| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Implementation of the extensible bitmap type. |
| * |
| * Author : Stephen Smalley, <stephen.smalley.work@gmail.com> |
| */ |
| /* |
| * Updated: Hewlett-Packard <paul@paul-moore.com> |
| * Added support to import/export the NetLabel category bitmap |
| * (c) Copyright Hewlett-Packard Development Company, L.P., 2006 |
| * |
| * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> |
| * Applied standard bit operations to improve bitmap scanning. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/jhash.h> |
| #include <net/netlabel.h> |
| #include "ebitmap.h" |
| #include "policydb.h" |
| |
| #define BITS_PER_U64 ((u32)(sizeof(u64) * 8)) |
| |
| static struct kmem_cache *ebitmap_node_cachep __ro_after_init; |
| |
| int ebitmap_cmp(const struct ebitmap *e1, const struct ebitmap *e2) |
| { |
| const struct ebitmap_node *n1, *n2; |
| |
| if (e1->highbit != e2->highbit) |
| return 0; |
| |
| n1 = e1->node; |
| n2 = e2->node; |
| while (n1 && n2 && (n1->startbit == n2->startbit) && |
| !memcmp(n1->maps, n2->maps, EBITMAP_SIZE / 8)) { |
| n1 = n1->next; |
| n2 = n2->next; |
| } |
| |
| if (n1 || n2) |
| return 0; |
| |
| return 1; |
| } |
| |
| int ebitmap_cpy(struct ebitmap *dst, const struct ebitmap *src) |
| { |
| struct ebitmap_node *new, *prev; |
| const struct ebitmap_node *n; |
| |
| ebitmap_init(dst); |
| n = src->node; |
| prev = NULL; |
| while (n) { |
| new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC); |
| if (!new) { |
| ebitmap_destroy(dst); |
| return -ENOMEM; |
| } |
| new->startbit = n->startbit; |
| memcpy(new->maps, n->maps, EBITMAP_SIZE / 8); |
| new->next = NULL; |
| if (prev) |
| prev->next = new; |
| else |
| dst->node = new; |
| prev = new; |
| n = n->next; |
| } |
| |
| dst->highbit = src->highbit; |
| return 0; |
| } |
| |
| int ebitmap_and(struct ebitmap *dst, const struct ebitmap *e1, |
| const struct ebitmap *e2) |
| { |
| struct ebitmap_node *n; |
| u32 bit; |
| int rc; |
| |
| ebitmap_init(dst); |
| |
| ebitmap_for_each_positive_bit(e1, n, bit) |
| { |
| if (ebitmap_get_bit(e2, bit)) { |
| rc = ebitmap_set_bit(dst, bit, 1); |
| if (rc < 0) |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_NETLABEL |
| /** |
| * ebitmap_netlbl_export - Export an ebitmap into a NetLabel category bitmap |
| * @ebmap: the ebitmap to export |
| * @catmap: the NetLabel category bitmap |
| * |
| * Description: |
| * Export a SELinux extensibile bitmap into a NetLabel category bitmap. |
| * Returns zero on success, negative values on error. |
| * |
| */ |
| int ebitmap_netlbl_export(struct ebitmap *ebmap, |
| struct netlbl_lsm_catmap **catmap) |
| { |
| struct ebitmap_node *e_iter = ebmap->node; |
| unsigned long e_map; |
| u32 offset; |
| unsigned int iter; |
| int rc; |
| |
| if (e_iter == NULL) { |
| *catmap = NULL; |
| return 0; |
| } |
| |
| if (*catmap != NULL) |
| netlbl_catmap_free(*catmap); |
| *catmap = NULL; |
| |
| while (e_iter) { |
| offset = e_iter->startbit; |
| for (iter = 0; iter < EBITMAP_UNIT_NUMS; iter++) { |
| e_map = e_iter->maps[iter]; |
| if (e_map != 0) { |
| rc = netlbl_catmap_setlong(catmap, offset, |
| e_map, GFP_ATOMIC); |
| if (rc != 0) |
| goto netlbl_export_failure; |
| } |
| offset += EBITMAP_UNIT_SIZE; |
| } |
| e_iter = e_iter->next; |
| } |
| |
| return 0; |
| |
