blob: 4032c27fcc9cbe3e46fac5e2ca1677925a67c38f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_buf.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "debug.h"
#include "errcode.h"
#include "error.h"
#include "trace.h"
#include <linux/prefetch.h>
#include <linux/sched/mm.h>
const char * const bch2_btree_node_flags[] = {
#define x(f) #f,
BTREE_FLAGS()
#undef x
NULL
};
void bch2_recalc_btree_reserve(struct bch_fs *c)
{
unsigned i, reserve = 16;
if (!c->btree_roots[0].b)
reserve += 8;
for (i = 0; i < BTREE_ID_NR; i++)
if (c->btree_roots[i].b)
reserve += min_t(unsigned, 1,
c->btree_roots[i].b->c.level) * 8;
c->btree_cache.reserve = reserve;
}
static inline unsigned btree_cache_can_free(struct btree_cache *bc)
{
return max_t(int, 0, bc->used - bc->reserve);
}
static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
{
if (b->c.lock.readers)
list_move(&b->list, &bc->freed_pcpu);
else
list_move(&b->list, &bc->freed_nonpcpu);
}
static void btree_node_data_free(struct bch_fs *c, struct btree *b)
{
struct btree_cache *bc = &c->btree_cache;
EBUG_ON(btree_node_write_in_flight(b));
kvpfree(b->data, btree_bytes(c));
b->data = NULL;
#ifdef __KERNEL__
kvfree(b->aux_data);
#else
munmap(b->aux_data, btree_aux_data_bytes(b));
#endif
b->aux_data = NULL;
bc->used--;
btree_node_to_freedlist(bc, b);
}
static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
const void *obj)
{
const struct btree *b = obj;
const u64 *v = arg->key;
return b->hash_val == *v ? 0 : 1;
}
static const struct rhashtable_params bch_btree_cache_params = {
.head_offset = offsetof(struct btree, hash),
.key_offset = offsetof(struct btree, hash_val),
.key_len = sizeof(u64),
.obj_cmpfn = bch2_btree_cache_cmp_fn,
};
static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
{
BUG_ON(b->data || b->aux_data);
b->data = kvpmalloc(btree_bytes(c), gfp);
if (!b->data)
return -ENOMEM;
#ifdef __KERNEL__
b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
#else
b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (b->aux_data == MAP_FAILED)
b->aux_data = NULL;
#endif
if (!b->aux_data) {
kvpfree(b->data, btree_bytes(c));
b->data = NULL;
return -ENOMEM;
}
return 0;
}
static struct btree *__btree_node_mem_alloc(struct bch_fs *c)
{
struct btree *b = kzalloc(sizeof(struct btree), GFP_KERNEL);
if (!b)
return NULL;
bkey_btree_ptr_init(&b->key);
six_lock_init(&b->c.lock);
lockdep_set_novalidate_class(&b->c.lock);
INIT_LIST_HEAD(&b->list);
INIT_LIST_HEAD(&b->write_blocked);
b->byte_order = ilog2(btree_bytes(c));
return b;
}
struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b = __btree_node_mem_alloc(c);
if (!b)
return NULL;
if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
kfree(b);
return NULL;
}
bc->used++;
list_add(&b->list, &bc->freeable);
return b;
}
/* Btree in memory cache - hash table */
void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
{
int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
BUG_ON(ret);
/* Cause future lookups for this node to fail: */
b->hash_val = 0;
six_lock_wakeup_all(&b->c.lock);
}
int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
{
BUG_ON(b->hash_val);
b->hash_val = btree_ptr_hash_val(&b->key);
return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
bch_btree_cache_params);
}
int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
unsigned level, enum btree_id id)
{
int ret;
b->c.level = level;
b->c.btree_id = id;
mutex_lock(&bc->lock);
ret = __bch2_btree_node_hash_insert(bc, b);
if (!ret)
list_add(&b->list, &bc->live);
