| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * AMD Secure Encrypted Virtualization (SEV) interface |
| * |
| * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. |
| * |
| * Author: Brijesh Singh <brijesh.singh@amd.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/spinlock_types.h> |
| #include <linux/types.h> |
| #include <linux/mutex.h> |
| #include <linux/delay.h> |
| #include <linux/hw_random.h> |
| #include <linux/ccp.h> |
| #include <linux/firmware.h> |
| #include <linux/panic_notifier.h> |
| #include <linux/gfp.h> |
| #include <linux/cpufeature.h> |
| #include <linux/fs.h> |
| #include <linux/fs_struct.h> |
| #include <linux/psp.h> |
| #include <linux/amd-iommu.h> |
| |
| #include <asm/smp.h> |
| #include <asm/cacheflush.h> |
| #include <asm/e820/types.h> |
| #include <asm/sev.h> |
| |
| #include "psp-dev.h" |
| #include "sev-dev.h" |
| |
| #define DEVICE_NAME "sev" |
| #define SEV_FW_FILE "amd/sev.fw" |
| #define SEV_FW_NAME_SIZE 64 |
| |
| /* Minimum firmware version required for the SEV-SNP support */ |
| #define SNP_MIN_API_MAJOR 1 |
| #define SNP_MIN_API_MINOR 51 |
| |
| /* |
| * Maximum number of firmware-writable buffers that might be specified |
| * in the parameters of a legacy SEV command buffer. |
| */ |
| #define CMD_BUF_FW_WRITABLE_MAX 2 |
| |
| /* Leave room in the descriptor array for an end-of-list indicator. */ |
| #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) |
| |
| static DEFINE_MUTEX(sev_cmd_mutex); |
| static struct sev_misc_dev *misc_dev; |
| |
| static int psp_cmd_timeout = 100; |
| module_param(psp_cmd_timeout, int, 0644); |
| MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); |
| |
| static int psp_probe_timeout = 5; |
| module_param(psp_probe_timeout, int, 0644); |
| MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); |
| |
| static char *init_ex_path; |
| module_param(init_ex_path, charp, 0444); |
| MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); |
| |
| static bool psp_init_on_probe = true; |
| module_param(psp_init_on_probe, bool, 0444); |
| MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); |
| |
| MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ |
| MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ |
| MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ |
| MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ |
| |
| static bool psp_dead; |
| static int psp_timeout; |
| |
| /* Trusted Memory Region (TMR): |
| * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator |
| * to allocate the memory, which will return aligned memory for the specified |
| * allocation order. |
| * |
| * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. |
| */ |
| #define SEV_TMR_SIZE (1024 * 1024) |
| #define SNP_TMR_SIZE (2 * 1024 * 1024) |
| |
| static void *sev_es_tmr; |
| static size_t sev_es_tmr_size = SEV_TMR_SIZE; |
| |
| /* INIT_EX NV Storage: |
| * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page |
| * allocator to allocate the memory, which will return aligned memory for the |
| * specified allocation order. |
| */ |
| #define NV_LENGTH (32 * 1024) |
| static void *sev_init_ex_buffer; |
| |
| /* |
| * SEV_DATA_RANGE_LIST: |
| * Array containing range of pages that firmware transitions to HV-fixed |
| * page state. |
| */ |
| static struct sev_data_range_list *snp_range_list; |
| |
| static inline bool sev_version_greater_or_equal(u8 maj, u8 min) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| |
| if (sev->api_major > maj) |
| return true; |
| |
| if (sev->api_major == maj && sev->api_minor >= min) |
| return true; |
| |
| return false; |
| } |
| |
| static void sev_irq_handler(int irq, void *data, unsigned int status) |
| { |
| struct sev_device *sev = data; |
| int reg; |
| |
| /* Check if it is command completion: */ |
| if (!(status & SEV_CMD_COMPLETE)) |
| return; |
| |
| /* Check if it is SEV command completion: */ |
| reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); |
| if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { |
| sev->int_rcvd = 1; |
| wake_up(&sev->int_queue); |
| } |
| } |
| |
| static int sev_wait_cmd_ioc(struct sev_device *sev, |
| unsigned int *reg, unsigned int timeout) |
| { |
| int ret; |
| |
| /* |
| * If invoked during panic handling, local interrupts are disabled, |
| * so the PSP command completion interrupt can't be used. Poll for |
| * PSP command completion instead. |
| */ |
| if (irqs_disabled()) { |
| unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; |
| |
| /* Poll for SEV command completion: */ |
| while (timeout_usecs--) { |
| *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); |
| if (*reg & PSP_CMDRESP_RESP) |
| return 0; |
| |
| udelay(10); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| ret = wait_event_timeout(sev->int_queue, |
| sev->int_rcvd, timeout * HZ); |
| if (!ret) |
| return -ETIMEDOUT; |
| |
| *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); |
| |
| return 0; |
| } |
| |
| static int sev_cmd_buffer_len(int cmd) |
| { |
| switch (cmd) { |
| case SEV_CMD_INIT: return sizeof(struct sev_data_init); |
| case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); |
| case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); |
| case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); |
| case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); |
| case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); |
| case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); |
| case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); |
| case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); |
| case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); |
| case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); |
| case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); |
| case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); |
| case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); |
| case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); |
| case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); |
| case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); |
| case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); |
| case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); |
| case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); |
| case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); |
| case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); |
| case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); |
| case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); |
| case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); |
| case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); |
| case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); |
| case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); |
| case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); |
| case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); |
| case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); |
| case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); |
| case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); |
| case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); |
| case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); |
| case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); |
| case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); |
| case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); |
| case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); |
| case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); |
| case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); |
| case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); |
| case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); |
| case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); |
| case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); |
| case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); |
| case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); |
| default: return 0; |
| } |
| |
| return 0; |
| } |
| |
| static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) |
| { |
| struct file *fp; |