| netlbl_export_failure: |
| netlbl_catmap_free(*catmap); |
| return -ENOMEM; |
| } |
| |
| /** |
| * ebitmap_netlbl_import - Import a NetLabel category bitmap into an ebitmap |
| * @ebmap: the ebitmap to import |
| * @catmap: the NetLabel category bitmap |
| * |
| * Description: |
| * Import a NetLabel category bitmap into a SELinux extensibile bitmap. |
| * Returns zero on success, negative values on error. |
| * |
| */ |
| int ebitmap_netlbl_import(struct ebitmap *ebmap, |
| struct netlbl_lsm_catmap *catmap) |
| { |
| int rc; |
| struct ebitmap_node *e_iter = NULL; |
| struct ebitmap_node *e_prev = NULL; |
| u32 offset = 0, idx; |
| unsigned long bitmap; |
| |
| for (;;) { |
| rc = netlbl_catmap_getlong(catmap, &offset, &bitmap); |
| if (rc < 0) |
| goto netlbl_import_failure; |
| if (offset == (u32)-1) |
| return 0; |
| |
| /* don't waste ebitmap space if the netlabel bitmap is empty */ |
| if (bitmap == 0) { |
| offset += EBITMAP_UNIT_SIZE; |
| continue; |
| } |
| |
| if (e_iter == NULL || |
| offset >= e_iter->startbit + EBITMAP_SIZE) { |
| e_prev = e_iter; |
| e_iter = kmem_cache_zalloc(ebitmap_node_cachep, |
| GFP_ATOMIC); |
| if (e_iter == NULL) |
| goto netlbl_import_failure; |
| e_iter->startbit = offset - (offset % EBITMAP_SIZE); |
| if (e_prev == NULL) |
| ebmap->node = e_iter; |
| else |
| e_prev->next = e_iter; |
| ebmap->highbit = e_iter->startbit + EBITMAP_SIZE; |
| } |
| |
| /* offset will always be aligned to an unsigned long */ |
| idx = EBITMAP_NODE_INDEX(e_iter, offset); |
| e_iter->maps[idx] = bitmap; |
| |
| /* next */ |
| offset += EBITMAP_UNIT_SIZE; |
| } |
| |
| /* NOTE: we should never reach this return */ |
| return 0; |
| |
| netlbl_import_failure: |
| ebitmap_destroy(ebmap); |
| return -ENOMEM; |
| } |
| #endif /* CONFIG_NETLABEL */ |
| |
| /* |
| * Check to see if all the bits set in e2 are also set in e1. Optionally, |
| * if last_e2bit is non-zero, the highest set bit in e2 cannot exceed |
| * last_e2bit. |
| */ |
| int ebitmap_contains(const struct ebitmap *e1, const struct ebitmap *e2, |
| u32 last_e2bit) |
| { |
| const struct ebitmap_node *n1, *n2; |
| int i; |
| |
| if (e1->highbit < e2->highbit) |
| return 0; |
| |
| n1 = e1->node; |
| n2 = e2->node; |
| |
| while (n1 && n2 && (n1->startbit <= n2->startbit)) { |
| if (n1->startbit < n2->startbit) { |
| n1 = n1->next; |
| continue; |
| } |
| for (i = EBITMAP_UNIT_NUMS - 1; (i >= 0) && !n2->maps[i];) |
| i--; /* Skip trailing NULL map entries */ |
| if (last_e2bit && (i >= 0)) { |
| u32 lastsetbit = n2->startbit + i * EBITMAP_UNIT_SIZE + |
| __fls(n2->maps[i]); |
| if (lastsetbit > last_e2bit) |
| return 0; |
| } |
| |
| while (i >= 0) { |
| if ((n1->maps[i] & n2->maps[i]) != n2->maps[i]) |
| return 0; |
| i--; |
| } |
| |
| n1 = n1->next; |
| n2 = n2->next; |
| } |
| |
| if (n2) |
| return 0; |
| |
| return 1; |
| } |
| |
| int ebitmap_get_bit(const struct ebitmap *e, u32 bit) |
| { |
| const struct ebitmap_node *n; |
| |
| if (e->highbit < bit) |
| return 0; |
| |
| n = e->node; |
| while (n && (n->startbit <= bit)) { |
| if ((n->startbit + EBITMAP_SIZE) > bit) |
| return ebitmap_node_get_bit(n, bit); |
| n = n->next; |
| } |
| |
| return 0; |
| } |
| |
| int ebitmap_set_bit(struct ebitmap *e, u32 bit, int value) |
| { |
| struct ebitmap_node *n, *prev, *new; |
| |
| prev = NULL; |
