| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "bkey_buf.h" |
| #include "btree_cache.h" |
| #include "btree_io.h" |
| #include "btree_iter.h" |
| #include "btree_locking.h" |
| #include "debug.h" |
| #include "errcode.h" |
| #include "error.h" |
| #include "trace.h" |
| |
| #include <linux/prefetch.h> |
| #include <linux/sched/mm.h> |
| |
| const char * const bch2_btree_node_flags[] = { |
| #define x(f) #f, |
| BTREE_FLAGS() |
| #undef x |
| NULL |
| }; |
| |
| void bch2_recalc_btree_reserve(struct bch_fs *c) |
| { |
| unsigned i, reserve = 16; |
| |
| if (!c->btree_roots[0].b) |
| reserve += 8; |
| |
| for (i = 0; i < BTREE_ID_NR; i++) |
| if (c->btree_roots[i].b) |
| reserve += min_t(unsigned, 1, |
| c->btree_roots[i].b->c.level) * 8; |
| |
| c->btree_cache.reserve = reserve; |
| } |
| |
| static inline unsigned btree_cache_can_free(struct btree_cache *bc) |
| { |
| return max_t(int, 0, bc->used - bc->reserve); |
| } |
| |
| static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b) |
| { |
| if (b->c.lock.readers) |
| list_move(&b->list, &bc->freed_pcpu); |
| else |
| list_move(&b->list, &bc->freed_nonpcpu); |
| } |
| |
| static void btree_node_data_free(struct bch_fs *c, struct btree *b) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| |
| EBUG_ON(btree_node_write_in_flight(b)); |
| |
| kvpfree(b->data, btree_bytes(c)); |
| b->data = NULL; |
| #ifdef __KERNEL__ |
| kvfree(b->aux_data); |
| #else |
| munmap(b->aux_data, btree_aux_data_bytes(b)); |
| #endif |
| b->aux_data = NULL; |
| |
| bc->used--; |
| |
| btree_node_to_freedlist(bc, b); |
| } |
| |
| static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg, |
| const void *obj) |
| { |
| const struct btree *b = obj; |
| const u64 *v = arg->key; |
| |
| return b->hash_val == *v ? 0 : 1; |
| } |
| |
| static const struct rhashtable_params bch_btree_cache_params = { |
| .head_offset = offsetof(struct btree, hash), |
| .key_offset = offsetof(struct btree, hash_val), |
| .key_len = sizeof(u64), |
| .obj_cmpfn = bch2_btree_cache_cmp_fn, |
| }; |
| |
| static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp) |
| { |
| BUG_ON(b->data || b->aux_data); |
| |
| b->data = kvpmalloc(btree_bytes(c), gfp); |
| if (!b->data) |
| return -ENOMEM; |
| #ifdef __KERNEL__ |
| b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp); |
| #else |
| b->aux_data = mmap(NULL, btree_aux_data_bytes(b), |
| PROT_READ|PROT_WRITE|PROT_EXEC, |
| MAP_PRIVATE|MAP_ANONYMOUS, 0, 0); |
| if (b->aux_data == MAP_FAILED) |
| b->aux_data = NULL; |
| #endif |
| if (!b->aux_data) { |
| kvpfree(b->data, btree_bytes(c)); |
| b->data = NULL; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static struct btree *__btree_node_mem_alloc(struct bch_fs *c) |
| { |
| struct btree *b = kzalloc(sizeof(struct btree), GFP_KERNEL); |
| if (!b) |
| return NULL; |
| |
| bkey_btree_ptr_init(&b->key); |
| six_lock_init(&b->c.lock); |
| lockdep_set_novalidate_class(&b->c.lock); |
| INIT_LIST_HEAD(&b->list); |
| INIT_LIST_HEAD(&b->write_blocked); |
| b->byte_order = ilog2(btree_bytes(c)); |
| return b; |
| } |
| |
| struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b = __btree_node_mem_alloc(c); |
| if (!b) |
| return NULL; |
| |
| if (btree_node_data_alloc(c, b, GFP_KERNEL)) { |
| kfree(b); |
| return NULL; |
| } |
| |
| bc->used++; |
| list_add(&b->list, &bc->freeable); |
| return b; |
| } |
| |
| /* Btree in memory cache - hash table */ |
| |
| void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b) |
| { |
| int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params); |
| BUG_ON(ret); |
| |
| /* Cause future lookups for this node to fail: */ |
| b->hash_val = 0; |
| |
| six_lock_wakeup_all(&b->c.lock); |
| } |
| |
| int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b) |