| struct path root; |
| struct cred *cred; |
| const struct cred *old_cred; |
| |
| task_lock(&init_task); |
| get_fs_root(init_task.fs, &root); |
| task_unlock(&init_task); |
| |
| cred = prepare_creds(); |
| if (!cred) |
| return ERR_PTR(-ENOMEM); |
| cred->fsuid = GLOBAL_ROOT_UID; |
| old_cred = override_creds(cred); |
| |
| fp = file_open_root(&root, filename, flags, mode); |
| path_put(&root); |
| |
| revert_creds(old_cred); |
| |
| return fp; |
| } |
| |
| static int sev_read_init_ex_file(void) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct file *fp; |
| ssize_t nread; |
| |
| lockdep_assert_held(&sev_cmd_mutex); |
| |
| if (!sev_init_ex_buffer) |
| return -EOPNOTSUPP; |
| |
| fp = open_file_as_root(init_ex_path, O_RDONLY, 0); |
| if (IS_ERR(fp)) { |
| int ret = PTR_ERR(fp); |
| |
| if (ret == -ENOENT) { |
| dev_info(sev->dev, |
| "SEV: %s does not exist and will be created later.\n", |
| init_ex_path); |
| ret = 0; |
| } else { |
| dev_err(sev->dev, |
| "SEV: could not open %s for read, error %d\n", |
| init_ex_path, ret); |
| } |
| return ret; |
| } |
| |
| nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); |
| if (nread != NV_LENGTH) { |
| dev_info(sev->dev, |
| "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", |
| NV_LENGTH, nread); |
| } |
| |
| dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); |
| filp_close(fp, NULL); |
| |
| return 0; |
| } |
| |
| static int sev_write_init_ex_file(void) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct file *fp; |
| loff_t offset = 0; |
| ssize_t nwrite; |
| |
| lockdep_assert_held(&sev_cmd_mutex); |
| |
| if (!sev_init_ex_buffer) |
| return 0; |
| |
| fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); |
| if (IS_ERR(fp)) { |
| int ret = PTR_ERR(fp); |
| |
| dev_err(sev->dev, |
| "SEV: could not open file for write, error %d\n", |
| ret); |
| return ret; |
| } |
| |
| nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); |
| vfs_fsync(fp, 0); |
| filp_close(fp, NULL); |
| |
| if (nwrite != NV_LENGTH) { |
| dev_err(sev->dev, |
| "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", |
| NV_LENGTH, nwrite); |
| return -EIO; |
| } |
| |
| dev_dbg(sev->dev, "SEV: write successful to NV file\n"); |
| |
| return 0; |
| } |
| |
| static int sev_write_init_ex_file_if_required(int cmd_id) |
| { |
| lockdep_assert_held(&sev_cmd_mutex); |
| |
| if (!sev_init_ex_buffer) |
| return 0; |
| |
| /* |
| * Only a few platform commands modify the SPI/NV area, but none of the |
| * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, |
| * PEK_CERT_IMPORT, and PDH_GEN do. |
| */ |
| switch (cmd_id) { |
| case SEV_CMD_FACTORY_RESET: |
| case SEV_CMD_INIT_EX: |
| case SEV_CMD_PDH_GEN: |
| case SEV_CMD_PEK_CERT_IMPORT: |
| case SEV_CMD_PEK_GEN: |
| break; |
| default: |
| return 0; |
| } |
| |
| return sev_write_init_ex_file(); |
| } |
| |
| /* |
| * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() |
| * needs snp_reclaim_pages(), so a forward declaration is needed. |
| */ |
| static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); |
| |
| static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) |
| { |
| int ret, err, i; |
| |
| paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); |
| |
| for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { |
| struct sev_data_snp_page_reclaim data = {0}; |
| |
| data.paddr = paddr; |
| |
| if (locked) |
| ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); |
| else |
| ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); |
| |
| if (ret) |
| goto cleanup; |
| |
| ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); |
| if (ret) |
| goto cleanup; |
| } |
| |
| return 0; |
| |
| cleanup: |
| /* |
| * If there was a failure reclaiming the page then it is no longer safe |
| * to release it back to the system; leak it instead. |
| */ |
| snp_leak_pages(__phys_to_pfn(paddr), npages - i); |
| return ret; |
| } |
| |
| static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) |
| { |
| unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; |
| int rc, i; |
| |
| for (i = 0; i < npages; i++, pfn++) { |
| rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); |
| if (rc) |
| goto cleanup; |
| } |
| |
| return 0; |
| |
| cleanup: |
| /* |
| * Try unrolling the firmware state changes by |
| * reclaiming the pages which were already changed to the |
| * firmware state. |
| */ |
| snp_reclaim_pages(paddr, i, locked); |
| |
| return rc; |
| } |
| |
| static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order) |
| { |
| unsigned long npages = 1ul << order, paddr; |
| struct sev_device *sev; |
| struct page *page; |
| |
| if (!psp_master || !psp_master->sev_data) |
| return NULL; |
| |
| page = alloc_pages(gfp_mask, order); |
| if (!page) |
| return NULL; |
| |
| /* If SEV-SNP is initialized then add the page in RMP table. */ |
| sev = psp_master->sev_data; |
| if (!sev->snp_initialized) |
| return page; |
| |
| paddr = __pa((unsigned long)page_address(page)); |
| if (rmp_mark_pages_firmware(paddr, npages, false)) |
| return NULL; |
| |
| return page; |
| } |
| |
| void *snp_alloc_firmware_page(gfp_t gfp_mask) |
| { |
| struct page *page; |
| |
| page = __snp_alloc_firmware_pages(gfp_mask, 0); |
| |
| return page ? page_address(page) : NULL; |
| } |
| EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); |
| |
| static void __snp_free_firmware_pages(struct page *page, int order, bool locked) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| unsigned long paddr, npages = 1ul << order; |
| |
| if (!page) |
| return; |
| |
| paddr = __pa((unsigned long)page_address(page)); |
| if (sev->snp_initialized && |
| snp_reclaim_pages(paddr, npages, locked)) |
| return; |
| |
| __free_pages(page, order); |
| } |
| |
| void snp_free_firmware_page(void *addr) |
| { |
| if (!addr) |
| return; |
| |
| __snp_free_firmware_pages(virt_to_page(addr), 0, false); |
| } |
| EXPORT_SYMBOL_GPL(snp_free_firmware_page); |
| |
| static void *sev_fw_alloc(unsigned long len) |
| { |
| struct page *page; |
| |
| page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len)); |
| if (!page) |
| return NULL; |
| |
| return page_address(page); |
| } |
| |
| /** |
| * struct cmd_buf_desc - descriptors for managing legacy SEV command address |
| * parameters corresponding to buffers that may be written to by firmware. |
| * |
| * @paddr_ptr: pointer to the address parameter in the command buffer which may |
| * need to be saved/restored depending on whether a bounce buffer |
| * is used. In the case of a bounce buffer, the command buffer |
| * needs to be updated with the address of the new bounce buffer |
| * snp_map_cmd_buf_desc() has allocated specifically for it. Must |
| * be NULL if this descriptor is only an end-of-list indicator. |
| * |
| * @paddr_orig: storage for the original address parameter, which can be used to |
| * restore the original value in @paddr_ptr in cases where it is |
| * replaced with the address of a bounce buffer. |
| * |
| * @len: length of buffer located at the address originally stored at @paddr_ptr |
| * |
| * @guest_owned: true if the address corresponds to guest-owned pages, in which |
| * case bounce buffers are not needed. |
| */ |
| struct cmd_buf_desc { |
| u64 *paddr_ptr; |
| u64 paddr_orig; |
| u32 len; |
| bool guest_owned; |
| }; |
| |
| /* |
| * If a legacy SEV command parameter is a memory address, those pages in |
| * turn need to be transitioned to/from firmware-owned before/after |
| * executing the firmware command. |
| * |
| * Additionally, in cases where those pages are not guest-owned, a bounce |
| * buffer is needed in place of the original memory address parameter. |
| * |
| * A set of descriptors are used to keep track of this handling, and |
| * initialized here based on the specific commands being executed. |
| */ |
| static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, |
| struct cmd_buf_desc *desc_list) |
| { |
| switch (cmd) { |
| case SEV_CMD_PDH_CERT_EXPORT: { |
| struct sev_data_pdh_cert_export *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->pdh_cert_address; |
| desc_list[0].len = data->pdh_cert_len; |
| desc_list[1].paddr_ptr = &data->cert_chain_address; |
