| // SPDX-License-Identifier: GPL-2.0-only |
| /* Connection state tracking for netfilter. This is separated from, |
| but required by, the NAT layer; it can also be used by an iptables |
| extension. */ |
| |
| /* (C) 1999-2001 Paul `Rusty' Russell |
| * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org> |
| * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org> |
| * (C) 2005-2012 Patrick McHardy <kaber@trash.net> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/types.h> |
| #include <linux/netfilter.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/skbuff.h> |
| #include <linux/proc_fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/siphash.h> |
| #include <linux/err.h> |
| #include <linux/percpu.h> |
| #include <linux/moduleparam.h> |
| #include <linux/notifier.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/socket.h> |
| #include <linux/mm.h> |
| #include <linux/nsproxy.h> |
| #include <linux/rculist_nulls.h> |
| |
| #include <net/netfilter/nf_conntrack.h> |
| #include <net/netfilter/nf_conntrack_l4proto.h> |
| #include <net/netfilter/nf_conntrack_expect.h> |
| #include <net/netfilter/nf_conntrack_helper.h> |
| #include <net/netfilter/nf_conntrack_seqadj.h> |
| #include <net/netfilter/nf_conntrack_core.h> |
| #include <net/netfilter/nf_conntrack_extend.h> |
| #include <net/netfilter/nf_conntrack_acct.h> |
| #include <net/netfilter/nf_conntrack_ecache.h> |
| #include <net/netfilter/nf_conntrack_zones.h> |
| #include <net/netfilter/nf_conntrack_timestamp.h> |
| #include <net/netfilter/nf_conntrack_timeout.h> |
| #include <net/netfilter/nf_conntrack_labels.h> |
| #include <net/netfilter/nf_conntrack_synproxy.h> |
| #include <net/netfilter/nf_nat.h> |
| #include <net/netfilter/nf_nat_helper.h> |
| #include <net/netns/hash.h> |
| #include <net/ip.h> |
| |
| #include "nf_internals.h" |
| |
| __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS]; |
| EXPORT_SYMBOL_GPL(nf_conntrack_locks); |
| |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock); |
| EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock); |
| |
| struct hlist_nulls_head *nf_conntrack_hash __read_mostly; |
| EXPORT_SYMBOL_GPL(nf_conntrack_hash); |
| |
| struct conntrack_gc_work { |
| struct delayed_work dwork; |
| u32 next_bucket; |
| bool exiting; |
| bool early_drop; |
| }; |
| |
| static __read_mostly struct kmem_cache *nf_conntrack_cachep; |
| static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock); |
| static __read_mostly bool nf_conntrack_locks_all; |
| |
| /* serialize hash resizes and nf_ct_iterate_cleanup */ |
| static DEFINE_MUTEX(nf_conntrack_mutex); |
| |
| #define GC_SCAN_INTERVAL (120u * HZ) |
| #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10) |
| |
| #define MIN_CHAINLEN 8u |
| #define MAX_CHAINLEN (32u - MIN_CHAINLEN) |
| |
| static struct conntrack_gc_work conntrack_gc_work; |
| |
| void nf_conntrack_lock(spinlock_t *lock) __acquires(lock) |
| { |
| /* 1) Acquire the lock */ |
| spin_lock(lock); |
| |
| /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics |
| * It pairs with the smp_store_release() in nf_conntrack_all_unlock() |
| */ |
| if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false)) |
| return; |
| |
| /* fast path failed, unlock */ |
| spin_unlock(lock); |
| |
| /* Slow path 1) get global lock */ |
| spin_lock(&nf_conntrack_locks_all_lock); |
| |
| /* Slow path 2) get the lock we want */ |
| spin_lock(lock); |
| |
| /* Slow path 3) release the global lock */ |
| spin_unlock(&nf_conntrack_locks_all_lock); |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_lock); |
| |
| static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2) |
| { |
| h1 %= CONNTRACK_LOCKS; |
| h2 %= CONNTRACK_LOCKS; |
| spin_unlock(&nf_conntrack_locks[h1]); |
| if (h1 != h2) |
| spin_unlock(&nf_conntrack_locks[h2]); |
| } |
| |
| /* return true if we need to recompute hashes (in case hash table was resized) */ |
| static bool nf_conntrack_double_lock(struct net *net, unsigned int h1, |
| unsigned int h2, unsigned int sequence) |
| { |
| h1 %= CONNTRACK_LOCKS; |
| h2 %= CONNTRACK_LOCKS; |
| if (h1 <= h2) { |
| nf_conntrack_lock(&nf_conntrack_locks[h1]); |
| if (h1 != h2) |
| spin_lock_nested(&nf_conntrack_locks[h2], |
| SINGLE_DEPTH_NESTING); |
| } else { |
| nf_conntrack_lock(&nf_conntrack_locks[h2]); |
| spin_lock_nested(&nf_conntrack_locks[h1], |
| SINGLE_DEPTH_NESTING); |
| } |
| if (read_seqcount_retry(&nf_conntrack_generation, sequence)) { |
| nf_conntrack_double_unlock(h1, h2); |
| return true; |
| } |
| return false; |
| } |
| |
| static void nf_conntrack_all_lock(void) |
| __acquires(&nf_conntrack_locks_all_lock) |
| { |
| int i; |
| |
| spin_lock(&nf_conntrack_locks_all_lock); |
| |
| /* For nf_contrack_locks_all, only the latest time when another |
| * CPU will see an update is controlled, by the "release" of the |
| * spin_lock below. |
| * The earliest time is not controlled, an thus KCSAN could detect |
| * a race when nf_conntract_lock() reads the variable. |
| * WRITE_ONCE() is used to ensure the compiler will not |
| * optimize the write. |
| */ |
| WRITE_ONCE(nf_conntrack_locks_all, true); |
| |
| for (i = 0; i < CONNTRACK_LOCKS; i++) { |
| spin_lock(&nf_conntrack_locks[i]); |
| |
| /* This spin_unlock provides the "release" to ensure that |
| * nf_conntrack_locks_all==true is visible to everyone that |
| * acquired spin_lock(&nf_conntrack_locks[]). |
| */ |
| spin_unlock(&nf_conntrack_locks[i]); |
| } |
| } |
| |
| static void nf_conntrack_all_unlock(void) |
| __releases(&nf_conntrack_locks_all_lock) |
| { |
| /* All prior stores must be complete before we clear |
| * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock() |
| * might observe the false value but not the entire |
| * critical section. |
| * It pairs with the smp_load_acquire() in nf_conntrack_lock() |
| */ |
| smp_store_release(&nf_conntrack_locks_all, false); |
| spin_unlock(&nf_conntrack_locks_all_lock); |
| } |
| |
| unsigned int nf_conntrack_htable_size __read_mostly; |
| EXPORT_SYMBOL_GPL(nf_conntrack_htable_size); |
| |
| unsigned int nf_conntrack_max __read_mostly; |
| EXPORT_SYMBOL_GPL(nf_conntrack_max); |
| seqcount_spinlock_t nf_conntrack_generation __read_mostly; |
| static siphash_key_t nf_conntrack_hash_rnd __read_mostly; |
| |
| static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, |
| unsigned int zoneid, |
| const struct net *net) |
| { |
| struct { |
| struct nf_conntrack_man src; |
| union nf_inet_addr dst_addr; |
| unsigned int zone; |
| u32 net_mix; |
| u16 dport; |
| u16 proto; |
| } __aligned(SIPHASH_ALIGNMENT) combined; |
| |
| get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd)); |
| |
| memset(&combined, 0, sizeof(combined)); |
| |
| /* The direction must be ignored, so handle usable members manually. */ |
| combined.src = tuple->src; |
| combined.dst_addr = tuple->dst.u3; |
| combined.zone = zoneid; |
| combined.net_mix = net_hash_mix(net); |
| combined.dport = (__force __u16)tuple->dst.u.all; |
| combined.proto = tuple->dst.protonum; |
| |
| return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd); |
| } |
| |
| static u32 scale_hash(u32 hash) |
| { |
| return reciprocal_scale(hash, nf_conntrack_htable_size); |
| } |
| |
| static u32 __hash_conntrack(const struct net *net, |
| const struct nf_conntrack_tuple *tuple, |
| unsigned int zoneid, |
| unsigned int size) |
| { |
| return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size); |
| } |
| |
| static u32 hash_conntrack(const struct net *net, |
| const struct nf_conntrack_tuple *tuple, |
| unsigned int zoneid) |
| { |
| return scale_hash(hash_conntrack_raw(tuple, zoneid, net)); |
| } |
| |
| static bool nf_ct_get_tuple_ports(const struct sk_buff *skb, |
| unsigned int dataoff, |
| struct nf_conntrack_tuple *tuple) |
| { struct { |
| __be16 sport; |
| __be16 dport; |
| } _inet_hdr, *inet_hdr; |
| |
| /* Actually only need first 4 bytes to get ports. */ |
| inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr); |
| if (!inet_hdr) |
| return false; |
| |
| tuple->src.u.udp.port = inet_hdr->sport; |
| tuple->dst.u.udp.port = inet_hdr->dport; |
| return true; |
| } |
| |
| static bool |
| nf_ct_get_tuple(const struct sk_buff *skb, |
| unsigned int nhoff, |
| unsigned int dataoff, |
| u_int16_t l3num, |
| u_int8_t protonum, |
| struct net *net, |
| struct nf_conntrack_tuple *tuple) |
| { |
| unsigned int size; |
| const __be32 *ap; |
| __be32 _addrs[8]; |
| |
| memset(tuple, 0, sizeof(*tuple)); |
| |
| tuple->src.l3num = l3num; |
| switch (l3num) { |
| case NFPROTO_IPV4: |
| nhoff += offsetof(struct iphdr, saddr); |
| size = 2 * sizeof(__be32); |
| break; |
| case NFPROTO_IPV6: |
| nhoff += offsetof(struct ipv6hdr, saddr); |
| size = sizeof(_addrs); |
| break; |
| default: |
| return true; |
| } |
| |
| ap = skb_header_pointer(skb, nhoff, size, _addrs); |
| if (!ap) |
| return false; |
| |
| switch (l3num) { |
| case NFPROTO_IPV4: |
| tuple->src.u3.ip = ap[0]; |
| tuple->dst.u3.ip = ap[1]; |
| break; |
| case NFPROTO_IPV6: |
| memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6)); |
| memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6)); |
| break; |
| } |
| |
| tuple->dst.protonum = protonum; |
| tuple->dst.dir = IP_CT_DIR_ORIGINAL; |
| |
| switch (protonum) { |
| #if IS_ENABLED(CONFIG_IPV6) |
| case IPPROTO_ICMPV6: |
| return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple); |
| #endif |
| case IPPROTO_ICMP: |
| return icmp_pkt_to_tuple(skb, dataoff, net, tuple); |
| #ifdef CONFIG_NF_CT_PROTO_GRE |
| case IPPROTO_GRE: |
| return gre_pkt_to_tuple(skb, dataoff, net, tuple); |
| #endif |
| case IPPROTO_TCP: |
| case IPPROTO_UDP: /* fallthrough */ |
| return nf_ct_get_tuple_ports(skb, dataoff, tuple); |
| #ifdef CONFIG_NF_CT_PROTO_UDPLITE |
| case IPPROTO_UDPLITE: |
| return nf_ct_get_tuple_ports(skb, dataoff, tuple); |
| #endif |
| #ifdef CONFIG_NF_CT_PROTO_SCTP |
| case IPPROTO_SCTP: |
| return nf_ct_get_tuple_ports(skb, dataoff, tuple); |
| #endif |
| #ifdef CONFIG_NF_CT_PROTO_DCCP |
| case IPPROTO_DCCP: |
| return nf_ct_get_tuple_ports(skb, dataoff, tuple); |
| #endif |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff, |