| { |
| BUG_ON(b->hash_val); |
| b->hash_val = btree_ptr_hash_val(&b->key); |
| |
| return rhashtable_lookup_insert_fast(&bc->table, &b->hash, |
| bch_btree_cache_params); |
| } |
| |
| int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b, |
| unsigned level, enum btree_id id) |
| { |
| int ret; |
| |
| b->c.level = level; |
| b->c.btree_id = id; |
| |
| mutex_lock(&bc->lock); |
| ret = __bch2_btree_node_hash_insert(bc, b); |
| if (!ret) |
| list_add(&b->list, &bc->live); |
| mutex_unlock(&bc->lock); |
| |
| return ret; |
| } |
| |
| __flatten |
| static inline struct btree *btree_cache_find(struct btree_cache *bc, |
| const struct bkey_i *k) |
| { |
| u64 v = btree_ptr_hash_val(k); |
| |
| return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params); |
| } |
| |
| /* |
| * this version is for btree nodes that have already been freed (we're not |
| * reaping a real btree node) |
| */ |
| static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| int ret = 0; |
| |
| lockdep_assert_held(&bc->lock); |
| wait_on_io: |
| if (b->flags & ((1U << BTREE_NODE_dirty)| |
| (1U << BTREE_NODE_read_in_flight)| |
| (1U << BTREE_NODE_write_in_flight))) { |
| if (!flush) |
| return -ENOMEM; |
| |
| /* XXX: waiting on IO with btree cache lock held */ |
| bch2_btree_node_wait_on_read(b); |
| bch2_btree_node_wait_on_write(b); |
| } |
| |
| if (!six_trylock_intent(&b->c.lock)) |
| return -ENOMEM; |
| |
| if (!six_trylock_write(&b->c.lock)) |
| goto out_unlock_intent; |
| |
| /* recheck under lock */ |
| if (b->flags & ((1U << BTREE_NODE_read_in_flight)| |
| (1U << BTREE_NODE_write_in_flight))) { |
| if (!flush) |
| goto out_unlock; |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| goto wait_on_io; |
| } |
| |
| if (btree_node_noevict(b) || |
| btree_node_write_blocked(b) || |
| btree_node_will_make_reachable(b)) |
| goto out_unlock; |
| |
| if (btree_node_dirty(b)) { |
| if (!flush) |
| goto out_unlock; |
| /* |
| * Using the underscore version because we don't want to compact |
| * bsets after the write, since this node is about to be evicted |
| * - unless btree verify mode is enabled, since it runs out of |
| * the post write cleanup: |
| */ |
| if (bch2_verify_btree_ondisk) |
| bch2_btree_node_write(c, b, SIX_LOCK_intent, 0); |
| else |
| __bch2_btree_node_write(c, b, 0); |
| |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| goto wait_on_io; |
| } |
| out: |
| if (b->hash_val && !ret) |
| trace_btree_node_reap(c, b); |
| return ret; |
| out_unlock: |
| six_unlock_write(&b->c.lock); |
| out_unlock_intent: |
| six_unlock_intent(&b->c.lock); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| static int btree_node_reclaim(struct bch_fs *c, struct btree *b) |
| { |
| return __btree_node_reclaim(c, b, false); |
| } |
| |
| static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b) |
| { |
| return __btree_node_reclaim(c, b, true); |
| } |
| |
| static unsigned long bch2_btree_cache_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct bch_fs *c = container_of(shrink, struct bch_fs, |
| btree_cache.shrink); |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b, *t; |
| unsigned long nr = sc->nr_to_scan; |
| unsigned long can_free = 0; |
| unsigned long touched = 0; |
| unsigned long freed = 0; |
| unsigned i, flags; |
| unsigned long ret = SHRINK_STOP; |
| |
| if (bch2_btree_shrinker_disabled) |
| return SHRINK_STOP; |
| |
| /* Return -1 if we can't do anything right now */ |
| if (sc->gfp_mask & __GFP_FS) |
| mutex_lock(&bc->lock); |
| else if (!mutex_trylock(&bc->lock)) |
| goto out_norestore; |
| |
| flags = memalloc_nofs_save(); |
| |
| /* |
| * It's _really_ critical that we don't free too many btree nodes - we |
