slave = i % 2; |
| if (!is_slave) { |
| qm_glbl_sts0 = RREG32(mmMME0_QM_GLBL_STS0 + offset); |
| qm_cgm_sts = RREG32(mmMME0_QM_CGM_STS + offset); |
| is_eng_idle &= IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts); |
| } |
| |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(GAUDI_ENGINE_ID_MME_0 + i, mask); |
| if (s) { |
| if (!is_slave) |
| seq_printf(s, fmt, i, |
| is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_cgm_sts, mme_arch_sts); |
| else |
| seq_printf(s, mme_slave_fmt, i, |
| is_eng_idle ? "Y" : "N", "-", |
| "-", mme_arch_sts); |
| } |
| } |
| |
| if (s) |
| seq_puts(s, "\nNIC is_idle QM_GLBL_STS0 QM_CGM_STS\n" |
| "--- ------- ------------ ----------\n"); |
| |
| for (i = 0 ; i < (NIC_NUMBER_OF_ENGINES / 2) ; i++) { |
| offset = i * NIC_MACRO_QMAN_OFFSET; |
| port = 2 * i; |
| if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + port)) { |
| qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset); |
| qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset); |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(GAUDI_ENGINE_ID_NIC_0 + port, mask); |
| if (s) |
| seq_printf(s, nic_fmt, port, |
| is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_cgm_sts); |
| } |
| |
| port = 2 * i + 1; |
| if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + port)) { |
| qm_glbl_sts0 = RREG32(mmNIC0_QM1_GLBL_STS0 + offset); |
| qm_cgm_sts = RREG32(mmNIC0_QM1_CGM_STS + offset); |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(GAUDI_ENGINE_ID_NIC_0 + port, mask); |
| if (s) |
| seq_printf(s, nic_fmt, port, |
| is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_cgm_sts); |
| } |
| } |
| |
| if (s) |
| seq_puts(s, "\n"); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| |
| return is_idle; |
| } |
| |
| static void gaudi_hw_queues_lock(struct hl_device *hdev) |
| __acquires(&gaudi->hw_queues_lock) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| spin_lock(&gaudi->hw_queues_lock); |
| } |
| |
| static void gaudi_hw_queues_unlock(struct hl_device *hdev) |
| __releases(&gaudi->hw_queues_lock) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| spin_unlock(&gaudi->hw_queues_lock); |
| } |
| |
| static u32 gaudi_get_pci_id(struct hl_device *hdev) |
| { |
| return hdev->pdev->device; |
| } |
| |
| static int gaudi_get_eeprom_data(struct hl_device *hdev, void *data, |
| size_t max_size) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_get_eeprom_data(hdev, data, max_size); |
| } |
| |
| /* |
| * this function should be used only during initialization and/or after reset, |
| * when there are no active users. |
| */ |
| static int gaudi_run_tpc_kernel(struct hl_device *hdev, u64 tpc_kernel, |
| u32 tpc_id) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| u64 kernel_timeout; |
| u32 status, offset; |
| int rc; |
| |
| offset = tpc_id * (mmTPC1_CFG_STATUS - mmTPC0_CFG_STATUS); |
| |
| if (hdev->pldm) |
| kernel_timeout = GAUDI_PLDM_TPC_KERNEL_WAIT_USEC; |
| else |
| kernel_timeout = HL_DEVICE_TIMEOUT_USEC; |
| |
| mutex_lock(&gaudi->clk_gate_mutex); |
| |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| WREG32(mmTPC0_CFG_QM_KERNEL_BASE_ADDRESS_LOW + offset, |
| lower_32_bits(tpc_kernel)); |
| WREG32(mmTPC0_CFG_QM_KERNEL_BASE_ADDRESS_HIGH + offset, |
| upper_32_bits(tpc_kernel)); |
| |
| WREG32(mmTPC0_CFG_ICACHE_BASE_ADDERESS_LOW + offset, |
| lower_32_bits(tpc_kernel)); |
| WREG32(mmTPC0_CFG_ICACHE_BASE_ADDERESS_HIGH + offset, |
| upper_32_bits(tpc_kernel)); |
| /* set a valid LUT pointer, content is of no significance */ |
| WREG32(mmTPC0_CFG_LUT_FUNC256_BASE_ADDR_LO + offset, |
| lower_32_bits(tpc_kernel)); |
| WREG32(mmTPC0_CFG_LUT_FUNC256_BASE_ADDR_HI + offset, |
| upper_32_bits(tpc_kernel)); |
| |
| WREG32(mmTPC0_CFG_QM_SYNC_OBJECT_ADDR + offset, |
| lower_32_bits(CFG_BASE + |
| mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0)); |
| |
| WREG32(mmTPC0_CFG_TPC_CMD + offset, |
| (1 << TPC0_CFG_TPC_CMD_ICACHE_INVALIDATE_SHIFT | |
| 1 << TPC0_CFG_TPC_CMD_ICACHE_PREFETCH_64KB_SHIFT)); |
| /* wait a bit for the engine to start executing */ |
| usleep_range(1000, 1500); |
| |
| /* wait until engine has finished executing */ |
| rc = hl_poll_timeout( |
| hdev, |
| mmTPC0_CFG_STATUS + offset, |
| status, |