| n = e->node; |
| while (n && n->startbit <= bit) { |
| if ((n->startbit + EBITMAP_SIZE) > bit) { |
| if (value) { |
| ebitmap_node_set_bit(n, bit); |
| } else { |
| u32 s; |
| |
| ebitmap_node_clr_bit(n, bit); |
| |
| s = find_first_bit(n->maps, EBITMAP_SIZE); |
| if (s < EBITMAP_SIZE) |
| return 0; |
| |
| /* drop this node from the bitmap */ |
| if (!n->next) { |
| /* |
| * this was the highest map |
| * within the bitmap |
| */ |
| if (prev) |
| e->highbit = prev->startbit + |
| EBITMAP_SIZE; |
| else |
| e->highbit = 0; |
| } |
| if (prev) |
| prev->next = n->next; |
| else |
| e->node = n->next; |
| kmem_cache_free(ebitmap_node_cachep, n); |
| } |
| return 0; |
| } |
| prev = n; |
| n = n->next; |
| } |
| |
| if (!value) |
| return 0; |
| |
| new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC); |
| if (!new) |
| return -ENOMEM; |
| |
| new->startbit = bit - (bit % EBITMAP_SIZE); |
| ebitmap_node_set_bit(new, bit); |
| |
| if (!n) |
| /* this node will be the highest map within the bitmap */ |
| e->highbit = new->startbit + EBITMAP_SIZE; |
| |
| if (prev) { |
| new->next = prev->next; |
| prev->next = new; |
| } else { |
| new->next = e->node; |
| e->node = new; |
| } |
| |
| return 0; |
| } |
| |
| void ebitmap_destroy(struct ebitmap *e) |
| { |
| struct ebitmap_node *n, *temp; |
| |
| if (!e) |
| return; |
| |
| n = e->node; |
| while (n) { |
| temp = n; |
| n = n->next; |
| kmem_cache_free(ebitmap_node_cachep, temp); |
| } |
| |
| e->highbit = 0; |
| e->node = NULL; |
| } |
| |
| int ebitmap_read(struct ebitmap *e, void *fp) |
| { |
| struct ebitmap_node *n = NULL; |
| u32 mapunit, count, startbit, index, i; |
| __le32 ebitmap_start; |
| u64 map; |
| __le64 mapbits; |
| __le32 buf[3]; |
| int rc; |
| |
| ebitmap_init(e); |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto out; |
| |
| mapunit = le32_to_cpu(buf[0]); |
| e->highbit = le32_to_cpu(buf[1]); |
| count = le32_to_cpu(buf[2]); |
| |
| if (mapunit != BITS_PER_U64) { |
| pr_err("SELinux: ebitmap: map size %u does not " |
| "match my size %u (high bit was %u)\n", |
| mapunit, BITS_PER_U64, e->highbit); |
| goto bad; |
| } |
| |
| /* round up e->highbit */ |
| e->highbit += EBITMAP_SIZE - 1; |
| e->highbit -= (e->highbit % EBITMAP_SIZE); |
| |
| if (!e->highbit) { |
| e->node = NULL; |
| goto ok; |
| } |
| |
| if (e->highbit && !count) |
| goto bad; |
| |
| for (i = 0; i < count; i++) { |
| rc = next_entry(&ebitmap_start, fp, sizeof(u32)); |
| if (rc < 0) { |
| pr_err("SELinux: ebitmap: truncated map\n"); |
| goto bad; |
| } |
| startbit = le32_to_cpu(ebitmap_start); |
| |
| if (startbit & (mapunit - 1)) { |
| pr_err("SELinux: ebitmap start bit (%u) is " |
| "not a multiple of the map unit size (%u)\n", |
| startbit, mapunit); |
| goto bad; |
| } |
| if (startbit > e->highbit - mapunit) { |
| pr_err("SELinux: ebitmap start bit (%u) is " |
| "beyond the end of the bitmap (%u)\n", |
| startbit, (e->highbit - mapunit)); |
| goto bad; |
| } |
| |
| if (!n || startbit >= n->startbit + EBITMAP_SIZE) { |
| struct ebitmap_node *tmp; |
| tmp = kmem_cache_zalloc(ebitmap_node_cachep, |
| GFP_KERNEL); |
| if (!tmp) { |
| pr_err("SELinux: ebitmap: out of memory\n"); |
| rc = -ENOMEM; |
| goto bad; |
| } |
| /* round down */ |
| tmp->startbit = startbit - (startbit % EBITMAP_SIZE); |
| if (n) |
