| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * cfg80211 scan result handling |
| * |
| * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright 2016 Intel Deutschland GmbH |
| * Copyright (C) 2018-2021 Intel Corporation |
| */ |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/wireless.h> |
| #include <linux/nl80211.h> |
| #include <linux/etherdevice.h> |
| #include <linux/crc32.h> |
| #include <linux/bitfield.h> |
| #include <net/arp.h> |
| #include <net/cfg80211.h> |
| #include <net/cfg80211-wext.h> |
| #include <net/iw_handler.h> |
| #include "core.h" |
| #include "nl80211.h" |
| #include "wext-compat.h" |
| #include "rdev-ops.h" |
| |
| /** |
| * DOC: BSS tree/list structure |
| * |
| * At the top level, the BSS list is kept in both a list in each |
| * registered device (@bss_list) as well as an RB-tree for faster |
| * lookup. In the RB-tree, entries can be looked up using their |
| * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID |
| * for other BSSes. |
| * |
| * Due to the possibility of hidden SSIDs, there's a second level |
| * structure, the "hidden_list" and "hidden_beacon_bss" pointer. |
| * The hidden_list connects all BSSes belonging to a single AP |
| * that has a hidden SSID, and connects beacon and probe response |
| * entries. For a probe response entry for a hidden SSID, the |
| * hidden_beacon_bss pointer points to the BSS struct holding the |
| * beacon's information. |
| * |
| * Reference counting is done for all these references except for |
| * the hidden_list, so that a beacon BSS struct that is otherwise |
| * not referenced has one reference for being on the bss_list and |
| * one for each probe response entry that points to it using the |
| * hidden_beacon_bss pointer. When a BSS struct that has such a |
| * pointer is get/put, the refcount update is also propagated to |
| * the referenced struct, this ensure that it cannot get removed |
| * while somebody is using the probe response version. |
| * |
| * Note that the hidden_beacon_bss pointer never changes, due to |
| * the reference counting. Therefore, no locking is needed for |
| * it. |
| * |
| * Also note that the hidden_beacon_bss pointer is only relevant |
| * if the driver uses something other than the IEs, e.g. private |
| * data stored in the BSS struct, since the beacon IEs are |
| * also linked into the probe response struct. |
| */ |
| |
| /* |
| * Limit the number of BSS entries stored in mac80211. Each one is |
| * a bit over 4k at most, so this limits to roughly 4-5M of memory. |
| * If somebody wants to really attack this though, they'd likely |
| * use small beacons, and only one type of frame, limiting each of |
| * the entries to a much smaller size (in order to generate more |
| * entries in total, so overhead is bigger.) |
| */ |
| static int bss_entries_limit = 1000; |
| module_param(bss_entries_limit, int, 0644); |
| MODULE_PARM_DESC(bss_entries_limit, |
| "limit to number of scan BSS entries (per wiphy, default 1000)"); |
| |
| #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) |
| |
| /** |
| * struct cfg80211_colocated_ap - colocated AP information |
| * |
| * @list: linked list to all colocated aPS |
| * @bssid: BSSID of the reported AP |
| * @ssid: SSID of the reported AP |
| * @ssid_len: length of the ssid |
| * @center_freq: frequency the reported AP is on |
| * @unsolicited_probe: the reported AP is part of an ESS, where all the APs |
| * that operate in the same channel as the reported AP and that might be |
| * detected by a STA receiving this frame, are transmitting unsolicited |
| * Probe Response frames every 20 TUs |
| * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP |
| * @same_ssid: the reported AP has the same SSID as the reporting AP |
| * @multi_bss: the reported AP is part of a multiple BSSID set |
| * @transmitted_bssid: the reported AP is the transmitting BSSID |
| * @colocated_ess: all the APs that share the same ESS as the reported AP are |
| * colocated and can be discovered via legacy bands. |
| * @short_ssid_valid: short_ssid is valid and can be used |
| * @short_ssid: the short SSID for this SSID |
| */ |
| struct cfg80211_colocated_ap { |
| struct list_head list; |
| u8 bssid[ETH_ALEN]; |
| u8 ssid[IEEE80211_MAX_SSID_LEN]; |
| size_t ssid_len; |
| u32 short_ssid; |
| u32 center_freq; |
| u8 unsolicited_probe:1, |
| oct_recommended:1, |
| same_ssid:1, |
| multi_bss:1, |
| transmitted_bssid:1, |
| colocated_ess:1, |
| short_ssid_valid:1; |
| }; |
| |
| static void bss_free(struct cfg80211_internal_bss *bss) |
| { |
| struct cfg80211_bss_ies *ies; |
| |
| if (WARN_ON(atomic_read(&bss->hold))) |
| return; |
| |
| ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); |
| if (ies && !bss->pub.hidden_beacon_bss) |
| kfree_rcu(ies, rcu_head); |
| ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| |
| /* |
| * This happens when the module is removed, it doesn't |
| * really matter any more save for completeness |
| */ |
| if (!list_empty(&bss->hidden_list)) |
| list_del(&bss->hidden_list); |
| |
| kfree(bss); |
| } |
| |
| static inline void bss_ref_get(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| bss->refcount++; |
| if (bss->pub.hidden_beacon_bss) { |
| bss = container_of(bss->pub.hidden_beacon_bss, |
| struct cfg80211_internal_bss, |
| pub); |
| bss->refcount++; |
| } |
| if (bss->pub.transmitted_bss) { |
| bss = container_of(bss->pub.transmitted_bss, |
| struct cfg80211_internal_bss, |
| pub); |
| bss->refcount++; |
| } |
| } |
| |
| static inline void bss_ref_put(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| if (bss->pub.hidden_beacon_bss) { |
| struct cfg80211_internal_bss *hbss; |
| hbss = container_of(bss->pub.hidden_beacon_bss, |
| struct cfg80211_internal_bss, |
| pub); |
| hbss->refcount--; |
| if (hbss->refcount == 0) |
| bss_free(hbss); |
| } |
| |
| if (bss->pub.transmitted_bss) { |
| struct cfg80211_internal_bss *tbss; |
| |
| tbss = container_of(bss->pub.transmitted_bss, |
| struct cfg80211_internal_bss, |
| pub); |
| tbss->refcount--; |
| if (tbss->refcount == 0) |
| bss_free(tbss); |
| } |
| |
| bss->refcount--; |
| if (bss->refcount == 0) |
| bss_free(bss); |
| } |
| |
| static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| if (!list_empty(&bss->hidden_list)) { |
| /* |
| * don't remove the beacon entry if it has |
| * probe responses associated with it |
| */ |
| if (!bss->pub.hidden_beacon_bss) |
| return false; |
| /* |
| * if it's a probe response entry break its |
| * link to the other entries in the group |
| */ |
| list_del_init(&bss->hidden_list); |
| } |
| |
| list_del_init(&bss->list); |
| list_del_init(&bss->pub.nontrans_list); |
| rb_erase(&bss->rbn, &rdev->bss_tree); |
| rdev->bss_entries--; |
| WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), |
| "rdev bss entries[%d]/list[empty:%d] corruption\n", |
| rdev->bss_entries, list_empty(&rdev->bss_list)); |
| bss_ref_put(rdev, bss); |
| return true; |
| } |
| |
| bool cfg80211_is_element_inherited(const struct element *elem, |
| const struct element *non_inherit_elem) |
| { |
| u8 id_len, ext_id_len, i, loop_len, id; |
| const u8 *list; |
| |
| if (elem->id == WLAN_EID_MULTIPLE_BSSID) |
| return false; |
| |
| if (!non_inherit_elem || non_inherit_elem->datalen < 2) |
| return true; |
| |
| /* |
| * non inheritance element format is: |
| * ext ID (56) | IDs list len | list | extension IDs list len | list |
| * Both lists are optional. Both lengths are mandatory. |
| * This means valid length is: |
| * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths |
| */ |
| id_len = non_inherit_elem->data[1]; |
| if (non_inherit_elem->datalen < 3 + id_len) |
| return true; |
| |
| ext_id_len = non_inherit_elem->data[2 + id_len]; |
| if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) |
| return true; |
| |
| if (elem->id == WLAN_EID_EXTENSION) { |
| if (!ext_id_len) |
| return true; |
| loop_len = ext_id_len; |
| list = &non_inherit_elem->data[3 + id_len]; |
| id = elem->data[0]; |
| } else { |
| if (!id_len) |
| return true; |
| loop_len = id_len; |
| list = &non_inherit_elem->data[2]; |
| id = elem->id; |
| } |
| |
| for (i = 0; i < loop_len; i++) { |
| if (list[i] == id) |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(cfg80211_is_element_inherited); |
| |
| static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, |
| const u8 *subelement, size_t subie_len, |
| u8 *new_ie, gfp_t gfp) |
| { |
| u8 *pos, *tmp; |
| const u8 *tmp_old, *tmp_new; |
| const struct element *non_inherit_elem; |
| u8 *sub_copy; |
| |
| /* copy subelement as we need to change its content to |
| * mark an ie after it is processed. |
| */ |
| sub_copy = kmemdup(subelement, subie_len, gfp); |
| if (!sub_copy) |
| return 0; |
| |
| pos = &new_ie[0]; |
| |
| /* set new ssid */ |
| tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); |
| if (tmp_new) { |
| memcpy(pos, tmp_new, tmp_new[1] + 2); |
| pos += (tmp_new[1] + 2); |
| } |
| |
| /* get non inheritance list if exists */ |
| non_inherit_elem = |
| cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, |
| sub_copy, subie_len); |
| |
| /* go through IEs in ie (skip SSID) and subelement, |
| * merge them into new_ie |
| */ |
| tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); |
| tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; |
| |
| while (tmp_old + tmp_old[1] + 2 - ie <= ielen) { |
| if (tmp_old[0] == 0) { |
| tmp_old++; |
| continue; |
| } |
| |
| if (tmp_old[0] == WLAN_EID_EXTENSION) |
| tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, |
| subie_len); |
| else |
| tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, |
| subie_len); |
| |
| if (!tmp) { |
| const struct element *old_elem = (void *)tmp_old; |
| |
| /* ie in old ie but not in subelement */ |
| if (cfg80211_is_element_inherited(old_elem, |
| non_inherit_elem)) { |
| memcpy(pos, tmp_old, tmp_old[1] + 2); |
| pos += tmp_old[1] + 2; |
| } |
| } else { |
| /* ie in transmitting ie also in subelement, |
| * copy from subelement and flag the ie in subelement |
| * as copied (by setting eid field to WLAN_EID_SSID, |
| * which is skipped anyway). |
| * For vendor ie, compare OUI + type + subType to |
| * determine if they are the same ie. |
| */ |
| if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { |
| if (!memcmp(tmp_old + 2, tmp + 2, 5)) { |
| /* same vendor ie, copy from |
| * subelement |
| */ |
| memcpy(pos, tmp, tmp[1] + 2); |