| * have to always leave ourselves a reserve. The reserve is how we |
| * guarantee that allocating memory for a new btree node can always |
| * succeed, so that inserting keys into the btree can always succeed and |
| * IO can always make forward progress: |
| */ |
| can_free = btree_cache_can_free(bc); |
| nr = min_t(unsigned long, nr, can_free); |
| |
| i = 0; |
| list_for_each_entry_safe(b, t, &bc->freeable, list) { |
| /* |
| * Leave a few nodes on the freeable list, so that a btree split |
| * won't have to hit the system allocator: |
| */ |
| if (++i <= 3) |
| continue; |
| |
| touched++; |
| |
| if (touched >= nr) |
| break; |
| |
| if (!btree_node_reclaim(c, b)) { |
| btree_node_data_free(c, b); |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| freed++; |
| } |
| } |
| restart: |
| list_for_each_entry_safe(b, t, &bc->live, list) { |
| /* tweak this */ |
| if (btree_node_accessed(b)) { |
| clear_btree_node_accessed(b); |
| goto touched; |
| } |
| |
| if (!btree_node_reclaim(c, b)) { |
| /* can't call bch2_btree_node_hash_remove under lock */ |
| freed++; |
| if (&t->list != &bc->live) |
| list_move_tail(&bc->live, &t->list); |
| |
| btree_node_data_free(c, b); |
| mutex_unlock(&bc->lock); |
| |
| bch2_btree_node_hash_remove(bc, b); |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| |
| if (freed >= nr) |
| goto out; |
| |
| if (sc->gfp_mask & __GFP_FS) |
| mutex_lock(&bc->lock); |
| else if (!mutex_trylock(&bc->lock)) |
| goto out; |
| goto restart; |
| } else { |
| continue; |
| } |
| touched: |
| touched++; |
| |
| if (touched >= nr) { |
| /* Save position */ |
| if (&t->list != &bc->live) |
| list_move_tail(&bc->live, &t->list); |
| break; |
| } |
| } |
| |
| mutex_unlock(&bc->lock); |
| out: |
| ret = freed; |
| memalloc_nofs_restore(flags); |
| out_norestore: |
| trace_btree_cache_scan(sc->nr_to_scan, can_free, ret); |
| return ret; |
| } |
| |
| static unsigned long bch2_btree_cache_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct bch_fs *c = container_of(shrink, struct bch_fs, |
| btree_cache.shrink); |
| struct btree_cache *bc = &c->btree_cache; |
| |
| if (bch2_btree_shrinker_disabled) |
| return 0; |
| |
| return btree_cache_can_free(bc); |
| } |
| |
| void bch2_fs_btree_cache_exit(struct bch_fs *c) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| unsigned i, flags; |
| |
| if (bc->shrink.list.next) |
| unregister_shrinker(&bc->shrink); |
| |
| /* vfree() can allocate memory: */ |
| flags = memalloc_nofs_save(); |
| mutex_lock(&bc->lock); |
| |
| if (c->verify_data) |
| list_move(&c->verify_data->list, &bc->live); |
| |
| kvpfree(c->verify_ondisk, btree_bytes(c)); |
| |
| for (i = 0; i < BTREE_ID_NR; i++) |
| if (c->btree_roots[i].b) |
| list_add(&c->btree_roots[i].b->list, &bc->live); |
| |
| list_splice(&bc->freeable, &bc->live); |
| |
| while (!list_empty(&bc->live)) { |
| b = list_first_entry(&bc->live, struct btree, list); |
| |
| BUG_ON(btree_node_read_in_flight(b) || |
| btree_node_write_in_flight(b)); |
| |
| if (btree_node_dirty(b)) |
| bch2_btree_complete_write(c, b, btree_current_write(b)); |
| clear_btree_node_dirty_acct(c, b); |
| |
| btree_node_data_free(c, b); |
| } |
| |
| BUG_ON(atomic_read(&c->btree_cache.dirty)); |
| |
| list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu); |
| |
| while (!list_empty(&bc->freed_nonpcpu)) { |
| b = list_first_entry(&bc->freed_nonpcpu, struct btree, list); |
| list_del(&b->list); |
| six_lock_pcpu_free(&b->c.lock); |
| kfree(b); |
| } |
| |
| mutex_unlock(&bc->lock); |
| memalloc_nofs_restore(flags); |
| |
| if (bc->table_init_done) |
| rhashtable_destroy(&bc->table); |
| } |
| |
| int bch2_fs_btree_cache_init(struct bch_fs *c) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| unsigned i; |
| int ret = 0; |
| |