| u_int8_t *protonum) |
| { |
| int dataoff = -1; |
| const struct iphdr *iph; |
| struct iphdr _iph; |
| |
| iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph); |
| if (!iph) |
| return -1; |
| |
| /* Conntrack defragments packets, we might still see fragments |
| * inside ICMP packets though. |
| */ |
| if (iph->frag_off & htons(IP_OFFSET)) |
| return -1; |
| |
| dataoff = nhoff + (iph->ihl << 2); |
| *protonum = iph->protocol; |
| |
| /* Check bogus IP headers */ |
| if (dataoff > skb->len) { |
| pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n", |
| nhoff, iph->ihl << 2, skb->len); |
| return -1; |
| } |
| return dataoff; |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff, |
| u8 *protonum) |
| { |
| int protoff = -1; |
| unsigned int extoff = nhoff + sizeof(struct ipv6hdr); |
| __be16 frag_off; |
| u8 nexthdr; |
| |
| if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr), |
| &nexthdr, sizeof(nexthdr)) != 0) { |
| pr_debug("can't get nexthdr\n"); |
| return -1; |
| } |
| protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off); |
| /* |
| * (protoff == skb->len) means the packet has not data, just |
| * IPv6 and possibly extensions headers, but it is tracked anyway |
| */ |
| if (protoff < 0 || (frag_off & htons(~0x7)) != 0) { |
| pr_debug("can't find proto in pkt\n"); |
| return -1; |
| } |
| |
| *protonum = nexthdr; |
| return protoff; |
| } |
| #endif |
| |
| static int get_l4proto(const struct sk_buff *skb, |
| unsigned int nhoff, u8 pf, u8 *l4num) |
| { |
| switch (pf) { |
| case NFPROTO_IPV4: |
| return ipv4_get_l4proto(skb, nhoff, l4num); |
| #if IS_ENABLED(CONFIG_IPV6) |
| case NFPROTO_IPV6: |
| return ipv6_get_l4proto(skb, nhoff, l4num); |
| #endif |
| default: |
| *l4num = 0; |
| break; |
| } |
| return -1; |
| } |
| |
| bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff, |
| u_int16_t l3num, |
| struct net *net, struct nf_conntrack_tuple *tuple) |
| { |
| u8 protonum; |
| int protoff; |
| |
| protoff = get_l4proto(skb, nhoff, l3num, &protonum); |
| if (protoff <= 0) |
| return false; |
| |
| return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple); |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr); |
| |
| bool |
| nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse, |
| const struct nf_conntrack_tuple *orig) |
| { |
| memset(inverse, 0, sizeof(*inverse)); |
| |
| inverse->src.l3num = orig->src.l3num; |
| |
| switch (orig->src.l3num) { |
| case NFPROTO_IPV4: |
| inverse->src.u3.ip = orig->dst.u3.ip; |
| inverse->dst.u3.ip = orig->src.u3.ip; |
| break; |
| case NFPROTO_IPV6: |
| inverse->src.u3.in6 = orig->dst.u3.in6; |
| inverse->dst.u3.in6 = orig->src.u3.in6; |
| break; |
| default: |
| break; |
| } |
| |
| inverse->dst.dir = !orig->dst.dir; |
| |
| inverse->dst.protonum = orig->dst.protonum; |
| |
| switch (orig->dst.protonum) { |
| case IPPROTO_ICMP: |
| return nf_conntrack_invert_icmp_tuple(inverse, orig); |
| #if IS_ENABLED(CONFIG_IPV6) |
| case IPPROTO_ICMPV6: |
| return nf_conntrack_invert_icmpv6_tuple(inverse, orig); |
| #endif |
| } |
| |
| inverse->src.u.all = orig->dst.u.all; |
| inverse->dst.u.all = orig->src.u.all; |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_invert_tuple); |
| |
| /* Generate a almost-unique pseudo-id for a given conntrack. |
| * |
| * intentionally doesn't re-use any of the seeds used for hash |
| * table location, we assume id gets exposed to userspace. |
| * |
| * Following nf_conn items do not change throughout lifetime |
| * of the nf_conn: |
| * |
| * 1. nf_conn address |
| * 2. nf_conn->master address (normally NULL) |
| * 3. the associated net namespace |
| * 4. the original direction tuple |
| */ |
| u32 nf_ct_get_id(const struct nf_conn *ct) |
| { |
| static __read_mostly siphash_key_t ct_id_seed; |
| unsigned long a, b, c, d; |
| |
| net_get_random_once(&ct_id_seed, sizeof(ct_id_seed)); |
| |
| a = (unsigned long)ct; |
| b = (unsigned long)ct->master; |
| c = (unsigned long)nf_ct_net(ct); |
| d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple), |
| &ct_id_seed); |
| #ifdef CONFIG_64BIT |
| return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed); |
| #else |
| return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed); |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_get_id); |
| |
| static void |
| clean_from_lists(struct nf_conn *ct) |
| { |
| pr_debug("clean_from_lists(%p)\n", ct); |
| hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode); |
| hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode); |
| |
| /* Destroy all pending expectations */ |
| nf_ct_remove_expectations(ct); |
| } |
| |
| /* must be called with local_bh_disable */ |
| static void nf_ct_add_to_dying_list(struct nf_conn *ct) |
| { |
| struct ct_pcpu *pcpu; |
| |
| /* add this conntrack to the (per cpu) dying list */ |
| ct->cpu = smp_processor_id(); |
| pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu); |
| |
| spin_lock(&pcpu->lock); |
| hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode, |
| &pcpu->dying); |
| spin_unlock(&pcpu->lock); |
| } |
| |
| /* must be called with local_bh_disable */ |
| static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct) |
| { |
| struct ct_pcpu *pcpu; |
| |
| /* add this conntrack to the (per cpu) unconfirmed list */ |
| ct->cpu = smp_processor_id(); |
| pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu); |
| |
| spin_lock(&pcpu->lock); |
| hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode, |
| &pcpu->unconfirmed); |
| spin_unlock(&pcpu->lock); |
| } |
| |
| /* must be called with local_bh_disable */ |
| static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct) |
| { |
| struct ct_pcpu *pcpu; |
| |
| /* We overload first tuple to link into unconfirmed or dying list.*/ |
| pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu); |
| |
| spin_lock(&pcpu->lock); |
| BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode)); |
| hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode); |
| spin_unlock(&pcpu->lock); |
| } |
| |
| #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK) |
| |
| /* Released via destroy_conntrack() */ |
| struct nf_conn *nf_ct_tmpl_alloc(struct net *net, |
| const struct nf_conntrack_zone *zone, |
| gfp_t flags) |
| { |
| struct nf_conn *tmpl, *p; |
| |
| if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) { |
| tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags); |
| if (!tmpl) |
| return NULL; |
| |
| p = tmpl; |
| tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p); |
| if (tmpl != p) { |
| tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p); |
| tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p; |
| } |
| } else { |
| tmpl = kzalloc(sizeof(*tmpl), flags); |
| if (!tmpl) |
| return NULL; |
| } |
| |
| tmpl->status = IPS_TEMPLATE; |
| write_pnet(&tmpl->ct_net, net); |
| nf_ct_zone_add(tmpl, zone); |
| atomic_set(&tmpl->ct_general.use, 0); |
| |
| return tmpl; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc); |
| |
| void nf_ct_tmpl_free(struct nf_conn *tmpl) |
| { |
| nf_ct_ext_destroy(tmpl); |
| |
| if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) |
| kfree((char *)tmpl - tmpl->proto.tmpl_padto); |
| else |
| kfree(tmpl); |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_tmpl_free); |
| |
| static void destroy_gre_conntrack(struct nf_conn *ct) |
| { |
| #ifdef CONFIG_NF_CT_PROTO_GRE |
| struct nf_conn *master = ct->master; |
| |
| if (master) |
| nf_ct_gre_keymap_destroy(master); |
| #endif |
| } |
| |
| static void |
| destroy_conntrack(struct nf_conntrack *nfct) |
| { |
| struct nf_conn *ct = (struct nf_conn *)nfct; |
| |
| pr_debug("destroy_conntrack(%p)\n", ct); |
| WARN_ON(atomic_read(&nfct->use) != 0); |
| |
| if (unlikely(nf_ct_is_template(ct))) { |
| nf_ct_tmpl_free(ct); |
| return; |
| } |
| |
| if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE)) |
| destroy_gre_conntrack(ct); |
| |
| local_bh_disable(); |
| /* Expectations will have been removed in clean_from_lists, |
| * except TFTP can create an expectation on the first packet, |
| * before connection is in the list, so we need to clean here, |
| * too. |
| */ |
| nf_ct_remove_expectations(ct); |
| |
| nf_ct_del_from_dying_or_unconfirmed_list(ct); |
| |
| local_bh_enable(); |
| |
| if (ct->master) |
| nf_ct_put(ct->master); |
| |
| pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct); |
| nf_conntrack_free(ct); |
| } |
| |
| static void nf_ct_delete_from_lists(struct nf_conn *ct) |
| { |
| struct net *net = nf_ct_net(ct); |
| unsigned int hash, reply_hash; |
| unsigned int sequence; |
| |
| nf_ct_helper_destroy(ct); |
| |
| local_bh_disable(); |
| do { |
| sequence = read_seqcount_begin(&nf_conntrack_generation); |
| hash = hash_conntrack(net, |
| &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL)); |
| reply_hash = hash_conntrack(net, |
| &ct->tuplehash[IP_CT_DIR_REPLY].tuple, |
| nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY)); |
| } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence)); |
| |
| clean_from_lists(ct); |
| nf_conntrack_double_unlock(hash, reply_hash); |
| |
| nf_ct_add_to_dying_list(ct); |
| |
| local_bh_enable(); |
| } |
| |
| bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report) |
| { |
| struct nf_conn_tstamp *tstamp; |
| struct net *net; |
| |
| if (test_and_set_bit(IPS_DYING_BIT, &ct->status)) |
| return false; |
| |
| tstamp = nf_conn_tstamp_find(ct); |
| if (tstamp) { |
| s32 timeout = ct->timeout - nfct_time_stamp; |
| |
| tstamp->stop = ktime_get_real_ns(); |
| if (timeout < 0) |
| tstamp->stop -= jiffies_to_nsecs(-timeout); |
| } |
| |
| if (nf_conntrack_event_report(IPCT_DESTROY, ct, |
| portid, report) < 0) { |
| /* destroy event was not delivered. nf_ct_put will |
| * be done by event cache worker on redelivery. |
| */ |
| nf_ct_delete_from_lists(ct); |
| nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL); |
| return false; |
| } |
| |
| net = nf_ct_net(ct); |
| if (nf_conntrack_ecache_dwork_pending(net)) |
| nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT); |
| nf_ct_delete_from_lists(ct); |
| nf_ct_put(ct); |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_delete); |