| pos += tmp[1] + 2; |
| tmp[0] = WLAN_EID_SSID; |
| } else { |
| memcpy(pos, tmp_old, tmp_old[1] + 2); |
| pos += tmp_old[1] + 2; |
| } |
| } else { |
| /* copy ie from subelement into new ie */ |
| memcpy(pos, tmp, tmp[1] + 2); |
| pos += tmp[1] + 2; |
| tmp[0] = WLAN_EID_SSID; |
| } |
| } |
| |
| if (tmp_old + tmp_old[1] + 2 - ie == ielen) |
| break; |
| |
| tmp_old += tmp_old[1] + 2; |
| } |
| |
| /* go through subelement again to check if there is any ie not |
| * copied to new ie, skip ssid, capability, bssid-index ie |
| */ |
| tmp_new = sub_copy; |
| while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { |
| if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || |
| tmp_new[0] == WLAN_EID_SSID)) { |
| memcpy(pos, tmp_new, tmp_new[1] + 2); |
| pos += tmp_new[1] + 2; |
| } |
| if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) |
| break; |
| tmp_new += tmp_new[1] + 2; |
| } |
| |
| kfree(sub_copy); |
| return pos - new_ie; |
| } |
| |
| static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, |
| const u8 *ssid, size_t ssid_len) |
| { |
| const struct cfg80211_bss_ies *ies; |
| const struct element *ssid_elem; |
| |
| if (bssid && !ether_addr_equal(a->bssid, bssid)) |
| return false; |
| |
| if (!ssid) |
| return true; |
| |
| ies = rcu_access_pointer(a->ies); |
| if (!ies) |
| return false; |
| ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); |
| if (!ssid_elem) |
| return false; |
| if (ssid_elem->datalen != ssid_len) |
| return false; |
| return memcmp(ssid_elem->data, ssid, ssid_len) == 0; |
| } |
| |
| static int |
| cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, |
| struct cfg80211_bss *nontrans_bss) |
| { |
| const u8 *ssid; |
| size_t ssid_len; |
| struct cfg80211_bss *bss = NULL; |
| |
| rcu_read_lock(); |
| ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); |
| if (!ssid) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| ssid_len = ssid[1]; |
| ssid = ssid + 2; |
| |
| /* check if nontrans_bss is in the list */ |
| list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { |
| if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) { |
| rcu_read_unlock(); |
| return 0; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| /* add to the list */ |
| list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); |
| return 0; |
| } |
| |
| static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, |
| unsigned long expire_time) |
| { |
| struct cfg80211_internal_bss *bss, *tmp; |
| bool expired = false; |
| |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { |
| if (atomic_read(&bss->hold)) |
| continue; |
| if (!time_after(expire_time, bss->ts)) |
| continue; |
| |
| if (__cfg80211_unlink_bss(rdev, bss)) |
| expired = true; |
| } |
| |
| if (expired) |
| rdev->bss_generation++; |
| } |
| |
| static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) |
| { |
| struct cfg80211_internal_bss *bss, *oldest = NULL; |
| bool ret; |
| |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (atomic_read(&bss->hold)) |
| continue; |
| |
| if (!list_empty(&bss->hidden_list) && |
| !bss->pub.hidden_beacon_bss) |
| continue; |
| |
| if (oldest && time_before(oldest->ts, bss->ts)) |
| continue; |
| oldest = bss; |
| } |
| |
| if (WARN_ON(!oldest)) |
| return false; |
| |
| /* |
| * The callers make sure to increase rdev->bss_generation if anything |
| * gets removed (and a new entry added), so there's no need to also do |
| * it here. |
| */ |
| |
| ret = __cfg80211_unlink_bss(rdev, oldest); |
| WARN_ON(!ret); |
| return ret; |
| } |
| |
| static u8 cfg80211_parse_bss_param(u8 data, |
| struct cfg80211_colocated_ap *coloc_ap) |
| { |
| coloc_ap->oct_recommended = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); |
| coloc_ap->same_ssid = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); |
| coloc_ap->multi_bss = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); |
| coloc_ap->transmitted_bssid = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); |
| coloc_ap->unsolicited_probe = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); |
| coloc_ap->colocated_ess = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); |
| |
| return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); |
| } |
| |
| static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, |
| const struct element **elem, u32 *s_ssid) |
| { |
| |
| *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); |
| if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) |
| return -EINVAL; |
| |
| *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); |
| return 0; |
| } |
| |
| static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) |
| { |
| struct cfg80211_colocated_ap *ap, *tmp_ap; |
| |
| list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { |
| list_del(&ap->list); |
| kfree(ap); |
| } |
| } |
| |
| static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, |
| const u8 *pos, u8 length, |
| const struct element *ssid_elem, |
| int s_ssid_tmp) |
| { |
| /* skip the TBTT offset */ |
| pos++; |
| |
| memcpy(entry->bssid, pos, ETH_ALEN); |
| pos += ETH_ALEN; |
| |
| if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { |
| memcpy(&entry->short_ssid, pos, |
| sizeof(entry->short_ssid)); |
| entry->short_ssid_valid = true; |
| pos += 4; |
| } |
| |
| /* skip non colocated APs */ |
| if (!cfg80211_parse_bss_param(*pos, entry)) |
| return -EINVAL; |
| pos++; |
| |
| if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { |
| /* |
| * no information about the short ssid. Consider the entry valid |
| * for now. It would later be dropped in case there are explicit |
| * SSIDs that need to be matched |
| */ |
| if (!entry->same_ssid) |
| return 0; |
| } |
| |
| if (entry->same_ssid) { |
| entry->short_ssid = s_ssid_tmp; |
| entry->short_ssid_valid = true; |
| |
| /* |
| * This is safe because we validate datalen in |
| * cfg80211_parse_colocated_ap(), before calling this |
| * function. |
| */ |
| memcpy(&entry->ssid, &ssid_elem->data, |
| ssid_elem->datalen); |
| entry->ssid_len = ssid_elem->datalen; |
| } |
| return 0; |
| } |
| |
| static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, |
| struct list_head *list) |
| { |
| struct ieee80211_neighbor_ap_info *ap_info; |
| const struct element *elem, *ssid_elem; |
| const u8 *pos, *end; |
| u32 s_ssid_tmp; |
| int n_coloc = 0, ret; |
| LIST_HEAD(ap_list); |
| |
| elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, |
| ies->len); |
| if (!elem) |
| return 0; |
| |
| pos = elem->data; |
| end = pos + elem->datalen; |
| |
| ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); |
| if (ret) |
| return ret; |
| |
| /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ |
| while (pos + sizeof(*ap_info) <= end) { |
| enum nl80211_band band; |
| int freq; |
| u8 length, i, count; |
| |
| ap_info = (void *)pos; |
| count = u8_get_bits(ap_info->tbtt_info_hdr, |
| IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; |
| length = ap_info->tbtt_info_len; |
| |
| pos += sizeof(*ap_info); |
| |
| if (!ieee80211_operating_class_to_band(ap_info->op_class, |
| &band)) |
| break; |
| |
| freq = ieee80211_channel_to_frequency(ap_info->channel, band); |
| |
| if (end - pos < count * length) |
| break; |
| |
| /* |
| * TBTT info must include bss param + BSSID + |
| * (short SSID or same_ssid bit to be set). |
| * ignore other options, and move to the |
| * next AP info |
| */ |
| if (band != NL80211_BAND_6GHZ || |
| (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && |
| length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { |
| pos += count * length; |
| continue; |
| } |
| |
| for (i = 0; i < count; i++) { |
| struct cfg80211_colocated_ap *entry; |
| |
| entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, |
| GFP_ATOMIC); |
| |
| if (!entry) |
| break; |
| |
| entry->center_freq = freq; |
| |
| if (!cfg80211_parse_ap_info(entry, pos, length, |
| ssid_elem, s_ssid_tmp)) { |
| n_coloc++; |
| list_add_tail(&entry->list, &ap_list); |
| } else { |
| kfree(entry); |
| } |
| |
| pos += length; |
| } |
| } |
| |
| if (pos != end) { |
| cfg80211_free_coloc_ap_list(&ap_list); |
| return 0; |
| } |
| |
| list_splice_tail(&ap_list, list); |
| return n_coloc; |
| } |
| |
| static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, |
| struct ieee80211_channel *chan, |
| bool add_to_6ghz) |
| { |
| int i; |
| u32 n_channels = request->n_channels; |
| struct cfg80211_scan_6ghz_params *params = |
| &request->scan_6ghz_params[request->n_6ghz_params]; |
| |
| for (i = 0; i < n_channels; i++) { |
| if (request->channels[i] == chan) { |
| if (add_to_6ghz) |
| params->channel_idx = i; |
| return; |
| } |
| } |
| |
| request->channels[n_channels] = chan; |
| if (add_to_6ghz) |
| request->scan_6ghz_params[request->n_6ghz_params].channel_idx = |
| n_channels; |
| |
| request->n_channels++; |
| } |
| |
| static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, |
| struct cfg80211_scan_request *request) |
| { |
| int i; |
| u32 s_ssid; |
| |
| for (i = 0; i < request->n_ssids; i++) { |
| /* wildcard ssid in the scan request */ |
| if (!request->ssids[i].ssid_len) |
| return true; |
| |
| if (ap->ssid_len && |
| ap->ssid_len == request->ssids[i].ssid_len) { |
| if (!memcmp(request->ssids[i].ssid, ap->ssid, |
| ap->ssid_len)) |
| return true; |
| } else if (ap->short_ssid_valid) { |
| s_ssid = ~crc32_le(~0, request->ssids[i].ssid, |
| request->ssids[i].ssid_len); |
| |
| if (ap->short_ssid == s_ssid) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) |
| { |
| u8 i; |
| struct cfg80211_colocated_ap *ap; |
| int n_channels, count = 0, err; |
| struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; |
| LIST_HEAD(coloc_ap_list); |
| bool need_scan_psc = true; |
| const struct ieee80211_sband_iftype_data *iftd; |
| |
| rdev_req->scan_6ghz = true; |
| |
| if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) |
| return -EOPNOTSUPP; |
| |
| iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], |
| rdev_req->wdev->iftype); |
| if (!iftd || !iftd->he_cap.has_he) |
| return -EOPNOTSUPP; |
| |
| n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; |
| |
| if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { |
| struct cfg80211_internal_bss *intbss; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| list_for_each_entry(intbss, &rdev->bss_list, list) { |
| struct cfg80211_bss *res = &intbss->pub; |
| const struct cfg80211_bss_ies *ies; |
| |