| desc_list[1].len = data->cert_chain_len; |
| break; |
| } |
| case SEV_CMD_GET_ID: { |
| struct sev_data_get_id *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->address; |
| desc_list[0].len = data->len; |
| break; |
| } |
| case SEV_CMD_PEK_CSR: { |
| struct sev_data_pek_csr *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->address; |
| desc_list[0].len = data->len; |
| break; |
| } |
| case SEV_CMD_LAUNCH_UPDATE_DATA: { |
| struct sev_data_launch_update_data *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->address; |
| desc_list[0].len = data->len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| case SEV_CMD_LAUNCH_UPDATE_VMSA: { |
| struct sev_data_launch_update_vmsa *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->address; |
| desc_list[0].len = data->len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| case SEV_CMD_LAUNCH_MEASURE: { |
| struct sev_data_launch_measure *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->address; |
| desc_list[0].len = data->len; |
| break; |
| } |
| case SEV_CMD_LAUNCH_UPDATE_SECRET: { |
| struct sev_data_launch_secret *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->guest_address; |
| desc_list[0].len = data->guest_len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| case SEV_CMD_DBG_DECRYPT: { |
| struct sev_data_dbg *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->dst_addr; |
| desc_list[0].len = data->len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| case SEV_CMD_DBG_ENCRYPT: { |
| struct sev_data_dbg *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->dst_addr; |
| desc_list[0].len = data->len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| case SEV_CMD_ATTESTATION_REPORT: { |
| struct sev_data_attestation_report *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->address; |
| desc_list[0].len = data->len; |
| break; |
| } |
| case SEV_CMD_SEND_START: { |
| struct sev_data_send_start *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->session_address; |
| desc_list[0].len = data->session_len; |
| break; |
| } |
| case SEV_CMD_SEND_UPDATE_DATA: { |
| struct sev_data_send_update_data *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->hdr_address; |
| desc_list[0].len = data->hdr_len; |
| desc_list[1].paddr_ptr = &data->trans_address; |
| desc_list[1].len = data->trans_len; |
| break; |
| } |
| case SEV_CMD_SEND_UPDATE_VMSA: { |
| struct sev_data_send_update_vmsa *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->hdr_address; |
| desc_list[0].len = data->hdr_len; |
| desc_list[1].paddr_ptr = &data->trans_address; |
| desc_list[1].len = data->trans_len; |
| break; |
| } |
| case SEV_CMD_RECEIVE_UPDATE_DATA: { |
| struct sev_data_receive_update_data *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->guest_address; |
| desc_list[0].len = data->guest_len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| case SEV_CMD_RECEIVE_UPDATE_VMSA: { |
| struct sev_data_receive_update_vmsa *data = cmd_buf; |
| |
| desc_list[0].paddr_ptr = &data->guest_address; |
| desc_list[0].len = data->guest_len; |
| desc_list[0].guest_owned = true; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) |
| { |
| unsigned int npages; |
| |
| if (!desc->len) |
| return 0; |
| |
| /* Allocate a bounce buffer if this isn't a guest owned page. */ |
| if (!desc->guest_owned) { |
| struct page *page; |
| |
| page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); |
| if (!page) { |
| pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); |
| return -ENOMEM; |
| } |
| |
| desc->paddr_orig = *desc->paddr_ptr; |
| *desc->paddr_ptr = __psp_pa(page_to_virt(page)); |
| } |
| |
| npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; |
| |
| /* Transition the buffer to firmware-owned. */ |
| if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { |
| pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) |
| { |
| unsigned int npages; |
| |
| if (!desc->len) |
| return 0; |
| |
| npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; |
| |
| /* Transition the buffers back to hypervisor-owned. */ |
| if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { |
| pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); |
| return -EFAULT; |
| } |
| |
| /* Copy data from bounce buffer and then free it. */ |
| if (!desc->guest_owned) { |
| void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); |
| void *dst_buf = __va(__sme_clr(desc->paddr_orig)); |
| |
| memcpy(dst_buf, bounce_buf, desc->len); |
| __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); |
| |
| /* Restore the original address in the command buffer. */ |
| *desc->paddr_ptr = desc->paddr_orig; |
| } |
| |
| return 0; |
| } |
| |
| static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) |
| { |
| int i; |
| |
| snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); |
| |
| for (i = 0; i < CMD_BUF_DESC_MAX; i++) { |
| struct cmd_buf_desc *desc = &desc_list[i]; |
| |
| if (!desc->paddr_ptr) |
| break; |
| |
| if (snp_map_cmd_buf_desc(desc)) |
| goto err_unmap; |
| } |
| |
| return 0; |
| |
| err_unmap: |
| for (i--; i >= 0; i--) |
| snp_unmap_cmd_buf_desc(&desc_list[i]); |
| |
| return -EFAULT; |
| } |
| |
| static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) |
| { |
| int i, ret = 0; |
| |
| for (i = 0; i < CMD_BUF_DESC_MAX; i++) { |
| struct cmd_buf_desc *desc = &desc_list[i]; |
| |
| if (!desc->paddr_ptr) |
| break; |
| |
| if (snp_unmap_cmd_buf_desc(&desc_list[i])) |
| ret = -EFAULT; |
| } |
| |
| return ret; |
| } |
| |
| static bool sev_cmd_buf_writable(int cmd) |
| { |
| switch (cmd) { |
| case SEV_CMD_PLATFORM_STATUS: |
| case SEV_CMD_GUEST_STATUS: |
| case SEV_CMD_LAUNCH_START: |
| case SEV_CMD_RECEIVE_START: |
| case SEV_CMD_LAUNCH_MEASURE: |
| case SEV_CMD_SEND_START: |
| case SEV_CMD_SEND_UPDATE_DATA: |
| case SEV_CMD_SEND_UPDATE_VMSA: |
| case SEV_CMD_PEK_CSR: |
| case SEV_CMD_PDH_CERT_EXPORT: |
| case SEV_CMD_GET_ID: |
| case SEV_CMD_ATTESTATION_REPORT: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ |
| static bool snp_legacy_handling_needed(int cmd) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| |
| return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; |
| } |
| |
| static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) |
| { |
| if (!snp_legacy_handling_needed(cmd)) |
| return 0; |
| |
| if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) |
| return -EFAULT; |
| |
| /* |
| * Before command execution, the command buffer needs to be put into |
| * the firmware-owned state. |
| */ |
| if (sev_cmd_buf_writable(cmd)) { |
| if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) |
| { |
| if (!snp_legacy_handling_needed(cmd)) |
| return 0; |
| |
| /* |
| * After command completion, the command buffer needs to be put back |
| * into the hypervisor-owned state. |
| */ |
| if (sev_cmd_buf_writable(cmd)) |
| if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) |
| { |
| struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; |
| struct psp_device *psp = psp_master; |
| struct sev_device *sev; |
| unsigned int cmdbuff_hi, cmdbuff_lo; |
| unsigned int phys_lsb, phys_msb; |
| unsigned int reg, ret = 0; |
| void *cmd_buf; |
| int buf_len; |
| |
| if (!psp || !psp->sev_data) |
| return -ENODEV; |
| |
| if (psp_dead) |
| return -EBUSY; |
| |
| sev = psp->sev_data; |
| |
| buf_len = sev_cmd_buffer_len(cmd); |
| if (WARN_ON_ONCE(!data != !buf_len)) |
| return -EINVAL; |
| |
| /* |
| * Copy the incoming data to driver's scratch buffer as __pa() will not |
| * work for some memory, e.g. vmalloc'd addresses, and @data may not be |
| * physically contiguous. |
| */ |
| if (data) { |
| /* |
| * Commands are generally issued one at a time and require the |
| * sev_cmd_mutex, but there could be recursive firmware requests |
| * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while |
| * preparing buffers for another command. This is the only known |
| * case of nesting in the current code, so exactly one |
| * additional command buffer is available for that purpose. |
| */ |
| if (!sev->cmd_buf_active) { |
| cmd_buf = sev->cmd_buf; |
| sev->cmd_buf_active = true; |
| } else if (!sev->cmd_buf_backup_active) { |