| (status & TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK) == |
| TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK, |
| 1000, |
| kernel_timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Timeout while waiting for TPC%d icache prefetch\n", |
| tpc_id); |
| hdev->asic_funcs->set_clock_gating(hdev); |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| return -EIO; |
| } |
| |
| WREG32(mmTPC0_CFG_TPC_EXECUTE + offset, |
| 1 << TPC0_CFG_TPC_EXECUTE_V_SHIFT); |
| |
| /* wait a bit for the engine to start executing */ |
| usleep_range(1000, 1500); |
| |
| /* wait until engine has finished executing */ |
| rc = hl_poll_timeout( |
| hdev, |
| mmTPC0_CFG_STATUS + offset, |
| status, |
| (status & TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK) == |
| TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK, |
| 1000, |
| kernel_timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Timeout while waiting for TPC%d vector pipe\n", |
| tpc_id); |
| hdev->asic_funcs->set_clock_gating(hdev); |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| return -EIO; |
| } |
| |
| rc = hl_poll_timeout( |
| hdev, |
| mmTPC0_CFG_WQ_INFLIGHT_CNTR + offset, |
| status, |
| (status == 0), |
| 1000, |
| kernel_timeout); |
| |
| hdev->asic_funcs->set_clock_gating(hdev); |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Timeout while waiting for TPC%d kernel to execute\n", |
| tpc_id); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi_internal_cb_pool_init(struct hl_device *hdev, |
| struct hl_ctx *ctx) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int min_alloc_order, rc, collective_cb_size; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MMU)) |
| return 0; |
| |
| hdev->internal_cb_pool_virt_addr = |
| hdev->asic_funcs->asic_dma_alloc_coherent(hdev, |
| HOST_SPACE_INTERNAL_CB_SZ, |
| &hdev->internal_cb_pool_dma_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| |
| if (!hdev->internal_cb_pool_virt_addr) |
| return -ENOMEM; |
| |
| collective_cb_size = sizeof(struct packet_msg_short) * 5 + |
| sizeof(struct packet_fence); |
| min_alloc_order = ilog2(collective_cb_size); |
| |
| hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1); |
| if (!hdev->internal_cb_pool) { |
| dev_err(hdev->dev, |
| "Failed to create internal CB pool\n"); |
| rc = -ENOMEM; |
| goto free_internal_cb_pool; |
| } |
| |
| rc = gen_pool_add(hdev->internal_cb_pool, |
| (uintptr_t) hdev->internal_cb_pool_virt_addr, |
| HOST_SPACE_INTERNAL_CB_SZ, -1); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to add memory to internal CB pool\n"); |
| rc = -EFAULT; |
| goto destroy_internal_cb_pool; |
| } |
| |
| hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx, |
| HL_VA_RANGE_TYPE_HOST, HOST_SPACE_INTERNAL_CB_SZ, |
| HL_MMU_VA_ALIGNMENT_NOT_NEEDED); |
| |
| if (!hdev->internal_cb_va_base) { |
| rc = -ENOMEM; |
| goto destroy_internal_cb_pool; |
| } |
| |
| mutex_lock(&ctx->mmu_lock); |
| rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base, |
| hdev->internal_cb_pool_dma_addr, |
| HOST_SPACE_INTERNAL_CB_SZ); |
| |
| hdev->asic_funcs->mmu_invalidate_cache(hdev, false, VM_TYPE_USERPTR); |
| mutex_unlock(&ctx->mmu_lock); |
| |
| if (rc) |
| goto unreserve_internal_cb_pool; |
| |
| return 0; |
| |
| unreserve_internal_cb_pool: |
| hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, |
| HOST_SPACE_INTERNAL_CB_SZ); |
| destroy_internal_cb_pool: |
| gen_pool_destroy(hdev->internal_cb_pool); |
| free_internal_cb_pool: |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, |
| HOST_SPACE_INTERNAL_CB_SZ, |
| hdev->internal_cb_pool_virt_addr, |
| hdev->internal_cb_pool_dma_addr); |
| |
| return rc; |
| } |
| |
| static void gaudi_internal_cb_pool_fini(struct hl_device *hdev, |
| struct hl_ctx *ctx) |
| { |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| |
| if (!(gaudi->hw_cap_initialized & HW_CAP_MMU)) |
| return; |
| |
| mutex_lock(&ctx->mmu_lock); |
| hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, |
| HOST_SPACE_INTERNAL_CB_SZ); |
| hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, |
| HOST_SPACE_INTERNAL_CB_SZ); |
| hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR); |
| mutex_unlock(&ctx->mmu_lock); |
| |
| gen_pool_destroy(hdev->internal_cb_pool); |
| |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, |