| ies = rcu_access_pointer(res->ies); |
| count += cfg80211_parse_colocated_ap(ies, |
| &coloc_ap_list); |
| } |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| request = kzalloc(struct_size(request, channels, n_channels) + |
| sizeof(*request->scan_6ghz_params) * count + |
| sizeof(*request->ssids) * rdev_req->n_ssids, |
| GFP_KERNEL); |
| if (!request) { |
| cfg80211_free_coloc_ap_list(&coloc_ap_list); |
| return -ENOMEM; |
| } |
| |
| *request = *rdev_req; |
| request->n_channels = 0; |
| request->scan_6ghz_params = |
| (void *)&request->channels[n_channels]; |
| |
| /* |
| * PSC channels should not be scanned in case of direct scan with 1 SSID |
| * and at least one of the reported co-located APs with same SSID |
| * indicating that all APs in the same ESS are co-located |
| */ |
| if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { |
| list_for_each_entry(ap, &coloc_ap_list, list) { |
| if (ap->colocated_ess && |
| cfg80211_find_ssid_match(ap, request)) { |
| need_scan_psc = false; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * add to the scan request the channels that need to be scanned |
| * regardless of the collocated APs (PSC channels or all channels |
| * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) |
| */ |
| for (i = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && |
| ((need_scan_psc && |
| cfg80211_channel_is_psc(rdev_req->channels[i])) || |
| !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { |
| cfg80211_scan_req_add_chan(request, |
| rdev_req->channels[i], |
| false); |
| } |
| } |
| |
| if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) |
| goto skip; |
| |
| list_for_each_entry(ap, &coloc_ap_list, list) { |
| bool found = false; |
| struct cfg80211_scan_6ghz_params *scan_6ghz_params = |
| &request->scan_6ghz_params[request->n_6ghz_params]; |
| struct ieee80211_channel *chan = |
| ieee80211_get_channel(&rdev->wiphy, ap->center_freq); |
| |
| if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) |
| continue; |
| |
| for (i = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i] == chan) |
| found = true; |
| } |
| |
| if (!found) |
| continue; |
| |
| if (request->n_ssids > 0 && |
| !cfg80211_find_ssid_match(ap, request)) |
| continue; |
| |
| cfg80211_scan_req_add_chan(request, chan, true); |
| memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); |
| scan_6ghz_params->short_ssid = ap->short_ssid; |
| scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; |
| scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; |
| |
| /* |
| * If a PSC channel is added to the scan and 'need_scan_psc' is |
| * set to false, then all the APs that the scan logic is |
| * interested with on the channel are collocated and thus there |
| * is no need to perform the initial PSC channel listen. |
| */ |
| if (cfg80211_channel_is_psc(chan) && !need_scan_psc) |
| scan_6ghz_params->psc_no_listen = true; |
| |
| request->n_6ghz_params++; |
| } |
| |
| skip: |
| cfg80211_free_coloc_ap_list(&coloc_ap_list); |
| |
| if (request->n_channels) { |
| struct cfg80211_scan_request *old = rdev->int_scan_req; |
| rdev->int_scan_req = request; |
| |
| /* |
| * Add the ssids from the parent scan request to the new scan |
| * request, so the driver would be able to use them in its |
| * probe requests to discover hidden APs on PSC channels. |
| */ |
| request->ssids = (void *)&request->channels[request->n_channels]; |
| request->n_ssids = rdev_req->n_ssids; |
| memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * |
| request->n_ssids); |
| |
| /* |
| * If this scan follows a previous scan, save the scan start |
| * info from the first part of the scan |
| */ |
| if (old) |
| rdev->int_scan_req->info = old->info; |
| |
| err = rdev_scan(rdev, request); |
| if (err) { |
| rdev->int_scan_req = old; |
| kfree(request); |
| } else { |
| kfree(old); |
| } |
| |
| return err; |
| } |
| |
| kfree(request); |
| return -EINVAL; |
| } |
| |
| int cfg80211_scan(struct cfg80211_registered_device *rdev) |
| { |
| struct cfg80211_scan_request *request; |
| struct cfg80211_scan_request *rdev_req = rdev->scan_req; |
| u32 n_channels = 0, idx, i; |
| |
| if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) |
| return rdev_scan(rdev, rdev_req); |
| |
| for (i = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) |
| n_channels++; |
| } |
| |
| if (!n_channels) |
| return cfg80211_scan_6ghz(rdev); |
| |
| request = kzalloc(struct_size(request, channels, n_channels), |
| GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| *request = *rdev_req; |
| request->n_channels = n_channels; |
| |
| for (i = idx = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) |
| request->channels[idx++] = rdev_req->channels[i]; |
| } |
| |
| rdev_req->scan_6ghz = false; |
| rdev->int_scan_req = request; |
| return rdev_scan(rdev, request); |
| } |
| |
| void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, |
| bool send_message) |
| { |
| struct cfg80211_scan_request *request, *rdev_req; |
| struct wireless_dev *wdev; |
| struct sk_buff *msg; |
| #ifdef CONFIG_CFG80211_WEXT |
| union iwreq_data wrqu; |
| #endif |
| |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| if (rdev->scan_msg) { |
| nl80211_send_scan_msg(rdev, rdev->scan_msg); |
| rdev->scan_msg = NULL; |
| return; |
| } |
| |
| rdev_req = rdev->scan_req; |
| if (!rdev_req) |
| return; |
| |
| wdev = rdev_req->wdev; |
| request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; |
| |
| if (wdev_running(wdev) && |
| (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && |
| !rdev_req->scan_6ghz && !request->info.aborted && |
| !cfg80211_scan_6ghz(rdev)) |
| return; |
| |
| /* |
| * This must be before sending the other events! |
| * Otherwise, wpa_supplicant gets completely confused with |
| * wext events. |
| */ |
| if (wdev->netdev) |
| cfg80211_sme_scan_done(wdev->netdev); |
| |
| if (!request->info.aborted && |
| request->flags & NL80211_SCAN_FLAG_FLUSH) { |
| /* flush entries from previous scans */ |
| spin_lock_bh(&rdev->bss_lock); |
| __cfg80211_bss_expire(rdev, request->scan_start); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); |
| |
| #ifdef CONFIG_CFG80211_WEXT |
| if (wdev->netdev && !request->info.aborted) { |
| memset(&wrqu, 0, sizeof(wrqu)); |
| |
| wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); |
| } |
| #endif |
| |
| dev_put(wdev->netdev); |
| |
| kfree(rdev->int_scan_req); |
| rdev->int_scan_req = NULL; |
| |
| kfree(rdev->scan_req); |
| rdev->scan_req = NULL; |
| |
| if (!send_message) |
| rdev->scan_msg = msg; |
| else |
| nl80211_send_scan_msg(rdev, msg); |
| } |
| |
| void __cfg80211_scan_done(struct work_struct *wk) |
| { |
| struct cfg80211_registered_device *rdev; |
| |
| rdev = container_of(wk, struct cfg80211_registered_device, |
| scan_done_wk); |
| |
| wiphy_lock(&rdev->wiphy); |
| ___cfg80211_scan_done(rdev, true); |
| wiphy_unlock(&rdev->wiphy); |
| } |
| |
| void cfg80211_scan_done(struct cfg80211_scan_request *request, |
| struct cfg80211_scan_info *info) |
| { |
| struct cfg80211_scan_info old_info = request->info; |
| |
| trace_cfg80211_scan_done(request, info); |
| WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && |
| request != wiphy_to_rdev(request->wiphy)->int_scan_req); |
| |
| request->info = *info; |
| |
| /* |
| * In case the scan is split, the scan_start_tsf and tsf_bssid should |
| * be of the first part. In such a case old_info.scan_start_tsf should |
| * be non zero. |
| */ |
| if (request->scan_6ghz && old_info.scan_start_tsf) { |
| request->info.scan_start_tsf = old_info.scan_start_tsf; |
| memcpy(request->info.tsf_bssid, old_info.tsf_bssid, |
| sizeof(request->info.tsf_bssid)); |
| } |
| |
| request->notified = true; |
| queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); |
| } |
| EXPORT_SYMBOL(cfg80211_scan_done); |
| |
| void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, |
| struct cfg80211_sched_scan_request *req) |
| { |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| list_add_rcu(&req->list, &rdev->sched_scan_req_list); |
| } |
| |
| static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, |
| struct cfg80211_sched_scan_request *req) |
| { |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| list_del_rcu(&req->list); |
| kfree_rcu(req, rcu_head); |
| } |
| |
| static struct cfg80211_sched_scan_request * |
| cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) |
| { |
| struct cfg80211_sched_scan_request *pos; |
| |
| list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, |
| lockdep_is_held(&rdev->wiphy.mtx)) { |
| if (pos->reqid == reqid) |
| return pos; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Determines if a scheduled scan request can be handled. When a legacy |
| * scheduled scan is running no other scheduled scan is allowed regardless |
| * whether the request is for legacy or multi-support scan. When a multi-support |
| * scheduled scan is running a request for legacy scan is not allowed. In this |
| * case a request for multi-support scan can be handled if resources are |
| * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. |
| */ |
| int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, |
| bool want_multi) |
| { |
| struct cfg80211_sched_scan_request *pos; |
| int i = 0; |
| |
| list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { |
| /* request id zero means legacy in progress */ |
| if (!i && !pos->reqid) |
| return -EINPROGRESS; |
| i++; |
| } |
| |
| if (i) { |
| /* no legacy allowed when multi request(s) are active */ |
| if (!want_multi) |
| return -EINPROGRESS; |
| |
| /* resource limit reached */ |
| if (i == rdev->wiphy.max_sched_scan_reqs) |
| return -ENOSPC; |
| } |
| return 0; |
| } |
| |
| void cfg80211_sched_scan_results_wk(struct work_struct *work) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct cfg80211_sched_scan_request *req, *tmp; |
| |
| rdev = container_of(work, struct cfg80211_registered_device, |
| sched_scan_res_wk); |
| |
| wiphy_lock(&rdev->wiphy); |
| list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { |
| if (req->report_results) { |
| req->report_results = false; |
| if (req->flags & NL80211_SCAN_FLAG_FLUSH) { |
| /* flush entries from previous scans */ |
| spin_lock_bh(&rdev->bss_lock); |
| __cfg80211_bss_expire(rdev, req->scan_start); |
| spin_unlock_bh(&rdev->bss_lock); |
| req->scan_start = jiffies; |
| } |
| nl80211_send_sched_scan(req, |
| NL80211_CMD_SCHED_SCAN_RESULTS); |
| } |