| cmd_buf = sev->cmd_buf_backup; |
| sev->cmd_buf_backup_active = true; |
| } else { |
| dev_err(sev->dev, |
| "SEV: too many firmware commands in progress, no command buffers available.\n"); |
| return -EBUSY; |
| } |
| |
| memcpy(cmd_buf, data, buf_len); |
| |
| /* |
| * The behavior of the SEV-legacy commands is altered when the |
| * SNP firmware is in the INIT state. |
| */ |
| ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); |
| if (ret) { |
| dev_err(sev->dev, |
| "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", |
| cmd, ret); |
| return ret; |
| } |
| } else { |
| cmd_buf = sev->cmd_buf; |
| } |
| |
| /* Get the physical address of the command buffer */ |
| phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; |
| phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; |
| |
| dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", |
| cmd, phys_msb, phys_lsb, psp_timeout); |
| |
| print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, |
| buf_len, false); |
| |
| iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); |
| iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); |
| |
| sev->int_rcvd = 0; |
| |
| reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); |
| |
| /* |
| * If invoked during panic handling, local interrupts are disabled so |
| * the PSP command completion interrupt can't be used. |
| * sev_wait_cmd_ioc() already checks for interrupts disabled and |
| * polls for PSP command completion. Ensure we do not request an |
| * interrupt from the PSP if irqs disabled. |
| */ |
| if (!irqs_disabled()) |
| reg |= SEV_CMDRESP_IOC; |
| |
| iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); |
| |
| /* wait for command completion */ |
| ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); |
| if (ret) { |
| if (psp_ret) |
| *psp_ret = 0; |
| |
| dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); |
| psp_dead = true; |
| |
| return ret; |
| } |
| |
| psp_timeout = psp_cmd_timeout; |
| |
| if (psp_ret) |
| *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); |
| |
| if (FIELD_GET(PSP_CMDRESP_STS, reg)) { |
| dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", |
| cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); |
| |
| /* |
| * PSP firmware may report additional error information in the |
| * command buffer registers on error. Print contents of command |
| * buffer registers if they changed. |
| */ |
| cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); |
| cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); |
| if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { |
| dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); |
| dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); |
| dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); |
| } |
| ret = -EIO; |
| } else { |
| ret = sev_write_init_ex_file_if_required(cmd); |
| } |
| |
| /* |
| * Copy potential output from the PSP back to data. Do this even on |
| * failure in case the caller wants to glean something from the error. |
| */ |
| if (data) { |
| int ret_reclaim; |
| /* |
| * Restore the page state after the command completes. |
| */ |
| ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); |
| if (ret_reclaim) { |
| dev_err(sev->dev, |
| "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", |
| cmd, ret_reclaim); |
| return ret_reclaim; |
| } |
| |
| memcpy(data, cmd_buf, buf_len); |
| |
| if (sev->cmd_buf_backup_active) |
| sev->cmd_buf_backup_active = false; |
| else |
| sev->cmd_buf_active = false; |
| |
| if (snp_unmap_cmd_buf_desc_list(desc_list)) |
| return -EFAULT; |
| } |
| |
| print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, |
| buf_len, false); |
| |
| return ret; |
| } |
| |
| int sev_do_cmd(int cmd, void *data, int *psp_ret) |
| { |
| int rc; |
| |
| mutex_lock(&sev_cmd_mutex); |
| rc = __sev_do_cmd_locked(cmd, data, psp_ret); |
| mutex_unlock(&sev_cmd_mutex); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(sev_do_cmd); |
| |
| static int __sev_init_locked(int *error) |
| { |
| struct sev_data_init data; |
| |
| memset(&data, 0, sizeof(data)); |
| if (sev_es_tmr) { |
| /* |
| * Do not include the encryption mask on the physical |
| * address of the TMR (firmware should clear it anyway). |
| */ |
| data.tmr_address = __pa(sev_es_tmr); |
| |
| data.flags |= SEV_INIT_FLAGS_SEV_ES; |
| data.tmr_len = sev_es_tmr_size; |
| } |
| |
| return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); |
| } |
| |
| static int __sev_init_ex_locked(int *error) |
| { |
| struct sev_data_init_ex data; |
| |
| memset(&data, 0, sizeof(data)); |
| data.length = sizeof(data); |
| data.nv_address = __psp_pa(sev_init_ex_buffer); |
| data.nv_len = NV_LENGTH; |
| |
| if (sev_es_tmr) { |
| /* |
| * Do not include the encryption mask on the physical |
| * address of the TMR (firmware should clear it anyway). |
| */ |
| data.tmr_address = __pa(sev_es_tmr); |
| |
| data.flags |= SEV_INIT_FLAGS_SEV_ES; |
| data.tmr_len = sev_es_tmr_size; |
| } |
| |
| return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); |
| } |
| |
| static inline int __sev_do_init_locked(int *psp_ret) |
| { |
| if (sev_init_ex_buffer) |
| return __sev_init_ex_locked(psp_ret); |
| else |
| return __sev_init_locked(psp_ret); |
| } |
| |
| static void snp_set_hsave_pa(void *arg) |
| { |
| wrmsrl(MSR_VM_HSAVE_PA, 0); |
| } |
| |
| static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) |
| { |
| struct sev_data_range_list *range_list = arg; |
| struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; |
| size_t size; |
| |
| /* |
| * Ensure the list of HV_FIXED pages that will be passed to firmware |
| * do not exceed the page-sized argument buffer. |
| */ |
| if ((range_list->num_elements * sizeof(struct sev_data_range) + |
| sizeof(struct sev_data_range_list)) > PAGE_SIZE) |
| return -E2BIG; |
| |
| switch (rs->desc) { |
| case E820_TYPE_RESERVED: |
| case E820_TYPE_PMEM: |
| case E820_TYPE_ACPI: |
| range->base = rs->start & PAGE_MASK; |
| size = PAGE_ALIGN((rs->end + 1) - rs->start); |
| range->page_count = size >> PAGE_SHIFT; |
| range_list->num_elements++; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int __sev_snp_init_locked(int *error) |
| { |
| struct psp_device *psp = psp_master; |
| struct sev_data_snp_init_ex data; |
| struct sev_device *sev; |
| void *arg = &data; |
| int cmd, rc = 0; |
| |
| if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) |
| return -ENODEV; |
| |
| sev = psp->sev_data; |
| |
| if (sev->snp_initialized) |
| return 0; |
| |
| if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { |
| dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", |
| SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); |
| return 0; |
| } |
| |
| /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ |
| on_each_cpu(snp_set_hsave_pa, NULL, 1); |
| |
| /* |
| * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list |
| * of system physical address ranges to convert into HV-fixed page |
| * states during the RMP initialization. For instance, the memory that |
| * UEFI reserves should be included in the that list. This allows system |
| * components that occasionally write to memory (e.g. logging to UEFI |
| * reserved regions) to not fail due to RMP initialization and SNP |
| * enablement. |
| * |
| */ |
| if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { |
| /* |
| * Firmware checks that the pages containing the ranges enumerated |
| * in the RANGES structure are either in the default page state or in the |
| * firmware page state. |
| */ |
| snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!snp_range_list) { |
| dev_err(sev->dev, |
| "SEV: SNP_INIT_EX range list memory allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Retrieve all reserved memory regions from the e820 memory map |
| * to be setup as HV-fixed pages. |
| */ |
| rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, |
| snp_range_list, snp_filter_reserved_mem_regions); |
| if (rc) { |
| dev_err(sev->dev, |
| "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); |
| return rc; |
| } |
| |
| memset(&data, 0, sizeof(data)); |
| data.init_rmp = 1; |
| data.list_paddr_en = 1; |