| n->next = tmp; |
| else |
| e->node = tmp; |
| n = tmp; |
| } else if (startbit <= n->startbit) { |
| pr_err("SELinux: ebitmap: start bit %u" |
| " comes after start bit %u\n", |
| startbit, n->startbit); |
| goto bad; |
| } |
| |
| rc = next_entry(&mapbits, fp, sizeof(u64)); |
| if (rc < 0) { |
| pr_err("SELinux: ebitmap: truncated map\n"); |
| goto bad; |
| } |
| map = le64_to_cpu(mapbits); |
| if (!map) { |
| pr_err("SELinux: ebitmap: empty map\n"); |
| goto bad; |
| } |
| |
| index = (startbit - n->startbit) / EBITMAP_UNIT_SIZE; |
| while (map) { |
| n->maps[index++] = map & (-1UL); |
| map = EBITMAP_SHIFT_UNIT_SIZE(map); |
| } |
| } |
| |
| if (n && n->startbit + EBITMAP_SIZE != e->highbit) { |
| pr_err("SELinux: ebitmap: high bit %u is not equal to the expected value %zu\n", |
| e->highbit, n->startbit + EBITMAP_SIZE); |
| goto bad; |
| } |
| |
| ok: |
| rc = 0; |
| out: |
| return rc; |
| bad: |
| if (!rc) |
| rc = -EINVAL; |
| ebitmap_destroy(e); |
| goto out; |
| } |
| |
| int ebitmap_write(const struct ebitmap *e, void *fp) |
| { |
| struct ebitmap_node *n; |
| u32 bit, count, last_bit, last_startbit; |
| __le32 buf[3]; |
| u64 map; |
| int rc; |
| |
| buf[0] = cpu_to_le32(BITS_PER_U64); |
| |
| count = 0; |
| last_bit = 0; |
| last_startbit = U32_MAX; |
| ebitmap_for_each_positive_bit(e, n, bit) |
| { |
| if (last_startbit == U32_MAX || |
| rounddown(bit, BITS_PER_U64) > last_startbit) { |
| count++; |
| last_startbit = rounddown(bit, BITS_PER_U64); |
| } |
| last_bit = roundup(bit + 1, BITS_PER_U64); |
| } |
| buf[1] = cpu_to_le32(last_bit); |
| buf[2] = cpu_to_le32(count); |
| |
| rc = put_entry(buf, sizeof(u32), 3, fp); |
| if (rc) |
| return rc; |
| |
| map = 0; |
| last_startbit = U32_MAX; |
| ebitmap_for_each_positive_bit(e, n, bit) |
| { |
| if (last_startbit == U32_MAX || |
| rounddown(bit, BITS_PER_U64) > last_startbit) { |
| __le64 buf64[1]; |
| |
| /* this is the very first bit */ |
| if (!map) { |
| last_startbit = rounddown(bit, BITS_PER_U64); |
| map = (u64)1 << (bit - last_startbit); |
| continue; |
| } |
| |
| /* write the last node */ |
| buf[0] = cpu_to_le32(last_startbit); |
| rc = put_entry(buf, sizeof(u32), 1, fp); |
| if (rc) |
| return rc; |
| |
| buf64[0] = cpu_to_le64(map); |
| rc = put_entry(buf64, sizeof(u64), 1, fp); |
| if (rc) |
| return rc; |
| |
| /* set up for the next node */ |
| map = 0; |
| last_startbit = rounddown(bit, BITS_PER_U64); |
| } |
| map |= (u64)1 << (bit - last_startbit); |
| } |
| /* write the last node */ |
| if (map) { |
| __le64 buf64[1]; |
| |
| /* write the last node */ |
| buf[0] = cpu_to_le32(last_startbit); |
| rc = put_entry(buf, sizeof(u32), 1, fp); |
| if (rc) |
| return rc; |
| |
| buf64[0] = cpu_to_le64(map); |
| rc = put_entry(buf64, sizeof(u64), 1, fp); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| |
| u32 ebitmap_hash(const struct ebitmap *e, u32 hash) |
| { |
| struct ebitmap_node *node; |
| |
| /* need to change hash even if ebitmap is empty */ |
| hash = jhash_1word(e->highbit, hash); |
| for (node = e->node; node; node = node->next) { |
| hash = jhash_1word(node->startbit, hash); |
| hash = jhash(node->maps, sizeof(node->maps), hash); |
| } |
| return hash; |
| } |
| |
| void __init ebitmap_cache_init(void) |
| { |
| ebitmap_node_cachep = KMEM_CACHE(ebitmap_node, SLAB_PANIC); |
| } |