| |
| static inline bool |
| nf_ct_key_equal(struct nf_conntrack_tuple_hash *h, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone, |
| const struct net *net) |
| { |
| struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); |
| |
| /* A conntrack can be recreated with the equal tuple, |
| * so we need to check that the conntrack is confirmed |
| */ |
| return nf_ct_tuple_equal(tuple, &h->tuple) && |
| nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) && |
| nf_ct_is_confirmed(ct) && |
| net_eq(net, nf_ct_net(ct)); |
| } |
| |
| static inline bool |
| nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2) |
| { |
| return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) && |
| nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple, |
| &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) && |
| nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) && |
| nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) && |
| net_eq(nf_ct_net(ct1), nf_ct_net(ct2)); |
| } |
| |
| /* caller must hold rcu readlock and none of the nf_conntrack_locks */ |
| static void nf_ct_gc_expired(struct nf_conn *ct) |
| { |
| if (!atomic_inc_not_zero(&ct->ct_general.use)) |
| return; |
| |
| if (nf_ct_should_gc(ct)) |
| nf_ct_kill(ct); |
| |
| nf_ct_put(ct); |
| } |
| |
| /* |
| * Warning : |
| * - Caller must take a reference on returned object |
| * and recheck nf_ct_tuple_equal(tuple, &h->tuple) |
| */ |
| static struct nf_conntrack_tuple_hash * |
| ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone, |
| const struct nf_conntrack_tuple *tuple, u32 hash) |
| { |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_head *ct_hash; |
| struct hlist_nulls_node *n; |
| unsigned int bucket, hsize; |
| |
| begin: |
| nf_conntrack_get_ht(&ct_hash, &hsize); |
| bucket = reciprocal_scale(hash, hsize); |
| |
| hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) { |
| struct nf_conn *ct; |
| |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| if (nf_ct_is_expired(ct)) { |
| nf_ct_gc_expired(ct); |
| continue; |
| } |
| |
| if (nf_ct_key_equal(h, tuple, zone, net)) |
| return h; |
| } |
| /* |
| * if the nulls value we got at the end of this lookup is |
| * not the expected one, we must restart lookup. |
| * We probably met an item that was moved to another chain. |
| */ |
| if (get_nulls_value(n) != bucket) { |
| NF_CT_STAT_INC_ATOMIC(net, search_restart); |
| goto begin; |
| } |
| |
| return NULL; |
| } |
| |
| /* Find a connection corresponding to a tuple. */ |
| static struct nf_conntrack_tuple_hash * |
| __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone, |
| const struct nf_conntrack_tuple *tuple, u32 hash) |
| { |
| struct nf_conntrack_tuple_hash *h; |
| struct nf_conn *ct; |
| |
| rcu_read_lock(); |
| |
| h = ____nf_conntrack_find(net, zone, tuple, hash); |
| if (h) { |
| /* We have a candidate that matches the tuple we're interested |
| * in, try to obtain a reference and re-check tuple |
| */ |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| if (likely(atomic_inc_not_zero(&ct->ct_general.use))) { |
| if (likely(nf_ct_key_equal(h, tuple, zone, net))) |
| goto found; |
| |
| /* TYPESAFE_BY_RCU recycled the candidate */ |
| nf_ct_put(ct); |
| } |
| |
| h = NULL; |
| } |
| found: |
| rcu_read_unlock(); |
| |
| return h; |
| } |
| |
| struct nf_conntrack_tuple_hash * |
| nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone, |
| const struct nf_conntrack_tuple *tuple) |
| { |
| unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL); |
| struct nf_conntrack_tuple_hash *thash; |
| |
| thash = __nf_conntrack_find_get(net, zone, tuple, |
| hash_conntrack_raw(tuple, zone_id, net)); |
| |
| if (thash) |
| return thash; |
| |
| rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY); |
| if (rid != zone_id) |
| return __nf_conntrack_find_get(net, zone, tuple, |
| hash_conntrack_raw(tuple, rid, net)); |
| return thash; |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_find_get); |
| |
| static void __nf_conntrack_hash_insert(struct nf_conn *ct, |
| unsigned int hash, |
| unsigned int reply_hash) |
| { |
| hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode, |
| &nf_conntrack_hash[hash]); |
| hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode, |
| &nf_conntrack_hash[reply_hash]); |
| } |
| |
| int |
| nf_conntrack_hash_check_insert(struct nf_conn *ct) |
| { |
| const struct nf_conntrack_zone *zone; |
| struct net *net = nf_ct_net(ct); |
| unsigned int hash, reply_hash; |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_node *n; |
| unsigned int max_chainlen; |
| unsigned int chainlen = 0; |
| unsigned int sequence; |
| int err = -EEXIST; |
| |
| zone = nf_ct_zone(ct); |
| |
| local_bh_disable(); |
| do { |
| sequence = read_seqcount_begin(&nf_conntrack_generation); |
| hash = hash_conntrack(net, |
| &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL)); |
| reply_hash = hash_conntrack(net, |
| &ct->tuplehash[IP_CT_DIR_REPLY].tuple, |
| nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY)); |
| } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence)); |
| |
| max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN); |
| |
| /* See if there's one in the list already, including reverse */ |
| hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) { |
| if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| zone, net)) |
| goto out; |
| |
| if (chainlen++ > max_chainlen) |
| goto chaintoolong; |
| } |
| |
| chainlen = 0; |
| |
| hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) { |
| if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple, |
| zone, net)) |
| goto out; |
| if (chainlen++ > max_chainlen) |
| goto chaintoolong; |
| } |
| |
| smp_wmb(); |
| /* The caller holds a reference to this object */ |
| atomic_set(&ct->ct_general.use, 2); |
| __nf_conntrack_hash_insert(ct, hash, reply_hash); |
| nf_conntrack_double_unlock(hash, reply_hash); |
| NF_CT_STAT_INC(net, insert); |
| local_bh_enable(); |
| return 0; |
| chaintoolong: |
| NF_CT_STAT_INC(net, chaintoolong); |
| err = -ENOSPC; |
| out: |
| nf_conntrack_double_unlock(hash, reply_hash); |
| local_bh_enable(); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert); |
| |
| void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets, |
| unsigned int bytes) |
| { |
| struct nf_conn_acct *acct; |
| |
| acct = nf_conn_acct_find(ct); |
| if (acct) { |
| struct nf_conn_counter *counter = acct->counter; |
| |
| atomic64_add(packets, &counter[dir].packets); |
| atomic64_add(bytes, &counter[dir].bytes); |
| } |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_acct_add); |
| |
| static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo, |
| const struct nf_conn *loser_ct) |
| { |
| struct nf_conn_acct *acct; |
| |
| acct = nf_conn_acct_find(loser_ct); |
| if (acct) { |
| struct nf_conn_counter *counter = acct->counter; |
| unsigned int bytes; |
| |
| /* u32 should be fine since we must have seen one packet. */ |
| bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes); |
| nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes); |
| } |
| } |
| |
| static void __nf_conntrack_insert_prepare(struct nf_conn *ct) |
| { |
| struct nf_conn_tstamp *tstamp; |
| |
| atomic_inc(&ct->ct_general.use); |
| ct->status |= IPS_CONFIRMED; |
| |
| /* set conntrack timestamp, if enabled. */ |
| tstamp = nf_conn_tstamp_find(ct); |
| if (tstamp) |
| tstamp->start = ktime_get_real_ns(); |
| } |
| |
| /* caller must hold locks to prevent concurrent changes */ |
| static int __nf_ct_resolve_clash(struct sk_buff *skb, |
| struct nf_conntrack_tuple_hash *h) |
| { |
| /* This is the conntrack entry already in hashes that won race. */ |
| struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); |
| enum ip_conntrack_info ctinfo; |
| struct nf_conn *loser_ct; |
| |
| loser_ct = nf_ct_get(skb, &ctinfo); |
| |
| if (nf_ct_is_dying(ct)) |
| return NF_DROP; |
| |
| if (((ct->status & IPS_NAT_DONE_MASK) == 0) || |
| nf_ct_match(ct, loser_ct)) { |
| struct net *net = nf_ct_net(ct); |
| |
| nf_conntrack_get(&ct->ct_general); |
| |
| nf_ct_acct_merge(ct, ctinfo, loser_ct); |
| nf_ct_add_to_dying_list(loser_ct); |
| nf_conntrack_put(&loser_ct->ct_general); |
| nf_ct_set(skb, ct, ctinfo); |
| |
| NF_CT_STAT_INC(net, clash_resolve); |
| return NF_ACCEPT; |
| } |
| |
| return NF_DROP; |
| } |
| |
| /** |
| * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry |
| * |
| * @skb: skb that causes the collision |
| * @repl_idx: hash slot for reply direction |
| * |
| * Called when origin or reply direction had a clash. |
| * The skb can be handled without packet drop provided the reply direction |
| * is unique or there the existing entry has the identical tuple in both |
| * directions. |
| * |
| * Caller must hold conntrack table locks to prevent concurrent updates. |
| * |
| * Returns NF_DROP if the clash could not be handled. |
| */ |
| static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx) |
| { |
| struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb); |
| const struct nf_conntrack_zone *zone; |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_node *n; |
| struct net *net; |
| |
| zone = nf_ct_zone(loser_ct); |
| net = nf_ct_net(loser_ct); |
| |
| /* Reply direction must never result in a clash, unless both origin |
| * and reply tuples are identical. |
| */ |
| hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) { |
| if (nf_ct_key_equal(h, |
| &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple, |
| zone, net)) |
| return __nf_ct_resolve_clash(skb, h); |
| } |
| |
| /* We want the clashing entry to go away real soon: 1 second timeout. */ |
| loser_ct->timeout = nfct_time_stamp + HZ; |
| |
| /* IPS_NAT_CLASH removes the entry automatically on the first |
| * reply. Also prevents UDP tracker from moving the entry to |
| * ASSURED state, i.e. the entry can always be evicted under |
| * pressure. |
| */ |
| loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH; |
| |
| __nf_conntrack_insert_prepare(loser_ct); |
| |
| /* fake add for ORIGINAL dir: we want lookups to only find the entry |