| data.list_paddr = __psp_pa(snp_range_list); |
| cmd = SEV_CMD_SNP_INIT_EX; |
| } else { |
| cmd = SEV_CMD_SNP_INIT; |
| arg = NULL; |
| } |
| |
| /* |
| * The following sequence must be issued before launching the first SNP |
| * guest to ensure all dirty cache lines are flushed, including from |
| * updates to the RMP table itself via the RMPUPDATE instruction: |
| * |
| * - WBINVD on all running CPUs |
| * - SEV_CMD_SNP_INIT[_EX] firmware command |
| * - WBINVD on all running CPUs |
| * - SEV_CMD_SNP_DF_FLUSH firmware command |
| */ |
| wbinvd_on_all_cpus(); |
| |
| rc = __sev_do_cmd_locked(cmd, arg, error); |
| if (rc) |
| return rc; |
| |
| /* Prepare for first SNP guest launch after INIT. */ |
| wbinvd_on_all_cpus(); |
| rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); |
| if (rc) |
| return rc; |
| |
| sev->snp_initialized = true; |
| dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); |
| |
| sev_es_tmr_size = SNP_TMR_SIZE; |
| |
| return rc; |
| } |
| |
| static void __sev_platform_init_handle_tmr(struct sev_device *sev) |
| { |
| if (sev_es_tmr) |
| return; |
| |
| /* Obtain the TMR memory area for SEV-ES use */ |
| sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); |
| if (sev_es_tmr) { |
| /* Must flush the cache before giving it to the firmware */ |
| if (!sev->snp_initialized) |
| clflush_cache_range(sev_es_tmr, sev_es_tmr_size); |
| } else { |
| dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); |
| } |
| } |
| |
| /* |
| * If an init_ex_path is provided allocate a buffer for the file and |
| * read in the contents. Additionally, if SNP is initialized, convert |
| * the buffer pages to firmware pages. |
| */ |
| static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) |
| { |
| struct page *page; |
| int rc; |
| |
| if (!init_ex_path) |
| return 0; |
| |
| if (sev_init_ex_buffer) |
| return 0; |
| |
| page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); |
| if (!page) { |
| dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| sev_init_ex_buffer = page_address(page); |
| |
| rc = sev_read_init_ex_file(); |
| if (rc) |
| return rc; |
| |
| /* If SEV-SNP is initialized, transition to firmware page. */ |
| if (sev->snp_initialized) { |
| unsigned long npages; |
| |
| npages = 1UL << get_order(NV_LENGTH); |
| if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { |
| dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __sev_platform_init_locked(int *error) |
| { |
| int rc, psp_ret = SEV_RET_NO_FW_CALL; |
| struct sev_device *sev; |
| |
| if (!psp_master || !psp_master->sev_data) |
| return -ENODEV; |
| |
| sev = psp_master->sev_data; |
| |
| if (sev->state == SEV_STATE_INIT) |
| return 0; |
| |
| __sev_platform_init_handle_tmr(sev); |
| |
| rc = __sev_platform_init_handle_init_ex_path(sev); |
| if (rc) |
| return rc; |
| |
| rc = __sev_do_init_locked(&psp_ret); |
| if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { |
| /* |
| * Initialization command returned an integrity check failure |
| * status code, meaning that firmware load and validation of SEV |
| * related persistent data has failed. Retrying the |
| * initialization function should succeed by replacing the state |
| * with a reset state. |
| */ |
| dev_err(sev->dev, |
| "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); |
| rc = __sev_do_init_locked(&psp_ret); |
| } |
| |
| if (error) |
| *error = psp_ret; |
| |
| if (rc) |
| return rc; |
| |
| sev->state = SEV_STATE_INIT; |
| |
| /* Prepare for first SEV guest launch after INIT */ |
| wbinvd_on_all_cpus(); |
| rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); |
| if (rc) |
| return rc; |
| |
| dev_dbg(sev->dev, "SEV firmware initialized\n"); |
| |
| dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, |
| sev->api_minor, sev->build); |
| |
| return 0; |
| } |
| |
| static int _sev_platform_init_locked(struct sev_platform_init_args *args) |
| { |
| struct sev_device *sev; |
| int rc; |
| |
| if (!psp_master || !psp_master->sev_data) |
| return -ENODEV; |
| |
| sev = psp_master->sev_data; |
| |
| if (sev->state == SEV_STATE_INIT) |
| return 0; |
| |
| /* |
| * Legacy guests cannot be running while SNP_INIT(_EX) is executing, |
| * so perform SEV-SNP initialization at probe time. |
| */ |
| rc = __sev_snp_init_locked(&args->error); |
| if (rc && rc != -ENODEV) { |
| /* |
| * Don't abort the probe if SNP INIT failed, |
| * continue to initialize the legacy SEV firmware. |
| */ |
| dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n", |
| rc, args->error); |
| } |
| |
| /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ |
| if (args->probe && !psp_init_on_probe) |
| return 0; |
| |
| return __sev_platform_init_locked(&args->error); |
| } |
| |
| int sev_platform_init(struct sev_platform_init_args *args) |
| { |
| int rc; |
| |
| mutex_lock(&sev_cmd_mutex); |
| rc = _sev_platform_init_locked(args); |
| mutex_unlock(&sev_cmd_mutex); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(sev_platform_init); |
| |
| static int __sev_platform_shutdown_locked(int *error) |
| { |
| struct psp_device *psp = psp_master; |
| struct sev_device *sev; |
| int ret; |
| |
| if (!psp || !psp->sev_data) |
| return 0; |
| |
| sev = psp->sev_data; |
| |
| if (sev->state == SEV_STATE_UNINIT) |
| return 0; |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); |
| if (ret) |
| return ret; |
| |
| sev->state = SEV_STATE_UNINIT; |
| dev_dbg(sev->dev, "SEV firmware shutdown\n"); |
| |
| return ret; |
| } |
| |
| static int sev_get_platform_state(int *state, int *error) |
| { |
| struct sev_user_data_status data; |
| int rc; |
| |
| rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); |
| if (rc) |
| return rc; |
| |
| *state = data.state; |
| return rc; |
| } |
| |
| static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) |
| { |
| int state, rc; |
| |
| if (!writable) |
| return -EPERM; |
| |
| /* |
| * The SEV spec requires that FACTORY_RESET must be issued in |
| * UNINIT state. Before we go further lets check if any guest is |
| * active. |
| * |
| * If FW is in WORKING state then deny the request otherwise issue |
| * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. |
| * |
| */ |
| rc = sev_get_platform_state(&state, &argp->error); |
| if (rc) |
| return rc; |
| |
| if (state == SEV_STATE_WORKING) |
| return -EBUSY; |
| |
| if (state == SEV_STATE_INIT) { |
| rc = __sev_platform_shutdown_locked(&argp->error); |
| if (rc) |
| return rc; |
| } |
| |
| return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); |
| } |
| |
| static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) |
| { |
| struct sev_user_data_status data; |
| int ret; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); |
| if (ret) |
| return ret; |
| |
| if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| int rc; |
| |
| if (!writable) |
| return -EPERM; |
| |
| if (sev->state == SEV_STATE_UNINIT) { |
| rc = __sev_platform_init_locked(&argp->error); |
| if (rc) |
| return rc; |
| } |
| |
| return __sev_do_cmd_locked(cmd, NULL, &argp->error); |
| } |
| |
| static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_user_data_pek_csr input; |
| struct sev_data_pek_csr data; |
| void __user *input_address; |
| void *blob = NULL; |
| int ret; |
| |
| if (!writable) |
| return -EPERM; |
| |
| if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) |
| return -EFAULT; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| /* userspace wants to query CSR length */ |
| if (!input.address || !input.length) |
| goto cmd; |
| |
| /* allocate a physically contiguous buffer to store the CSR blob */ |
| input_address = (void __user *)input.address; |
| if (input.length > SEV_FW_BLOB_MAX_SIZE) |
| return -EFAULT; |
| |
| blob = kzalloc(input.length, GFP_KERNEL); |
| if (!blob) |
| return -ENOMEM; |
| |
| data.address = __psp_pa(blob); |
| data.len = input.length; |
| |
| cmd: |
| if (sev->state == SEV_STATE_UNINIT) { |
| ret = __sev_platform_init_locked(&argp->error); |
| if (ret) |
| goto e_free_blob; |
| } |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); |
| |
| /* If we query the CSR length, FW responded with expected data. */ |
| input.length = data.len; |
| |