| } |
| wiphy_unlock(&rdev->wiphy); |
| } |
| |
| void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_sched_scan_request *request; |
| |
| trace_cfg80211_sched_scan_results(wiphy, reqid); |
| /* ignore if we're not scanning */ |
| |
| rcu_read_lock(); |
| request = cfg80211_find_sched_scan_req(rdev, reqid); |
| if (request) { |
| request->report_results = true; |
| queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); |
| } |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(cfg80211_sched_scan_results); |
| |
| void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| lockdep_assert_held(&wiphy->mtx); |
| |
| trace_cfg80211_sched_scan_stopped(wiphy, reqid); |
| |
| __cfg80211_stop_sched_scan(rdev, reqid, true); |
| } |
| EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); |
| |
| void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) |
| { |
| wiphy_lock(wiphy); |
| cfg80211_sched_scan_stopped_locked(wiphy, reqid); |
| wiphy_unlock(wiphy); |
| } |
| EXPORT_SYMBOL(cfg80211_sched_scan_stopped); |
| |
| int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, |
| struct cfg80211_sched_scan_request *req, |
| bool driver_initiated) |
| { |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| if (!driver_initiated) { |
| int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); |
| if (err) |
| return err; |
| } |
| |
| nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); |
| |
| cfg80211_del_sched_scan_req(rdev, req); |
| |
| return 0; |
| } |
| |
| int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, |
| u64 reqid, bool driver_initiated) |
| { |
| struct cfg80211_sched_scan_request *sched_scan_req; |
| |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); |
| if (!sched_scan_req) |
| return -ENOENT; |
| |
| return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, |
| driver_initiated); |
| } |
| |
| void cfg80211_bss_age(struct cfg80211_registered_device *rdev, |
| unsigned long age_secs) |
| { |
| struct cfg80211_internal_bss *bss; |
| unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| list_for_each_entry(bss, &rdev->bss_list, list) |
| bss->ts -= age_jiffies; |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) |
| { |
| __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); |
| } |
| |
| void cfg80211_bss_flush(struct wiphy *wiphy) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| __cfg80211_bss_expire(rdev, jiffies); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_bss_flush); |
| |
| const struct element * |
| cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, |
| const u8 *match, unsigned int match_len, |
| unsigned int match_offset) |
| { |
| const struct element *elem; |
| |
| for_each_element_id(elem, eid, ies, len) { |
| if (elem->datalen >= match_offset + match_len && |
| !memcmp(elem->data + match_offset, match, match_len)) |
| return elem; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(cfg80211_find_elem_match); |
| |
| const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, |
| const u8 *ies, |
| unsigned int len) |
| { |
| const struct element *elem; |
| u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; |
| int match_len = (oui_type < 0) ? 3 : sizeof(match); |
| |
| if (WARN_ON(oui_type > 0xff)) |
| return NULL; |
| |
| elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, |
| match, match_len, 0); |
| |
| if (!elem || elem->datalen < 4) |
| return NULL; |
| |
| return elem; |
| } |
| EXPORT_SYMBOL(cfg80211_find_vendor_elem); |
| |
| /** |
| * enum bss_compare_mode - BSS compare mode |
| * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) |
| * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode |
| * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode |
| */ |
| enum bss_compare_mode { |
| BSS_CMP_REGULAR, |
| BSS_CMP_HIDE_ZLEN, |
| BSS_CMP_HIDE_NUL, |
| }; |
| |
| static int cmp_bss(struct cfg80211_bss *a, |
| struct cfg80211_bss *b, |
| enum bss_compare_mode mode) |
| { |
| const struct cfg80211_bss_ies *a_ies, *b_ies; |
| const u8 *ie1 = NULL; |
| const u8 *ie2 = NULL; |
| int i, r; |
| |
| if (a->channel != b->channel) |
| return b->channel->center_freq - a->channel->center_freq; |
| |
| a_ies = rcu_access_pointer(a->ies); |
| if (!a_ies) |
| return -1; |
| b_ies = rcu_access_pointer(b->ies); |
| if (!b_ies) |
| return 1; |
| |
| if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) |
| ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, |
| a_ies->data, a_ies->len); |
| if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) |
| ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, |
| b_ies->data, b_ies->len); |
| if (ie1 && ie2) { |
| int mesh_id_cmp; |
| |
| if (ie1[1] == ie2[1]) |
| mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); |
| else |
| mesh_id_cmp = ie2[1] - ie1[1]; |
| |
| ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, |
| a_ies->data, a_ies->len); |
| ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, |
| b_ies->data, b_ies->len); |
| if (ie1 && ie2) { |
| if (mesh_id_cmp) |
| return mesh_id_cmp; |
| if (ie1[1] != ie2[1]) |
| return ie2[1] - ie1[1]; |
| return memcmp(ie1 + 2, ie2 + 2, ie1[1]); |
| } |
| } |
| |
| r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); |
| if (r) |
| return r; |
| |
| ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); |
| ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); |
| |
| if (!ie1 && !ie2) |
| return 0; |
| |
| /* |
| * Note that with "hide_ssid", the function returns a match if |
| * the already-present BSS ("b") is a hidden SSID beacon for |
| * the new BSS ("a"). |
| */ |
| |
| /* sort missing IE before (left of) present IE */ |
| if (!ie1) |
| return -1; |
| if (!ie2) |
| return 1; |
| |
| switch (mode) { |
| case BSS_CMP_HIDE_ZLEN: |
| /* |
| * In ZLEN mode we assume the BSS entry we're |
| * looking for has a zero-length SSID. So if |
| * the one we're looking at right now has that, |
| * return 0. Otherwise, return the difference |
| * in length, but since we're looking for the |
| * 0-length it's really equivalent to returning |
| * the length of the one we're looking at. |
| * |
| * No content comparison is needed as we assume |
| * the content length is zero. |
| */ |
| return ie2[1]; |
| case BSS_CMP_REGULAR: |
| default: |
| /* sort by length first, then by contents */ |
| if (ie1[1] != ie2[1]) |
| return ie2[1] - ie1[1]; |
| return memcmp(ie1 + 2, ie2 + 2, ie1[1]); |
| case BSS_CMP_HIDE_NUL: |
| if (ie1[1] != ie2[1]) |
| return ie2[1] - ie1[1]; |
| /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ |
| for (i = 0; i < ie2[1]; i++) |
| if (ie2[i + 2]) |
| return -1; |
| return 0; |
| } |
| } |
| |
| static bool cfg80211_bss_type_match(u16 capability, |
| enum nl80211_band band, |
| enum ieee80211_bss_type bss_type) |
| { |
| bool ret = true; |
| u16 mask, val; |
| |
| if (bss_type == IEEE80211_BSS_TYPE_ANY) |
| return ret; |
| |
| if (band == NL80211_BAND_60GHZ) { |
| mask = WLAN_CAPABILITY_DMG_TYPE_MASK; |
| switch (bss_type) { |
| case IEEE80211_BSS_TYPE_ESS: |
| val = WLAN_CAPABILITY_DMG_TYPE_AP; |
| break; |
| case IEEE80211_BSS_TYPE_PBSS: |
| val = WLAN_CAPABILITY_DMG_TYPE_PBSS; |
| break; |
| case IEEE80211_BSS_TYPE_IBSS: |
| val = WLAN_CAPABILITY_DMG_TYPE_IBSS; |
| break; |
| default: |
| return false; |
| } |
| } else { |
| mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; |
| switch (bss_type) { |
| case IEEE80211_BSS_TYPE_ESS: |
| val = WLAN_CAPABILITY_ESS; |
| break; |
| case IEEE80211_BSS_TYPE_IBSS: |
| val = WLAN_CAPABILITY_IBSS; |
| break; |
| case IEEE80211_BSS_TYPE_MBSS: |
| val = 0; |
| break; |
| default: |
| return false; |
| } |
| } |
| |
| ret = ((capability & mask) == val); |
| return ret; |
| } |
| |
| /* Returned bss is reference counted and must be cleaned up appropriately. */ |
| struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| const u8 *bssid, |
| const u8 *ssid, size_t ssid_len, |
| enum ieee80211_bss_type bss_type, |
| enum ieee80211_privacy privacy) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss, *res = NULL; |
| unsigned long now = jiffies; |
| int bss_privacy; |
| |
| trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, |
| privacy); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (!cfg80211_bss_type_match(bss->pub.capability, |
| bss->pub.channel->band, bss_type)) |
| continue; |
| |
| bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); |
| if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || |
| (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) |
| continue; |
| if (channel && bss->pub.channel != channel) |
| continue; |
| if (!is_valid_ether_addr(bss->pub.bssid)) |
| continue; |
| /* Don't get expired BSS structs */ |
| if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && |
| !atomic_read(&bss->hold)) |
| continue; |
| if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { |
| res = bss; |
| bss_ref_get(rdev, res); |
| break; |
| } |
| } |
| |
| spin_unlock_bh(&rdev->bss_lock); |
| if (!res) |
| return NULL; |
| trace_cfg80211_return_bss(&res->pub); |
| return &res->pub; |
| } |
| EXPORT_SYMBOL(cfg80211_get_bss); |
| |
| static void rb_insert_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| struct rb_node **p = &rdev->bss_tree.rb_node; |
| struct rb_node *parent = NULL; |
| struct cfg80211_internal_bss *tbss; |
| int cmp; |
| |
| while (*p) { |
| parent = *p; |
| tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); |
| |
| cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); |
| |
| if (WARN_ON(!cmp)) { |
| /* will sort of leak this BSS */ |
| return; |
| } |
| |
| if (cmp < 0) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| |
| rb_link_node(&bss->rbn, parent, p); |
| rb_insert_color(&bss->rbn, &rdev->bss_tree); |
| } |
| |
| static struct cfg80211_internal_bss * |
| rb_find_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *res, |
| enum bss_compare_mode mode) |
| { |
| struct rb_node *n = rdev->bss_tree.rb_node; |
| struct cfg80211_internal_bss *bss; |
| int r; |
| |
| while (n) { |
| bss = rb_entry(n, struct cfg80211_internal_bss, rbn); |
| r = cmp_bss(&res->pub, &bss->pub, mode); |
| |
| if (r == 0) |
| return bss; |
| else if (r < 0) |
| n = n->rb_left; |
| else |
| n = n->rb_right; |
| } |
| |
| return NULL; |
| } |
| |
| static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *new) |
| { |
| const struct cfg80211_bss_ies *ies; |
| struct cfg80211_internal_bss *bss; |
| const u8 *ie; |
| int i, ssidlen; |
