| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) STMicroelectronics SA 2017 |
| * Author: Fabien Dessenne <fabien.dessenne@st.com> |
| * Ux500 support taken from snippets in the old Ux500 cryp driver |
| */ |
| |
| #include <crypto/aes.h> |
| #include <crypto/engine.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/des.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/bottom_half.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/iopoll.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| #include <linux/string.h> |
| |
| #define DRIVER_NAME "stm32-cryp" |
| |
| /* Bit [0] encrypt / decrypt */ |
| #define FLG_ENCRYPT BIT(0) |
| /* Bit [8..1] algo & operation mode */ |
| #define FLG_AES BIT(1) |
| #define FLG_DES BIT(2) |
| #define FLG_TDES BIT(3) |
| #define FLG_ECB BIT(4) |
| #define FLG_CBC BIT(5) |
| #define FLG_CTR BIT(6) |
| #define FLG_GCM BIT(7) |
| #define FLG_CCM BIT(8) |
| /* Mode mask = bits [15..0] */ |
| #define FLG_MODE_MASK GENMASK(15, 0) |
| /* Bit [31..16] status */ |
| #define FLG_IN_OUT_DMA BIT(16) |
| #define FLG_HEADER_DMA BIT(17) |
| |
| /* Registers */ |
| #define CRYP_CR 0x00000000 |
| #define CRYP_SR 0x00000004 |
| #define CRYP_DIN 0x00000008 |
| #define CRYP_DOUT 0x0000000C |
| #define CRYP_DMACR 0x00000010 |
| #define CRYP_IMSCR 0x00000014 |
| #define CRYP_RISR 0x00000018 |
| #define CRYP_MISR 0x0000001C |
| #define CRYP_K0LR 0x00000020 |
| #define CRYP_K0RR 0x00000024 |
| #define CRYP_K1LR 0x00000028 |
| #define CRYP_K1RR 0x0000002C |
| #define CRYP_K2LR 0x00000030 |
| #define CRYP_K2RR 0x00000034 |
| #define CRYP_K3LR 0x00000038 |
| #define CRYP_K3RR 0x0000003C |
| #define CRYP_IV0LR 0x00000040 |
| #define CRYP_IV0RR 0x00000044 |
| #define CRYP_IV1LR 0x00000048 |
| #define CRYP_IV1RR 0x0000004C |
| #define CRYP_CSGCMCCM0R 0x00000050 |
| #define CRYP_CSGCM0R 0x00000070 |
| |
| #define UX500_CRYP_CR 0x00000000 |
| #define UX500_CRYP_SR 0x00000004 |
| #define UX500_CRYP_DIN 0x00000008 |
| #define UX500_CRYP_DINSIZE 0x0000000C |
| #define UX500_CRYP_DOUT 0x00000010 |
| #define UX500_CRYP_DOUSIZE 0x00000014 |
| #define UX500_CRYP_DMACR 0x00000018 |
| #define UX500_CRYP_IMSC 0x0000001C |
| #define UX500_CRYP_RIS 0x00000020 |
| #define UX500_CRYP_MIS 0x00000024 |
| #define UX500_CRYP_K1L 0x00000028 |
| #define UX500_CRYP_K1R 0x0000002C |
| #define UX500_CRYP_K2L 0x00000030 |
| #define UX500_CRYP_K2R 0x00000034 |
| #define UX500_CRYP_K3L 0x00000038 |
| #define UX500_CRYP_K3R 0x0000003C |
| #define UX500_CRYP_K4L 0x00000040 |
| #define UX500_CRYP_K4R 0x00000044 |
| #define UX500_CRYP_IV0L 0x00000048 |
| #define UX500_CRYP_IV0R 0x0000004C |
| #define UX500_CRYP_IV1L 0x00000050 |
| #define UX500_CRYP_IV1R 0x00000054 |
| |
| /* Registers values */ |
| #define CR_DEC_NOT_ENC 0x00000004 |
| #define CR_TDES_ECB 0x00000000 |
| #define CR_TDES_CBC 0x00000008 |
| #define CR_DES_ECB 0x00000010 |
| #define CR_DES_CBC 0x00000018 |
| #define CR_AES_ECB 0x00000020 |
| #define CR_AES_CBC 0x00000028 |
| #define CR_AES_CTR 0x00000030 |
| #define CR_AES_KP 0x00000038 /* Not on Ux500 */ |
| #define CR_AES_XTS 0x00000038 /* Only on Ux500 */ |
| #define CR_AES_GCM 0x00080000 |
| #define CR_AES_CCM 0x00080008 |
| #define CR_AES_UNKNOWN 0xFFFFFFFF |
| #define CR_ALGO_MASK 0x00080038 |
| #define CR_DATA32 0x00000000 |
| #define CR_DATA16 0x00000040 |
| #define CR_DATA8 0x00000080 |
| #define CR_DATA1 0x000000C0 |
| #define CR_KEY128 0x00000000 |
| #define CR_KEY192 0x00000100 |
| #define CR_KEY256 0x00000200 |
| #define CR_KEYRDEN 0x00000400 /* Only on Ux500 */ |
| #define CR_KSE 0x00000800 /* Only on Ux500 */ |
| #define CR_FFLUSH 0x00004000 |
| #define CR_CRYPEN 0x00008000 |
| #define CR_PH_INIT 0x00000000 |
