| /* |
| * kaslr.c |
| * |
| * This contains the routines needed to generate a reasonable level of |
| * entropy to choose a randomized kernel base address offset in support |
| * of Kernel Address Space Layout Randomization (KASLR). Additionally |
| * handles walking the physical memory maps (and tracking memory regions |
| * to avoid) in order to select a physical memory location that can |
| * contain the entire properly aligned running kernel image. |
| * |
| */ |
| #include "misc.h" |
| #include "error.h" |
| |
| #include <asm/msr.h> |
| #include <asm/archrandom.h> |
| #include <asm/e820.h> |
| |
| #include <generated/compile.h> |
| #include <linux/module.h> |
| #include <linux/uts.h> |
| #include <linux/utsname.h> |
| #include <generated/utsrelease.h> |
| |
| /* Simplified build-specific string for starting entropy. */ |
| static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" |
| LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; |
| |
| #define I8254_PORT_CONTROL 0x43 |
| #define I8254_PORT_COUNTER0 0x40 |
| #define I8254_CMD_READBACK 0xC0 |
| #define I8254_SELECT_COUNTER0 0x02 |
| #define I8254_STATUS_NOTREADY 0x40 |
| static inline u16 i8254(void) |
| { |
| u16 status, timer; |
| |
| do { |
| outb(I8254_PORT_CONTROL, |
| I8254_CMD_READBACK | I8254_SELECT_COUNTER0); |
| status = inb(I8254_PORT_COUNTER0); |
| timer = inb(I8254_PORT_COUNTER0); |
| timer |= inb(I8254_PORT_COUNTER0) << 8; |
| } while (status & I8254_STATUS_NOTREADY); |
| |
| return timer; |
| } |
| |
| static unsigned long rotate_xor(unsigned long hash, const void *area, |
| size_t size) |
| { |
| size_t i; |
| unsigned long *ptr = (unsigned long *)area; |
| |
| for (i = 0; i < size / sizeof(hash); i++) { |
| /* Rotate by odd number of bits and XOR. */ |
| hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); |
| hash ^= ptr[i]; |
| } |
| |
| return hash; |
| } |
| |
| /* Attempt to create a simple but unpredictable starting entropy. */ |
| static unsigned long get_random_boot(void) |
| { |
| unsigned long hash = 0; |
| |
| hash = rotate_xor(hash, build_str, sizeof(build_str)); |
| hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); |
| |
| return hash; |
| } |
| |
| static unsigned long get_random_long(void) |
| { |
| #ifdef CONFIG_X86_64 |
| const unsigned long mix_const = 0x5d6008cbf3848dd3UL; |
| #else |
| const unsigned long mix_const = 0x3f39e593UL; |
| #endif |
| unsigned long raw, random = get_random_boot(); |
| bool use_i8254 = true; |
| |
| debug_putstr("KASLR using"); |
| |
| if (has_cpuflag(X86_FEATURE_RDRAND)) { |
| debug_putstr(" RDRAND"); |
| if (rdrand_long(&raw)) { |
| random ^= raw; |
| use_i8254 = false; |
| } |
| } |
| |
| if (has_cpuflag(X86_FEATURE_TSC)) { |
| debug_putstr(" RDTSC"); |
| raw = rdtsc(); |
| |
| random ^= raw; |
| use_i8254 = false; |
| } |
| |
| if (use_i8254) { |
| debug_putstr(" i8254"); |
| random ^= i8254(); |
| } |
| |
| /* Circular multiply for better bit diffusion */ |
| asm("mul %3" |
| : "=a" (random), "=d" (raw) |
| : "a" (random), "rm" (mix_const)); |
| random += raw; |
| |
| debug_putstr("...\n"); |
| |
| return random; |
| } |
| |
| struct mem_vector { |
| unsigned long start; |
| unsigned long size; |
| }; |
| |
| #define MEM_AVOID_MAX 4 |
| static struct mem_vector mem_avoid[MEM_AVOID_MAX]; |
| |
| static bool mem_contains(struct mem_vector *region, struct mem_vector *item) |
| { |
| /* Item at least partially before region. */ |
| if (item->start < region->start) |
| return false; |
| /* Item at least partially after region. */ |
| if (item->start + item->size > region->start + region->size) |
| return false; |
| return true; |
| } |
| |
| static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) |
| { |
| /* Item one is entirely before item two. */ |
| if (one->start + one->size <= two->start) |
| return false; |
| /* Item one is entirely after item two. */ |
| if (one->start >= two->start + two->size) |
| return false; |
| return true; |
| } |
| |
| /* |