| u8 fold = 0; |
| u32 n_entries = 0; |
| |
| ies = rcu_access_pointer(new->pub.beacon_ies); |
| if (WARN_ON(!ies)) |
| return false; |
| |
| ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); |
| if (!ie) { |
| /* nothing to do */ |
| return true; |
| } |
| |
| ssidlen = ie[1]; |
| for (i = 0; i < ssidlen; i++) |
| fold |= ie[2 + i]; |
| |
| if (fold) { |
| /* not a hidden SSID */ |
| return true; |
| } |
| |
| /* This is the bad part ... */ |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| /* |
| * we're iterating all the entries anyway, so take the |
| * opportunity to validate the list length accounting |
| */ |
| n_entries++; |
| |
| if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) |
| continue; |
| if (bss->pub.channel != new->pub.channel) |
| continue; |
| if (bss->pub.scan_width != new->pub.scan_width) |
| continue; |
| if (rcu_access_pointer(bss->pub.beacon_ies)) |
| continue; |
| ies = rcu_access_pointer(bss->pub.ies); |
| if (!ies) |
| continue; |
| ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); |
| if (!ie) |
| continue; |
| if (ssidlen && ie[1] != ssidlen) |
| continue; |
| if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) |
| continue; |
| if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) |
| list_del(&bss->hidden_list); |
| /* combine them */ |
| list_add(&bss->hidden_list, &new->hidden_list); |
| bss->pub.hidden_beacon_bss = &new->pub; |
| new->refcount += bss->refcount; |
| rcu_assign_pointer(bss->pub.beacon_ies, |
| new->pub.beacon_ies); |
| } |
| |
| WARN_ONCE(n_entries != rdev->bss_entries, |
| "rdev bss entries[%d]/list[len:%d] corruption\n", |
| rdev->bss_entries, n_entries); |
| |
| return true; |
| } |
| |
| struct cfg80211_non_tx_bss { |
| struct cfg80211_bss *tx_bss; |
| u8 max_bssid_indicator; |
| u8 bssid_index; |
| }; |
| |
| static bool |
| cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *known, |
| struct cfg80211_internal_bss *new, |
| bool signal_valid) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| /* Update IEs */ |
| if (rcu_access_pointer(new->pub.proberesp_ies)) { |
| const struct cfg80211_bss_ies *old; |
| |
| old = rcu_access_pointer(known->pub.proberesp_ies); |
| |
| rcu_assign_pointer(known->pub.proberesp_ies, |
| new->pub.proberesp_ies); |
| /* Override possible earlier Beacon frame IEs */ |
| rcu_assign_pointer(known->pub.ies, |
| new->pub.proberesp_ies); |
| if (old) |
| kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); |
| } else if (rcu_access_pointer(new->pub.beacon_ies)) { |
| const struct cfg80211_bss_ies *old; |
| struct cfg80211_internal_bss *bss; |
| |
| if (known->pub.hidden_beacon_bss && |
| !list_empty(&known->hidden_list)) { |
| const struct cfg80211_bss_ies *f; |
| |
| /* The known BSS struct is one of the probe |
| * response members of a group, but we're |
| * receiving a beacon (beacon_ies in the new |
| * bss is used). This can only mean that the |
| * AP changed its beacon from not having an |
| * SSID to showing it, which is confusing so |
| * drop this information. |
| */ |
| |
| f = rcu_access_pointer(new->pub.beacon_ies); |
| kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); |
| return false; |
| } |
| |
| old = rcu_access_pointer(known->pub.beacon_ies); |
| |
| rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); |
| |
| /* Override IEs if they were from a beacon before */ |
| if (old == rcu_access_pointer(known->pub.ies)) |
| rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); |
| |
| /* Assign beacon IEs to all sub entries */ |
| list_for_each_entry(bss, &known->hidden_list, hidden_list) { |
| const struct cfg80211_bss_ies *ies; |
| |
| ies = rcu_access_pointer(bss->pub.beacon_ies); |
| WARN_ON(ies != old); |
| |
| rcu_assign_pointer(bss->pub.beacon_ies, |
| new->pub.beacon_ies); |
| } |
| |
| if (old) |
| kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); |
| } |
| |
| known->pub.beacon_interval = new->pub.beacon_interval; |
| |
| /* don't update the signal if beacon was heard on |
| * adjacent channel. |
| */ |
| if (signal_valid) |
| known->pub.signal = new->pub.signal; |
| known->pub.capability = new->pub.capability; |
| known->ts = new->ts; |
| known->ts_boottime = new->ts_boottime; |
| known->parent_tsf = new->parent_tsf; |
| known->pub.chains = new->pub.chains; |
| memcpy(known->pub.chain_signal, new->pub.chain_signal, |
| IEEE80211_MAX_CHAINS); |
| ether_addr_copy(known->parent_bssid, new->parent_bssid); |
| known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; |
| known->pub.bssid_index = new->pub.bssid_index; |
| |
| return true; |
| } |
| |
| /* Returned bss is reference counted and must be cleaned up appropriately. */ |
| struct cfg80211_internal_bss * |
| cfg80211_bss_update(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *tmp, |
| bool signal_valid, unsigned long ts) |
| { |
| struct cfg80211_internal_bss *found = NULL; |
| |
| if (WARN_ON(!tmp->pub.channel)) |
| return NULL; |
| |
| tmp->ts = ts; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { |
| spin_unlock_bh(&rdev->bss_lock); |
| return NULL; |
| } |
| |
| found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); |
| |
| if (found) { |
| if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) |
| goto drop; |
| } else { |
| struct cfg80211_internal_bss *new; |
| struct cfg80211_internal_bss *hidden; |
| struct cfg80211_bss_ies *ies; |
| |
| /* |
| * create a copy -- the "res" variable that is passed in |
| * is allocated on the stack since it's not needed in the |
| * more common case of an update |
| */ |
| new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, |
| GFP_ATOMIC); |
| if (!new) { |
| ies = (void *)rcu_dereference(tmp->pub.beacon_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| goto drop; |
| } |
| memcpy(new, tmp, sizeof(*new)); |
| new->refcount = 1; |
| INIT_LIST_HEAD(&new->hidden_list); |
| INIT_LIST_HEAD(&new->pub.nontrans_list); |
| |
| if (rcu_access_pointer(tmp->pub.proberesp_ies)) { |
| hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); |
| if (!hidden) |
| hidden = rb_find_bss(rdev, tmp, |
| BSS_CMP_HIDE_NUL); |
| if (hidden) { |
| new->pub.hidden_beacon_bss = &hidden->pub; |
| list_add(&new->hidden_list, |
| &hidden->hidden_list); |
| hidden->refcount++; |
| rcu_assign_pointer(new->pub.beacon_ies, |
| hidden->pub.beacon_ies); |
| } |
| } else { |
| /* |
| * Ok so we found a beacon, and don't have an entry. If |
| * it's a beacon with hidden SSID, we might be in for an |
| * expensive search for any probe responses that should |
| * be grouped with this beacon for updates ... |
| */ |
| if (!cfg80211_combine_bsses(rdev, new)) { |
| bss_ref_put(rdev, new); |
| goto drop; |
| } |
| } |
| |
| if (rdev->bss_entries >= bss_entries_limit && |
| !cfg80211_bss_expire_oldest(rdev)) { |
| bss_ref_put(rdev, new); |
| goto drop; |
| } |
| |
| /* This must be before the call to bss_ref_get */ |
| if (tmp->pub.transmitted_bss) { |
| struct cfg80211_internal_bss *pbss = |
| container_of(tmp->pub.transmitted_bss, |
| struct cfg80211_internal_bss, |
| pub); |
| |
| new->pub.transmitted_bss = tmp->pub.transmitted_bss; |
| bss_ref_get(rdev, pbss); |
| } |
| |
| list_add_tail(&new->list, &rdev->bss_list); |
| rdev->bss_entries++; |
| rb_insert_bss(rdev, new); |
| found = new; |
| } |
| |
| rdev->bss_generation++; |
| bss_ref_get(rdev, found); |
| spin_unlock_bh(&rdev->bss_lock); |
| |
| return found; |
| drop: |
| spin_unlock_bh(&rdev->bss_lock); |
| return NULL; |
| } |
| |
| int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, |
| enum nl80211_band band) |
| { |
| const u8 *tmp; |
| int channel_number = -1; |
| |
| if (band == NL80211_BAND_S1GHZ) { |
| tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen); |
| if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) { |
| struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2); |
| |
| channel_number = s1gop->primary_ch; |
| } |
| } else { |
| tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen); |
| if (tmp && tmp[1] == 1) { |
| channel_number = tmp[2]; |
| } else { |
| tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen); |
| if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) { |
| struct ieee80211_ht_operation *htop = (void *)(tmp + 2); |
| |
| channel_number = htop->primary_chan; |
| } |
| } |
| } |
| |
| return channel_number; |
| } |
| EXPORT_SYMBOL(cfg80211_get_ies_channel_number); |
| |
| /* |
| * Update RX channel information based on the available frame payload |
| * information. This is mainly for the 2.4 GHz band where frames can be received |
| * from neighboring channels and the Beacon frames use the DSSS Parameter Set |
| * element to indicate the current (transmitting) channel, but this might also |
| * be needed on other bands if RX frequency does not match with the actual |
| * operating channel of a BSS. |
| */ |
| static struct ieee80211_channel * |
| cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, |
| struct ieee80211_channel *channel, |
| enum nl80211_bss_scan_width scan_width) |
| { |
| u32 freq; |
| int channel_number; |
| struct ieee80211_channel *alt_channel; |
| |
| channel_number = cfg80211_get_ies_channel_number(ie, ielen, channel->band); |
| |
| if (channel_number < 0) { |
| /* No channel information in frame payload */ |
| return channel; |
| } |
| |
| freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); |
| alt_channel = ieee80211_get_channel_khz(wiphy, freq); |
| if (!alt_channel) { |
| if (channel->band == NL80211_BAND_2GHZ) { |
| /* |
| * Better not allow unexpected channels when that could |
| * be going beyond the 1-11 range (e.g., discovering |
| * BSS on channel 12 when radio is configured for |
| * channel 11. |
| */ |
| return NULL; |
| } |
| |
| /* No match for the payload channel number - ignore it */ |
| return channel; |
| } |
| |
| if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || |
| scan_width == NL80211_BSS_CHAN_WIDTH_5) { |
| /* |
| * Ignore channel number in 5 and 10 MHz channels where there |
| * may not be an n:1 or 1:n mapping between frequencies and |
| * channel numbers. |
| */ |
| return channel; |
| } |
| |
| /* |
| * Use the channel determined through the payload channel number |
| * instead of the RX channel reported by the driver. |
| */ |
| if (alt_channel->flags & IEEE80211_CHAN_DISABLED) |
| return NULL; |
| return alt_channel; |
| } |
| |
| /* Returned bss is reference counted and must be cleaned up appropriately. */ |