| pr_verbose_init(c->opts, ""); |
| |
| ret = rhashtable_init(&bc->table, &bch_btree_cache_params); |
| if (ret) |
| goto out; |
| |
| bc->table_init_done = true; |
| |
| bch2_recalc_btree_reserve(c); |
| |
| for (i = 0; i < bc->reserve; i++) |
| if (!__bch2_btree_node_mem_alloc(c)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| list_splice_init(&bc->live, &bc->freeable); |
| |
| mutex_init(&c->verify_lock); |
| |
| bc->shrink.count_objects = bch2_btree_cache_count; |
| bc->shrink.scan_objects = bch2_btree_cache_scan; |
| bc->shrink.seeks = 4; |
| ret = register_shrinker(&bc->shrink, "%s/btree_cache", c->name); |
| out: |
| pr_verbose_init(c->opts, "ret %i", ret); |
| return ret; |
| } |
| |
| void bch2_fs_btree_cache_init_early(struct btree_cache *bc) |
| { |
| mutex_init(&bc->lock); |
| INIT_LIST_HEAD(&bc->live); |
| INIT_LIST_HEAD(&bc->freeable); |
| INIT_LIST_HEAD(&bc->freed_pcpu); |
| INIT_LIST_HEAD(&bc->freed_nonpcpu); |
| } |
| |
| /* |
| * We can only have one thread cannibalizing other cached btree nodes at a time, |
| * or we'll deadlock. We use an open coded mutex to ensure that, which a |
| * cannibalize_bucket() will take. This means every time we unlock the root of |
| * the btree, we need to release this lock if we have it held. |
| */ |
| void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| |
| if (bc->alloc_lock == current) { |
| trace_btree_node_cannibalize_unlock(c); |
| bc->alloc_lock = NULL; |
| closure_wake_up(&bc->alloc_wait); |
| } |
| } |
| |
| int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct task_struct *old; |
| |
| old = cmpxchg(&bc->alloc_lock, NULL, current); |
| if (old == NULL || old == current) |
| goto success; |
| |
| if (!cl) { |
| trace_btree_node_cannibalize_lock_fail(c); |
| return -ENOMEM; |
| } |
| |
| closure_wait(&bc->alloc_wait, cl); |
| |
| /* Try again, after adding ourselves to waitlist */ |
| old = cmpxchg(&bc->alloc_lock, NULL, current); |
| if (old == NULL || old == current) { |
| /* We raced */ |
| closure_wake_up(&bc->alloc_wait); |
| goto success; |
| } |
| |
| trace_btree_node_cannibalize_lock_fail(c); |
| return -EAGAIN; |
| |
| success: |
| trace_btree_node_cannibalize_lock(c); |
| return 0; |
| } |
| |
| static struct btree *btree_node_cannibalize(struct bch_fs *c) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| |
| list_for_each_entry_reverse(b, &bc->live, list) |
| if (!btree_node_reclaim(c, b)) |
| return b; |
| |
| while (1) { |
| list_for_each_entry_reverse(b, &bc->live, list) |
| if (!btree_node_write_and_reclaim(c, b)) |
| return b; |
| |
| /* |
| * Rare case: all nodes were intent-locked. |
| * Just busy-wait. |
| */ |
| WARN_ONCE(1, "btree cache cannibalize failed\n"); |
| cond_resched(); |
| } |
| } |
| |
| struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c, bool pcpu_read_locks) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct list_head *freed = pcpu_read_locks |
| ? &bc->freed_pcpu |
| : &bc->freed_nonpcpu; |
| struct btree *b, *b2; |
| u64 start_time = local_clock(); |
| unsigned flags; |
| |
| flags = memalloc_nofs_save(); |
| mutex_lock(&bc->lock); |
| |
| /* |
| * We never free struct btree itself, just the memory that holds the on |
| * disk node. Check the freed list before allocating a new one: |
| */ |
| list_for_each_entry(b, freed, list) |
| if (!btree_node_reclaim(c, b)) { |
| list_del_init(&b->list); |
| goto got_node; |
| } |
| |
| b = __btree_node_mem_alloc(c); |
| if (!b) |
| goto err_locked; |
| |
| if (pcpu_read_locks) |
| six_lock_pcpu_alloc(&b->c.lock); |
| |
| BUG_ON(!six_trylock_intent(&b->c.lock)); |
| BUG_ON(!six_trylock_write(&b->c.lock)); |
| got_node: |
| |
| /* |
| * btree_free() doesn't free memory; it sticks the node on the end of |
