| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2020, Gustavo Luiz Duarte, IBM Corp. |
| * |
| * This test starts a transaction and triggers a signal, forcing a pagefault to |
| * happen when the kernel signal handling code touches the user signal stack. |
| * |
| * In order to avoid pre-faulting the signal stack memory and to force the |
| * pagefault to happen precisely in the kernel signal handling code, the |
| * pagefault handling is done in userspace using the userfaultfd facility. |
| * |
| * Further pagefaults are triggered by crafting the signal handler's ucontext |
| * to point to additional memory regions managed by the userfaultfd, so using |
| * the same mechanism used to avoid pre-faulting the signal stack memory. |
| * |
| * On failure (bug is present) kernel crashes or never returns control back to |
| * userspace. If bug is not present, tests completes almost immediately. |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <linux/userfaultfd.h> |
| #include <poll.h> |
| #include <unistd.h> |
| #include <sys/ioctl.h> |
| #include <sys/syscall.h> |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <errno.h> |
| |
| #include "tm.h" |
| |
| |
| #define UF_MEM_SIZE 655360 /* 10 x 64k pages */ |
| |
| /* Memory handled by userfaultfd */ |
| static char *uf_mem; |
| static size_t uf_mem_offset = 0; |
| |
| /* |
| * Data that will be copied into the faulting pages (instead of zero-filled |
| * pages). This is used to make the test more reliable and avoid segfaulting |
| * when we return from the signal handler. Since we are making the signal |
| * handler's ucontext point to newly allocated memory, when that memory is |
| * paged-in it will contain the expected content. |
| */ |
| static char backing_mem[UF_MEM_SIZE]; |
| |
| static size_t pagesize; |
| |
| /* |
| * Return a chunk of at least 'size' bytes of memory that will be handled by |
| * userfaultfd. If 'backing_data' is not NULL, its content will be save to |
| * 'backing_mem' and then copied into the faulting pages when the page fault |
| * is handled. |
| */ |
| void *get_uf_mem(size_t size, void *backing_data) |
| { |
| void *ret; |
| |
| if (uf_mem_offset + size > UF_MEM_SIZE) { |
| fprintf(stderr, "Requesting more uf_mem than expected!\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| ret = &uf_mem[uf_mem_offset]; |
| |
| /* Save the data that will be copied into the faulting page */ |
| if (backing_data != NULL) |
| memcpy(&backing_mem[uf_mem_offset], backing_data, size); |
| |
| /* Reserve the requested amount of uf_mem */ |
| uf_mem_offset += size; |
| /* Keep uf_mem_offset aligned to the page size (round up) */ |
| uf_mem_offset = (uf_mem_offset + pagesize - 1) & ~(pagesize - 1); |
| |
| return ret; |
| } |
| |
| void *fault_handler_thread(void *arg) |
| { |
| struct uffd_msg msg; /* Data read from userfaultfd */ |
| long uffd; /* userfaultfd file descriptor */ |
| struct uffdio_copy uffdio_copy; |
| struct pollfd pollfd; |
| ssize_t nread, offset; |
| |
| uffd = (long) arg; |
| |
| for (;;) { |
| pollfd.fd = uffd; |
| pollfd.events = POLLIN; |
| if (poll(&pollfd, 1, -1) == -1) { |
| perror("poll() failed"); |
| exit(EXIT_FAILURE); |
| } |
| |
| nread = read(uffd, &msg, sizeof(msg)); |
| if (nread == 0) { |
| fprintf(stderr, "read(): EOF on userfaultfd\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (nread == -1) { |
| perror("read() failed"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* We expect only one kind of event */ |
| if (msg.event != UFFD_EVENT_PAGEFAULT) { |
| fprintf(stderr, "Unexpected event on userfaultfd\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* |
| * We need to handle page faults in units of pages(!). |
| * So, round faulting address down to page boundary. |
| */ |
| uffdio_copy.dst = msg.arg.pagefault.address & ~(pagesize-1); |
| |
| offset = (char *) uffdio_copy.dst - uf_mem; |
| uffdio_copy.src = (unsigned long) &backing_mem[offset]; |
| |
| uffdio_copy.len = pagesize; |
| uffdio_copy.mode = 0; |
| uffdio_copy.copy = 0; |
| if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) { |
| perror("ioctl-UFFDIO_COPY failed"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| } |
| |
| void setup_uf_mem(void) |
| { |