| * already in the table. This also hides the clashing entry from |
| * ctnetlink iteration, i.e. conntrack -L won't show them. |
| */ |
| hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode); |
| |
| hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode, |
| &nf_conntrack_hash[repl_idx]); |
| |
| NF_CT_STAT_INC(net, clash_resolve); |
| return NF_ACCEPT; |
| } |
| |
| /** |
| * nf_ct_resolve_clash - attempt to handle clash without packet drop |
| * |
| * @skb: skb that causes the clash |
| * @h: tuplehash of the clashing entry already in table |
| * @reply_hash: hash slot for reply direction |
| * |
| * A conntrack entry can be inserted to the connection tracking table |
| * if there is no existing entry with an identical tuple. |
| * |
| * If there is one, @skb (and the assocated, unconfirmed conntrack) has |
| * to be dropped. In case @skb is retransmitted, next conntrack lookup |
| * will find the already-existing entry. |
| * |
| * The major problem with such packet drop is the extra delay added by |
| * the packet loss -- it will take some time for a retransmit to occur |
| * (or the sender to time out when waiting for a reply). |
| * |
| * This function attempts to handle the situation without packet drop. |
| * |
| * If @skb has no NAT transformation or if the colliding entries are |
| * exactly the same, only the to-be-confirmed conntrack entry is discarded |
| * and @skb is associated with the conntrack entry already in the table. |
| * |
| * Failing that, the new, unconfirmed conntrack is still added to the table |
| * provided that the collision only occurs in the ORIGINAL direction. |
| * The new entry will be added only in the non-clashing REPLY direction, |
| * so packets in the ORIGINAL direction will continue to match the existing |
| * entry. The new entry will also have a fixed timeout so it expires -- |
| * due to the collision, it will only see reply traffic. |
| * |
| * Returns NF_DROP if the clash could not be resolved. |
| */ |
| static __cold noinline int |
| nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h, |
| u32 reply_hash) |
| { |
| /* This is the conntrack entry already in hashes that won race. */ |
| struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); |
| const struct nf_conntrack_l4proto *l4proto; |
| enum ip_conntrack_info ctinfo; |
| struct nf_conn *loser_ct; |
| struct net *net; |
| int ret; |
| |
| loser_ct = nf_ct_get(skb, &ctinfo); |
| net = nf_ct_net(loser_ct); |
| |
| l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct)); |
| if (!l4proto->allow_clash) |
| goto drop; |
| |
| ret = __nf_ct_resolve_clash(skb, h); |
| if (ret == NF_ACCEPT) |
| return ret; |
| |
| ret = nf_ct_resolve_clash_harder(skb, reply_hash); |
| if (ret == NF_ACCEPT) |
| return ret; |
| |
| drop: |
| nf_ct_add_to_dying_list(loser_ct); |
| NF_CT_STAT_INC(net, drop); |
| NF_CT_STAT_INC(net, insert_failed); |
| return NF_DROP; |
| } |
| |
| /* Confirm a connection given skb; places it in hash table */ |
| int |
| __nf_conntrack_confirm(struct sk_buff *skb) |
| { |
| unsigned int chainlen = 0, sequence, max_chainlen; |
| const struct nf_conntrack_zone *zone; |
| unsigned int hash, reply_hash; |
| struct nf_conntrack_tuple_hash *h; |
| struct nf_conn *ct; |
| struct nf_conn_help *help; |
| struct hlist_nulls_node *n; |
| enum ip_conntrack_info ctinfo; |
| struct net *net; |
| int ret = NF_DROP; |
| |
| ct = nf_ct_get(skb, &ctinfo); |
| net = nf_ct_net(ct); |
| |
| /* ipt_REJECT uses nf_conntrack_attach to attach related |
| ICMP/TCP RST packets in other direction. Actual packet |
| which created connection will be IP_CT_NEW or for an |
| expected connection, IP_CT_RELATED. */ |
| if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) |
| return NF_ACCEPT; |
| |
| zone = nf_ct_zone(ct); |
| local_bh_disable(); |
| |
| do { |
| sequence = read_seqcount_begin(&nf_conntrack_generation); |
| /* reuse the hash saved before */ |
| hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev; |
| hash = scale_hash(hash); |
| reply_hash = hash_conntrack(net, |
| &ct->tuplehash[IP_CT_DIR_REPLY].tuple, |
| nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY)); |
| } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence)); |
| |
| /* We're not in hash table, and we refuse to set up related |
| * connections for unconfirmed conns. But packet copies and |
| * REJECT will give spurious warnings here. |
| */ |
| |
| /* Another skb with the same unconfirmed conntrack may |
| * win the race. This may happen for bridge(br_flood) |
| * or broadcast/multicast packets do skb_clone with |
| * unconfirmed conntrack. |
| */ |
| if (unlikely(nf_ct_is_confirmed(ct))) { |
| WARN_ON_ONCE(1); |
| nf_conntrack_double_unlock(hash, reply_hash); |
| local_bh_enable(); |
| return NF_DROP; |
| } |
| |
| pr_debug("Confirming conntrack %p\n", ct); |
| /* We have to check the DYING flag after unlink to prevent |
| * a race against nf_ct_get_next_corpse() possibly called from |
| * user context, else we insert an already 'dead' hash, blocking |
| * further use of that particular connection -JM. |
| */ |
| nf_ct_del_from_dying_or_unconfirmed_list(ct); |
| |
| if (unlikely(nf_ct_is_dying(ct))) { |
| nf_ct_add_to_dying_list(ct); |
| NF_CT_STAT_INC(net, insert_failed); |
| goto dying; |
| } |
| |
| max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN); |
| /* See if there's one in the list already, including reverse: |
| NAT could have grabbed it without realizing, since we're |
| not in the hash. If there is, we lost race. */ |
| hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) { |
| if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| zone, net)) |
| goto out; |
| if (chainlen++ > max_chainlen) |
| goto chaintoolong; |
| } |
| |
| chainlen = 0; |
| hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) { |
| if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple, |
| zone, net)) |
| goto out; |
| if (chainlen++ > max_chainlen) { |
| chaintoolong: |
| nf_ct_add_to_dying_list(ct); |
| NF_CT_STAT_INC(net, chaintoolong); |
| NF_CT_STAT_INC(net, insert_failed); |
| ret = NF_DROP; |
| goto dying; |
| } |
| } |
| |
| /* Timer relative to confirmation time, not original |
| setting time, otherwise we'd get timer wrap in |
| weird delay cases. */ |
| ct->timeout += nfct_time_stamp; |
| |
| __nf_conntrack_insert_prepare(ct); |
| |
| /* Since the lookup is lockless, hash insertion must be done after |
| * starting the timer and setting the CONFIRMED bit. The RCU barriers |
| * guarantee that no other CPU can find the conntrack before the above |
| * stores are visible. |
| */ |
| __nf_conntrack_hash_insert(ct, hash, reply_hash); |
| nf_conntrack_double_unlock(hash, reply_hash); |
| local_bh_enable(); |
| |
| help = nfct_help(ct); |
| if (help && help->helper) |
| nf_conntrack_event_cache(IPCT_HELPER, ct); |
| |
| nf_conntrack_event_cache(master_ct(ct) ? |
| IPCT_RELATED : IPCT_NEW, ct); |
| return NF_ACCEPT; |
| |
| out: |
| ret = nf_ct_resolve_clash(skb, h, reply_hash); |
| dying: |
| nf_conntrack_double_unlock(hash, reply_hash); |
| local_bh_enable(); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__nf_conntrack_confirm); |
| |
| /* Returns true if a connection correspondings to the tuple (required |
| for NAT). */ |
| int |
| nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple, |
| const struct nf_conn *ignored_conntrack) |
| { |
| struct net *net = nf_ct_net(ignored_conntrack); |
| const struct nf_conntrack_zone *zone; |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_head *ct_hash; |
| unsigned int hash, hsize; |
| struct hlist_nulls_node *n; |
| struct nf_conn *ct; |
| |
| zone = nf_ct_zone(ignored_conntrack); |
| |
| rcu_read_lock(); |
| begin: |
| nf_conntrack_get_ht(&ct_hash, &hsize); |
| hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize); |
| |
| hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) { |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| |
| if (ct == ignored_conntrack) |
| continue; |
| |
| if (nf_ct_is_expired(ct)) { |
| nf_ct_gc_expired(ct); |
| continue; |
| } |
| |
| if (nf_ct_key_equal(h, tuple, zone, net)) { |
| /* Tuple is taken already, so caller will need to find |
| * a new source port to use. |
| * |
| * Only exception: |
| * If the *original tuples* are identical, then both |
| * conntracks refer to the same flow. |
| * This is a rare situation, it can occur e.g. when |
| * more than one UDP packet is sent from same socket |
| * in different threads. |
| * |
| * Let nf_ct_resolve_clash() deal with this later. |
| */ |
| if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple, |
| &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) && |
| nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) |
| continue; |
| |
| NF_CT_STAT_INC_ATOMIC(net, found); |
| rcu_read_unlock(); |
| return 1; |
| } |
| } |
| |
| if (get_nulls_value(n) != hash) { |
| NF_CT_STAT_INC_ATOMIC(net, search_restart); |
| goto begin; |
| } |
| |
| rcu_read_unlock(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken); |
| |
| #define NF_CT_EVICTION_RANGE 8 |
| |
| /* There's a small race here where we may free a just-assured |
| connection. Too bad: we're in trouble anyway. */ |
| static unsigned int early_drop_list(struct net *net, |
| struct hlist_nulls_head *head) |
| { |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_node *n; |
| unsigned int drops = 0; |
| struct nf_conn *tmp; |
| |
| hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) { |
| tmp = nf_ct_tuplehash_to_ctrack(h); |
| |
| if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) |
| continue; |
| |
| if (nf_ct_is_expired(tmp)) { |
| nf_ct_gc_expired(tmp); |
| continue; |
| } |
| |
| if (test_bit(IPS_ASSURED_BIT, &tmp->status) || |
| !net_eq(nf_ct_net(tmp), net) || |
| nf_ct_is_dying(tmp)) |
| continue; |
| |
| if (!atomic_inc_not_zero(&tmp->ct_general.use)) |
| continue; |
| |
| /* kill only if still in same netns -- might have moved due to |
| * SLAB_TYPESAFE_BY_RCU rules. |
| * |
| * We steal the timer reference. If that fails timer has |
| * already fired or someone else deleted it. Just drop ref |
| * and move to next entry. |
| */ |
| if (net_eq(nf_ct_net(tmp), net) && |