| static struct cfg80211_bss * |
| cfg80211_inform_single_bss_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| enum cfg80211_bss_frame_type ftype, |
| const u8 *bssid, u64 tsf, u16 capability, |
| u16 beacon_interval, const u8 *ie, size_t ielen, |
| struct cfg80211_non_tx_bss *non_tx_data, |
| gfp_t gfp) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_bss_ies *ies; |
| struct ieee80211_channel *channel; |
| struct cfg80211_internal_bss tmp = {}, *res; |
| int bss_type; |
| bool signal_valid; |
| unsigned long ts; |
| |
| if (WARN_ON(!wiphy)) |
| return NULL; |
| |
| if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && |
| (data->signal < 0 || data->signal > 100))) |
| return NULL; |
| |
| channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, |
| data->scan_width); |
| if (!channel) |
| return NULL; |
| |
| memcpy(tmp.pub.bssid, bssid, ETH_ALEN); |
| tmp.pub.channel = channel; |
| tmp.pub.scan_width = data->scan_width; |
| tmp.pub.signal = data->signal; |
| tmp.pub.beacon_interval = beacon_interval; |
| tmp.pub.capability = capability; |
| tmp.ts_boottime = data->boottime_ns; |
| tmp.parent_tsf = data->parent_tsf; |
| ether_addr_copy(tmp.parent_bssid, data->parent_bssid); |
| |
| if (non_tx_data) { |
| tmp.pub.transmitted_bss = non_tx_data->tx_bss; |
| ts = bss_from_pub(non_tx_data->tx_bss)->ts; |
| tmp.pub.bssid_index = non_tx_data->bssid_index; |
| tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; |
| } else { |
| ts = jiffies; |
| } |
| |
| /* |
| * If we do not know here whether the IEs are from a Beacon or Probe |
| * Response frame, we need to pick one of the options and only use it |
| * with the driver that does not provide the full Beacon/Probe Response |
| * frame. Use Beacon frame pointer to avoid indicating that this should |
| * override the IEs pointer should we have received an earlier |
| * indication of Probe Response data. |
| */ |
| ies = kzalloc(sizeof(*ies) + ielen, gfp); |
| if (!ies) |
| return NULL; |
| ies->len = ielen; |
| ies->tsf = tsf; |
| ies->from_beacon = false; |
| memcpy(ies->data, ie, ielen); |
| |
| switch (ftype) { |
| case CFG80211_BSS_FTYPE_BEACON: |
| ies->from_beacon = true; |
| fallthrough; |
| case CFG80211_BSS_FTYPE_UNKNOWN: |
| rcu_assign_pointer(tmp.pub.beacon_ies, ies); |
| break; |
| case CFG80211_BSS_FTYPE_PRESP: |
| rcu_assign_pointer(tmp.pub.proberesp_ies, ies); |
| break; |
| } |
| rcu_assign_pointer(tmp.pub.ies, ies); |
| |
| signal_valid = data->chan == channel; |
| res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); |
| if (!res) |
| return NULL; |
| |
| if (channel->band == NL80211_BAND_60GHZ) { |
| bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; |
| if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || |
| bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) |
| regulatory_hint_found_beacon(wiphy, channel, gfp); |
| } else { |
| if (res->pub.capability & WLAN_CAPABILITY_ESS) |
| regulatory_hint_found_beacon(wiphy, channel, gfp); |
| } |
| |
| if (non_tx_data) { |
| /* this is a nontransmitting bss, we need to add it to |
| * transmitting bss' list if it is not there |
| */ |
| if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, |
| &res->pub)) { |
| if (__cfg80211_unlink_bss(rdev, res)) |
| rdev->bss_generation++; |
| } |
| } |
| |
| trace_cfg80211_return_bss(&res->pub); |
| /* cfg80211_bss_update gives us a referenced result */ |
| return &res->pub; |
| } |
| |
| static const struct element |
| *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, |
| const struct element *mbssid_elem, |
| const struct element *sub_elem) |
| { |
| const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; |
| const struct element *next_mbssid; |
| const struct element *next_sub; |
| |
| next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, |
| mbssid_end, |
| ielen - (mbssid_end - ie)); |
| |
| /* |
| * If it is not the last subelement in current MBSSID IE or there isn't |
| * a next MBSSID IE - profile is complete. |
| */ |
| if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || |
| !next_mbssid) |
| return NULL; |
| |
| /* For any length error, just return NULL */ |
| |
| if (next_mbssid->datalen < 4) |
| return NULL; |
| |
| next_sub = (void *)&next_mbssid->data[1]; |
| |
| if (next_mbssid->data + next_mbssid->datalen < |
| next_sub->data + next_sub->datalen) |
| return NULL; |
| |
| if (next_sub->id != 0 || next_sub->datalen < 2) |
| return NULL; |
| |
| /* |
| * Check if the first element in the next sub element is a start |
| * of a new profile |
| */ |
| return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? |
| NULL : next_mbssid; |
| } |
| |
| size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, |
| const struct element *mbssid_elem, |
| const struct element *sub_elem, |
| u8 *merged_ie, size_t max_copy_len) |
| { |
| size_t copied_len = sub_elem->datalen; |
| const struct element *next_mbssid; |
| |
| if (sub_elem->datalen > max_copy_len) |
| return 0; |
| |
| memcpy(merged_ie, sub_elem->data, sub_elem->datalen); |
| |
| while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, |
| mbssid_elem, |
| sub_elem))) { |
| const struct element *next_sub = (void *)&next_mbssid->data[1]; |
| |
| if (copied_len + next_sub->datalen > max_copy_len) |
| break; |
| memcpy(merged_ie + copied_len, next_sub->data, |
| next_sub->datalen); |
| copied_len += next_sub->datalen; |
| } |
| |
| return copied_len; |
| } |
| EXPORT_SYMBOL(cfg80211_merge_profile); |
| |
| static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| enum cfg80211_bss_frame_type ftype, |
| const u8 *bssid, u64 tsf, |
| u16 beacon_interval, const u8 *ie, |
| size_t ielen, |
| struct cfg80211_non_tx_bss *non_tx_data, |
| gfp_t gfp) |
| { |
| const u8 *mbssid_index_ie; |
| const struct element *elem, *sub; |
| size_t new_ie_len; |
| u8 new_bssid[ETH_ALEN]; |
| u8 *new_ie, *profile; |
| u64 seen_indices = 0; |
| u16 capability; |
| struct cfg80211_bss *bss; |
| |
| if (!non_tx_data) |
| return; |
| if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) |
| return; |
| if (!wiphy->support_mbssid) |
| return; |
| if (wiphy->support_only_he_mbssid && |
| !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) |
| return; |
| |
| new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); |
| if (!new_ie) |
| return; |
| |
| profile = kmalloc(ielen, gfp); |
| if (!profile) |
| goto out; |
| |
| for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { |
| if (elem->datalen < 4) |
| continue; |
| for_each_element(sub, elem->data + 1, elem->datalen - 1) { |
| u8 profile_len; |
| |
| if (sub->id != 0 || sub->datalen < 4) { |
| /* not a valid BSS profile */ |
| continue; |
| } |
| |
| if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || |
| sub->data[1] != 2) { |
| /* The first element within the Nontransmitted |
| * BSSID Profile is not the Nontransmitted |
| * BSSID Capability element. |
| */ |
| continue; |
| } |
| |
| memset(profile, 0, ielen); |
| profile_len = cfg80211_merge_profile(ie, ielen, |
| elem, |
| sub, |
| profile, |
| ielen); |
| |
| /* found a Nontransmitted BSSID Profile */ |
| mbssid_index_ie = cfg80211_find_ie |
| (WLAN_EID_MULTI_BSSID_IDX, |
| profile, profile_len); |
| if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || |
| mbssid_index_ie[2] == 0 || |
| mbssid_index_ie[2] > 46) { |
| /* No valid Multiple BSSID-Index element */ |
| continue; |
| } |
| |
| if (seen_indices & BIT_ULL(mbssid_index_ie[2])) |
| /* We don't support legacy split of a profile */ |
| net_dbg_ratelimited("Partial info for BSSID index %d\n", |
| mbssid_index_ie[2]); |
| |
| seen_indices |= BIT_ULL(mbssid_index_ie[2]); |
| |
| non_tx_data->bssid_index = mbssid_index_ie[2]; |
| non_tx_data->max_bssid_indicator = elem->data[0]; |
| |
| cfg80211_gen_new_bssid(bssid, |
| non_tx_data->max_bssid_indicator, |
| non_tx_data->bssid_index, |
| new_bssid); |
| memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); |
| new_ie_len = cfg80211_gen_new_ie(ie, ielen, |
| profile, |
| profile_len, new_ie, |
| gfp); |
| if (!new_ie_len) |
| continue; |
| |
| capability = get_unaligned_le16(profile + 2); |
| bss = cfg80211_inform_single_bss_data(wiphy, data, |
| ftype, |
| new_bssid, tsf, |
| capability, |
| beacon_interval, |
| new_ie, |
| new_ie_len, |
| non_tx_data, |
| gfp); |
| if (!bss) |
| break; |
| cfg80211_put_bss(wiphy, bss); |
| } |
| } |
| |
| out: |
| kfree(new_ie); |
| kfree(profile); |
| } |
| |
| struct cfg80211_bss * |
| cfg80211_inform_bss_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| enum cfg80211_bss_frame_type ftype, |
| const u8 *bssid, u64 tsf, u16 capability, |
| u16 beacon_interval, const u8 *ie, size_t ielen, |
| gfp_t gfp) |
| { |
| struct cfg80211_bss *res; |
| struct cfg80211_non_tx_bss non_tx_data; |
| |
| res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, |
| capability, beacon_interval, ie, |
| ielen, NULL, gfp); |
| if (!res) |
| return NULL; |
| non_tx_data.tx_bss = res; |
| cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, |
| beacon_interval, ie, ielen, &non_tx_data, |
| gfp); |
| return res; |
| } |
| EXPORT_SYMBOL(cfg80211_inform_bss_data); |
| |
| static void |
| cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| struct ieee80211_mgmt *mgmt, size_t len, |
| struct cfg80211_non_tx_bss *non_tx_data, |
| gfp_t gfp) |
| { |
| enum cfg80211_bss_frame_type ftype; |
| const u8 *ie = mgmt->u.probe_resp.variable; |
| size_t ielen = len - offsetof(struct ieee80211_mgmt, |
| u.probe_resp.variable); |
| |
| ftype = ieee80211_is_beacon(mgmt->frame_control) ? |
| CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; |
| |
| cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, |
| le64_to_cpu(mgmt->u.probe_resp.timestamp), |
| le16_to_cpu(mgmt->u.probe_resp.beacon_int), |
| ie, ielen, non_tx_data, gfp); |
| } |
| |
| static void |
| cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, |
| struct cfg80211_bss *nontrans_bss, |
| struct ieee80211_mgmt *mgmt, size_t len) |
| { |
| u8 *ie, *new_ie, *pos; |
| const u8 *nontrans_ssid, *trans_ssid, *mbssid; |
| size_t ielen = len - offsetof(struct ieee80211_mgmt, |
| u.probe_resp.variable); |
| size_t new_ie_len; |
| struct cfg80211_bss_ies *new_ies; |
| const struct cfg80211_bss_ies *old; |
| u8 cpy_len; |
| |
| lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); |
| |
| ie = mgmt->u.probe_resp.variable; |
| |
| new_ie_len = ielen; |
| trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); |