| * the list. Check if there's any freed nodes there: |
| */ |
| list_for_each_entry(b2, &bc->freeable, list) |
| if (!btree_node_reclaim(c, b2)) { |
| swap(b->data, b2->data); |
| swap(b->aux_data, b2->aux_data); |
| btree_node_to_freedlist(bc, b2); |
| six_unlock_write(&b2->c.lock); |
| six_unlock_intent(&b2->c.lock); |
| goto got_mem; |
| } |
| |
| mutex_unlock(&bc->lock); |
| |
| if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL)) |
| goto err; |
| |
| mutex_lock(&bc->lock); |
| bc->used++; |
| got_mem: |
| mutex_unlock(&bc->lock); |
| |
| BUG_ON(btree_node_hashed(b)); |
| BUG_ON(btree_node_dirty(b)); |
| BUG_ON(btree_node_write_in_flight(b)); |
| out: |
| b->flags = 0; |
| b->written = 0; |
| b->nsets = 0; |
| b->sib_u64s[0] = 0; |
| b->sib_u64s[1] = 0; |
| b->whiteout_u64s = 0; |
| bch2_btree_keys_init(b); |
| set_btree_node_accessed(b); |
| |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc], |
| start_time); |
| |
| memalloc_nofs_restore(flags); |
| return b; |
| err: |
| mutex_lock(&bc->lock); |
| err_locked: |
| /* Try to cannibalize another cached btree node: */ |
| if (bc->alloc_lock == current) { |
| b2 = btree_node_cannibalize(c); |
| bch2_btree_node_hash_remove(bc, b2); |
| |
| if (b) { |
| swap(b->data, b2->data); |
| swap(b->aux_data, b2->aux_data); |
| btree_node_to_freedlist(bc, b2); |
| six_unlock_write(&b2->c.lock); |
| six_unlock_intent(&b2->c.lock); |
| } else { |
| b = b2; |
| list_del_init(&b->list); |
| } |
| |
| mutex_unlock(&bc->lock); |
| |
| trace_btree_node_cannibalize(c); |
| goto out; |
| } |
| |
| mutex_unlock(&bc->lock); |
| memalloc_nofs_restore(flags); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* Slowpath, don't want it inlined into btree_iter_traverse() */ |
| static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| const struct bkey_i *k, |
| enum btree_id btree_id, |
| unsigned level, |
| enum six_lock_type lock_type, |
| bool sync) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| u32 seq; |
| |
| BUG_ON(level + 1 >= BTREE_MAX_DEPTH); |
| /* |
| * Parent node must be locked, else we could read in a btree node that's |
| * been freed: |
| */ |
| if (trans && !bch2_btree_node_relock(trans, path, level + 1)) { |
| trace_trans_restart_relock_parent_for_fill(trans->fn, |
| _THIS_IP_, btree_id, &path->pos); |
| return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock)); |
| } |
| |
| b = bch2_btree_node_mem_alloc(c, level != 0); |
| |
| if (trans && b == ERR_PTR(-ENOMEM)) { |
| trans->memory_allocation_failure = true; |
| trace_trans_restart_memory_allocation_failure(trans->fn, |
| _THIS_IP_, btree_id, &path->pos); |
| |
| return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail)); |
| } |
| |
| if (IS_ERR(b)) |
| return b; |
| |
| bkey_copy(&b->key, k); |
| if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) { |
| /* raced with another fill: */ |
| |
| /* mark as unhashed... */ |
| b->hash_val = 0; |
| |
| mutex_lock(&bc->lock); |
| list_add(&b->list, &bc->freeable); |
| mutex_unlock(&bc->lock); |
| |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| return NULL; |
| } |
| |
| set_btree_node_read_in_flight(b); |
| |
| six_unlock_write(&b->c.lock); |
| seq = b->c.lock.state.seq; |
| six_unlock_intent(&b->c.lock); |
| |
| /* Unlock before doing IO: */ |
| if (trans && sync) |
| bch2_trans_unlock(trans); |
| |
| bch2_btree_node_read(c, b, sync); |
| |
| if (!sync) |
| return NULL; |
| |
| if (trans) { |
| int ret = bch2_trans_relock(trans) ?: |
| bch2_btree_path_relock_intent(trans, path); |
| if (ret) { |
| BUG_ON(!trans->restarted); |
| return ERR_PTR(ret); |
| } |
| } |
| |
| if (!six_relock_type(&b->c.lock, lock_type, seq)) { |
| trace_trans_restart_relock_after_fill(trans->fn, _THIS_IP_, |
| btree_id, &path->pos); |