| HOST_SPACE_INTERNAL_CB_SZ, |
| hdev->internal_cb_pool_virt_addr, |
| hdev->internal_cb_pool_dma_addr); |
| } |
| |
| static int gaudi_ctx_init(struct hl_ctx *ctx) |
| { |
| int rc; |
| |
| if (ctx->asid == HL_KERNEL_ASID_ID) |
| return 0; |
| |
| rc = gaudi_internal_cb_pool_init(ctx->hdev, ctx); |
| if (rc) |
| return rc; |
| |
| rc = gaudi_restore_user_registers(ctx->hdev); |
| if (rc) |
| gaudi_internal_cb_pool_fini(ctx->hdev, ctx); |
| |
| return rc; |
| } |
| |
| static void gaudi_ctx_fini(struct hl_ctx *ctx) |
| { |
| if (ctx->asid == HL_KERNEL_ASID_ID) |
| return; |
| |
| gaudi_internal_cb_pool_fini(ctx->hdev, ctx); |
| } |
| |
| static u32 gaudi_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx) |
| { |
| return gaudi_cq_assignment[cq_idx]; |
| } |
| |
| static u32 gaudi_get_signal_cb_size(struct hl_device *hdev) |
| { |
| return sizeof(struct packet_msg_short) + |
| sizeof(struct packet_msg_prot) * 2; |
| } |
| |
| static u32 gaudi_get_wait_cb_size(struct hl_device *hdev) |
| { |
| return sizeof(struct packet_msg_short) * 4 + |
| sizeof(struct packet_fence) + |
| sizeof(struct packet_msg_prot) * 2; |
| } |
| |
| static u32 gaudi_get_sob_addr(struct hl_device *hdev, u32 sob_id) |
| { |
| return mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 + (sob_id * 4); |
| } |
| |
| static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, |
| u32 size, bool eb) |
| { |
| struct hl_cb *cb = (struct hl_cb *) data; |
| struct packet_msg_short *pkt; |
| u32 value, ctl, pkt_size = sizeof(*pkt); |
| |
| pkt = cb->kernel_address + size; |
| memset(pkt, 0, pkt_size); |
| |
| /* Inc by 1, Mode ADD */ |
| value = FIELD_PREP(GAUDI_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1); |
| value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_SOB_MOD_MASK, 1); |
| |
| ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4); |
| ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_OP_MASK, 0); /* write the value */ |
| ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 3); /* W_S SOB base */ |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, eb); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| pkt->value = cpu_to_le32(value); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return size + pkt_size; |
| } |
| |
| static u32 gaudi_add_mon_msg_short(struct packet_msg_short *pkt, u32 value, |
| u16 addr) |
| { |
| u32 ctl, pkt_size = sizeof(*pkt); |
| |
| memset(pkt, 0, pkt_size); |
| |
| ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, addr); |
| ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 2); /* W_S MON base */ |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 0); /* last pkt MB */ |
| |
| pkt->value = cpu_to_le32(value); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return pkt_size; |
| } |
| |
| static u32 gaudi_add_arm_monitor_pkt(struct hl_device *hdev, |
| struct packet_msg_short *pkt, u16 sob_base, u8 sob_mask, |
| u16 sob_val, u16 mon_id) |
| { |
| u64 monitor_base; |
| u32 ctl, value, pkt_size = sizeof(*pkt); |
| u16 msg_addr_offset; |
| u8 mask; |
| |
| if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) { |
| dev_err(hdev->dev, |
| "sob_base %u (mask %#x) is not valid\n", |
| sob_base, sob_mask); |
| return 0; |
| } |
| |
| /* |
| * monitor_base should be the content of the base0 address registers, |
| * so it will be added to the msg short offsets |
| */ |
| monitor_base = mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0; |
| |
| msg_addr_offset = |
| (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0 + mon_id * 4) - |
| monitor_base; |
| |
| memset(pkt, 0, pkt_size); |
| |
| /* Monitor config packet: bind the monitor to a sync object */ |
| value = FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8); |
| value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val); |
| value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_MODE_MASK, |
| 0); /* GREATER OR EQUAL*/ |
| value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_MASK_MASK, mask); |
| |
| ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, msg_addr_offset); |
| ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_OP_MASK, 0); /* write the value */ |
| ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 2); /* W_S MON base */ |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| pkt->value = cpu_to_le32(value); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return pkt_size; |
| } |
| |
| static u32 gaudi_add_fence_pkt(struct packet_fence *pkt) |
| { |
| u32 ctl, cfg, pkt_size = sizeof(*pkt); |
| |
| memset(pkt, 0, pkt_size); |
| |
| cfg = FIELD_PREP(GAUDI_PKT_FENCE_CFG_DEC_VAL_MASK, 1); |
| cfg |= FIELD_PREP(GAUDI_PKT_FENCE_CFG_TARGET_VAL_MASK, 1); |
| cfg |= FIELD_PREP(GAUDI_PKT_FENCE_CFG_ID_MASK, 2); |
| |
| ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_FENCE); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1); |
| |
| pkt->cfg = cpu_to_le32(cfg); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return pkt_size; |
| } |
| |
| static int gaudi_get_fence_addr(struct hl_device *hdev, u32 queue_id, u64 *addr) |
| { |
| u32 offset, nic_index; |
| |
| switch (queue_id) { |
| case GAUDI_QUEUE_ID_DMA_0_0: |
| offset = mmDMA0_QM_CP_FENCE2_RDATA_0; |
| break; |
| case GAUDI_QUEUE_ID_DMA_0_1: |
| offset = mmDMA0_QM_CP_FENCE2_RDATA_1; |
| break; |
| case GAUDI_QUEUE_ID_DMA_0_2: |
| offset = mmDMA0_QM_CP_FENCE2_RDATA_2; |
| break; |
| case GAUDI_QUEUE_ID_DMA_0_3: |
| offset = mmDMA0_QM_CP_FENCE2_RDATA_3; |
| break; |
| case GAUDI_QUEUE_ID_DMA_1_0: |
| offset = mmDMA1_QM_CP_FENCE2_RDATA_0; |
| break; |
| case GAUDI_QUEUE_ID_DMA_1_1: |
| offset = mmDMA1_QM_CP_FENCE2_RDATA_1; |
| break; |
| case GAUDI_QUEUE_ID_DMA_1_2: |
| offset = mmDMA1_QM_CP_FENCE2_RDATA_2; |
| break; |
| case GAUDI_QUEUE_ID_DMA_1_3: |
| offset = mmDMA1_QM_CP_FENCE2_RDATA_3; |
| break; |
| case GAUDI_QUEUE_ID_DMA_5_0: |
| offset = mmDMA5_QM_CP_FENCE2_RDATA_0; |
| break; |
| case GAUDI_QUEUE_ID_DMA_5_1: |
| offset = mmDMA5_QM_CP_FENCE2_RDATA_1; |
| break; |
| case GAUDI_QUEUE_ID_DMA_5_2: |
| offset = mmDMA5_QM_CP_FENCE2_RDATA_2; |
| break; |
| case GAUDI_QUEUE_ID_DMA_5_3: |
| offset = mmDMA5_QM_CP_FENCE2_RDATA_3; |
| break; |
| case GAUDI_QUEUE_ID_TPC_7_0: |
| offset = mmTPC7_QM_CP_FENCE2_RDATA_0; |
| break; |
| case GAUDI_QUEUE_ID_TPC_7_1: |
| offset = mmTPC7_QM_CP_FENCE2_RDATA_1; |
| break; |
| case GAUDI_QUEUE_ID_TPC_7_2: |
| offset = mmTPC7_QM_CP_FENCE2_RDATA_2; |
| break; |
| case GAUDI_QUEUE_ID_TPC_7_3: |
| offset = mmTPC7_QM_CP_FENCE2_RDATA_3; |
| break; |
| case GAUDI_QUEUE_ID_NIC_0_0: |
| case GAUDI_QUEUE_ID_NIC_1_0: |
| case GAUDI_QUEUE_ID_NIC_2_0: |
| case GAUDI_QUEUE_ID_NIC_3_0: |
| case GAUDI_QUEUE_ID_NIC_4_0: |
| case GAUDI_QUEUE_ID_NIC_5_0: |
| case GAUDI_QUEUE_ID_NIC_6_0: |
| case GAUDI_QUEUE_ID_NIC_7_0: |
| case GAUDI_QUEUE_ID_NIC_8_0: |
| case GAUDI_QUEUE_ID_NIC_9_0: |
| nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_0) >> 2; |
| offset = mmNIC0_QM0_CP_FENCE2_RDATA_0 + |
| (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET + |
| (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET; |
| break; |
| case GAUDI_QUEUE_ID_NIC_0_1: |
| case GAUDI_QUEUE_ID_NIC_1_1: |
| case GAUDI_QUEUE_ID_NIC_2_1: |
| case GAUDI_QUEUE_ID_NIC_3_1: |
| case GAUDI_QUEUE_ID_NIC_4_1: |
| case GAUDI_QUEUE_ID_NIC_5_1: |
| case GAUDI_QUEUE_ID_NIC_6_1: |
| case GAUDI_QUEUE_ID_NIC_7_1: |
| case GAUDI_QUEUE_ID_NIC_8_1: |
| case GAUDI_QUEUE_ID_NIC_9_1: |
| nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_1) >> 2; |
| offset = mmNIC0_QM0_CP_FENCE2_RDATA_1 + |
| (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET + |
| (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET; |
| break; |
| case GAUDI_QUEUE_ID_NIC_0_2: |
| case GAUDI_QUEUE_ID_NIC_1_2: |
| case GAUDI_QUEUE_ID_NIC_2_2: |
| case GAUDI_QUEUE_ID_NIC_3_2: |
| case GAUDI_QUEUE_ID_NIC_4_2: |
| case GAUDI_QUEUE_ID_NIC_5_2: |
| case GAUDI_QUEUE_ID_NIC_6_2: |
| case GAUDI_QUEUE_ID_NIC_7_2: |
| case GAUDI_QUEUE_ID_NIC_8_2: |
| case GAUDI_QUEUE_ID_NIC_9_2: |
| nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_2) >> 2; |
| offset = mmNIC0_QM0_CP_FENCE2_RDATA_2 + |
| (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET + |
| (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET; |
| break; |
| case GAUDI_QUEUE_ID_NIC_0_3: |
| case GAUDI_QUEUE_ID_NIC_1_3: |
| case GAUDI_QUEUE_ID_NIC_2_3: |
| case GAUDI_QUEUE_ID_NIC_3_3: |
| case GAUDI_QUEUE_ID_NIC_4_3: |
| case GAUDI_QUEUE_ID_NIC_5_3: |
| case GAUDI_QUEUE_ID_NIC_6_3: |
| case GAUDI_QUEUE_ID_NIC_7_3: |
| case GAUDI_QUEUE_ID_NIC_8_3: |