| #define CR_PH_HEADER 0x00010000 |
| #define CR_PH_PAYLOAD 0x00020000 |
| #define CR_PH_FINAL 0x00030000 |
| #define CR_PH_MASK 0x00030000 |
| #define CR_NBPBL_SHIFT 20 |
| |
| #define SR_IFNF BIT(1) |
| #define SR_OFNE BIT(2) |
| #define SR_BUSY BIT(8) |
| |
| #define DMACR_DIEN BIT(0) |
| #define DMACR_DOEN BIT(1) |
| |
| #define IMSCR_IN BIT(0) |
| #define IMSCR_OUT BIT(1) |
| |
| #define MISR_IN BIT(0) |
| #define MISR_OUT BIT(1) |
| |
| /* Misc */ |
| #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32)) |
| #define GCM_CTR_INIT 2 |
| #define CRYP_AUTOSUSPEND_DELAY 50 |
| |
| #define CRYP_DMA_BURST_REG 4 |
| |
| enum stm32_dma_mode { |
| NO_DMA, |
| DMA_PLAIN_SG, |
| DMA_NEED_SG_TRUNC |
| }; |
| |
| struct stm32_cryp_caps { |
| bool aeads_support; |
| bool linear_aes_key; |
| bool kp_mode; |
| bool iv_protection; |
| bool swap_final; |
| bool padding_wa; |
| u32 cr; |
| u32 sr; |
| u32 din; |
| u32 dout; |
| u32 dmacr; |
| u32 imsc; |
| u32 mis; |
| u32 k1l; |
| u32 k1r; |
| u32 k3r; |
| u32 iv0l; |
| u32 iv0r; |
| u32 iv1l; |
| u32 iv1r; |
| }; |
| |
| struct stm32_cryp_ctx { |
| struct stm32_cryp *cryp; |
| int keylen; |
| __be32 key[AES_KEYSIZE_256 / sizeof(u32)]; |
| unsigned long flags; |
| }; |
| |
| struct stm32_cryp_reqctx { |
| unsigned long mode; |
| }; |
| |
| struct stm32_cryp { |
| struct list_head list; |
| struct device *dev; |
| void __iomem *regs; |
| phys_addr_t phys_base; |
| struct clk *clk; |
| unsigned long flags; |
| u32 irq_status; |
| const struct stm32_cryp_caps *caps; |
| struct stm32_cryp_ctx *ctx; |
| |
| struct crypto_engine *engine; |
| |
| struct skcipher_request *req; |
| struct aead_request *areq; |
| |
| size_t authsize; |
| size_t hw_blocksize; |
| |
| size_t payload_in; |
| size_t header_in; |
| size_t payload_out; |
| |
| /* DMA process fields */ |
| struct scatterlist *in_sg; |
| struct scatterlist *header_sg; |
| struct scatterlist *out_sg; |
| size_t in_sg_len; |
| size_t header_sg_len; |
| size_t out_sg_len; |
| struct completion dma_completion; |
| |
| struct dma_chan *dma_lch_in; |
| struct dma_chan *dma_lch_out; |
| enum stm32_dma_mode dma_mode; |
| |
| /* IT process fields */ |
| struct scatter_walk in_walk; |
| struct scatter_walk out_walk; |
| |
| __be32 last_ctr[4]; |
| u32 gcm_ctr; |
| }; |
| |
| struct stm32_cryp_list { |
| struct list_head dev_list; |
| spinlock_t lock; /* protect dev_list */ |
| }; |
| |
| static struct stm32_cryp_list cryp_list = { |
| .dev_list = LIST_HEAD_INIT(cryp_list.dev_list), |
| .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock), |
| }; |
| |
| static inline bool is_aes(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_AES; |
| } |
| |
| static inline bool is_des(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_DES; |
| } |
| |
| static inline bool is_tdes(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_TDES; |
| } |
| |
| static inline bool is_ecb(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_ECB; |
| } |
| |
| static inline bool is_cbc(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_CBC; |
| } |
| |
| static inline bool is_ctr(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_CTR; |
| } |
| |
| static inline bool is_gcm(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_GCM; |
| } |
| |
| static inline bool is_ccm(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_CCM; |
| } |
| |
| static inline bool is_encrypt(struct stm32_cryp *cryp) |
| { |
| return cryp->flags & FLG_ENCRYPT; |
| } |
| |
| static inline bool is_decrypt(struct stm32_cryp *cryp) |
| { |
| return !is_encrypt(cryp); |
| } |
| |
| static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst) |
| { |
| return readl_relaxed(cryp->regs + ofst); |