| return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill)); |
| } |
| |
| return b; |
| } |
| |
| static int lock_node_check_fn(struct six_lock *lock, void *p) |
| { |
| struct btree *b = container_of(lock, struct btree, c.lock); |
| const struct bkey_i *k = p; |
| |
| if (b->hash_val != btree_ptr_hash_val(k)) |
| return BCH_ERR_lock_fail_node_reused; |
| return 0; |
| } |
| |
| static noinline void btree_bad_header(struct bch_fs *c, struct btree *b) |
| { |
| struct printbuf buf = PRINTBUF; |
| |
| if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) |
| return; |
| |
| prt_printf(&buf, |
| "btree node header doesn't match ptr\n" |
| "btree %s level %u\n" |
| "ptr: ", |
| bch2_btree_ids[b->c.btree_id], b->c.level); |
| bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); |
| |
| prt_printf(&buf, "\nheader: btree %s level %llu\n" |
| "min ", |
| bch2_btree_ids[BTREE_NODE_ID(b->data)], |
| BTREE_NODE_LEVEL(b->data)); |
| bch2_bpos_to_text(&buf, b->data->min_key); |
| |
| prt_printf(&buf, "\nmax "); |
| bch2_bpos_to_text(&buf, b->data->max_key); |
| |
| bch2_fs_inconsistent(c, "%s", buf.buf); |
| printbuf_exit(&buf); |
| } |
| |
| static inline void btree_check_header(struct bch_fs *c, struct btree *b) |
| { |
| if (b->c.btree_id != BTREE_NODE_ID(b->data) || |
| b->c.level != BTREE_NODE_LEVEL(b->data) || |
| bpos_cmp(b->data->max_key, b->key.k.p) || |
| (b->key.k.type == KEY_TYPE_btree_ptr_v2 && |
| bpos_cmp(b->data->min_key, |
| bkey_i_to_btree_ptr_v2(&b->key)->v.min_key))) |
| btree_bad_header(c, b); |
| } |
| |
| /** |
| * bch_btree_node_get - find a btree node in the cache and lock it, reading it |
| * in from disk if necessary. |
| * |
| * If IO is necessary and running under generic_make_request, returns -EAGAIN. |
| * |
| * The btree node will have either a read or a write lock held, depending on |
| * the @write parameter. |
| */ |
| struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path, |
| const struct bkey_i *k, unsigned level, |
| enum six_lock_type lock_type, |
| unsigned long trace_ip) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| struct bset_tree *t; |
| int ret; |
| |
| EBUG_ON(level >= BTREE_MAX_DEPTH); |
| |
| b = btree_node_mem_ptr(k); |
| |
| /* |
| * Check b->hash_val _before_ calling btree_node_lock() - this might not |
| * be the node we want anymore, and trying to lock the wrong node could |
| * cause an unneccessary transaction restart: |
| */ |
| if (likely(c->opts.btree_node_mem_ptr_optimization && |
| b && |
| b->hash_val == btree_ptr_hash_val(k))) |
| goto lock_node; |
| retry: |
| b = btree_cache_find(bc, k); |
| if (unlikely(!b)) { |
| /* |
| * We must have the parent locked to call bch2_btree_node_fill(), |
| * else we could read in a btree node from disk that's been |
| * freed: |
| */ |
| b = bch2_btree_node_fill(c, trans, path, k, path->btree_id, |
| level, lock_type, true); |
| |
| /* We raced and found the btree node in the cache */ |
| if (!b) |
| goto retry; |
| |
| if (IS_ERR(b)) |
| return b; |
| } else { |
| lock_node: |
| /* |
| * There's a potential deadlock with splits and insertions into |
| * interior nodes we have to avoid: |
| * |
| * The other thread might be holding an intent lock on the node |
| * we want, and they want to update its parent node so they're |
| * going to upgrade their intent lock on the parent node to a |
| * write lock. |
| * |
| * But if we're holding a read lock on the parent, and we're |
| * trying to get the intent lock they're holding, we deadlock. |
| * |
| * So to avoid this we drop the read locks on parent nodes when |
| * we're starting to take intent locks - and handle the race. |
| * |
| * The race is that they might be about to free the node we |
| * want, and dropping our read lock on the parent node lets them |