| case GAUDI_QUEUE_ID_NIC_9_3: |
| nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_3) >> 2; |
| offset = mmNIC0_QM0_CP_FENCE2_RDATA_3 + |
| (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET + |
| (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *addr = CFG_BASE + offset; |
| |
| return 0; |
| } |
| |
| static u32 gaudi_add_mon_pkts(void *buf, u16 mon_id, u64 fence_addr) |
| { |
| u64 monitor_base; |
| u32 size = 0; |
| u16 msg_addr_offset; |
| |
| /* |
| * monitor_base should be the content of the base0 address registers, |
| * so it will be added to the msg short offsets |
| */ |
| monitor_base = mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0; |
| |
| /* First monitor config packet: low address of the sync */ |
| msg_addr_offset = |
| (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_id * 4) - |
| monitor_base; |
| |
| size += gaudi_add_mon_msg_short(buf + size, (u32) fence_addr, |
| msg_addr_offset); |
| |
| /* Second monitor config packet: high address of the sync */ |
| msg_addr_offset = |
| (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_id * 4) - |
| monitor_base; |
| |
| size += gaudi_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32), |
| msg_addr_offset); |
| |
| /* |
| * Third monitor config packet: the payload, i.e. what to write when the |
| * sync triggers |
| */ |
| msg_addr_offset = |
| (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_id * 4) - |
| monitor_base; |
| |
| size += gaudi_add_mon_msg_short(buf + size, 1, msg_addr_offset); |
| |
| return size; |
| } |
| |
| static u32 gaudi_gen_wait_cb(struct hl_device *hdev, |
| struct hl_gen_wait_properties *prop) |
| { |
| struct hl_cb *cb = (struct hl_cb *) prop->data; |
| void *buf = cb->kernel_address; |
| u64 fence_addr = 0; |
| u32 size = prop->size; |
| |
| if (gaudi_get_fence_addr(hdev, prop->q_idx, &fence_addr)) { |
| dev_crit(hdev->dev, "wrong queue id %d for wait packet\n", |
| prop->q_idx); |
| return 0; |
| } |
| |
| size += gaudi_add_mon_pkts(buf + size, prop->mon_id, fence_addr); |
| size += gaudi_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base, |
| prop->sob_mask, prop->sob_val, prop->mon_id); |
| size += gaudi_add_fence_pkt(buf + size); |
| |
| return size; |
| } |
| |
| static void gaudi_reset_sob(struct hl_device *hdev, void *data) |
| { |
| struct hl_hw_sob *hw_sob = (struct hl_hw_sob *) data; |
| |
| dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, |
| hw_sob->sob_id); |
| |
| WREG32(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 + |
| hw_sob->sob_id * 4, 0); |
| |
| kref_init(&hw_sob->kref); |
| } |
| |
| static void gaudi_set_dma_mask_from_fw(struct hl_device *hdev) |
| { |
| if (RREG32(mmPSOC_GLOBAL_CONF_NON_RST_FLOPS_0) == |
| HL_POWER9_HOST_MAGIC) { |
| hdev->power9_64bit_dma_enable = 1; |
| hdev->dma_mask = 64; |
| } else { |
| hdev->power9_64bit_dma_enable = 0; |
| hdev->dma_mask = 48; |
| } |
| } |
| |
| static u64 gaudi_get_device_time(struct hl_device *hdev) |
| { |
| u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32; |
| |
| return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL); |
| } |
| |
| static int gaudi_get_hw_block_id(struct hl_device *hdev, u64 block_addr, |
| u32 *block_size, u32 *block_id) |
| { |
| return -EPERM; |
| } |
| |
| static int gaudi_block_mmap(struct hl_device *hdev, |
| struct vm_area_struct *vma, |
| u32 block_id, u32 block_size) |
| { |
| return -EPERM; |
| } |
| |
| static void gaudi_enable_events_from_fw(struct hl_device *hdev) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ? |
| mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR : |
| le32_to_cpu(dyn_regs->gic_host_ints_irq); |
| |
| WREG32(irq_handler_offset, |
| gaudi_irq_map_table[GAUDI_EVENT_INTS_REGISTER].cpu_id); |
| } |
| |
| static int gaudi_map_pll_idx_to_fw_idx(u32 pll_idx) |
| { |
| switch (pll_idx) { |
| case HL_GAUDI_CPU_PLL: return CPU_PLL; |
| case HL_GAUDI_PCI_PLL: return PCI_PLL; |
| case HL_GAUDI_NIC_PLL: return NIC_PLL; |
| case HL_GAUDI_DMA_PLL: return DMA_PLL; |
| case HL_GAUDI_MESH_PLL: return MESH_PLL; |
| case HL_GAUDI_MME_PLL: return MME_PLL; |
| case HL_GAUDI_TPC_PLL: return TPC_PLL; |
| case HL_GAUDI_IF_PLL: return IF_PLL; |
| case HL_GAUDI_SRAM_PLL: return SRAM_PLL; |