mutex_unlock(&bc->lock);
return ret;
}
__flatten
static inline struct btree *btree_cache_find(struct btree_cache *bc,
const struct bkey_i *k)
{
u64 v = btree_ptr_hash_val(k);
return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
}
/*
* this version is for btree nodes that have already been freed (we're not
* reaping a real btree node)
*/
static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
{
struct btree_cache *bc = &c->btree_cache;
int ret = 0;
lockdep_assert_held(&bc->lock);
wait_on_io:
if (b->flags & ((1U << BTREE_NODE_dirty)|
(1U << BTREE_NODE_read_in_flight)|
(1U << BTREE_NODE_write_in_flight))) {
if (!flush)
return -ENOMEM;
/* XXX: waiting on IO with btree cache lock held */
bch2_btree_node_wait_on_read(b);
bch2_btree_node_wait_on_write(b);
}
if (!six_trylock_intent(&b->c.lock))
return -ENOMEM;
if (!six_trylock_write(&b->c.lock))
goto out_unlock_intent;
/* recheck under lock */
if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
(1U << BTREE_NODE_write_in_flight))) {
if (!flush)
goto out_unlock;
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
goto wait_on_io;
}
if (btree_node_noevict(b) ||
btree_node_write_blocked(b) ||
btree_node_will_make_reachable(b))
goto out_unlock;
if (btree_node_dirty(b)) {
if (!flush)
goto out_unlock;
/*
* Using the underscore version because we don't want to compact
* bsets after the write, since this node is about to be evicted
* - unless btree verify mode is enabled, since it runs out of
* the post write cleanup:
*/
if (bch2_verify_btree_ondisk)
bch2_btree_node_write(c, b, SIX_LOCK_intent, 0);
else
__bch2_btree_node_write(c, b, 0);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
goto wait_on_io;
}
out:
if (b->hash_val && !ret)
trace_btree_node_reap(c, b);
return ret;
out_unlock:
six_unlock_write(&b->c.lock);
out_unlock_intent:
six_unlock_intent(&b->c.lock);
ret = -ENOMEM;
goto out;
}
static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
{
return __btree_node_reclaim(c, b, false);
}
static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
{
return __btree_node_reclaim(c, b, true);
}
static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct bch_fs *c = container_of(shrink, struct bch_fs,
btree_cache.shrink);
struct btree_cache *bc = &c->btree_cache;
struct btree *b, *t;
unsigned long nr = sc->nr_to_scan;
unsigned long can_free = 0;
unsigned long touched = 0;
unsigned long freed = 0;
unsigned i, flags;
unsigned long ret = SHRINK_STOP;
if (bch2_btree_shrinker_disabled)
return SHRINK_STOP;
/* Return -1 if we can't do anything right now */
if (sc->gfp_mask & __GFP_FS)
mutex_lock(&bc->lock);
else if (!mutex_trylock(&bc->lock))
goto out_norestore;
flags = memalloc_nofs_save();
/*
* It's _really_ critical that we don't free too many btree nodes - we
* have to always leave ourselves a reserve. The reserve is how we
* guarantee that allocating memory for a new btree node can always
* succeed, so that inserting keys into the btree can always succeed and
* IO can always make forward progress:
*/
can_free = btree_cache_can_free(bc);
nr = min_t(unsigned long, nr, can_free);
i = 0;
list_for_each_entry_safe(b, t, &bc->freeable, list) {
/*
* Leave a few nodes on the freeable list, so that a btree split
* won't have to hit the system allocator:
*/
if (++i <= 3)
continue;
touched++;
if (touched >= nr)
break;
if (!btree_node_reclaim(c, b)) {
btree_node_data_free(c, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
freed++;
}
}
restart:
list_for_each_entry_safe(b, t, &bc->live, list) {