| * update the parent marking the node we want as freed, and then |
| * free it: |
| * |
| * To guard against this, btree nodes are evicted from the cache |
| * when they're freed - and b->hash_val is zeroed out, which we |
| * check for after we lock the node. |
| * |
| * Then, bch2_btree_node_relock() on the parent will fail - because |
| * the parent was modified, when the pointer to the node we want |
| * was removed - and we'll bail out: |
| */ |
| if (btree_node_read_locked(path, level + 1)) |
| btree_node_unlock(trans, path, level + 1); |
| |
| ret = btree_node_lock(trans, path, b, k->k.p, level, lock_type, |
| lock_node_check_fn, (void *) k, trace_ip); |
| if (unlikely(ret)) { |
| if (bch2_err_matches(ret, BCH_ERR_lock_fail_node_reused)) |
| goto retry; |
| if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) |
| return ERR_PTR(ret); |
| BUG(); |
| } |
| |
| if (unlikely(b->hash_val != btree_ptr_hash_val(k) || |
| b->c.level != level || |
| race_fault())) { |
| six_unlock_type(&b->c.lock, lock_type); |
| if (bch2_btree_node_relock(trans, path, level + 1)) |
| goto retry; |
| |
| trace_trans_restart_btree_node_reused(trans->fn, |
| trace_ip, |
| path->btree_id, |
| &path->pos); |
| return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused)); |
| } |
| } |
| |
| if (unlikely(btree_node_read_in_flight(b))) { |
| u32 seq = b->c.lock.state.seq; |
| |
| six_unlock_type(&b->c.lock, lock_type); |
| bch2_trans_unlock(trans); |
| |
| bch2_btree_node_wait_on_read(b); |
| |
| /* |
| * should_be_locked is not set on this path yet, so we need to |
| * relock it specifically: |
| */ |
| if (trans) { |
| int ret = bch2_trans_relock(trans) ?: |
| bch2_btree_path_relock_intent(trans, path); |
| if (ret) { |
| BUG_ON(!trans->restarted); |
| return ERR_PTR(ret); |
| } |
| } |
| |
| if (!six_relock_type(&b->c.lock, lock_type, seq)) |
| goto retry; |
| } |
| |
| prefetch(b->aux_data); |
| |
| for_each_bset(b, t) { |
| void *p = (u64 *) b->aux_data + t->aux_data_offset; |
| |
| prefetch(p + L1_CACHE_BYTES * 0); |
| prefetch(p + L1_CACHE_BYTES * 1); |
| prefetch(p + L1_CACHE_BYTES * 2); |
| } |
| |
| /* avoid atomic set bit if it's not needed: */ |
| if (!btree_node_accessed(b)) |
| set_btree_node_accessed(b); |
| |
| if (unlikely(btree_node_read_error(b))) { |
| six_unlock_type(&b->c.lock, lock_type); |
| return ERR_PTR(-EIO); |
| } |
| |
| EBUG_ON(b->c.btree_id != path->btree_id); |
| EBUG_ON(BTREE_NODE_LEVEL(b->data) != level); |
| btree_check_header(c, b); |
| |
| return b; |
| } |
| |
| struct btree *bch2_btree_node_get_noiter(struct bch_fs *c, |
| const struct bkey_i *k, |
| enum btree_id btree_id, |
| unsigned level, |
| bool nofill) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| struct bset_tree *t; |
| int ret; |
| |
| EBUG_ON(level >= BTREE_MAX_DEPTH); |
| |
| if (c->opts.btree_node_mem_ptr_optimization) { |
| b = btree_node_mem_ptr(k); |
| if (b) |
| goto lock_node; |
| } |
| retry: |
| b = btree_cache_find(bc, k); |
| if (unlikely(!b)) { |
| if (nofill) |
| goto out; |
| |
| b = bch2_btree_node_fill(c, NULL, NULL, k, btree_id, |
| level, SIX_LOCK_read, true); |
| |
| /* We raced and found the btree node in the cache */ |
| if (!b) |
| goto retry; |
| |
| if (IS_ERR(b) && |
| !bch2_btree_cache_cannibalize_lock(c, NULL)) |
| goto retry; |
| |
| if (IS_ERR(b)) |
| goto out; |
| } else { |
| lock_node: |
| ret = six_lock_read(&b->c.lock, lock_node_check_fn, (void *) k); |
| if (ret) |
| goto retry; |
| |
| if (unlikely(b->hash_val != btree_ptr_hash_val(k) || |
| b->c.btree_id != btree_id || |
| b->c.level != level)) { |
| six_unlock_read(&b->c.lock); |
| goto retry; |
| } |
| } |
| |
| /* XXX: waiting on IO with btree locks held: */ |