| nf_ct_is_confirmed(tmp) && |
| nf_ct_delete(tmp, 0, 0)) |
| drops++; |
| |
| nf_ct_put(tmp); |
| } |
| |
| return drops; |
| } |
| |
| static noinline int early_drop(struct net *net, unsigned int hash) |
| { |
| unsigned int i, bucket; |
| |
| for (i = 0; i < NF_CT_EVICTION_RANGE; i++) { |
| struct hlist_nulls_head *ct_hash; |
| unsigned int hsize, drops; |
| |
| rcu_read_lock(); |
| nf_conntrack_get_ht(&ct_hash, &hsize); |
| if (!i) |
| bucket = reciprocal_scale(hash, hsize); |
| else |
| bucket = (bucket + 1) % hsize; |
| |
| drops = early_drop_list(net, &ct_hash[bucket]); |
| rcu_read_unlock(); |
| |
| if (drops) { |
| NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool gc_worker_skip_ct(const struct nf_conn *ct) |
| { |
| return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct); |
| } |
| |
| static bool gc_worker_can_early_drop(const struct nf_conn *ct) |
| { |
| const struct nf_conntrack_l4proto *l4proto; |
| |
| if (!test_bit(IPS_ASSURED_BIT, &ct->status)) |
| return true; |
| |
| l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct)); |
| if (l4proto->can_early_drop && l4proto->can_early_drop(ct)) |
| return true; |
| |
| return false; |
| } |
| |
| static void gc_worker(struct work_struct *work) |
| { |
| unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION; |
| unsigned int i, hashsz, nf_conntrack_max95 = 0; |
| unsigned long next_run = GC_SCAN_INTERVAL; |
| struct conntrack_gc_work *gc_work; |
| gc_work = container_of(work, struct conntrack_gc_work, dwork.work); |
| |
| i = gc_work->next_bucket; |
| if (gc_work->early_drop) |
| nf_conntrack_max95 = nf_conntrack_max / 100u * 95u; |
| |
| do { |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_head *ct_hash; |
| struct hlist_nulls_node *n; |
| struct nf_conn *tmp; |
| |
| rcu_read_lock(); |
| |
| nf_conntrack_get_ht(&ct_hash, &hashsz); |
| if (i >= hashsz) { |
| rcu_read_unlock(); |
| break; |
| } |
| |
| hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) { |
| struct nf_conntrack_net *cnet; |
| struct net *net; |
| |
| tmp = nf_ct_tuplehash_to_ctrack(h); |
| |
| if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) { |
| nf_ct_offload_timeout(tmp); |
| continue; |
| } |
| |
| if (nf_ct_is_expired(tmp)) { |
| nf_ct_gc_expired(tmp); |
| continue; |
| } |
| |
| if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp)) |
| continue; |
| |
| net = nf_ct_net(tmp); |
| cnet = nf_ct_pernet(net); |
| if (atomic_read(&cnet->count) < nf_conntrack_max95) |
| continue; |
| |
| /* need to take reference to avoid possible races */ |
| if (!atomic_inc_not_zero(&tmp->ct_general.use)) |
| continue; |
| |
| if (gc_worker_skip_ct(tmp)) { |
| nf_ct_put(tmp); |
| continue; |
| } |
| |
| if (gc_worker_can_early_drop(tmp)) |
| nf_ct_kill(tmp); |
| |
| nf_ct_put(tmp); |
| } |
| |
| /* could check get_nulls_value() here and restart if ct |
| * was moved to another chain. But given gc is best-effort |
| * we will just continue with next hash slot. |
| */ |
| rcu_read_unlock(); |
| cond_resched(); |
| i++; |
| |
| if (time_after(jiffies, end_time) && i < hashsz) { |
| gc_work->next_bucket = i; |
| next_run = 0; |
| break; |
| } |
| } while (i < hashsz); |
| |
| if (gc_work->exiting) |
| return; |
| |
| /* |
| * Eviction will normally happen from the packet path, and not |
| * from this gc worker. |
| * |
| * This worker is only here to reap expired entries when system went |
| * idle after a busy period. |
| */ |
| if (next_run) { |
| gc_work->early_drop = false; |
| gc_work->next_bucket = 0; |
| } |
| queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run); |
| } |
| |
| static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work) |
| { |
| INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker); |
| gc_work->exiting = false; |
| } |
| |
| static struct nf_conn * |
| __nf_conntrack_alloc(struct net *net, |
| const struct nf_conntrack_zone *zone, |
| const struct nf_conntrack_tuple *orig, |
| const struct nf_conntrack_tuple *repl, |
| gfp_t gfp, u32 hash) |
| { |
| struct nf_conntrack_net *cnet = nf_ct_pernet(net); |
| unsigned int ct_count; |
| struct nf_conn *ct; |
| |
| /* We don't want any race condition at early drop stage */ |
| ct_count = atomic_inc_return(&cnet->count); |
| |
| if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) { |
| if (!early_drop(net, hash)) { |
| if (!conntrack_gc_work.early_drop) |
| conntrack_gc_work.early_drop = true; |
| atomic_dec(&cnet->count); |
| net_warn_ratelimited("nf_conntrack: table full, dropping packet\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| } |
| |
| /* |
| * Do not use kmem_cache_zalloc(), as this cache uses |
| * SLAB_TYPESAFE_BY_RCU. |
| */ |
| ct = kmem_cache_alloc(nf_conntrack_cachep, gfp); |
| if (ct == NULL) |
| goto out; |
| |
| spin_lock_init(&ct->lock); |
| ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig; |
| ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL; |
| ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl; |
| /* save hash for reusing when confirming */ |
| *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash; |
| ct->status = 0; |
| ct->timeout = 0; |
| write_pnet(&ct->ct_net, net); |
| memset(&ct->__nfct_init_offset, 0, |
| offsetof(struct nf_conn, proto) - |
| offsetof(struct nf_conn, __nfct_init_offset)); |
| |
| nf_ct_zone_add(ct, zone); |
| |
| /* Because we use RCU lookups, we set ct_general.use to zero before |
| * this is inserted in any list. |
| */ |
| atomic_set(&ct->ct_general.use, 0); |
| return ct; |
| out: |
| atomic_dec(&cnet->count); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| struct nf_conn *nf_conntrack_alloc(struct net *net, |
| const struct nf_conntrack_zone *zone, |
| const struct nf_conntrack_tuple *orig, |
| const struct nf_conntrack_tuple *repl, |
| gfp_t gfp) |
| { |
| return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0); |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_alloc); |
| |
| void nf_conntrack_free(struct nf_conn *ct) |
| { |
| struct net *net = nf_ct_net(ct); |
| struct nf_conntrack_net *cnet; |
| |
| /* A freed object has refcnt == 0, that's |
| * the golden rule for SLAB_TYPESAFE_BY_RCU |
| */ |
| WARN_ON(atomic_read(&ct->ct_general.use) != 0); |
| |
| nf_ct_ext_destroy(ct); |
| kmem_cache_free(nf_conntrack_cachep, ct); |
| cnet = nf_ct_pernet(net); |
| |
| smp_mb__before_atomic(); |
| atomic_dec(&cnet->count); |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_free); |
| |
| |
| /* Allocate a new conntrack: we return -ENOMEM if classification |
| failed due to stress. Otherwise it really is unclassifiable. */ |
| static noinline struct nf_conntrack_tuple_hash * |
| init_conntrack(struct net *net, struct nf_conn *tmpl, |
| const struct nf_conntrack_tuple *tuple, |
| struct sk_buff *skb, |
| unsigned int dataoff, u32 hash) |
| { |
| struct nf_conn *ct; |
| struct nf_conn_help *help; |
| struct nf_conntrack_tuple repl_tuple; |
| struct nf_conntrack_ecache *ecache; |
| struct nf_conntrack_expect *exp = NULL; |
| const struct nf_conntrack_zone *zone; |
| struct nf_conn_timeout *timeout_ext; |
| struct nf_conntrack_zone tmp; |
| struct nf_conntrack_net *cnet; |
| |
| if (!nf_ct_invert_tuple(&repl_tuple, tuple)) { |
| pr_debug("Can't invert tuple.\n"); |
| return NULL; |
| } |
| |
| zone = nf_ct_zone_tmpl(tmpl, skb, &tmp); |
| ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC, |
| hash); |
| if (IS_ERR(ct)) |
| return (struct nf_conntrack_tuple_hash *)ct; |
| |
| if (!nf_ct_add_synproxy(ct, tmpl)) { |
| nf_conntrack_free(ct); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL; |
| |
| if (timeout_ext) |
| nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout), |
| GFP_ATOMIC); |
| |
| nf_ct_acct_ext_add(ct, GFP_ATOMIC); |
| nf_ct_tstamp_ext_add(ct, GFP_ATOMIC); |
| nf_ct_labels_ext_add(ct); |
| |
| ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL; |
| nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0, |
| ecache ? ecache->expmask : 0, |
| GFP_ATOMIC); |
| |
| local_bh_disable(); |
| cnet = nf_ct_pernet(net); |
| if (cnet->expect_count) { |
| spin_lock(&nf_conntrack_expect_lock); |
| exp = nf_ct_find_expectation(net, zone, tuple); |
| if (exp) { |
| pr_debug("expectation arrives ct=%p exp=%p\n", |
| ct, exp); |
| /* Welcome, Mr. Bond. We've been expecting you... */ |
| __set_bit(IPS_EXPECTED_BIT, &ct->status); |
| /* exp->master safe, refcnt bumped in nf_ct_find_expectation */ |
| ct->master = exp->master; |
| if (exp->helper) { |
| help = nf_ct_helper_ext_add(ct, GFP_ATOMIC); |
| if (help) |
| rcu_assign_pointer(help->helper, exp->helper); |
| } |
| |
| #ifdef CONFIG_NF_CONNTRACK_MARK |
| ct->mark = exp->master->mark; |
| #endif |
| #ifdef CONFIG_NF_CONNTRACK_SECMARK |
| ct->secmark = exp->master->secmark; |
| #endif |
| NF_CT_STAT_INC(net, expect_new); |
| } |
| spin_unlock(&nf_conntrack_expect_lock); |
| } |
| if (!exp) |
| __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC); |
| |
| /* Now it is inserted into the unconfirmed list, bump refcount */ |
| nf_conntrack_get(&ct->ct_general); |
| nf_ct_add_to_unconfirmed_list(ct); |
| |
| local_bh_enable(); |
| |
| if (exp) { |
| if (exp->expectfn) |
| exp->expectfn(ct, exp); |
| nf_ct_expect_put(exp); |
| } |
| |
| return &ct->tuplehash[IP_CT_DIR_ORIGINAL]; |
| } |
| |
| /* On success, returns 0, sets skb->_nfct | ctinfo */ |
| static int |
| resolve_normal_ct(struct nf_conn *tmpl, |
| struct sk_buff *skb, |
| unsigned int dataoff, |
| u_int8_t protonum, |
| const struct nf_hook_state *state) |
| { |
| const struct nf_conntrack_zone *zone; |
| struct nf_conntrack_tuple tuple; |
| struct nf_conntrack_tuple_hash *h; |
| enum ip_conntrack_info ctinfo; |
| struct nf_conntrack_zone tmp; |
| u32 hash, zone_id, rid; |
| struct nf_conn *ct; |
| |
| if (!nf_ct_get_tuple(skb, skb_network_offset(skb), |
| dataoff, state->pf, protonum, state->net, |
| &tuple)) { |
| pr_debug("Can't get tuple\n"); |
| return 0; |
| } |
| |
| /* look for tuple match */ |
| zone = nf_ct_zone_tmpl(tmpl, skb, &tmp); |
| |
| zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL); |
| hash = hash_conntrack_raw(&tuple, zone_id, state->net); |