/* tweak this */
if (btree_node_accessed(b)) {
clear_btree_node_accessed(b);
goto touched;
}
if (!btree_node_reclaim(c, b)) {
/* can't call bch2_btree_node_hash_remove under lock */
freed++;
if (&t->list != &bc->live)
list_move_tail(&bc->live, &t->list);
btree_node_data_free(c, b);
mutex_unlock(&bc->lock);
bch2_btree_node_hash_remove(bc, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
if (freed >= nr)
goto out;
if (sc->gfp_mask & __GFP_FS)
mutex_lock(&bc->lock);
else if (!mutex_trylock(&bc->lock))
goto out;
goto restart;
} else {
continue;
}
touched:
touched++;
if (touched >= nr) {
/* Save position */
if (&t->list != &bc->live)
list_move_tail(&bc->live, &t->list);
break;
}
}
mutex_unlock(&bc->lock);
out:
ret = freed;
memalloc_nofs_restore(flags);
out_norestore:
trace_btree_cache_scan(sc->nr_to_scan, can_free, ret);
return ret;
}
static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct bch_fs *c = container_of(shrink, struct bch_fs,
btree_cache.shrink);
struct btree_cache *bc = &c->btree_cache;
if (bch2_btree_shrinker_disabled)
return 0;
return btree_cache_can_free(bc);
}
void bch2_fs_btree_cache_exit(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
unsigned i, flags;
if (bc->shrink.list.next)
unregister_shrinker(&bc->shrink);
/* vfree() can allocate memory: */
flags = memalloc_nofs_save();
mutex_lock(&bc->lock);
if (c->verify_data)
list_move(&c->verify_data->list, &bc->live);
kvpfree(c->verify_ondisk, btree_bytes(c));
for (i = 0; i < BTREE_ID_NR; i++)
if (c->btree_roots[i].b)
list_add(&c->btree_roots[i].b->list, &bc->live);
list_splice(&bc->freeable, &bc->live);
while (!list_empty(&bc->live)) {
b = list_first_entry(&bc->live, struct btree, list);
BUG_ON(btree_node_read_in_flight(b) ||
btree_node_write_in_flight(b));
if (btree_node_dirty(b))
bch2_btree_complete_write(c, b, btree_current_write(b));
clear_btree_node_dirty_acct(c, b);
btree_node_data_free(c, b);
}
BUG_ON(atomic_read(&c->btree_cache.dirty));
list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
while (!list_empty(&bc->freed_nonpcpu)) {
b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
list_del(&b->list);
six_lock_pcpu_free(&b->c.lock);
kfree(b);
}
mutex_unlock(&bc->lock);
memalloc_nofs_restore(flags);
if (bc->table_init_done)
rhashtable_destroy(&bc->table);
}
int bch2_fs_btree_cache_init(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
unsigned i;
int ret = 0;
pr_verbose_init(c->opts, "");
ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
if (ret)
goto out;
bc->table_init_done = true;
bch2_recalc_btree_reserve(c);
for (i = 0; i < bc->reserve; i++)
if (!__bch2_btree_node_mem_alloc(c)) {
ret = -ENOMEM;
goto out;
}
list_splice_init(&bc->live, &bc->freeable);
mutex_init(&c->verify_lock);
bc->shrink.count_objects = bch2_btree_cache_count;
bc->shrink.scan_objects = bch2_btree_cache_scan;
bc->shrink.seeks = 4;
ret = register_shrinker(&bc->shrink, "%s/btree_cache", c->name);
out:
pr_verbose_init(c->opts, "ret %i", ret);
return ret;
}
void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
{
mutex_init(&bc->lock);
INIT_LIST_HEAD(&bc->live);
INIT_LIST_HEAD(&bc->freeable);
INIT_LIST_HEAD(&bc->freed_pcpu);
INIT_LIST_HEAD(&bc->freed_nonpcpu);
}
/*
* We can only have one thread cannibalizing other cached btree nodes at a time,
* or we'll deadlock. We use an open coded mutex to ensure that, which a
* cannibalize_bucket() will take. This means every time we unlock the root of
* the btree, we need to release this lock if we have it held.