| __bch2_btree_node_wait_on_read(b); |
| |
| prefetch(b->aux_data); |
| |
| for_each_bset(b, t) { |
| void *p = (u64 *) b->aux_data + t->aux_data_offset; |
| |
| prefetch(p + L1_CACHE_BYTES * 0); |
| prefetch(p + L1_CACHE_BYTES * 1); |
| prefetch(p + L1_CACHE_BYTES * 2); |
| } |
| |
| /* avoid atomic set bit if it's not needed: */ |
| if (!btree_node_accessed(b)) |
| set_btree_node_accessed(b); |
| |
| if (unlikely(btree_node_read_error(b))) { |
| six_unlock_read(&b->c.lock); |
| b = ERR_PTR(-EIO); |
| goto out; |
| } |
| |
| EBUG_ON(b->c.btree_id != btree_id); |
| EBUG_ON(BTREE_NODE_LEVEL(b->data) != level); |
| btree_check_header(c, b); |
| out: |
| bch2_btree_cache_cannibalize_unlock(c); |
| return b; |
| } |
| |
| int bch2_btree_node_prefetch(struct bch_fs *c, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| const struct bkey_i *k, |
| enum btree_id btree_id, unsigned level) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| |
| BUG_ON(trans && !btree_node_locked(path, level + 1)); |
| BUG_ON(level >= BTREE_MAX_DEPTH); |
| |
| b = btree_cache_find(bc, k); |
| if (b) |
| return 0; |
| |
| b = bch2_btree_node_fill(c, trans, path, k, btree_id, |
| level, SIX_LOCK_read, false); |
| return PTR_ERR_OR_ZERO(b); |
| } |
| |
| void bch2_btree_node_evict(struct bch_fs *c, const struct bkey_i *k) |
| { |
| struct btree_cache *bc = &c->btree_cache; |
| struct btree *b; |
| |
| b = btree_cache_find(bc, k); |
| if (!b) |
| return; |
| wait_on_io: |
| /* not allowed to wait on io with btree locks held: */ |
| |
| /* XXX we're called from btree_gc which will be holding other btree |
| * nodes locked |
| * */ |
| __bch2_btree_node_wait_on_read(b); |
| __bch2_btree_node_wait_on_write(b); |
| |
| six_lock_intent(&b->c.lock, NULL, NULL); |
| six_lock_write(&b->c.lock, NULL, NULL); |
| |
| if (btree_node_dirty(b)) { |
| __bch2_btree_node_write(c, b, 0); |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| goto wait_on_io; |
| } |
| |
| BUG_ON(btree_node_dirty(b)); |
| |
| mutex_lock(&bc->lock); |
| btree_node_data_free(c, b); |
| bch2_btree_node_hash_remove(bc, b); |
| mutex_unlock(&bc->lock); |
| |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| } |
| |
| void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, |
| struct btree *b) |
| { |
| const struct bkey_format *f = &b->format; |
| struct bset_stats stats; |
| |
| memset(&stats, 0, sizeof(stats)); |
| |
| bch2_btree_keys_stats(b, &stats); |
| |
| prt_printf(out, "l %u ", b->c.level); |
| bch2_bpos_to_text(out, b->data->min_key); |
| prt_printf(out, " - "); |
| bch2_bpos_to_text(out, b->data->max_key); |
| prt_printf(out, ":\n" |
| " ptrs: "); |
| bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key)); |
| |
| prt_printf(out, "\n" |
| " format: u64s %u fields %u %u %u %u %u\n" |
| " unpack fn len: %u\n" |
| " bytes used %zu/%zu (%zu%% full)\n" |
| " sib u64s: %u, %u (merge threshold %u)\n" |
| " nr packed keys %u\n" |
| " nr unpacked keys %u\n" |
| " floats %zu\n" |
| " failed unpacked %zu\n", |
| f->key_u64s, |
| f->bits_per_field[0], |
| f->bits_per_field[1], |
| f->bits_per_field[2], |
| f->bits_per_field[3], |
| f->bits_per_field[4], |
| b->unpack_fn_len, |
| b->nr.live_u64s * sizeof(u64), |
| btree_bytes(c) - sizeof(struct btree_node), |
| b->nr.live_u64s * 100 / btree_max_u64s(c), |
| b->sib_u64s[0], |
| b->sib_u64s[1], |
| c->btree_foreground_merge_threshold, |
| b->nr.packed_keys, |
| b->nr.unpacked_keys, |
| stats.floats, |
| stats.failed); |
| } |
| |
| void bch2_btree_cache_to_text(struct printbuf *out, struct bch_fs *c) |
| { |
| prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used); |
| prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty)); |
| prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock); |
| } |