| case HL_GAUDI_HBM_PLL: return HBM_PLL; |
| default: return -EINVAL; |
| } |
| } |
| |
| static int gaudi_add_sync_to_engine_map_entry( |
| struct hl_sync_to_engine_map *map, u32 reg_value, |
| enum hl_sync_engine_type engine_type, u32 engine_id) |
| { |
| struct hl_sync_to_engine_map_entry *entry; |
| |
| /* Reg value represents a partial address of sync object, |
| * it is used as unique identifier. For this we need to |
| * clear the cutoff cfg base bits from the value. |
| */ |
| if (reg_value == 0 || reg_value == 0xffffffff) |
| return 0; |
| reg_value -= (u32)CFG_BASE; |
| |
| /* create a new hash entry */ |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return -ENOMEM; |
| entry->engine_type = engine_type; |
| entry->engine_id = engine_id; |
| entry->sync_id = reg_value; |
| hash_add(map->tb, &entry->node, reg_value); |
| |
| return 0; |
| } |
| |
| static int gaudi_gen_sync_to_engine_map(struct hl_device *hdev, |
| struct hl_sync_to_engine_map *map) |
| { |
| struct hl_state_dump_specs *sds = &hdev->state_dump_specs; |
| struct gaudi_device *gaudi = hdev->asic_specific; |
| int i, j, rc; |
| u32 reg_value; |
| |
| /* Iterate over TPC engines */ |
| for (i = 0; i < sds->props[SP_NUM_OF_TPC_ENGINES]; ++i) { |
| /* TPC registered must be accessed with clock gating disabled */ |
| mutex_lock(&gaudi->clk_gate_mutex); |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| reg_value = RREG32(sds->props[SP_TPC0_CFG_SO] + |
| sds->props[SP_NEXT_TPC] * i); |
| |
| /* We can reenable clock_gating */ |
| hdev->asic_funcs->set_clock_gating(hdev); |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| |
| rc = gaudi_add_sync_to_engine_map_entry(map, reg_value, |
| ENGINE_TPC, i); |
| if (rc) |
| goto free_sync_to_engine_map; |
| } |
| |
| /* Iterate over MME engines */ |
| for (i = 0; i < sds->props[SP_NUM_OF_MME_ENGINES]; ++i) { |
| for (j = 0; j < sds->props[SP_SUB_MME_ENG_NUM]; ++j) { |
| /* MME registered must be accessed with clock gating |
| * disabled |
| */ |
| mutex_lock(&gaudi->clk_gate_mutex); |
| hdev->asic_funcs->disable_clock_gating(hdev); |
| |
| reg_value = RREG32(sds->props[SP_MME_CFG_SO] + |
| sds->props[SP_NEXT_MME] * i + |
| j * sizeof(u32)); |
| |
| /* We can reenable clock_gating */ |
| hdev->asic_funcs->set_clock_gating(hdev); |
| mutex_unlock(&gaudi->clk_gate_mutex); |
| |
| rc = gaudi_add_sync_to_engine_map_entry( |
| map, reg_value, ENGINE_MME, |
| i * sds->props[SP_SUB_MME_ENG_NUM] + j); |
| if (rc) |
| goto free_sync_to_engine_map; |
| } |
| } |
| |
| /* Iterate over DMA engines */ |
| for (i = 0; i < sds->props[SP_NUM_OF_DMA_ENGINES]; ++i) { |
| reg_value = RREG32(sds->props[SP_DMA_CFG_SO] + |
| sds->props[SP_DMA_QUEUES_OFFSET] * i); |
| rc = gaudi_add_sync_to_engine_map_entry(map, reg_value, |
| ENGINE_DMA, i); |
| if (rc) |
| goto free_sync_to_engine_map; |
| } |
| |
| return 0; |
| |
| free_sync_to_engine_map: |
| hl_state_dump_free_sync_to_engine_map(map); |
| |
| return rc; |
| } |
| |
| static int gaudi_monitor_valid(struct hl_mon_state_dump *mon) |
| { |
| return FIELD_GET( |
| SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0_VALID_MASK, |
| mon->status); |
| } |
| |
| static void gaudi_fill_sobs_from_mon(char *sobs, struct hl_mon_state_dump *mon) |
| { |
| const size_t max_write = 10; |
| u32 gid, mask, sob; |
| int i, offset; |
| |
| /* Sync object ID is calculated as follows: |
| * (8 * group_id + cleared bits in mask) |
| */ |
| gid = FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_SID_MASK, |
| mon->arm_data); |
| mask = FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_MASK_MASK, |
| mon->arm_data); |
| |
| for (i = 0, offset = 0; mask && offset < MONITOR_SOB_STRING_SIZE - |
| max_write; mask >>= 1, i++) { |
| if (!(mask & 1)) { |
| sob = gid * MONITOR_MAX_SOBS + i; |
| |
| if (offset > 0) |
| offset += snprintf(sobs + offset, max_write, |
| ", "); |
| |
| offset += snprintf(sobs + offset, max_write, "%u", sob); |
| } |
| } |
| } |
| |
| static int gaudi_print_single_monitor(char **buf, size_t *size, size_t *offset, |
| struct hl_device *hdev, |
| struct hl_mon_state_dump *mon) |
| { |
| const char *name; |
| char scratch_buf1[BIN_REG_STRING_SIZE], |
| scratch_buf2[BIN_REG_STRING_SIZE]; |
| char monitored_sobs[MONITOR_SOB_STRING_SIZE] = {0}; |
| |