*/
void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
if (bc->alloc_lock == current) {
trace_btree_node_cannibalize_unlock(c);
bc->alloc_lock = NULL;
closure_wake_up(&bc->alloc_wait);
}
}
int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
{
struct btree_cache *bc = &c->btree_cache;
struct task_struct *old;
old = cmpxchg(&bc->alloc_lock, NULL, current);
if (old == NULL || old == current)
goto success;
if (!cl) {
trace_btree_node_cannibalize_lock_fail(c);
return -ENOMEM;
}
closure_wait(&bc->alloc_wait, cl);
/* Try again, after adding ourselves to waitlist */
old = cmpxchg(&bc->alloc_lock, NULL, current);
if (old == NULL || old == current) {
/* We raced */
closure_wake_up(&bc->alloc_wait);
goto success;
}
trace_btree_node_cannibalize_lock_fail(c);
return -EAGAIN;
success:
trace_btree_node_cannibalize_lock(c);
return 0;
}
static struct btree *btree_node_cannibalize(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
list_for_each_entry_reverse(b, &bc->live, list)
if (!btree_node_reclaim(c, b))
return b;
while (1) {
list_for_each_entry_reverse(b, &bc->live, list)
if (!btree_node_write_and_reclaim(c, b))
return b;
/*
* Rare case: all nodes were intent-locked.
* Just busy-wait.
*/
WARN_ONCE(1, "btree cache cannibalize failed\n");
cond_resched();
}
}
struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c, bool pcpu_read_locks)
{
struct btree_cache *bc = &c->btree_cache;
struct list_head *freed = pcpu_read_locks
? &bc->freed_pcpu
: &bc->freed_nonpcpu;
struct btree *b, *b2;
u64 start_time = local_clock();
unsigned flags;
flags = memalloc_nofs_save();
mutex_lock(&bc->lock);
/*
* We never free struct btree itself, just the memory that holds the on
* disk node. Check the freed list before allocating a new one:
*/
list_for_each_entry(b, freed, list)
if (!btree_node_reclaim(c, b)) {
list_del_init(&b->list);
goto got_node;
}
b = __btree_node_mem_alloc(c);
if (!b)
goto err_locked;
if (pcpu_read_locks)
six_lock_pcpu_alloc(&b->c.lock);
BUG_ON(!six_trylock_intent(&b->c.lock));
BUG_ON(!six_trylock_write(&b->c.lock));
got_node:
/*
* btree_free() doesn't free memory; it sticks the node on the end of
* the list. Check if there's any freed nodes there:
*/
list_for_each_entry(b2, &bc->freeable, list)
if (!btree_node_reclaim(c, b2)) {
swap(b->data, b2->data);
swap(b->aux_data, b2->aux_data);
btree_node_to_freedlist(bc, b2);
six_unlock_write(&b2->c.lock);
six_unlock_intent(&b2->c.lock);
goto got_mem;
}
mutex_unlock(&bc->lock);
if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL))
goto err;
mutex_lock(&bc->lock);
bc->used++;
got_mem:
mutex_unlock(&bc->lock);
BUG_ON(btree_node_hashed(b));
BUG_ON(btree_node_dirty(b));
BUG_ON(btree_node_write_in_flight(b));
out:
b->flags = 0;
b->written = 0;
b->nsets = 0;
b->sib_u64s[0] = 0;
b->sib_u64s[1] = 0;
b->whiteout_u64s = 0;
bch2_btree_keys_init(b);
set_btree_node_accessed(b);
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
start_time);
memalloc_nofs_restore(flags);
return b;
err:
mutex_lock(&bc->lock);
err_locked:
/* Try to cannibalize another cached btree node: */
if (bc->alloc_lock == current) {
b2 = btree_node_cannibalize(c);
bch2_btree_node_hash_remove(bc, b2);
if (b) {
swap(b->data, b2->data);
swap(b->aux_data, b2->aux_data);
btree_node_to_freedlist(bc, b2);
six_unlock_write(&b2->c.lock);
six_unlock_intent(&b2->c.lock);
} else {
b = b2;
list_del_init(&b->list);
}
mutex_unlock(&bc->lock);
trace_btree_node_cannibalize(c);
goto out;
}
mutex_unlock(&bc->lock);
memalloc_nofs_restore(flags);
return ERR_PTR(-ENOMEM);
}
/* Slowpath, don't want it inlined into btree_iter_traverse() */
static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c,
struct btree_trans *trans,
struct btree_path *path,
const struct bkey_i *k,
enum btree_id btree_id,
unsigned level,
enum six_lock_type lock_type,
bool sync)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
u32 seq;
BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
/*
* Parent node must be locked, else we could read in a btree node that's
* been freed:
*/
if (trans && !bch2_btree_node_relock(trans, path, level + 1)) {
trace_trans_restart_relock_parent_for_fill(trans->fn,