| h = __nf_conntrack_find_get(state->net, zone, &tuple, hash); |
| |
| if (!h) { |
| rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY); |
| if (zone_id != rid) { |
| u32 tmp = hash_conntrack_raw(&tuple, rid, state->net); |
| |
| h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp); |
| } |
| } |
| |
| if (!h) { |
| h = init_conntrack(state->net, tmpl, &tuple, |
| skb, dataoff, hash); |
| if (!h) |
| return 0; |
| if (IS_ERR(h)) |
| return PTR_ERR(h); |
| } |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| |
| /* It exists; we have (non-exclusive) reference. */ |
| if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) { |
| ctinfo = IP_CT_ESTABLISHED_REPLY; |
| } else { |
| /* Once we've had two way comms, always ESTABLISHED. */ |
| if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) { |
| pr_debug("normal packet for %p\n", ct); |
| ctinfo = IP_CT_ESTABLISHED; |
| } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) { |
| pr_debug("related packet for %p\n", ct); |
| ctinfo = IP_CT_RELATED; |
| } else { |
| pr_debug("new packet for %p\n", ct); |
| ctinfo = IP_CT_NEW; |
| } |
| } |
| nf_ct_set(skb, ct, ctinfo); |
| return 0; |
| } |
| |
| /* |
| * icmp packets need special treatment to handle error messages that are |
| * related to a connection. |
| * |
| * Callers need to check if skb has a conntrack assigned when this |
| * helper returns; in such case skb belongs to an already known connection. |
| */ |
| static unsigned int __cold |
| nf_conntrack_handle_icmp(struct nf_conn *tmpl, |
| struct sk_buff *skb, |
| unsigned int dataoff, |
| u8 protonum, |
| const struct nf_hook_state *state) |
| { |
| int ret; |
| |
| if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP) |
| ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state); |
| #if IS_ENABLED(CONFIG_IPV6) |
| else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6) |
| ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state); |
| #endif |
| else |
| return NF_ACCEPT; |
| |
| if (ret <= 0) |
| NF_CT_STAT_INC_ATOMIC(state->net, error); |
| |
| return ret; |
| } |
| |
| static int generic_packet(struct nf_conn *ct, struct sk_buff *skb, |
| enum ip_conntrack_info ctinfo) |
| { |
| const unsigned int *timeout = nf_ct_timeout_lookup(ct); |
| |
| if (!timeout) |
| timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout; |
| |
| nf_ct_refresh_acct(ct, ctinfo, skb, *timeout); |
| return NF_ACCEPT; |
| } |
| |
| /* Returns verdict for packet, or -1 for invalid. */ |
| static int nf_conntrack_handle_packet(struct nf_conn *ct, |
| struct sk_buff *skb, |
| unsigned int dataoff, |
| enum ip_conntrack_info ctinfo, |
| const struct nf_hook_state *state) |
| { |
| switch (nf_ct_protonum(ct)) { |
| case IPPROTO_TCP: |
| return nf_conntrack_tcp_packet(ct, skb, dataoff, |
| ctinfo, state); |
| case IPPROTO_UDP: |
| return nf_conntrack_udp_packet(ct, skb, dataoff, |
| ctinfo, state); |
| case IPPROTO_ICMP: |
| return nf_conntrack_icmp_packet(ct, skb, ctinfo, state); |
| #if IS_ENABLED(CONFIG_IPV6) |
| case IPPROTO_ICMPV6: |
| return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state); |
| #endif |
| #ifdef CONFIG_NF_CT_PROTO_UDPLITE |
| case IPPROTO_UDPLITE: |
| return nf_conntrack_udplite_packet(ct, skb, dataoff, |
| ctinfo, state); |
| #endif |
| #ifdef CONFIG_NF_CT_PROTO_SCTP |
| case IPPROTO_SCTP: |
| return nf_conntrack_sctp_packet(ct, skb, dataoff, |
| ctinfo, state); |
| #endif |
| #ifdef CONFIG_NF_CT_PROTO_DCCP |
| case IPPROTO_DCCP: |
| return nf_conntrack_dccp_packet(ct, skb, dataoff, |
| ctinfo, state); |
| #endif |
| #ifdef CONFIG_NF_CT_PROTO_GRE |
| case IPPROTO_GRE: |
| return nf_conntrack_gre_packet(ct, skb, dataoff, |
| ctinfo, state); |
| #endif |
| } |
| |
| return generic_packet(ct, skb, ctinfo); |
| } |
| |
| unsigned int |
| nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state) |
| { |
| enum ip_conntrack_info ctinfo; |
| struct nf_conn *ct, *tmpl; |
| u_int8_t protonum; |
| int dataoff, ret; |
| |
| tmpl = nf_ct_get(skb, &ctinfo); |
| if (tmpl || ctinfo == IP_CT_UNTRACKED) { |
| /* Previously seen (loopback or untracked)? Ignore. */ |
| if ((tmpl && !nf_ct_is_template(tmpl)) || |
| ctinfo == IP_CT_UNTRACKED) |
| return NF_ACCEPT; |
| skb->_nfct = 0; |
| } |
| |
| /* rcu_read_lock()ed by nf_hook_thresh */ |
| dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum); |
| if (dataoff <= 0) { |
| pr_debug("not prepared to track yet or error occurred\n"); |
| NF_CT_STAT_INC_ATOMIC(state->net, invalid); |
| ret = NF_ACCEPT; |
| goto out; |
| } |
| |
| if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) { |
| ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff, |
| protonum, state); |
| if (ret <= 0) { |
| ret = -ret; |
| goto out; |
| } |
| /* ICMP[v6] protocol trackers may assign one conntrack. */ |
| if (skb->_nfct) |
| goto out; |
| } |
| repeat: |
| ret = resolve_normal_ct(tmpl, skb, dataoff, |
| protonum, state); |
| if (ret < 0) { |
| /* Too stressed to deal. */ |
| NF_CT_STAT_INC_ATOMIC(state->net, drop); |
| ret = NF_DROP; |
| goto out; |
| } |
| |
| ct = nf_ct_get(skb, &ctinfo); |
| if (!ct) { |
| /* Not valid part of a connection */ |
| NF_CT_STAT_INC_ATOMIC(state->net, invalid); |
| ret = NF_ACCEPT; |
| goto out; |
| } |
| |
| ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state); |
| if (ret <= 0) { |
| /* Invalid: inverse of the return code tells |
| * the netfilter core what to do */ |
| pr_debug("nf_conntrack_in: Can't track with proto module\n"); |
| nf_conntrack_put(&ct->ct_general); |
| skb->_nfct = 0; |
| NF_CT_STAT_INC_ATOMIC(state->net, invalid); |
| if (ret == -NF_DROP) |
| NF_CT_STAT_INC_ATOMIC(state->net, drop); |
| /* Special case: TCP tracker reports an attempt to reopen a |
| * closed/aborted connection. We have to go back and create a |
| * fresh conntrack. |
| */ |
| if (ret == -NF_REPEAT) |
| goto repeat; |
| ret = -ret; |
| goto out; |
| } |
| |
| if (ctinfo == IP_CT_ESTABLISHED_REPLY && |
| !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status)) |
| nf_conntrack_event_cache(IPCT_REPLY, ct); |
| out: |
| if (tmpl) |
| nf_ct_put(tmpl); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_in); |
| |
| /* Alter reply tuple (maybe alter helper). This is for NAT, and is |
| implicitly racy: see __nf_conntrack_confirm */ |
| void nf_conntrack_alter_reply(struct nf_conn *ct, |
| const struct nf_conntrack_tuple *newreply) |
| { |
| struct nf_conn_help *help = nfct_help(ct); |
| |
| /* Should be unconfirmed, so not in hash table yet */ |
| WARN_ON(nf_ct_is_confirmed(ct)); |
| |
| pr_debug("Altering reply tuple of %p to ", ct); |
| nf_ct_dump_tuple(newreply); |
| |
| ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply; |
| if (ct->master || (help && !hlist_empty(&help->expectations))) |
| return; |
| |
| rcu_read_lock(); |
| __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC); |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply); |
| |
| /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */ |
| void __nf_ct_refresh_acct(struct nf_conn *ct, |
| enum ip_conntrack_info ctinfo, |
| const struct sk_buff *skb, |
| u32 extra_jiffies, |
| bool do_acct) |
| { |
| /* Only update if this is not a fixed timeout */ |
| if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) |
| goto acct; |
| |
| /* If not in hash table, timer will not be active yet */ |
| if (nf_ct_is_confirmed(ct)) |
| extra_jiffies += nfct_time_stamp; |
| |
| if (READ_ONCE(ct->timeout) != extra_jiffies) |
| WRITE_ONCE(ct->timeout, extra_jiffies); |
| acct: |
| if (do_acct) |
| nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len); |
| } |
| EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct); |
| |
| bool nf_ct_kill_acct(struct nf_conn *ct, |
| enum ip_conntrack_info ctinfo, |
| const struct sk_buff *skb) |
| { |
| nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len); |
| |
| return nf_ct_delete(ct, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_kill_acct); |
| |
| #if IS_ENABLED(CONFIG_NF_CT_NETLINK) |
| |
| #include <linux/netfilter/nfnetlink.h> |
| #include <linux/netfilter/nfnetlink_conntrack.h> |
| #include <linux/mutex.h> |
| |
| /* Generic function for tcp/udp/sctp/dccp and alike. */ |
| int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb, |
| const struct nf_conntrack_tuple *tuple) |
| { |
| if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) || |
| nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port)) |
| goto nla_put_failure; |
| return 0; |
| |
| nla_put_failure: |
| return -1; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr); |
| |
| const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = { |
| [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 }, |
| [CTA_PROTO_DST_PORT] = { .type = NLA_U16 }, |
| }; |
| EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy); |
| |
| int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[], |
| struct nf_conntrack_tuple *t, |
| u_int32_t flags) |
| { |
| if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) { |
| if (!tb[CTA_PROTO_SRC_PORT]) |
| return -EINVAL; |
| |
| t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]); |
| } |
| |
| if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) { |
| if (!tb[CTA_PROTO_DST_PORT]) |
| return -EINVAL; |
| |
| t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple); |
| |
| unsigned int nf_ct_port_nlattr_tuple_size(void) |
| { |
| static unsigned int size __read_mostly; |
| |
| if (!size) |
| size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1); |
| |
| return size; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size); |
| #endif |
| |
| /* Used by ipt_REJECT and ip6t_REJECT. */ |
| static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb) |
| { |
| struct nf_conn *ct; |
| enum ip_conntrack_info ctinfo; |
| |
| /* This ICMP is in reverse direction to the packet which caused it */ |
| ct = nf_ct_get(skb, &ctinfo); |
| if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) |
| ctinfo = IP_CT_RELATED_REPLY; |
| else |
| ctinfo = IP_CT_RELATED; |
| |
| /* Attach to new skbuff, and increment count */ |
| nf_ct_set(nskb, ct, ctinfo); |
| nf_conntrack_get(skb_nfct(nskb)); |
| } |
| |