| name = hl_state_dump_get_monitor_name(hdev, mon); |
| if (!name) |
| name = ""; |
| |
| gaudi_fill_sobs_from_mon(monitored_sobs, mon); |
| |
| return hl_snprintf_resize( |
| buf, size, offset, |
| "Mon id: %u%s, wait for group id: %u mask %s to reach val: %u and write %u to address 0x%llx. Pending: %s. Means sync objects [%s] are being monitored.", |
| mon->id, name, |
| FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_SID_MASK, |
| mon->arm_data), |
| hl_format_as_binary( |
| scratch_buf1, sizeof(scratch_buf1), |
| FIELD_GET( |
| SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_MASK_MASK, |
| mon->arm_data)), |
| FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_SOD_MASK, |
| mon->arm_data), |
| mon->wr_data, |
| (((u64)mon->wr_addr_high) << 32) | mon->wr_addr_low, |
| hl_format_as_binary( |
| scratch_buf2, sizeof(scratch_buf2), |
| FIELD_GET( |
| SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0_PENDING_MASK, |
| mon->status)), |
| monitored_sobs); |
| } |
| |
| |
| static int gaudi_print_fences_single_engine( |
| struct hl_device *hdev, u64 base_offset, u64 status_base_offset, |
| enum hl_sync_engine_type engine_type, u32 engine_id, char **buf, |
| size_t *size, size_t *offset) |
| { |
| struct hl_state_dump_specs *sds = &hdev->state_dump_specs; |
| int rc = -ENOMEM, i; |
| u32 *statuses, *fences; |
| |
| statuses = kcalloc(sds->props[SP_ENGINE_NUM_OF_QUEUES], |
| sizeof(*statuses), GFP_KERNEL); |
| if (!statuses) |
| goto out; |
| |
| fences = kcalloc(sds->props[SP_ENGINE_NUM_OF_FENCES] * |
| sds->props[SP_ENGINE_NUM_OF_QUEUES], |
| sizeof(*fences), GFP_KERNEL); |
| if (!fences) |
| goto free_status; |
| |
| for (i = 0; i < sds->props[SP_ENGINE_NUM_OF_FENCES]; ++i) |
| statuses[i] = RREG32(status_base_offset + i * sizeof(u32)); |
| |
| for (i = 0; i < sds->props[SP_ENGINE_NUM_OF_FENCES] * |
| sds->props[SP_ENGINE_NUM_OF_QUEUES]; ++i) |
| fences[i] = RREG32(base_offset + i * sizeof(u32)); |
| |
| /* The actual print */ |
| for (i = 0; i < sds->props[SP_ENGINE_NUM_OF_QUEUES]; ++i) { |
| u32 fence_id; |
| u64 fence_cnt, fence_rdata; |
| const char *engine_name; |
| |
| if (!FIELD_GET(TPC0_QM_CP_STS_0_FENCE_IN_PROGRESS_MASK, |
| statuses[i])) |
| continue; |
| |
| fence_id = |
| FIELD_GET(TPC0_QM_CP_STS_0_FENCE_ID_MASK, statuses[i]); |
| fence_cnt = base_offset + CFG_BASE + |
| sizeof(u32) * |
| (i + fence_id * sds->props[SP_ENGINE_NUM_OF_QUEUES]); |
| fence_rdata = fence_cnt - sds->props[SP_FENCE0_CNT_OFFSET] + |
| sds->props[SP_FENCE0_RDATA_OFFSET]; |
| engine_name = hl_sync_engine_to_string(engine_type); |
| |
| rc = hl_snprintf_resize( |
| buf, size, offset, |
| "%s%u, stream %u: fence id %u cnt = 0x%llx (%s%u_QM.CP_FENCE%u_CNT_%u) rdata = 0x%llx (%s%u_QM.CP_FENCE%u_RDATA_%u) value = %u, cp_status = %u\n", |
| engine_name, engine_id, |
| i, fence_id, |
| fence_cnt, engine_name, engine_id, fence_id, i, |
| fence_rdata, engine_name, engine_id, fence_id, i, |
| fences[fence_id], |
| statuses[i]); |
| if (rc) |
| goto free_fences; |
| } |
| |
| rc = 0; |
| |
| free_fences: |
| kfree(fences); |
| free_status: |
| kfree(statuses); |
| out: |
| return rc; |
| } |
| |
| |
| static struct hl_state_dump_specs_funcs gaudi_state_dump_funcs = { |
| .monitor_valid = gaudi_monitor_valid, |
| .print_single_monitor = gaudi_print_single_monitor, |
| .gen_sync_to_engine_map = gaudi_gen_sync_to_engine_map, |
| .print_fences_single_engine = gaudi_print_fences_single_engine, |
| }; |
| |
| static void gaudi_state_dump_init(struct hl_device *hdev) |
| { |
| struct hl_state_dump_specs *sds = &hdev->state_dump_specs; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(gaudi_so_id_to_str); ++i) |
| hash_add(sds->so_id_to_str_tb, |
| &gaudi_so_id_to_str[i].node, |
| gaudi_so_id_to_str[i].id); |
| |
| for (i = 0; i < ARRAY_SIZE(gaudi_monitor_id_to_str); ++i) |
| hash_add(sds->monitor_id_to_str_tb, |
| &gaudi_monitor_id_to_str[i].node, |
| gaudi_monitor_id_to_str[i].id); |
| |
| sds->props = gaudi_state_dump_specs_props; |
| |
| sds->sync_namager_names = gaudi_sync_manager_names; |
| |
| sds->funcs = gaudi_state_dump_funcs; |
| } |
| |
| static u32 *gaudi_get_stream_master_qid_arr(void) |
| { |
| return gaudi_stream_master; |
| } |
| |
| static const struct hl_asic_funcs gaudi_funcs = { |