_THIS_IP_, btree_id, &path->pos);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
}
b = bch2_btree_node_mem_alloc(c, level != 0);
if (trans && b == ERR_PTR(-ENOMEM)) {
trans->memory_allocation_failure = true;
trace_trans_restart_memory_allocation_failure(trans->fn,
_THIS_IP_, btree_id, &path->pos);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
}
if (IS_ERR(b))
return b;
bkey_copy(&b->key, k);
if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
/* raced with another fill: */
/* mark as unhashed... */
b->hash_val = 0;
mutex_lock(&bc->lock);
list_add(&b->list, &bc->freeable);
mutex_unlock(&bc->lock);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
return NULL;
}
set_btree_node_read_in_flight(b);
six_unlock_write(&b->c.lock);
seq = b->c.lock.state.seq;
six_unlock_intent(&b->c.lock);
/* Unlock before doing IO: */
if (trans && sync)
bch2_trans_unlock(trans);
bch2_btree_node_read(c, b, sync);
if (!sync)
return NULL;
if (trans) {
int ret = bch2_trans_relock(trans) ?:
bch2_btree_path_relock_intent(trans, path);
if (ret) {
BUG_ON(!trans->restarted);
return ERR_PTR(ret);
}
}
if (!six_relock_type(&b->c.lock, lock_type, seq)) {
trace_trans_restart_relock_after_fill(trans->fn, _THIS_IP_,
btree_id, &path->pos);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
}
return b;
}
static int lock_node_check_fn(struct six_lock *lock, void *p)
{
struct btree *b = container_of(lock, struct btree, c.lock);
const struct bkey_i *k = p;
if (b->hash_val != btree_ptr_hash_val(k))
return BCH_ERR_lock_fail_node_reused;
return 0;
}
static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
{
struct printbuf buf = PRINTBUF;
if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags))
return;
prt_printf(&buf,
"btree node header doesn't match ptr\n"
"btree %s level %u\n"
"ptr: ",
bch2_btree_ids[b->c.btree_id], b->c.level);
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
prt_printf(&buf, "\nheader: btree %s level %llu\n"
"min ",
bch2_btree_ids[BTREE_NODE_ID(b->data)],
BTREE_NODE_LEVEL(b->data));
bch2_bpos_to_text(&buf, b->data->min_key);
prt_printf(&buf, "\nmax ");
bch2_bpos_to_text(&buf, b->data->max_key);
bch2_fs_inconsistent(c, "%s", buf.buf);
printbuf_exit(&buf);
}
static inline void btree_check_header(struct bch_fs *c, struct btree *b)
{
if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
b->c.level != BTREE_NODE_LEVEL(b->data) ||
bpos_cmp(b->data->max_key, b->key.k.p) ||
(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
bpos_cmp(b->data->min_key,
bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
btree_bad_header(c, b);
}
/**
* bch_btree_node_get - find a btree node in the cache and lock it, reading it
* in from disk if necessary.
*
* If IO is necessary and running under generic_make_request, returns -EAGAIN.
*
* The btree node will have either a read or a write lock held, depending on
* the @write parameter.
*/
struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
const struct bkey_i *k, unsigned level,
enum six_lock_type lock_type,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
struct bset_tree *t;
int ret;
EBUG_ON(level >= BTREE_MAX_DEPTH);
b = btree_node_mem_ptr(k);
/*
* Check b->hash_val _before_ calling btree_node_lock() - this might not
* be the node we want anymore, and trying to lock the wrong node could
* cause an unneccessary transaction restart:
*/
if (likely(c->opts.btree_node_mem_ptr_optimization &&
b &&
b->hash_val == btree_ptr_hash_val(k)))
goto lock_node;
retry:
b = btree_cache_find(bc, k);
if (unlikely(!b)) {
/*
* We must have the parent locked to call bch2_btree_node_fill(),
* else we could read in a btree node from disk that's been
* freed:
*/
b = bch2_btree_node_fill(c, trans, path, k, path->btree_id,
level, lock_type, true);
/* We raced and found the btree node in the cache */
if (!b)
goto retry;
if (IS_ERR(b))
return b;
} else {
lock_node:
/*
* There's a potential deadlock with splits and insertions into
* interior nodes we have to avoid:
*
* The other thread might be holding an intent lock on the node
* we want, and they want to update its parent node so they're
* going to upgrade their intent lock on the parent node to a
* write lock.