| if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { |
| ret = -EFAULT; |
| goto e_free_blob; |
| } |
| |
| if (blob) { |
| if (copy_to_user(input_address, blob, input.length)) |
| ret = -EFAULT; |
| } |
| |
| e_free_blob: |
| kfree(blob); |
| return ret; |
| } |
| |
| void *psp_copy_user_blob(u64 uaddr, u32 len) |
| { |
| if (!uaddr || !len) |
| return ERR_PTR(-EINVAL); |
| |
| /* verify that blob length does not exceed our limit */ |
| if (len > SEV_FW_BLOB_MAX_SIZE) |
| return ERR_PTR(-EINVAL); |
| |
| return memdup_user((void __user *)uaddr, len); |
| } |
| EXPORT_SYMBOL_GPL(psp_copy_user_blob); |
| |
| static int sev_get_api_version(void) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_user_data_status status; |
| int error = 0, ret; |
| |
| ret = sev_platform_status(&status, &error); |
| if (ret) { |
| dev_err(sev->dev, |
| "SEV: failed to get status. Error: %#x\n", error); |
| return 1; |
| } |
| |
| sev->api_major = status.api_major; |
| sev->api_minor = status.api_minor; |
| sev->build = status.build; |
| sev->state = status.state; |
| |
| return 0; |
| } |
| |
| static int sev_get_firmware(struct device *dev, |
| const struct firmware **firmware) |
| { |
| char fw_name_specific[SEV_FW_NAME_SIZE]; |
| char fw_name_subset[SEV_FW_NAME_SIZE]; |
| |
| snprintf(fw_name_specific, sizeof(fw_name_specific), |
| "amd/amd_sev_fam%.2xh_model%.2xh.sbin", |
| boot_cpu_data.x86, boot_cpu_data.x86_model); |
| |
| snprintf(fw_name_subset, sizeof(fw_name_subset), |
| "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", |
| boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); |
| |
| /* Check for SEV FW for a particular model. |
| * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h |
| * |
| * or |
| * |
| * Check for SEV FW common to a subset of models. |
| * Ex. amd_sev_fam17h_model0xh.sbin for |
| * Family 17h Model 00h -- Family 17h Model 0Fh |
| * |
| * or |
| * |
| * Fall-back to using generic name: sev.fw |
| */ |
| if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || |
| (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || |
| (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) |
| return 0; |
| |
| return -ENOENT; |
| } |
| |
| /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ |
| static int sev_update_firmware(struct device *dev) |
| { |
| struct sev_data_download_firmware *data; |
| const struct firmware *firmware; |
| int ret, error, order; |
| struct page *p; |
| u64 data_size; |
| |
| if (!sev_version_greater_or_equal(0, 15)) { |
| dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); |
| return -1; |
| } |
| |
| if (sev_get_firmware(dev, &firmware) == -ENOENT) { |
| dev_dbg(dev, "No SEV firmware file present\n"); |
| return -1; |
| } |
| |
| /* |
| * SEV FW expects the physical address given to it to be 32 |
| * byte aligned. Memory allocated has structure placed at the |
| * beginning followed by the firmware being passed to the SEV |
| * FW. Allocate enough memory for data structure + alignment |
| * padding + SEV FW. |
| */ |
| data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); |
| |
| order = get_order(firmware->size + data_size); |
| p = alloc_pages(GFP_KERNEL, order); |
| if (!p) { |
| ret = -1; |
| goto fw_err; |
| } |
| |
| /* |
| * Copy firmware data to a kernel allocated contiguous |
| * memory region. |
| */ |
| data = page_address(p); |
| memcpy(page_address(p) + data_size, firmware->data, firmware->size); |
| |
| data->address = __psp_pa(page_address(p) + data_size); |
| data->len = firmware->size; |
| |
| ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); |
| |
| /* |
| * A quirk for fixing the committed TCB version, when upgrading from |
| * earlier firmware version than 1.50. |
| */ |
| if (!ret && !sev_version_greater_or_equal(1, 50)) |
| ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); |
| |
| if (ret) |
| dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); |
| |
| __free_pages(p, order); |
| |
| fw_err: |
| release_firmware(firmware); |
| |
| return ret; |
| } |
| |
| static int __sev_snp_shutdown_locked(int *error, bool panic) |
| { |
| struct psp_device *psp = psp_master; |
| struct sev_device *sev; |
| struct sev_data_snp_shutdown_ex data; |
| int ret; |
| |
| if (!psp || !psp->sev_data) |
| return 0; |
| |
| sev = psp->sev_data; |
| |
| if (!sev->snp_initialized) |
| return 0; |
| |
| memset(&data, 0, sizeof(data)); |
| data.len = sizeof(data); |
| data.iommu_snp_shutdown = 1; |
| |
| /* |
| * If invoked during panic handling, local interrupts are disabled |
| * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. |
| * In that case, a wbinvd() is done on remote CPUs via the NMI |
| * callback, so only a local wbinvd() is needed here. |
| */ |
| if (!panic) |
| wbinvd_on_all_cpus(); |
| else |
| wbinvd(); |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); |
| /* SHUTDOWN may require DF_FLUSH */ |
| if (*error == SEV_RET_DFFLUSH_REQUIRED) { |
| ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL); |
| if (ret) { |
| dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n"); |
| return ret; |
| } |
| /* reissue the shutdown command */ |
| ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, |
| error); |
| } |
| if (ret) { |
| dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n"); |
| return ret; |
| } |
| |
| /* |
| * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP |
| * enforcement by the IOMMU and also transitions all pages |
| * associated with the IOMMU to the Reclaim state. |
| * Firmware was transitioning the IOMMU pages to Hypervisor state |
| * before version 1.53. But, accounting for the number of assigned |
| * 4kB pages in a 2M page was done incorrectly by not transitioning |
| * to the Reclaim state. This resulted in RMP #PF when later accessing |
| * the 2M page containing those pages during kexec boot. Hence, the |
| * firmware now transitions these pages to Reclaim state and hypervisor |
| * needs to transition these pages to shared state. SNP Firmware |
| * version 1.53 and above are needed for kexec boot. |
| */ |
| ret = amd_iommu_snp_disable(); |
| if (ret) { |
| dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); |
| return ret; |
| } |
| |
| sev->snp_initialized = false; |
| dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); |
| |
| return ret; |
| } |
| |
| static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_user_data_pek_cert_import input; |
| struct sev_data_pek_cert_import data; |
| void *pek_blob, *oca_blob; |
| int ret; |
| |
| if (!writable) |
| return -EPERM; |
| |
| if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) |
| return -EFAULT; |
| |
| /* copy PEK certificate blobs from userspace */ |
| pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); |
| if (IS_ERR(pek_blob)) |
| return PTR_ERR(pek_blob); |
| |
| data.reserved = 0; |
| data.pek_cert_address = __psp_pa(pek_blob); |
| data.pek_cert_len = input.pek_cert_len; |
| |
| /* copy PEK certificate blobs from userspace */ |
| oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); |
| if (IS_ERR(oca_blob)) { |
| ret = PTR_ERR(oca_blob); |
| goto e_free_pek; |
| } |
| |
| data.oca_cert_address = __psp_pa(oca_blob); |
| data.oca_cert_len = input.oca_cert_len; |
| |
| /* If platform is not in INIT state then transition it to INIT */ |
| if (sev->state != SEV_STATE_INIT) { |
| ret = __sev_platform_init_locked(&argp->error); |
| if (ret) |
| goto e_free_oca; |
| } |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); |
| |
| e_free_oca: |
| kfree(oca_blob); |
| e_free_pek: |
| kfree(pek_blob); |
| return ret; |
| } |
| |
| static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) |
| { |
| struct sev_user_data_get_id2 input; |
| struct sev_data_get_id data; |
| void __user *input_address; |
| void *id_blob = NULL; |
| int ret; |
| |
| /* SEV GET_ID is available from SEV API v0.16 and up */ |
| if (!sev_version_greater_or_equal(0, 16)) |
| return -ENOTSUPP; |
| |
| if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) |
| return -EFAULT; |
| |
| input_address = (void __user *)input.address; |
| |
| if (input.address && input.length) { |
| /* |
| * The length of the ID shouldn't be assumed by software since |