| * In theroy, KASLR can put the kernel anywhere in area of [16M, 64T). The |
| * mem_avoid array is used to store the ranges that need to be avoided when |
| * KASLR searches for a an appropriate random address. We must avoid any |
| * regions that are unsafe to overlap with during decompression, and other |
| * things like the initrd, cmdline and boot_params. |
| * |
| * How to calculate the unsafe areas is detailed here, and is informed by |
| * the decompression calculations in header.S, and the diagram in misc.c. |
| * |
| * The compressed vmlinux (ZO) plus relocs and the run space of ZO can't be |
| * overwritten by decompression output. |
| * |
| * ZO sits against the end of the decompression buffer, so we can calculate |
| * where text, data, bss, etc of ZO are positioned. |
| * |
| * The follow are already enforced by the code: |
| * - init_size >= kernel_total_size |
| * - input + input_len >= output + output_len |
| * - kernel_total_size could be >= or < output_len |
| * |
| * From this, we can make several observations, illustrated by a diagram: |
| * - init_size >= kernel_total_size |
| * - input + input_len > output + output_len |
| * - kernel_total_size >= output_len |
| * |
| * 0 output input input+input_len output+init_size |
| * | | | | | |
| * | | | | | |
| * |-----|--------|--------|------------------|----|------------|----------| |
| * | | | |
| * | | | |
| * output+init_size-ZO_INIT_SIZE output+output_len output+kernel_total_size |
| * |
| * [output, output+init_size) is for the buffer for decompressing the |
| * compressed kernel (ZO). |
| * |
| * [output, output+kernel_total_size) is for the uncompressed kernel (VO) |
| * and its bss, brk, etc. |
| * [output, output+output_len) is VO plus relocs |
| * |
| * [output+init_size-ZO_INIT_SIZE, output+init_size) is the copied ZO. |
| * [input, input+input_len) is the copied compressed (VO (vmlinux after |
| * objcopy) plus relocs), not the ZO. |
| * |
| * [input+input_len, output+init_size) is [_text, _end) for ZO. That was the |
| * first range in mem_avoid, which included ZO's heap and stack. Also |
| * [input, input+input_size) need be put in mem_avoid array, but since it |
| * is adjacent to the first entry, they can be merged. This is how we get |
| * the first entry in mem_avoid[]. |
| */ |
| static void mem_avoid_init(unsigned long input, unsigned long input_size, |
| unsigned long output) |
| { |
| unsigned long init_size = boot_params->hdr.init_size; |
| u64 initrd_start, initrd_size; |
| u64 cmd_line, cmd_line_size; |
| char *ptr; |
| |
| /* |
| * Avoid the region that is unsafe to overlap during |
| * decompression. |
| */ |
| mem_avoid[0].start = input; |
| mem_avoid[0].size = (output + init_size) - input; |
| |
| /* Avoid initrd. */ |
| initrd_start = (u64)boot_params->ext_ramdisk_image << 32; |
| initrd_start |= boot_params->hdr.ramdisk_image; |
| initrd_size = (u64)boot_params->ext_ramdisk_size << 32; |
| initrd_size |= boot_params->hdr.ramdisk_size; |
| mem_avoid[1].start = initrd_start; |
| mem_avoid[1].size = initrd_size; |
| |
| /* Avoid kernel command line. */ |
| cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; |
| cmd_line |= boot_params->hdr.cmd_line_ptr; |
| /* Calculate size of cmd_line. */ |
| ptr = (char *)(unsigned long)cmd_line; |
| for (cmd_line_size = 0; ptr[cmd_line_size++]; ) |
| ; |
| mem_avoid[2].start = cmd_line; |
| mem_avoid[2].size = cmd_line_size; |
| |
| /* Avoid params */ |
| mem_avoid[3].start = (unsigned long)boot_params; |
| mem_avoid[3].size = sizeof(*boot_params); |
| } |
| |
| /* Does this memory vector overlap a known avoided area? */ |
| static bool mem_avoid_overlap(struct mem_vector *img) |
| { |
| int i; |
| struct setup_data *ptr; |
| |
| for (i = 0; i < MEM_AVOID_MAX; i++) { |
| if (mem_overlaps(img, &mem_avoid[i])) |
| return true; |
| } |
| |
| /* Avoid all entries in the setup_data linked list. */ |
| ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; |
| while (ptr) { |
| struct mem_vector avoid; |
| |
| avoid.start = (unsigned long)ptr; |