| static int __nf_conntrack_update(struct net *net, struct sk_buff *skb, |
| struct nf_conn *ct, |
| enum ip_conntrack_info ctinfo) |
| { |
| struct nf_conntrack_tuple_hash *h; |
| struct nf_conntrack_tuple tuple; |
| struct nf_nat_hook *nat_hook; |
| unsigned int status; |
| int dataoff; |
| u16 l3num; |
| u8 l4num; |
| |
| l3num = nf_ct_l3num(ct); |
| |
| dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num); |
| if (dataoff <= 0) |
| return -1; |
| |
| if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, |
| l4num, net, &tuple)) |
| return -1; |
| |
| if (ct->status & IPS_SRC_NAT) { |
| memcpy(tuple.src.u3.all, |
| ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all, |
| sizeof(tuple.src.u3.all)); |
| tuple.src.u.all = |
| ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all; |
| } |
| |
| if (ct->status & IPS_DST_NAT) { |
| memcpy(tuple.dst.u3.all, |
| ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all, |
| sizeof(tuple.dst.u3.all)); |
| tuple.dst.u.all = |
| ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all; |
| } |
| |
| h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple); |
| if (!h) |
| return 0; |
| |
| /* Store status bits of the conntrack that is clashing to re-do NAT |
| * mangling according to what it has been done already to this packet. |
| */ |
| status = ct->status; |
| |
| nf_ct_put(ct); |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| nf_ct_set(skb, ct, ctinfo); |
| |
| nat_hook = rcu_dereference(nf_nat_hook); |
| if (!nat_hook) |
| return 0; |
| |
| if (status & IPS_SRC_NAT && |
| nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC, |
| IP_CT_DIR_ORIGINAL) == NF_DROP) |
| return -1; |
| |
| if (status & IPS_DST_NAT && |
| nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST, |
| IP_CT_DIR_ORIGINAL) == NF_DROP) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* This packet is coming from userspace via nf_queue, complete the packet |
| * processing after the helper invocation in nf_confirm(). |
| */ |
| static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct, |
| enum ip_conntrack_info ctinfo) |
| { |
| const struct nf_conntrack_helper *helper; |
| const struct nf_conn_help *help; |
| int protoff; |
| |
| help = nfct_help(ct); |
| if (!help) |
| return 0; |
| |
| helper = rcu_dereference(help->helper); |
| if (!(helper->flags & NF_CT_HELPER_F_USERSPACE)) |
| return 0; |
| |
| switch (nf_ct_l3num(ct)) { |
| case NFPROTO_IPV4: |
| protoff = skb_network_offset(skb) + ip_hdrlen(skb); |
| break; |
| #if IS_ENABLED(CONFIG_IPV6) |
| case NFPROTO_IPV6: { |
| __be16 frag_off; |
| u8 pnum; |
| |
| pnum = ipv6_hdr(skb)->nexthdr; |
| protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum, |
| &frag_off); |
| if (protoff < 0 || (frag_off & htons(~0x7)) != 0) |
| return 0; |
| break; |
| } |
| #endif |
| default: |
| return 0; |
| } |
| |
| if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && |
| !nf_is_loopback_packet(skb)) { |
| if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) { |
| NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop); |
| return -1; |
| } |
| } |
| |
| /* We've seen it coming out the other side: confirm it */ |
| return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0; |
| } |
| |
| static int nf_conntrack_update(struct net *net, struct sk_buff *skb) |
| { |
| enum ip_conntrack_info ctinfo; |
| struct nf_conn *ct; |
| int err; |
| |
| ct = nf_ct_get(skb, &ctinfo); |
| if (!ct) |
| return 0; |
| |
| if (!nf_ct_is_confirmed(ct)) { |
| err = __nf_conntrack_update(net, skb, ct, ctinfo); |
| if (err < 0) |
| return err; |
| |
| ct = nf_ct_get(skb, &ctinfo); |
| } |
| |
| return nf_confirm_cthelper(skb, ct, ctinfo); |
| } |
| |
| static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, |
| const struct sk_buff *skb) |
| { |
| const struct nf_conntrack_tuple *src_tuple; |
| const struct nf_conntrack_tuple_hash *hash; |
| struct nf_conntrack_tuple srctuple; |
| enum ip_conntrack_info ctinfo; |
| struct nf_conn *ct; |
| |
| ct = nf_ct_get(skb, &ctinfo); |
| if (ct) { |
| src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo)); |
| memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple)); |
| return true; |
| } |
| |
| if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), |
| NFPROTO_IPV4, dev_net(skb->dev), |
| &srctuple)) |
| return false; |
| |
| hash = nf_conntrack_find_get(dev_net(skb->dev), |
| &nf_ct_zone_dflt, |
| &srctuple); |
| if (!hash) |
| return false; |
| |
| ct = nf_ct_tuplehash_to_ctrack(hash); |
| src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir); |
| memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple)); |
| nf_ct_put(ct); |
| |
| return true; |
| } |
| |
| /* Bring out ya dead! */ |
| static struct nf_conn * |
| get_next_corpse(int (*iter)(struct nf_conn *i, void *data), |
| void *data, unsigned int *bucket) |
| { |
| struct nf_conntrack_tuple_hash *h; |
| struct nf_conn *ct; |
| struct hlist_nulls_node *n; |
| spinlock_t *lockp; |
| |
| for (; *bucket < nf_conntrack_htable_size; (*bucket)++) { |
| struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket]; |
| |
| if (hlist_nulls_empty(hslot)) |
| continue; |
| |
| lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS]; |
| local_bh_disable(); |
| nf_conntrack_lock(lockp); |
| hlist_nulls_for_each_entry(h, n, hslot, hnnode) { |
| if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY) |
| continue; |
| /* All nf_conn objects are added to hash table twice, one |
| * for original direction tuple, once for the reply tuple. |
| * |
| * Exception: In the IPS_NAT_CLASH case, only the reply |
| * tuple is added (the original tuple already existed for |
| * a different object). |
| * |
| * We only need to call the iterator once for each |
| * conntrack, so we just use the 'reply' direction |
| * tuple while iterating. |
| */ |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| if (iter(ct, data)) |
| goto found; |
| } |
| spin_unlock(lockp); |
| local_bh_enable(); |
| cond_resched(); |
| } |
| |
| return NULL; |
| found: |
| atomic_inc(&ct->ct_general.use); |
| spin_unlock(lockp); |
| local_bh_enable(); |
| return ct; |
| } |
| |
| static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), |
| void *data, u32 portid, int report) |
| { |
| unsigned int bucket = 0; |
| struct nf_conn *ct; |
| |
| might_sleep(); |
| |
| mutex_lock(&nf_conntrack_mutex); |
| while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) { |
| /* Time to push up daises... */ |
| |
| nf_ct_delete(ct, portid, report); |
| nf_ct_put(ct); |
| cond_resched(); |
| } |
| mutex_unlock(&nf_conntrack_mutex); |
| } |
| |
| struct iter_data { |
| int (*iter)(struct nf_conn *i, void *data); |
| void *data; |
| struct net *net; |
| }; |
| |
| static int iter_net_only(struct nf_conn *i, void *data) |
| { |
| struct iter_data *d = data; |
| |
| if (!net_eq(d->net, nf_ct_net(i))) |
| return 0; |
| |
| return d->iter(i, d->data); |
| } |
| |
| static void |
| __nf_ct_unconfirmed_destroy(struct net *net) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct nf_conntrack_tuple_hash *h; |
| struct hlist_nulls_node *n; |
| struct ct_pcpu *pcpu; |
| |
| pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu); |
| |
| spin_lock_bh(&pcpu->lock); |
| hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) { |
| struct nf_conn *ct; |
| |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| |
| /* we cannot call iter() on unconfirmed list, the |
| * owning cpu can reallocate ct->ext at any time. |
| */ |
| set_bit(IPS_DYING_BIT, &ct->status); |
| } |
| spin_unlock_bh(&pcpu->lock); |
| cond_resched(); |
| } |
| } |
| |
| void nf_ct_unconfirmed_destroy(struct net *net) |
| { |
| struct nf_conntrack_net *cnet = nf_ct_pernet(net); |
| |
| might_sleep(); |
| |
| if (atomic_read(&cnet->count) > 0) { |
| __nf_ct_unconfirmed_destroy(net); |
| nf_queue_nf_hook_drop(net); |
| synchronize_net(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy); |
| |
| void nf_ct_iterate_cleanup_net(struct net *net, |
| int (*iter)(struct nf_conn *i, void *data), |
| void *data, u32 portid, int report) |
| { |
| struct nf_conntrack_net *cnet = nf_ct_pernet(net); |
| struct iter_data d; |
| |
| might_sleep(); |
| |
| if (atomic_read(&cnet->count) == 0) |
| return; |
| |
| d.iter = iter; |
| d.data = data; |
| d.net = net; |
| |
| nf_ct_iterate_cleanup(iter_net_only, &d, portid, report); |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net); |
| |
| /** |
| * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table |
| * @iter: callback to invoke for each conntrack |
| * @data: data to pass to @iter |
| * |
| * Like nf_ct_iterate_cleanup, but first marks conntracks on the |
| * unconfirmed list as dying (so they will not be inserted into |
| * main table). |
| * |
| * Can only be called in module exit path. |
| */ |
| void |
| nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data) |
| { |
| struct net *net; |
| |
| down_read(&net_rwsem); |
| for_each_net(net) { |
| struct nf_conntrack_net *cnet = nf_ct_pernet(net); |
| |
| if (atomic_read(&cnet->count) == 0) |
| continue; |
| __nf_ct_unconfirmed_destroy(net); |
| nf_queue_nf_hook_drop(net); |
| } |
| up_read(&net_rwsem); |
| |
| /* Need to wait for netns cleanup worker to finish, if its |
| * running -- it might have deleted a net namespace from |
| * the global list, so our __nf_ct_unconfirmed_destroy() might |
| * not have affected all namespaces. |
| */ |
| net_ns_barrier(); |
| |
| /* a conntrack could have been unlinked from unconfirmed list |
| * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy(). |
| * This makes sure its inserted into conntrack table. |
| */ |
| synchronize_net(); |
| |
| nf_ct_iterate_cleanup(iter, data, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy); |
| |
| static int kill_all(struct nf_conn *i, void *data) |
| { |
| return net_eq(nf_ct_net(i), data); |
| } |
| |
| void nf_conntrack_cleanup_start(void) |
| { |
| conntrack_gc_work.exiting = true; |
| RCU_INIT_POINTER(ip_ct_attach, NULL); |
| } |
| |
| void nf_conntrack_cleanup_end(void) |
| { |
| RCU_INIT_POINTER(nf_ct_hook, NULL); |
| cancel_delayed_work_sync(&conntrack_gc_work.dwork); |