| * it may change in the future. The allocation size is limited |
| * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. |
| * If the allocation fails, simply return ENOMEM rather than |
| * warning in the kernel log. |
| */ |
| id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); |
| if (!id_blob) |
| return -ENOMEM; |
| |
| data.address = __psp_pa(id_blob); |
| data.len = input.length; |
| } else { |
| data.address = 0; |
| data.len = 0; |
| } |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); |
| |
| /* |
| * Firmware will return the length of the ID value (either the minimum |
| * required length or the actual length written), return it to the user. |
| */ |
| input.length = data.len; |
| |
| if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| |
| if (id_blob) { |
| if (copy_to_user(input_address, id_blob, data.len)) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| } |
| |
| e_free: |
| kfree(id_blob); |
| |
| return ret; |
| } |
| |
| static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) |
| { |
| struct sev_data_get_id *data; |
| u64 data_size, user_size; |
| void *id_blob, *mem; |
| int ret; |
| |
| /* SEV GET_ID available from SEV API v0.16 and up */ |
| if (!sev_version_greater_or_equal(0, 16)) |
| return -ENOTSUPP; |
| |
| /* SEV FW expects the buffer it fills with the ID to be |
| * 8-byte aligned. Memory allocated should be enough to |
| * hold data structure + alignment padding + memory |
| * where SEV FW writes the ID. |
| */ |
| data_size = ALIGN(sizeof(struct sev_data_get_id), 8); |
| user_size = sizeof(struct sev_user_data_get_id); |
| |
| mem = kzalloc(data_size + user_size, GFP_KERNEL); |
| if (!mem) |
| return -ENOMEM; |
| |
| data = mem; |
| id_blob = mem + data_size; |
| |
| data->address = __psp_pa(id_blob); |
| data->len = user_size; |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); |
| if (!ret) { |
| if (copy_to_user((void __user *)argp->data, id_blob, data->len)) |
| ret = -EFAULT; |
| } |
| |
| kfree(mem); |
| |
| return ret; |
| } |
| |
| static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_user_data_pdh_cert_export input; |
| void *pdh_blob = NULL, *cert_blob = NULL; |
| struct sev_data_pdh_cert_export data; |
| void __user *input_cert_chain_address; |
| void __user *input_pdh_cert_address; |
| int ret; |
| |
| /* If platform is not in INIT state then transition it to INIT. */ |
| if (sev->state != SEV_STATE_INIT) { |
| if (!writable) |
| return -EPERM; |
| |
| ret = __sev_platform_init_locked(&argp->error); |
| if (ret) |
| return ret; |
| } |
| |
| if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) |
| return -EFAULT; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| /* Userspace wants to query the certificate length. */ |
| if (!input.pdh_cert_address || |
| !input.pdh_cert_len || |
| !input.cert_chain_address) |
| goto cmd; |
| |
| input_pdh_cert_address = (void __user *)input.pdh_cert_address; |
| input_cert_chain_address = (void __user *)input.cert_chain_address; |
| |
| /* Allocate a physically contiguous buffer to store the PDH blob. */ |
| if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) |
| return -EFAULT; |
| |
| /* Allocate a physically contiguous buffer to store the cert chain blob. */ |
| if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) |
| return -EFAULT; |
| |
| pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); |
| if (!pdh_blob) |
| return -ENOMEM; |
| |
| data.pdh_cert_address = __psp_pa(pdh_blob); |
| data.pdh_cert_len = input.pdh_cert_len; |
| |
| cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); |
| if (!cert_blob) { |
| ret = -ENOMEM; |
| goto e_free_pdh; |
| } |
| |
| data.cert_chain_address = __psp_pa(cert_blob); |
| data.cert_chain_len = input.cert_chain_len; |
| |
| cmd: |
| ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); |
| |
| /* If we query the length, FW responded with expected data. */ |
| input.cert_chain_len = data.cert_chain_len; |
| input.pdh_cert_len = data.pdh_cert_len; |
| |
| if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { |
| ret = -EFAULT; |
| goto e_free_cert; |
| } |
| |
| if (pdh_blob) { |
| if (copy_to_user(input_pdh_cert_address, |
| pdh_blob, input.pdh_cert_len)) { |
| ret = -EFAULT; |
| goto e_free_cert; |
| } |
| } |
| |
| if (cert_blob) { |
| if (copy_to_user(input_cert_chain_address, |
| cert_blob, input.cert_chain_len)) |
| ret = -EFAULT; |
| } |
| |
| e_free_cert: |
| kfree(cert_blob); |
| e_free_pdh: |
| kfree(pdh_blob); |
| return ret; |
| } |
| |
| static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_data_snp_addr buf; |
| struct page *status_page; |
| void *data; |
| int ret; |
| |
| if (!sev->snp_initialized || !argp->data) |
| return -EINVAL; |
| |
| status_page = alloc_page(GFP_KERNEL_ACCOUNT); |
| if (!status_page) |
| return -ENOMEM; |
| |
| data = page_address(status_page); |
| |
| /* |
| * Firmware expects status page to be in firmware-owned state, otherwise |
| * it will report firmware error code INVALID_PAGE_STATE (0x1A). |
| */ |
| if (rmp_mark_pages_firmware(__pa(data), 1, true)) { |
| ret = -EFAULT; |
| goto cleanup; |
| } |
| |
| buf.address = __psp_pa(data); |
| ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); |
| |
| /* |
| * Status page will be transitioned to Reclaim state upon success, or |
| * left in Firmware state in failure. Use snp_reclaim_pages() to |
| * transition either case back to Hypervisor-owned state. |
| */ |
| if (snp_reclaim_pages(__pa(data), 1, true)) |
| return -EFAULT; |
| |
| if (ret) |
| goto cleanup; |
| |
| if (copy_to_user((void __user *)argp->data, data, |
| sizeof(struct sev_user_data_snp_status))) |
| ret = -EFAULT; |
| |
| cleanup: |
| __free_pages(status_page, 0); |
| return ret; |
| } |
| |
| static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_data_snp_commit buf; |
| |
| if (!sev->snp_initialized) |
| return -EINVAL; |
| |
| buf.len = sizeof(buf); |
| |
| return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); |
| } |
| |
| static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_user_data_snp_config config; |
| |
| if (!sev->snp_initialized || !argp->data) |
| return -EINVAL; |
| |
| if (!writable) |
| return -EPERM; |
| |
| if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) |
| return -EFAULT; |
| |
| return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); |
| } |
| |
| static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_user_data_snp_vlek_load input; |
| void *blob; |
| int ret; |
| |
| if (!sev->snp_initialized || !argp->data) |
| return -EINVAL; |
| |
| if (!writable) |
| return -EPERM; |
| |
| if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) |
| return -EFAULT; |
| |
| if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) |
| return -EINVAL; |
| |
| blob = psp_copy_user_blob(input.vlek_wrapped_address, |
| sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); |
| if (IS_ERR(blob)) |
| return PTR_ERR(blob); |
| |
| input.vlek_wrapped_address = __psp_pa(blob); |
| |
| ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); |
| |
| kfree(blob); |
| |
| return ret; |
| } |
| |
| static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| struct sev_issue_cmd input; |
| int ret = -EFAULT; |
| bool writable = file->f_mode & FMODE_WRITE; |
| |
| if (!psp_master || !psp_master->sev_data) |
| return -ENODEV; |
| |
| if (ioctl != SEV_ISSUE_CMD) |
| return -EINVAL; |
| |
| if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) |
| return -EFAULT; |
| |
| if (input.cmd > SEV_MAX) |
| return -EINVAL; |
| |
| mutex_lock(&sev_cmd_mutex); |
| |
| switch (input.cmd) { |
| |
| case SEV_FACTORY_RESET: |
| ret = sev_ioctl_do_reset(&input, writable); |
| break; |
| case SEV_PLATFORM_STATUS: |
| ret = sev_ioctl_do_platform_status(&input); |
| break; |
| case SEV_PEK_GEN: |
| ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); |
| break; |
| case SEV_PDH_GEN: |
| ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); |
| break; |
| case SEV_PEK_CSR: |
| ret = sev_ioctl_do_pek_csr(&input, writable); |
| break; |
| case SEV_PEK_CERT_IMPORT: |
| ret = sev_ioctl_do_pek_import(&input, writable); |
| break; |
| case SEV_PDH_CERT_EXPORT: |