| avoid.size = sizeof(*ptr) + ptr->len; |
| |
| if (mem_overlaps(img, &avoid)) |
| return true; |
| |
| ptr = (struct setup_data *)(unsigned long)ptr->next; |
| } |
| |
| return false; |
| } |
| |
| static unsigned long slots[KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN]; |
| static unsigned long slot_max; |
| |
| static void slots_append(unsigned long addr) |
| { |
| /* Overflowing the slots list should be impossible. */ |
| if (slot_max >= KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN) |
| return; |
| |
| slots[slot_max++] = addr; |
| } |
| |
| static unsigned long slots_fetch_random(void) |
| { |
| /* Handle case of no slots stored. */ |
| if (slot_max == 0) |
| return 0; |
| |
| return slots[get_random_long() % slot_max]; |
| } |
| |
| static void process_e820_entry(struct e820entry *entry, |
| unsigned long minimum, |
| unsigned long image_size) |
| { |
| struct mem_vector region, img; |
| |
| /* Skip non-RAM entries. */ |
| if (entry->type != E820_RAM) |
| return; |
| |
| /* Ignore entries entirely above our maximum. */ |
| if (entry->addr >= KERNEL_IMAGE_SIZE) |
| return; |
| |
| /* Ignore entries entirely below our minimum. */ |
| if (entry->addr + entry->size < minimum) |
| return; |
| |
| region.start = entry->addr; |
| region.size = entry->size; |
| |
| /* Potentially raise address to minimum location. */ |
| if (region.start < minimum) |
| region.start = minimum; |
| |
| /* Potentially raise address to meet alignment requirements. */ |
| region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); |
| |
| /* Did we raise the address above the bounds of this e820 region? */ |
| if (region.start > entry->addr + entry->size) |
| return; |
| |
| /* Reduce size by any delta from the original address. */ |
| region.size -= region.start - entry->addr; |
| |
| /* Reduce maximum size to fit end of image within maximum limit. */ |
| if (region.start + region.size > KERNEL_IMAGE_SIZE) |
| region.size = KERNEL_IMAGE_SIZE - region.start; |
| |
| /* Walk each aligned slot and check for avoided areas. */ |
| for (img.start = region.start, img.size = image_size ; |
| mem_contains(®ion, &img) ; |
| img.start += CONFIG_PHYSICAL_ALIGN) { |
| if (mem_avoid_overlap(&img)) |
| continue; |
| slots_append(img.start); |
| } |
| } |
| |
| static unsigned long find_random_addr(unsigned long minimum, |
| unsigned long size) |
| { |
| int i; |
| unsigned long addr; |
| |
| /* Make sure minimum is aligned. */ |
| minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); |
| |
| /* Verify potential e820 positions, appending to slots list. */ |
| for (i = 0; i < boot_params->e820_entries; i++) { |
| process_e820_entry(&boot_params->e820_map[i], minimum, size); |
| } |
| |
| return slots_fetch_random(); |
| } |
| |
| /* |
| * Since this function examines addresses much more numerically, |
| * it takes the input and output pointers as 'unsigned long'. |
| */ |
| unsigned char *choose_random_location(unsigned long input, |
| unsigned long input_size, |
| unsigned long output, |
| unsigned long output_size) |
| { |
| unsigned long choice = output; |
| unsigned long random_addr; |
| |
| #ifdef CONFIG_HIBERNATION |
| if (!cmdline_find_option_bool("kaslr")) { |
| warn("KASLR disabled: 'kaslr' not on cmdline (hibernation selected)."); |
| goto out; |
| } |
| #else |
| if (cmdline_find_option_bool("nokaslr")) { |
| warn("KASLR disabled: 'nokaslr' on cmdline."); |
| goto out; |
| } |
| #endif |
| |
| boot_params->hdr.loadflags |= KASLR_FLAG; |
| |
| /* Record the various known unsafe memory ranges. */ |
| mem_avoid_init(input, input_size, output); |
| |
| /* Walk e820 and find a random address. */ |
| random_addr = find_random_addr(output, output_size); |
| if (!random_addr) { |
| warn("KASLR disabled: could not find suitable E820 region!"); |
| goto out; |
| } |
| |
| /* Always enforce the minimum. */ |
| if (random_addr < choice) |
| goto out; |
| |
| choice = random_addr; |
| out: |
| return (unsigned char *)choice; |
| } |