*
* But if we're holding a read lock on the parent, and we're
* trying to get the intent lock they're holding, we deadlock.
*
* So to avoid this we drop the read locks on parent nodes when
* we're starting to take intent locks - and handle the race.
*
* The race is that they might be about to free the node we
* want, and dropping our read lock on the parent node lets them
* update the parent marking the node we want as freed, and then
* free it:
*
* To guard against this, btree nodes are evicted from the cache
* when they're freed - and b->hash_val is zeroed out, which we
* check for after we lock the node.
*
* Then, bch2_btree_node_relock() on the parent will fail - because
* the parent was modified, when the pointer to the node we want
* was removed - and we'll bail out:
*/
if (btree_node_read_locked(path, level + 1))
btree_node_unlock(trans, path, level + 1);
ret = btree_node_lock(trans, path, b, k->k.p, level, lock_type,
lock_node_check_fn, (void *) k, trace_ip);
if (unlikely(ret)) {
if (bch2_err_matches(ret, BCH_ERR_lock_fail_node_reused))
goto retry;
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ERR_PTR(ret);
BUG();
}
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
b->c.level != level ||
race_fault())) {
six_unlock_type(&b->c.lock, lock_type);
if (bch2_btree_node_relock(trans, path, level + 1))
goto retry;
trace_trans_restart_btree_node_reused(trans->fn,
trace_ip,
path->btree_id,
&path->pos);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
}
}
if (unlikely(btree_node_read_in_flight(b))) {
u32 seq = b->c.lock.state.seq;
six_unlock_type(&b->c.lock, lock_type);
bch2_trans_unlock(trans);
bch2_btree_node_wait_on_read(b);
/*
* should_be_locked is not set on this path yet, so we need to
* relock it specifically:
*/
if (trans) {
int ret = bch2_trans_relock(trans) ?:
bch2_btree_path_relock_intent(trans, path);
if (ret) {
BUG_ON(!trans->restarted);
return ERR_PTR(ret);
}
}
if (!six_relock_type(&b->c.lock, lock_type, seq))
goto retry;
}
prefetch(b->aux_data);
for_each_bset(b, t) {
void *p = (u64 *) b->aux_data + t->aux_data_offset;
prefetch(p + L1_CACHE_BYTES * 0);
prefetch(p + L1_CACHE_BYTES * 1);
prefetch(p + L1_CACHE_BYTES * 2);
}
/* avoid atomic set bit if it's not needed: */
if (!btree_node_accessed(b))
set_btree_node_accessed(b);
if (unlikely(btree_node_read_error(b))) {
six_unlock_type(&b->c.lock, lock_type);
return ERR_PTR(-EIO);
}
EBUG_ON(b->c.btree_id != path->btree_id);
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
btree_check_header(c, b);
return b;
}
struct btree *bch2_btree_node_get_noiter(struct bch_fs *c,
const struct bkey_i *k,
enum btree_id btree_id,
unsigned level,
bool nofill)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
struct bset_tree *t;
int ret;
EBUG_ON(level >= BTREE_MAX_DEPTH);
if (c->opts.btree_node_mem_ptr_optimization) {
b = btree_node_mem_ptr(k);
if (b)
goto lock_node;
}
retry:
b = btree_cache_find(bc, k);
if (unlikely(!b)) {
if (nofill)
goto out;
b = bch2_btree_node_fill(c, NULL, NULL, k, btree_id,
level, SIX_LOCK_read, true);
/* We raced and found the btree node in the cache */
if (!b)
goto retry;
if (IS_ERR(b) &&
!bch2_btree_cache_cannibalize_lock(c, NULL))
goto retry;
if (IS_ERR(b))
goto out;
} else {
lock_node:
ret = six_lock_read(&b->c.lock, lock_node_check_fn, (void *) k);
if (ret)
goto retry;