| ret = sev_ioctl_do_pdh_export(&input, writable); |
| break; |
| case SEV_GET_ID: |
| pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); |
| ret = sev_ioctl_do_get_id(&input); |
| break; |
| case SEV_GET_ID2: |
| ret = sev_ioctl_do_get_id2(&input); |
| break; |
| case SNP_PLATFORM_STATUS: |
| ret = sev_ioctl_do_snp_platform_status(&input); |
| break; |
| case SNP_COMMIT: |
| ret = sev_ioctl_do_snp_commit(&input); |
| break; |
| case SNP_SET_CONFIG: |
| ret = sev_ioctl_do_snp_set_config(&input, writable); |
| break; |
| case SNP_VLEK_LOAD: |
| ret = sev_ioctl_do_snp_vlek_load(&input, writable); |
| break; |
| default: |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) |
| ret = -EFAULT; |
| out: |
| mutex_unlock(&sev_cmd_mutex); |
| |
| return ret; |
| } |
| |
| static const struct file_operations sev_fops = { |
| .owner = THIS_MODULE, |
| .unlocked_ioctl = sev_ioctl, |
| }; |
| |
| int sev_platform_status(struct sev_user_data_status *data, int *error) |
| { |
| return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); |
| } |
| EXPORT_SYMBOL_GPL(sev_platform_status); |
| |
| int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) |
| { |
| return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); |
| } |
| EXPORT_SYMBOL_GPL(sev_guest_deactivate); |
| |
| int sev_guest_activate(struct sev_data_activate *data, int *error) |
| { |
| return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); |
| } |
| EXPORT_SYMBOL_GPL(sev_guest_activate); |
| |
| int sev_guest_decommission(struct sev_data_decommission *data, int *error) |
| { |
| return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); |
| } |
| EXPORT_SYMBOL_GPL(sev_guest_decommission); |
| |
| int sev_guest_df_flush(int *error) |
| { |
| return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); |
| } |
| EXPORT_SYMBOL_GPL(sev_guest_df_flush); |
| |
| static void sev_exit(struct kref *ref) |
| { |
| misc_deregister(&misc_dev->misc); |
| kfree(misc_dev); |
| misc_dev = NULL; |
| } |
| |
| static int sev_misc_init(struct sev_device *sev) |
| { |
| struct device *dev = sev->dev; |
| int ret; |
| |
| /* |
| * SEV feature support can be detected on multiple devices but the SEV |
| * FW commands must be issued on the master. During probe, we do not |
| * know the master hence we create /dev/sev on the first device probe. |
| * sev_do_cmd() finds the right master device to which to issue the |
| * command to the firmware. |
| */ |
| if (!misc_dev) { |
| struct miscdevice *misc; |
| |
| misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); |
| if (!misc_dev) |
| return -ENOMEM; |
| |
| misc = &misc_dev->misc; |
| misc->minor = MISC_DYNAMIC_MINOR; |
| misc->name = DEVICE_NAME; |
| misc->fops = &sev_fops; |
| |
| ret = misc_register(misc); |
| if (ret) |
| return ret; |
| |
| kref_init(&misc_dev->refcount); |
| } else { |
| kref_get(&misc_dev->refcount); |
| } |
| |
| init_waitqueue_head(&sev->int_queue); |
| sev->misc = misc_dev; |
| dev_dbg(dev, "registered SEV device\n"); |
| |
| return 0; |
| } |
| |
| int sev_dev_init(struct psp_device *psp) |
| { |
| struct device *dev = psp->dev; |
| struct sev_device *sev; |
| int ret = -ENOMEM; |
| |
| if (!boot_cpu_has(X86_FEATURE_SEV)) { |
| dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); |
| return 0; |
| } |
| |
| sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); |
| if (!sev) |
| goto e_err; |
| |
| sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); |
| if (!sev->cmd_buf) |
| goto e_sev; |
| |
| sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; |
| |
| psp->sev_data = sev; |
| |
| sev->dev = dev; |
| sev->psp = psp; |
| |
| sev->io_regs = psp->io_regs; |
| |
| sev->vdata = (struct sev_vdata *)psp->vdata->sev; |
| if (!sev->vdata) { |
| ret = -ENODEV; |
| dev_err(dev, "sev: missing driver data\n"); |
| goto e_buf; |
| } |
| |
| psp_set_sev_irq_handler(psp, sev_irq_handler, sev); |
| |
| ret = sev_misc_init(sev); |
| if (ret) |
| goto e_irq; |
| |
| dev_notice(dev, "sev enabled\n"); |
| |
| return 0; |
| |
| e_irq: |
| psp_clear_sev_irq_handler(psp); |
| e_buf: |
| devm_free_pages(dev, (unsigned long)sev->cmd_buf); |
| e_sev: |
| devm_kfree(dev, sev); |
| e_err: |
| psp->sev_data = NULL; |
| |
| dev_notice(dev, "sev initialization failed\n"); |
| |
| return ret; |
| } |
| |
| static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) |
| { |
| int error; |
| |
| __sev_platform_shutdown_locked(NULL); |
| |
| if (sev_es_tmr) { |
| /* |
| * The TMR area was encrypted, flush it from the cache. |
| * |
| * If invoked during panic handling, local interrupts are |
| * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() |
| * can't be used. In that case, wbinvd() is done on remote CPUs |
| * via the NMI callback, and done for this CPU later during |
| * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. |
| */ |
| if (!panic) |
| wbinvd_on_all_cpus(); |
| |
| __snp_free_firmware_pages(virt_to_page(sev_es_tmr), |
| get_order(sev_es_tmr_size), |
| true); |
| sev_es_tmr = NULL; |
| } |
| |
| if (sev_init_ex_buffer) { |
| __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), |
| get_order(NV_LENGTH), |
| true); |
| sev_init_ex_buffer = NULL; |
| } |
| |
| if (snp_range_list) { |
| kfree(snp_range_list); |
| snp_range_list = NULL; |
| } |
| |
| __sev_snp_shutdown_locked(&error, panic); |
| } |
| |
| static void sev_firmware_shutdown(struct sev_device *sev) |
| { |
| mutex_lock(&sev_cmd_mutex); |
| __sev_firmware_shutdown(sev, false); |
| mutex_unlock(&sev_cmd_mutex); |
| } |
| |
| void sev_dev_destroy(struct psp_device *psp) |
| { |
| struct sev_device *sev = psp->sev_data; |
| |
| if (!sev) |
| return; |
| |
| sev_firmware_shutdown(sev); |
| |
| if (sev->misc) |
| kref_put(&misc_dev->refcount, sev_exit); |
| |
| psp_clear_sev_irq_handler(psp); |
| } |
| |
| static int snp_shutdown_on_panic(struct notifier_block *nb, |
| unsigned long reason, void *arg) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| |
| /* |
| * If sev_cmd_mutex is already acquired, then it's likely |
| * another PSP command is in flight and issuing a shutdown |
| * would fail in unexpected ways. Rather than create even |
| * more confusion during a panic, just bail out here. |
| */ |
| if (mutex_is_locked(&sev_cmd_mutex)) |
| return NOTIFY_DONE; |
| |
| __sev_firmware_shutdown(sev, true); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block snp_panic_notifier = { |
| .notifier_call = snp_shutdown_on_panic, |
| }; |
| |
| int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, |
| void *data, int *error) |
| { |
| if (!filep || filep->f_op != &sev_fops) |
| return -EBADF; |
| |
| return sev_do_cmd(cmd, data, error); |
| } |
| EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); |
| |
| void sev_pci_init(void) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| struct sev_platform_init_args args = {0}; |
| u8 api_major, api_minor, build; |
| int rc; |
| |
| if (!sev) |
| return; |
| |
| psp_timeout = psp_probe_timeout; |
| |
| if (sev_get_api_version()) |
| goto err; |
| |
| api_major = sev->api_major; |
| api_minor = sev->api_minor; |
| build = sev->build; |
| |
| if (sev_update_firmware(sev->dev) == 0) |
| sev_get_api_version(); |
| |
| if (api_major != sev->api_major || api_minor != sev->api_minor || |
| build != sev->build) |
| dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", |
| api_major, api_minor, build, |
| sev->api_major, sev->api_minor, sev->build); |
| |
| /* Initialize the platform */ |
| args.probe = true; |
| rc = sev_platform_init(&args); |
| if (rc) |
| dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", |
| args.error, rc); |
| |
| dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ? |
| "-SNP" : "", sev->api_major, sev->api_minor, sev->build); |
| |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &snp_panic_notifier); |
| return; |
| |
| err: |
| sev_dev_destroy(psp_master); |
| |
| psp_master->sev_data = NULL; |
| } |
| |
| void sev_pci_exit(void) |
| { |
| struct sev_device *sev = psp_master->sev_data; |
| |
| if (!sev) |
| return; |
| |
| sev_firmware_shutdown(sev); |
| |
| atomic_notifier_chain_unregister(&panic_notifier_list, |
| &snp_panic_notifier); |
| } |