| .early_init = gaudi_early_init, |
| .early_fini = gaudi_early_fini, |
| .late_init = gaudi_late_init, |
| .late_fini = gaudi_late_fini, |
| .sw_init = gaudi_sw_init, |
| .sw_fini = gaudi_sw_fini, |
| .hw_init = gaudi_hw_init, |
| .hw_fini = gaudi_hw_fini, |
| .halt_engines = gaudi_halt_engines, |
| .suspend = gaudi_suspend, |
| .resume = gaudi_resume, |
| .mmap = gaudi_mmap, |
| .ring_doorbell = gaudi_ring_doorbell, |
| .pqe_write = gaudi_pqe_write, |
| .asic_dma_alloc_coherent = gaudi_dma_alloc_coherent, |
| .asic_dma_free_coherent = gaudi_dma_free_coherent, |
| .scrub_device_mem = gaudi_scrub_device_mem, |
| .get_int_queue_base = gaudi_get_int_queue_base, |
| .test_queues = gaudi_test_queues, |
| .asic_dma_pool_zalloc = gaudi_dma_pool_zalloc, |
| .asic_dma_pool_free = gaudi_dma_pool_free, |
| .cpu_accessible_dma_pool_alloc = gaudi_cpu_accessible_dma_pool_alloc, |
| .cpu_accessible_dma_pool_free = gaudi_cpu_accessible_dma_pool_free, |
| .hl_dma_unmap_sg = gaudi_dma_unmap_sg, |
| .cs_parser = gaudi_cs_parser, |
| .asic_dma_map_sg = gaudi_dma_map_sg, |
| .get_dma_desc_list_size = gaudi_get_dma_desc_list_size, |
| .add_end_of_cb_packets = gaudi_add_end_of_cb_packets, |
| .update_eq_ci = gaudi_update_eq_ci, |
| .context_switch = gaudi_context_switch, |
| .restore_phase_topology = gaudi_restore_phase_topology, |
| .debugfs_read32 = gaudi_debugfs_read32, |
| .debugfs_write32 = gaudi_debugfs_write32, |
| .debugfs_read64 = gaudi_debugfs_read64, |
| .debugfs_write64 = gaudi_debugfs_write64, |
| .debugfs_read_dma = gaudi_debugfs_read_dma, |
| .add_device_attr = hl_add_device_attr, |
| .handle_eqe = gaudi_handle_eqe, |
| .set_pll_profile = hl_set_pll_profile, |
| .get_events_stat = gaudi_get_events_stat, |
| .read_pte = gaudi_read_pte, |
| .write_pte = gaudi_write_pte, |
| .mmu_invalidate_cache = gaudi_mmu_invalidate_cache, |
| .mmu_invalidate_cache_range = gaudi_mmu_invalidate_cache_range, |
| .send_heartbeat = gaudi_send_heartbeat, |
| .set_clock_gating = gaudi_set_clock_gating, |
| .disable_clock_gating = gaudi_disable_clock_gating, |
| .debug_coresight = gaudi_debug_coresight, |
| .is_device_idle = gaudi_is_device_idle, |
| .soft_reset_late_init = gaudi_soft_reset_late_init, |
| .hw_queues_lock = gaudi_hw_queues_lock, |
| .hw_queues_unlock = gaudi_hw_queues_unlock, |
| .get_pci_id = gaudi_get_pci_id, |
| .get_eeprom_data = gaudi_get_eeprom_data, |
| .send_cpu_message = gaudi_send_cpu_message, |
| .pci_bars_map = gaudi_pci_bars_map, |
| .init_iatu = gaudi_init_iatu, |
| .rreg = hl_rreg, |
| .wreg = hl_wreg, |
| .halt_coresight = gaudi_halt_coresight, |
| .ctx_init = gaudi_ctx_init, |
| .ctx_fini = gaudi_ctx_fini, |
| .get_clk_rate = hl_get_clk_rate, |
| .get_queue_id_for_cq = gaudi_get_queue_id_for_cq, |
| .load_firmware_to_device = gaudi_load_firmware_to_device, |
| .load_boot_fit_to_device = gaudi_load_boot_fit_to_device, |
| .get_signal_cb_size = gaudi_get_signal_cb_size, |
| .get_wait_cb_size = gaudi_get_wait_cb_size, |
| .gen_signal_cb = gaudi_gen_signal_cb, |
| .gen_wait_cb = gaudi_gen_wait_cb, |
| .reset_sob = gaudi_reset_sob, |
| .reset_sob_group = gaudi_reset_sob_group, |
| .set_dma_mask_from_fw = gaudi_set_dma_mask_from_fw, |
| .get_device_time = gaudi_get_device_time, |
| .collective_wait_init_cs = gaudi_collective_wait_init_cs, |
| .collective_wait_create_jobs = gaudi_collective_wait_create_jobs, |
| .scramble_addr = hl_mmu_scramble_addr, |
| .descramble_addr = hl_mmu_descramble_addr, |
| .ack_protection_bits_errors = gaudi_ack_protection_bits_errors, |
| .get_hw_block_id = gaudi_get_hw_block_id, |
| .hw_block_mmap = gaudi_block_mmap, |
| .enable_events_from_fw = gaudi_enable_events_from_fw, |
| .map_pll_idx_to_fw_idx = gaudi_map_pll_idx_to_fw_idx, |
| .init_firmware_loader = gaudi_init_firmware_loader, |
| .init_cpu_scrambler_dram = gaudi_init_scrambler_hbm, |
| .state_dump_init = gaudi_state_dump_init, |
| .get_sob_addr = gaudi_get_sob_addr, |
| .set_pci_memory_regions = gaudi_set_pci_memory_regions, |
| .get_stream_master_qid_arr = gaudi_get_stream_master_qid_arr |
| }; |
| |
| /** |
| * gaudi_set_asic_funcs - set GAUDI function pointers |
| * |
| * @hdev: pointer to hl_device structure |
| * |
| */ |
| void gaudi_set_asic_funcs(struct hl_device *hdev) |
| { |
| hdev->asic_funcs = &gaudi_funcs; |
| } |