| kvfree(nf_conntrack_hash); |
| |
| nf_conntrack_proto_fini(); |
| nf_conntrack_seqadj_fini(); |
| nf_conntrack_labels_fini(); |
| nf_conntrack_helper_fini(); |
| nf_conntrack_timeout_fini(); |
| nf_conntrack_ecache_fini(); |
| nf_conntrack_tstamp_fini(); |
| nf_conntrack_acct_fini(); |
| nf_conntrack_expect_fini(); |
| |
| kmem_cache_destroy(nf_conntrack_cachep); |
| } |
| |
| /* |
| * Mishearing the voices in his head, our hero wonders how he's |
| * supposed to kill the mall. |
| */ |
| void nf_conntrack_cleanup_net(struct net *net) |
| { |
| LIST_HEAD(single); |
| |
| list_add(&net->exit_list, &single); |
| nf_conntrack_cleanup_net_list(&single); |
| } |
| |
| void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list) |
| { |
| int busy; |
| struct net *net; |
| |
| /* |
| * This makes sure all current packets have passed through |
| * netfilter framework. Roll on, two-stage module |
| * delete... |
| */ |
| synchronize_net(); |
| i_see_dead_people: |
| busy = 0; |
| list_for_each_entry(net, net_exit_list, exit_list) { |
| struct nf_conntrack_net *cnet = nf_ct_pernet(net); |
| |
| nf_ct_iterate_cleanup(kill_all, net, 0, 0); |
| if (atomic_read(&cnet->count) != 0) |
| busy = 1; |
| } |
| if (busy) { |
| schedule(); |
| goto i_see_dead_people; |
| } |
| |
| list_for_each_entry(net, net_exit_list, exit_list) { |
| nf_conntrack_ecache_pernet_fini(net); |
| nf_conntrack_expect_pernet_fini(net); |
| free_percpu(net->ct.stat); |
| free_percpu(net->ct.pcpu_lists); |
| } |
| } |
| |
| void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls) |
| { |
| struct hlist_nulls_head *hash; |
| unsigned int nr_slots, i; |
| |
| if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head))) |
| return NULL; |
| |
| BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head)); |
| nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head)); |
| |
| hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL); |
| |
| if (hash && nulls) |
| for (i = 0; i < nr_slots; i++) |
| INIT_HLIST_NULLS_HEAD(&hash[i], i); |
| |
| return hash; |
| } |
| EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable); |
| |
| int nf_conntrack_hash_resize(unsigned int hashsize) |
| { |
| int i, bucket; |
| unsigned int old_size; |
| struct hlist_nulls_head *hash, *old_hash; |
| struct nf_conntrack_tuple_hash *h; |
| struct nf_conn *ct; |
| |
| if (!hashsize) |
| return -EINVAL; |
| |
| hash = nf_ct_alloc_hashtable(&hashsize, 1); |
| if (!hash) |
| return -ENOMEM; |
| |
| mutex_lock(&nf_conntrack_mutex); |
| old_size = nf_conntrack_htable_size; |
| if (old_size == hashsize) { |
| mutex_unlock(&nf_conntrack_mutex); |
| kvfree(hash); |
| return 0; |
| } |
| |
| local_bh_disable(); |
| nf_conntrack_all_lock(); |
| write_seqcount_begin(&nf_conntrack_generation); |
| |
| /* Lookups in the old hash might happen in parallel, which means we |
| * might get false negatives during connection lookup. New connections |
| * created because of a false negative won't make it into the hash |
| * though since that required taking the locks. |
| */ |
| |
| for (i = 0; i < nf_conntrack_htable_size; i++) { |
| while (!hlist_nulls_empty(&nf_conntrack_hash[i])) { |
| unsigned int zone_id; |
| |
| h = hlist_nulls_entry(nf_conntrack_hash[i].first, |
| struct nf_conntrack_tuple_hash, hnnode); |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| hlist_nulls_del_rcu(&h->hnnode); |
| |
| zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h)); |
| bucket = __hash_conntrack(nf_ct_net(ct), |
| &h->tuple, zone_id, hashsize); |
| hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]); |
| } |
| } |
| old_size = nf_conntrack_htable_size; |
| old_hash = nf_conntrack_hash; |
| |
| nf_conntrack_hash = hash; |
| nf_conntrack_htable_size = hashsize; |
| |
| write_seqcount_end(&nf_conntrack_generation); |
| nf_conntrack_all_unlock(); |
| local_bh_enable(); |
| |
| mutex_unlock(&nf_conntrack_mutex); |
| |
| synchronize_net(); |
| kvfree(old_hash); |
| return 0; |
| } |
| |
| int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp) |
| { |
| unsigned int hashsize; |
| int rc; |
| |
| if (current->nsproxy->net_ns != &init_net) |
| return -EOPNOTSUPP; |
| |
| /* On boot, we can set this without any fancy locking. */ |
| if (!nf_conntrack_hash) |
| return param_set_uint(val, kp); |
| |
| rc = kstrtouint(val, 0, &hashsize); |
| if (rc) |
| return rc; |
| |
| return nf_conntrack_hash_resize(hashsize); |
| } |
| |
| static __always_inline unsigned int total_extension_size(void) |
| { |
| /* remember to add new extensions below */ |
| BUILD_BUG_ON(NF_CT_EXT_NUM > 9); |
| |
| return sizeof(struct nf_ct_ext) + |
| sizeof(struct nf_conn_help) |
| #if IS_ENABLED(CONFIG_NF_NAT) |
| + sizeof(struct nf_conn_nat) |
| #endif |
| + sizeof(struct nf_conn_seqadj) |
| + sizeof(struct nf_conn_acct) |
| #ifdef CONFIG_NF_CONNTRACK_EVENTS |
| + sizeof(struct nf_conntrack_ecache) |
| #endif |
| #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP |
| + sizeof(struct nf_conn_tstamp) |
| #endif |
| #ifdef CONFIG_NF_CONNTRACK_TIMEOUT |
| + sizeof(struct nf_conn_timeout) |
| #endif |
| #ifdef CONFIG_NF_CONNTRACK_LABELS |
| + sizeof(struct nf_conn_labels) |
| #endif |
| #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY) |
| + sizeof(struct nf_conn_synproxy) |
| #endif |
| ; |
| }; |
| |
| int nf_conntrack_init_start(void) |
| { |
| unsigned long nr_pages = totalram_pages(); |
| int max_factor = 8; |
| int ret = -ENOMEM; |
| int i; |
| |
| /* struct nf_ct_ext uses u8 to store offsets/size */ |
| BUILD_BUG_ON(total_extension_size() > 255u); |
| |
| seqcount_spinlock_init(&nf_conntrack_generation, |
| &nf_conntrack_locks_all_lock); |
| |
| for (i = 0; i < CONNTRACK_LOCKS; i++) |
| spin_lock_init(&nf_conntrack_locks[i]); |
| |
| if (!nf_conntrack_htable_size) { |
| nf_conntrack_htable_size |
| = (((nr_pages << PAGE_SHIFT) / 16384) |
| / sizeof(struct hlist_head)); |
| if (BITS_PER_LONG >= 64 && |
| nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE))) |
| nf_conntrack_htable_size = 262144; |
| else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE)) |
| nf_conntrack_htable_size = 65536; |
| |
| if (nf_conntrack_htable_size < 1024) |
| nf_conntrack_htable_size = 1024; |
| /* Use a max. factor of one by default to keep the average |
| * hash chain length at 2 entries. Each entry has to be added |
| * twice (once for original direction, once for reply). |
| * When a table size is given we use the old value of 8 to |
| * avoid implicit reduction of the max entries setting. |
| */ |
| max_factor = 1; |
| } |
| |
| nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1); |
| if (!nf_conntrack_hash) |
| return -ENOMEM; |
| |
| nf_conntrack_max = max_factor * nf_conntrack_htable_size; |
| |
| nf_conntrack_cachep = kmem_cache_create("nf_conntrack", |
| sizeof(struct nf_conn), |
| NFCT_INFOMASK + 1, |
| SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL); |
| if (!nf_conntrack_cachep) |
| goto err_cachep; |
| |
| ret = nf_conntrack_expect_init(); |
| if (ret < 0) |
| goto err_expect; |
| |
| ret = nf_conntrack_acct_init(); |
| if (ret < 0) |
| goto err_acct; |
| |
| ret = nf_conntrack_tstamp_init(); |
| if (ret < 0) |
| goto err_tstamp; |
| |
| ret = nf_conntrack_ecache_init(); |
| if (ret < 0) |
| goto err_ecache; |
| |
| ret = nf_conntrack_timeout_init(); |
| if (ret < 0) |
| goto err_timeout; |
| |
| ret = nf_conntrack_helper_init(); |
| if (ret < 0) |
| goto err_helper; |
| |
| ret = nf_conntrack_labels_init(); |
| if (ret < 0) |
| goto err_labels; |
| |
| ret = nf_conntrack_seqadj_init(); |
| if (ret < 0) |
| goto err_seqadj; |
| |
| ret = nf_conntrack_proto_init(); |
| if (ret < 0) |
| goto err_proto; |
| |
| conntrack_gc_work_init(&conntrack_gc_work); |
| queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ); |
| |
| return 0; |
| |
| err_proto: |
| nf_conntrack_seqadj_fini(); |
| err_seqadj: |
| nf_conntrack_labels_fini(); |
| err_labels: |
| nf_conntrack_helper_fini(); |
| err_helper: |
| nf_conntrack_timeout_fini(); |
| err_timeout: |
| nf_conntrack_ecache_fini(); |
| err_ecache: |
| nf_conntrack_tstamp_fini(); |
| err_tstamp: |
| nf_conntrack_acct_fini(); |
| err_acct: |
| nf_conntrack_expect_fini(); |
| err_expect: |
| kmem_cache_destroy(nf_conntrack_cachep); |
| err_cachep: |
| kvfree(nf_conntrack_hash); |
| return ret; |
| } |
| |
| static struct nf_ct_hook nf_conntrack_hook = { |
| .update = nf_conntrack_update, |
| .destroy = destroy_conntrack, |
| .get_tuple_skb = nf_conntrack_get_tuple_skb, |
| }; |
| |
| void nf_conntrack_init_end(void) |
| { |
| /* For use by REJECT target */ |
| RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach); |
| RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook); |
| } |
| |
| /* |
| * We need to use special "null" values, not used in hash table |
| */ |
| #define UNCONFIRMED_NULLS_VAL ((1<<30)+0) |
| #define DYING_NULLS_VAL ((1<<30)+1) |
| |
| int nf_conntrack_init_net(struct net *net) |
| { |
| struct nf_conntrack_net *cnet = nf_ct_pernet(net); |
| int ret = -ENOMEM; |
| int cpu; |
| |
| BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER); |
| BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS); |
| atomic_set(&cnet->count, 0); |
| |
| net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu); |
| if (!net->ct.pcpu_lists) |
| goto err_stat; |
| |
| for_each_possible_cpu(cpu) { |
| struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu); |
| |
| spin_lock_init(&pcpu->lock); |
| INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL); |
| INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL); |
| } |
| |
| net->ct.stat = alloc_percpu(struct ip_conntrack_stat); |
| if (!net->ct.stat) |
| goto err_pcpu_lists; |
| |
| ret = nf_conntrack_expect_pernet_init(net); |
| if (ret < 0) |
| goto err_expect; |
| |
| nf_conntrack_acct_pernet_init(net); |
| nf_conntrack_tstamp_pernet_init(net); |
| nf_conntrack_ecache_pernet_init(net); |
| nf_conntrack_helper_pernet_init(net); |
| nf_conntrack_proto_pernet_init(net); |
| |
| return 0; |
| |
| err_expect: |
| free_percpu(net->ct.stat); |
| err_pcpu_lists: |
| free_percpu(net->ct.pcpu_lists); |
| err_stat: |
| return ret; |
| } |