| long uffd; /* userfaultfd file descriptor */ |
| pthread_t thr; |
| struct uffdio_api uffdio_api; |
| struct uffdio_register uffdio_register; |
| int ret; |
| |
| pagesize = sysconf(_SC_PAGE_SIZE); |
| |
| /* Create and enable userfaultfd object */ |
| uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); |
| if (uffd == -1) { |
| perror("userfaultfd() failed"); |
| exit(EXIT_FAILURE); |
| } |
| uffdio_api.api = UFFD_API; |
| uffdio_api.features = 0; |
| if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1) { |
| perror("ioctl-UFFDIO_API failed"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* |
| * Create a private anonymous mapping. The memory will be demand-zero |
| * paged, that is, not yet allocated. When we actually touch the memory |
| * the related page will be allocated via the userfaultfd mechanism. |
| */ |
| uf_mem = mmap(NULL, UF_MEM_SIZE, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (uf_mem == MAP_FAILED) { |
| perror("mmap() failed"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* |
| * Register the memory range of the mapping we've just mapped to be |
| * handled by the userfaultfd object. In 'mode' we request to track |
| * missing pages (i.e. pages that have not yet been faulted-in). |
| */ |
| uffdio_register.range.start = (unsigned long) uf_mem; |
| uffdio_register.range.len = UF_MEM_SIZE; |
| uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; |
| if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1) { |
| perror("ioctl-UFFDIO_REGISTER"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* Create a thread that will process the userfaultfd events */ |
| ret = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd); |
| if (ret != 0) { |
| fprintf(stderr, "pthread_create(): Error. Returned %d\n", ret); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| /* |
| * Assumption: the signal was delivered while userspace was in transactional or |
| * suspended state, i.e. uc->uc_link != NULL. |
| */ |
| void signal_handler(int signo, siginfo_t *si, void *uc) |
| { |
| ucontext_t *ucp = uc; |
| |
| /* Skip 'trap' after returning, otherwise we get a SIGTRAP again */ |
| ucp->uc_link->uc_mcontext.regs->nip += 4; |
| |
| ucp->uc_mcontext.v_regs = |
| get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_mcontext.v_regs); |
| |
| ucp->uc_link->uc_mcontext.v_regs = |
| get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_link->uc_mcontext.v_regs); |
| |
| ucp->uc_link = get_uf_mem(sizeof(ucontext_t), ucp->uc_link); |
| } |
| |
| bool have_userfaultfd(void) |
| { |
| long rc; |
| |
| errno = 0; |
| rc = syscall(__NR_userfaultfd, -1); |
| |
| return rc == 0 || errno != ENOSYS; |
| } |
| |
| int tm_signal_pagefault(void) |
| { |
| struct sigaction sa; |
| stack_t ss; |
| |
| SKIP_IF(!have_htm()); |
| SKIP_IF(htm_is_synthetic()); |
| SKIP_IF(!have_userfaultfd()); |
| |
| setup_uf_mem(); |
| |
| /* |
| * Set an alternative stack that will generate a page fault when the |
| * signal is raised. The page fault will be treated via userfaultfd, |
| * i.e. via fault_handler_thread. |
| */ |
| ss.ss_sp = get_uf_mem(SIGSTKSZ, NULL); |
| ss.ss_size = SIGSTKSZ; |
| ss.ss_flags = 0; |
| if (sigaltstack(&ss, NULL) == -1) { |
| perror("sigaltstack() failed"); |
| exit(EXIT_FAILURE); |
| } |
| |
| sa.sa_flags = SA_SIGINFO | SA_ONSTACK; |
| sa.sa_sigaction = signal_handler; |
| if (sigaction(SIGTRAP, &sa, NULL) == -1) { |
| perror("sigaction() failed"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* Trigger a SIGTRAP in transactional state */ |
| asm __volatile__( |
| "tbegin.;" |
| "beq 1f;" |
| "trap;" |
| "1: ;" |
| : : : "memory"); |
| |
| /* Trigger a SIGTRAP in suspended state */ |
| asm __volatile__( |
| "tbegin.;" |
| "beq 1f;" |
| "tsuspend.;" |
| "trap;" |
| "tresume.;" |
| "1: ;" |
| : : : "memory"); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| int main(int argc, char **argv) |
| { |
| /* |
| * Depending on kernel config, the TM Bad Thing might not result in a |
| * crash, instead the kernel never returns control back to userspace, so |
| * set a tight timeout. If the test passes it completes almost |
| * immediately. |
| */ |
| test_harness_set_timeout(2); |
| return test_harness(tm_signal_pagefault, "tm_signal_pagefault"); |
| } |