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
b->c.btree_id != btree_id ||
b->c.level != level)) {
six_unlock_read(&b->c.lock);
goto retry;
}
}
/* XXX: waiting on IO with btree locks held: */
__bch2_btree_node_wait_on_read(b);
prefetch(b->aux_data);
for_each_bset(b, t) {
void *p = (u64 *) b->aux_data + t->aux_data_offset;
prefetch(p + L1_CACHE_BYTES * 0);
prefetch(p + L1_CACHE_BYTES * 1);
prefetch(p + L1_CACHE_BYTES * 2);
}
/* avoid atomic set bit if it's not needed: */
if (!btree_node_accessed(b))
set_btree_node_accessed(b);
if (unlikely(btree_node_read_error(b))) {
six_unlock_read(&b->c.lock);
b = ERR_PTR(-EIO);
goto out;
}
EBUG_ON(b->c.btree_id != btree_id);
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
btree_check_header(c, b);
out:
bch2_btree_cache_cannibalize_unlock(c);
return b;
}
int bch2_btree_node_prefetch(struct bch_fs *c,
struct btree_trans *trans,
struct btree_path *path,
const struct bkey_i *k,
enum btree_id btree_id, unsigned level)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
BUG_ON(trans && !btree_node_locked(path, level + 1));
BUG_ON(level >= BTREE_MAX_DEPTH);
b = btree_cache_find(bc, k);
if (b)
return 0;
b = bch2_btree_node_fill(c, trans, path, k, btree_id,
level, SIX_LOCK_read, false);
return PTR_ERR_OR_ZERO(b);
}
void bch2_btree_node_evict(struct bch_fs *c, const struct bkey_i *k)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
b = btree_cache_find(bc, k);
if (!b)
return;
wait_on_io:
/* not allowed to wait on io with btree locks held: */
/* XXX we're called from btree_gc which will be holding other btree
* nodes locked
* */
__bch2_btree_node_wait_on_read(b);
__bch2_btree_node_wait_on_write(b);
six_lock_intent(&b->c.lock, NULL, NULL);
six_lock_write(&b->c.lock, NULL, NULL);
if (btree_node_dirty(b)) {
__bch2_btree_node_write(c, b, 0);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
goto wait_on_io;
}
BUG_ON(btree_node_dirty(b));
mutex_lock(&bc->lock);
btree_node_data_free(c, b);
bch2_btree_node_hash_remove(bc, b);
mutex_unlock(&bc->lock);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
}
void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
struct btree *b)
{
const struct bkey_format *f = &b->format;
struct bset_stats stats;
memset(&stats, 0, sizeof(stats));
bch2_btree_keys_stats(b, &stats);
prt_printf(out, "l %u ", b->c.level);
bch2_bpos_to_text(out, b->data->min_key);
prt_printf(out, " - ");
bch2_bpos_to_text(out, b->data->max_key);
prt_printf(out, ":\n"
" ptrs: ");
bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
prt_printf(out, "\n"
" format: u64s %u fields %u %u %u %u %u\n"
" unpack fn len: %u\n"
" bytes used %zu/%zu (%zu%% full)\n"
" sib u64s: %u, %u (merge threshold %u)\n"
" nr packed keys %u\n"
" nr unpacked keys %u\n"
" floats %zu\n"
" failed unpacked %zu\n",
f->key_u64s,
f->bits_per_field[0],
f->bits_per_field[1],
f->bits_per_field[2],
f->bits_per_field[3],
f->bits_per_field[4],
b->unpack_fn_len,
b->nr.live_u64s * sizeof(u64),
btree_bytes(c) - sizeof(struct btree_node),
b->nr.live_u64s * 100 / btree_max_u64s(c),
b->sib_u64s[0],
b->sib_u64s[1],
c->btree_foreground_merge_threshold,
b->nr.packed_keys,
b->nr.unpacked_keys,
stats.floats,
stats.failed);
}
void bch2_btree_cache_to_text(struct printbuf *out, struct bch_fs *c)
{
prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
}