| if (!trans_ssid) |
| return; |
| new_ie_len -= trans_ssid[1]; |
| mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); |
| /* |
| * It's not valid to have the MBSSID element before SSID |
| * ignore if that happens - the code below assumes it is |
| * after (while copying things inbetween). |
| */ |
| if (!mbssid || mbssid < trans_ssid) |
| return; |
| new_ie_len -= mbssid[1]; |
| |
| nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); |
| if (!nontrans_ssid) |
| return; |
| |
| new_ie_len += nontrans_ssid[1]; |
| |
| /* generate new ie for nontrans BSS |
| * 1. replace SSID with nontrans BSS' SSID |
| * 2. skip MBSSID IE |
| */ |
| new_ie = kzalloc(new_ie_len, GFP_ATOMIC); |
| if (!new_ie) |
| return; |
| |
| new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); |
| if (!new_ies) |
| goto out_free; |
| |
| pos = new_ie; |
| |
| /* copy the nontransmitted SSID */ |
| cpy_len = nontrans_ssid[1] + 2; |
| memcpy(pos, nontrans_ssid, cpy_len); |
| pos += cpy_len; |
| /* copy the IEs between SSID and MBSSID */ |
| cpy_len = trans_ssid[1] + 2; |
| memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); |
| pos += (mbssid - (trans_ssid + cpy_len)); |
| /* copy the IEs after MBSSID */ |
| cpy_len = mbssid[1] + 2; |
| memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); |
| |
| /* update ie */ |
| new_ies->len = new_ie_len; |
| new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); |
| new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); |
| memcpy(new_ies->data, new_ie, new_ie_len); |
| if (ieee80211_is_probe_resp(mgmt->frame_control)) { |
| old = rcu_access_pointer(nontrans_bss->proberesp_ies); |
| rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); |
| rcu_assign_pointer(nontrans_bss->ies, new_ies); |
| if (old) |
| kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); |
| } else { |
| old = rcu_access_pointer(nontrans_bss->beacon_ies); |
| rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); |
| rcu_assign_pointer(nontrans_bss->ies, new_ies); |
| if (old) |
| kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); |
| } |
| |
| out_free: |
| kfree(new_ie); |
| } |
| |
| /* cfg80211_inform_bss_width_frame helper */ |
| static struct cfg80211_bss * |
| cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| struct ieee80211_mgmt *mgmt, size_t len, |
| gfp_t gfp) |
| { |
| struct cfg80211_internal_bss tmp = {}, *res; |
| struct cfg80211_bss_ies *ies; |
| struct ieee80211_channel *channel; |
| bool signal_valid; |
| struct ieee80211_ext *ext = NULL; |
| u8 *bssid, *variable; |
| u16 capability, beacon_int; |
| size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, |
| u.probe_resp.variable); |
| int bss_type; |
| |
| BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != |
| offsetof(struct ieee80211_mgmt, u.beacon.variable)); |
| |
| trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); |
| |
| if (WARN_ON(!mgmt)) |
| return NULL; |
| |
| if (WARN_ON(!wiphy)) |
| return NULL; |
| |
| if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && |
| (data->signal < 0 || data->signal > 100))) |
| return NULL; |
| |
| if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { |
| ext = (void *) mgmt; |
| min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); |
| if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) |
| min_hdr_len = offsetof(struct ieee80211_ext, |
| u.s1g_short_beacon.variable); |
| } |
| |
| if (WARN_ON(len < min_hdr_len)) |
| return NULL; |
| |
| ielen = len - min_hdr_len; |
| variable = mgmt->u.probe_resp.variable; |
| if (ext) { |
| if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) |
| variable = ext->u.s1g_short_beacon.variable; |
| else |
| variable = ext->u.s1g_beacon.variable; |
| } |
| |
| channel = cfg80211_get_bss_channel(wiphy, variable, |
| ielen, data->chan, data->scan_width); |
| if (!channel) |
| return NULL; |
| |
| if (ext) { |
| const struct ieee80211_s1g_bcn_compat_ie *compat; |
| const struct element *elem; |
| |
| elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, |
| variable, ielen); |
| if (!elem) |
| return NULL; |
| if (elem->datalen < sizeof(*compat)) |
| return NULL; |
| compat = (void *)elem->data; |
| bssid = ext->u.s1g_beacon.sa; |
| capability = le16_to_cpu(compat->compat_info); |
| beacon_int = le16_to_cpu(compat->beacon_int); |
| } else { |
| bssid = mgmt->bssid; |
| beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); |
| capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); |
| } |
| |
| ies = kzalloc(sizeof(*ies) + ielen, gfp); |
| if (!ies) |
| return NULL; |
| ies->len = ielen; |
| ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); |
| ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || |
| ieee80211_is_s1g_beacon(mgmt->frame_control); |
| memcpy(ies->data, variable, ielen); |
| |
| if (ieee80211_is_probe_resp(mgmt->frame_control)) |
| rcu_assign_pointer(tmp.pub.proberesp_ies, ies); |
| else |
| rcu_assign_pointer(tmp.pub.beacon_ies, ies); |
| rcu_assign_pointer(tmp.pub.ies, ies); |
| |
| memcpy(tmp.pub.bssid, bssid, ETH_ALEN); |
| tmp.pub.beacon_interval = beacon_int; |
| tmp.pub.capability = capability; |
| tmp.pub.channel = channel; |
| tmp.pub.scan_width = data->scan_width; |
| tmp.pub.signal = data->signal; |
| tmp.ts_boottime = data->boottime_ns; |
| tmp.parent_tsf = data->parent_tsf; |
| tmp.pub.chains = data->chains; |
| memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); |
| ether_addr_copy(tmp.parent_bssid, data->parent_bssid); |
| |
| signal_valid = data->chan == channel; |
| res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, |
| jiffies); |
| if (!res) |
| return NULL; |
| |
| if (channel->band == NL80211_BAND_60GHZ) { |
| bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; |
| if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || |
| bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) |
| regulatory_hint_found_beacon(wiphy, channel, gfp); |
| } else { |
| if (res->pub.capability & WLAN_CAPABILITY_ESS) |
| regulatory_hint_found_beacon(wiphy, channel, gfp); |
| } |
| |
| trace_cfg80211_return_bss(&res->pub); |
| /* cfg80211_bss_update gives us a referenced result */ |
| return &res->pub; |
| } |
| |
| struct cfg80211_bss * |
| cfg80211_inform_bss_frame_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| struct ieee80211_mgmt *mgmt, size_t len, |
| gfp_t gfp) |
| { |
| struct cfg80211_bss *res, *tmp_bss; |
| const u8 *ie = mgmt->u.probe_resp.variable; |
| const struct cfg80211_bss_ies *ies1, *ies2; |
| size_t ielen = len - offsetof(struct ieee80211_mgmt, |
| u.probe_resp.variable); |
| struct cfg80211_non_tx_bss non_tx_data; |
| |
| res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, |
| len, gfp); |
| if (!res || !wiphy->support_mbssid || |
| !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) |
| return res; |
| if (wiphy->support_only_he_mbssid && |
| !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) |
| return res; |
| |
| non_tx_data.tx_bss = res; |
| /* process each non-transmitting bss */ |
| cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, |
| &non_tx_data, gfp); |
| |
| spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); |
| |
| /* check if the res has other nontransmitting bss which is not |
| * in MBSSID IE |
| */ |
| ies1 = rcu_access_pointer(res->ies); |
| |
| /* go through nontrans_list, if the timestamp of the BSS is |
| * earlier than the timestamp of the transmitting BSS then |
| * update it |
| */ |
| list_for_each_entry(tmp_bss, &res->nontrans_list, |
| nontrans_list) { |
| ies2 = rcu_access_pointer(tmp_bss->ies); |
| if (ies2->tsf < ies1->tsf) |
| cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, |
| mgmt, len); |
| } |
| spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); |
| |
| return res; |
| } |
| EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); |
| |
| void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss; |
| |
| if (!pub) |
| return; |
| |
| bss = container_of(pub, struct cfg80211_internal_bss, pub); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| bss_ref_get(rdev, bss); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_ref_bss); |
| |
| void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss; |
| |
| if (!pub) |
| return; |
| |
| bss = container_of(pub, struct cfg80211_internal_bss, pub); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| bss_ref_put(rdev, bss); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_put_bss); |
| |
| void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss, *tmp1; |
| struct cfg80211_bss *nontrans_bss, *tmp; |
| |
| if (WARN_ON(!pub)) |
| return; |
| |
| bss = container_of(pub, struct cfg80211_internal_bss, pub); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| if (list_empty(&bss->list)) |
| goto out; |
| |
| list_for_each_entry_safe(nontrans_bss, tmp, |
| &pub->nontrans_list, |
| nontrans_list) { |
| tmp1 = container_of(nontrans_bss, |
| struct cfg80211_internal_bss, pub); |
| if (__cfg80211_unlink_bss(rdev, tmp1)) |
| rdev->bss_generation++; |
| } |
| |
| if (__cfg80211_unlink_bss(rdev, bss)) |
| rdev->bss_generation++; |
| out: |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_unlink_bss); |
| |
| void cfg80211_bss_iter(struct wiphy *wiphy, |
| struct cfg80211_chan_def *chandef, |
| void (*iter)(struct wiphy *wiphy, |
| struct cfg80211_bss *bss, |
| void *data), |
| void *iter_data) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel)) |
| iter(wiphy, &bss->pub, iter_data); |
| } |
| |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_bss_iter); |
| |
| void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, |
| struct ieee80211_channel *chan) |
| { |
| struct wiphy *wiphy = wdev->wiphy; |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *cbss = wdev->current_bss; |
| struct cfg80211_internal_bss *new = NULL; |
| struct cfg80211_internal_bss *bss; |
| struct cfg80211_bss *nontrans_bss; |
| struct cfg80211_bss *tmp; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| /* |
| * Some APs use CSA also for bandwidth changes, i.e., without actually |
| * changing the control channel, so no need to update in such a case. |
| */ |
| if (cbss->pub.channel == chan) |
| goto done; |
| |
| /* use transmitting bss */ |
| if (cbss->pub.transmitted_bss) |
| cbss = container_of(cbss->pub.transmitted_bss, |
| struct cfg80211_internal_bss, |
| pub); |
| |
| cbss->pub.channel = chan; |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (!cfg80211_bss_type_match(bss->pub.capability, |
| bss->pub.channel->band, |
| wdev->conn_bss_type)) |
| continue; |
| |
| if (bss == cbss) |
| continue; |
| |
| if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { |
| new = bss; |
| break; |
| } |
| } |
| |
| if (new) { |
| /* to save time, update IEs for transmitting bss only */ |
| if (cfg80211_update_known_bss(rdev, cbss, new, false)) { |
| new->pub.proberesp_ies = NULL; |
| new->pub.beacon_ies = NULL; |
| } |
| |
| list_for_each_entry_safe(nontrans_bss, tmp, |
| &new->pub.nontrans_list, |
| nontrans_list) { |
| bss = container_of(nontrans_bss, |
| struct cfg80211_internal_bss, pub); |
| if (__cfg80211_unlink_bss(rdev, bss)) |
| rdev->bss_generation++; |
| } |
| |
| WARN_ON(atomic_read(&new->hold)); |
| if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) |
| rdev->bss_generation++; |
| } |
| |
| rb_erase(&cbss->rbn, &rdev->bss_tree); |
| rb_insert_bss(rdev, cbss); |
| rdev->bss_generation++; |
| |
| list_for_each_entry_safe(nontrans_bss, tmp, |
| &cbss->pub.nontrans_list, |
| nontrans_list) { |
| bss = container_of(nontrans_bss, |
| struct cfg80211_internal_bss, pub); |
| bss->pub.channel = chan; |
| rb_erase(&bss->rbn, &rdev->bss_tree); |
| rb_insert_bss(rdev, bss); |
| rdev->bss_generation++; |
| } |
| |
| done: |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| #ifdef CONFIG_CFG80211_WEXT |
| static struct cfg80211_registered_device * |
| cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct net_device *dev; |
| |
| ASSERT_RTNL(); |
| |
| dev = dev_get_by_index(net, ifindex); |
| if (!dev) |
| return ERR_PTR(-ENODEV); |
| if (dev->ieee80211_ptr) |
| rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); |
| else |
| rdev = ERR_PTR(-ENODEV); |
| dev_put(dev); |
| return rdev; |
| } |
| |
| int cfg80211_wext_siwscan(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wiphy *wiphy; |
| struct iw_scan_req *wreq = NULL; |
| struct cfg80211_scan_request *creq = NULL; |
| int i, err, n_channels = 0; |
| enum nl80211_band band; |
| |
| if (!netif_running(dev)) |
| return -ENETDOWN; |
| |
| if (wrqu->data.length == sizeof(struct iw_scan_req)) |
| wreq = (struct iw_scan_req *)extra; |
| |
| rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); |
| |
| if (IS_ERR(rdev)) |
| return PTR_ERR(rdev); |
| |
| if (rdev->scan_req || rdev->scan_msg) { |
| err = -EBUSY; |
| goto out; |
| } |
| |
| wiphy = &rdev->wiphy; |
| |
| /* Determine number of channels, needed to allocate creq */ |
| if (wreq && wreq->num_channels) |
| n_channels = wreq->num_channels; |
| else |
| n_channels = ieee80211_get_num_supported_channels(wiphy); |
| |
| creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + |
| n_channels * sizeof(void *), |
| GFP_ATOMIC); |
| if (!creq) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| creq->wiphy = wiphy; |
| creq->wdev = dev->ieee80211_ptr; |
| /* SSIDs come after channels */ |
| creq->ssids = (void *)&creq->channels[n_channels]; |
| creq->n_channels = n_channels; |
| creq->n_ssids = 1; |
| creq->scan_start = jiffies; |
| |
| /* translate "Scan on frequencies" request */ |
| i = 0; |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| int j; |
| |
| if (!wiphy->bands[band]) |
| continue; |
| |
| for (j = 0; j < wiphy->bands[band]->n_channels; j++) { |
| /* ignore disabled channels */ |
| if (wiphy->bands[band]->channels[j].flags & |
| IEEE80211_CHAN_DISABLED) |
| continue; |
| |
| /* If we have a wireless request structure and the |
| * wireless request specifies frequencies, then search |
| * for the matching hardware channel. |
| */ |
| if (wreq && wreq->num_channels) { |
| int k; |
| int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; |
| for (k = 0; k < wreq->num_channels; k++) { |
| struct iw_freq *freq = |
| &wreq->channel_list[k]; |
| int wext_freq = |
| cfg80211_wext_freq(freq); |
| |
| if (wext_freq == wiphy_freq) |
| goto wext_freq_found; |
| } |
| goto wext_freq_not_found; |
| } |
| |
| wext_freq_found: |
| creq->channels[i] = &wiphy->bands[band]->channels[j]; |
| i++; |
| wext_freq_not_found: ; |
| } |
| } |
| /* No channels found? */ |
| if (!i) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Set real number of channels specified in creq->channels[] */ |
| creq->n_channels = i; |
| |
| /* translate "Scan for SSID" request */ |
| if (wreq) { |
| if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { |
| if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { |
| err = -EINVAL; |
| goto out; |
| } |
| memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); |
| creq->ssids[0].ssid_len = wreq->essid_len; |
| } |
| if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) |
| creq->n_ssids = 0; |
| } |
| |
| for (i = 0; i < NUM_NL80211_BANDS; i++) |
| if (wiphy->bands[i]) |
| creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; |
| |
| eth_broadcast_addr(creq->bssid); |
| |
| wiphy_lock(&rdev->wiphy); |
| |
| rdev->scan_req = creq; |
| err = rdev_scan(rdev, creq); |
| if (err) { |
| rdev->scan_req = NULL; |
| /* creq will be freed below */ |
| } else { |
| nl80211_send_scan_start(rdev, dev->ieee80211_ptr); |
| /* creq now owned by driver */ |
| creq = NULL; |
| dev_hold(dev); |
| } |
| wiphy_unlock(&rdev->wiphy); |
| out: |
| kfree(creq); |
| return err; |
| } |
| EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); |
| |
| static char *ieee80211_scan_add_ies(struct iw_request_info *info, |
| const struct cfg80211_bss_ies *ies, |
| char *current_ev, char *end_buf) |
| { |
| const u8 *pos, *end, *next; |
| struct iw_event iwe; |
| |
| if (!ies) |
| return current_ev; |
| |
| /* |
| * If needed, fragment the IEs buffer (at IE boundaries) into short |
| * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. |
| */ |
| pos = ies->data; |
| end = pos + ies->len; |
| |
| while (end - pos > IW_GENERIC_IE_MAX) { |
| next = pos + 2 + pos[1]; |
| while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) |
| next = next + 2 + next[1]; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVGENIE; |
| iwe.u.data.length = next - pos; |
| current_ev = iwe_stream_add_point_check(info, current_ev, |
| end_buf, &iwe, |
| (void *)pos); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| pos = next; |
| } |
| |
| if (end > pos) { |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVGENIE; |
| iwe.u.data.length = end - pos; |
| current_ev = iwe_stream_add_point_check(info, current_ev, |
| end_buf, &iwe, |
| (void *)pos); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| } |
| |
| return current_ev; |
| } |
| |
| static char * |
| ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, |
| struct cfg80211_internal_bss *bss, char *current_ev, |
| char *end_buf) |
| { |
| const struct cfg80211_bss_ies *ies; |
| struct iw_event iwe; |
| const u8 *ie; |
| u8 buf[50]; |
| u8 *cfg, *p, *tmp; |
| int rem, i, sig; |
| bool ismesh = false; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWAP; |
| iwe.u.ap_addr.sa_family = ARPHRD_ETHER; |
| memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); |
| current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, |
| IW_EV_ADDR_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWFREQ; |
| iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); |
| iwe.u.freq.e = 0; |
| current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, |
| IW_EV_FREQ_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWFREQ; |
| iwe.u.freq.m = bss->pub.channel->center_freq; |
| iwe.u.freq.e = 6; |
| current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, |
| IW_EV_FREQ_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVQUAL; |
| iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | |
| IW_QUAL_NOISE_INVALID | |
| IW_QUAL_QUAL_UPDATED; |
| switch (wiphy->signal_type) { |
| case CFG80211_SIGNAL_TYPE_MBM: |
| sig = bss->pub.signal / 100; |
| iwe.u.qual.level = sig; |
| iwe.u.qual.updated |= IW_QUAL_DBM; |
| if (sig < -110) /* rather bad */ |
| sig = -110; |
| else if (sig > -40) /* perfect */ |
| sig = -40; |
| /* will give a range of 0 .. 70 */ |
| iwe.u.qual.qual = sig + 110; |
| break; |
| case CFG80211_SIGNAL_TYPE_UNSPEC: |
| iwe.u.qual.level = bss->pub.signal; |
| /* will give range 0 .. 100 */ |
| iwe.u.qual.qual = bss->pub.signal; |
| break; |
| default: |
| /* not reached */ |
| break; |
| } |
| current_ev = iwe_stream_add_event_check(info, current_ev, |
| end_buf, &iwe, |
| IW_EV_QUAL_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| } |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWENCODE; |
| if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) |
| iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; |
| else |
| iwe.u.data.flags = IW_ENCODE_DISABLED; |
| iwe.u.data.length = 0; |
| current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, |
| &iwe, ""); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| rcu_read_lock(); |
| ies = rcu_dereference(bss->pub.ies); |
| rem = ies->len; |
| ie = ies->data; |
| |
| while (rem >= 2) { |
| /* invalid data */ |
| if (ie[1] > rem - 2) |
| break; |
| |
| switch (ie[0]) { |
| case WLAN_EID_SSID: |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWESSID; |
| iwe.u.data.length = ie[1]; |
| iwe.u.data.flags = 1; |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, &iwe, |
| (u8 *)ie + 2); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| break; |
| case WLAN_EID_MESH_ID: |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWESSID; |
| iwe.u.data.length = ie[1]; |
| iwe.u.data.flags = 1; |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, &iwe, |
| (u8 *)ie + 2); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| break; |
| case WLAN_EID_MESH_CONFIG: |
| ismesh = true; |
| if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) |
| break; |
| cfg = (u8 *)ie + 2; |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVCUSTOM; |
| sprintf(buf, "Mesh Network Path Selection Protocol ID: " |
| "0x%02X", cfg[0]); |
| iwe.u.data.length = strlen(buf); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| sprintf(buf, "Path Selection Metric ID: 0x%02X", |
| cfg[1]); |
| iwe.u.data.length = strlen(buf); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| sprintf(buf, "Congestion Control Mode ID: 0x%02X", |
| cfg[2]); |
| iwe.u.data.length = strlen(buf); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); |
| iwe.u.data.length = strlen(buf); |
| current_ev = iwe_stream_add_point_check(info, |
|