| } |
| |
| static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val) |
| { |
| writel_relaxed(val, cryp->regs + ofst); |
| } |
| |
| static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp) |
| { |
| u32 status; |
| |
| return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status, |
| !(status & SR_BUSY), 10, 100000); |
| } |
| |
| static inline void stm32_cryp_enable(struct stm32_cryp *cryp) |
| { |
| writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN, |
| cryp->regs + cryp->caps->cr); |
| } |
| |
| static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp) |
| { |
| u32 status; |
| |
| return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status, |
| !(status & CR_CRYPEN), 10, 100000); |
| } |
| |
| static inline int stm32_cryp_wait_input(struct stm32_cryp *cryp) |
| { |
| u32 status; |
| |
| return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status, |
| status & SR_IFNF, 1, 10); |
| } |
| |
| static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp) |
| { |
| u32 status; |
| |
| return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status, |
| status & SR_OFNE, 1, 10); |
| } |
| |
| static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp) |
| { |
| writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN, |
| cryp->regs + cryp->caps->cr); |
| } |
| |
| static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp) |
| { |
| writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN, |
| cryp->regs + cryp->caps->cr); |
| } |
| |
| static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp); |
| static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp); |
| static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp); |
| static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp); |
| static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err); |
| static int stm32_cryp_dma_start(struct stm32_cryp *cryp); |
| static int stm32_cryp_it_start(struct stm32_cryp *cryp); |
| |
| static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx) |
| { |
| struct stm32_cryp *tmp, *cryp = NULL; |
| |
| spin_lock_bh(&cryp_list.lock); |
| if (!ctx->cryp) { |
| list_for_each_entry(tmp, &cryp_list.dev_list, list) { |
| cryp = tmp; |
| break; |
| } |
| ctx->cryp = cryp; |
| } else { |
| cryp = ctx->cryp; |
| } |
| |
| spin_unlock_bh(&cryp_list.lock); |
| |
| return cryp; |
| } |
| |
| static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv) |
| { |
| if (!iv) |
| return; |
| |
| stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++)); |
| stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++)); |
| |
| if (is_aes(cryp)) { |
| stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++)); |
| stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++)); |
| } |
| } |
| |
| static void stm32_cryp_get_iv(struct stm32_cryp *cryp) |
| { |
| struct skcipher_request *req = cryp->req; |
| __be32 *tmp = (void *)req->iv; |
| |
| if (!tmp) |
| return; |
| |
| if (cryp->caps->iv_protection) |
| stm32_cryp_key_read_enable(cryp); |
| |
| *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l)); |
| *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r)); |
| |
| if (is_aes(cryp)) { |
| *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l)); |
| *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r)); |
| } |
| |
| if (cryp->caps->iv_protection) |
| stm32_cryp_key_read_disable(cryp); |
| } |
| |
| /** |
| * ux500_swap_bits_in_byte() - mirror the bits in a byte |
| * @b: the byte to be mirrored |
| * |
| * The bits are swapped the following way: |
| * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and |
| * nibble 2 (n2) bits 4-7. |
| * |
| * Nibble 1 (n1): |
| * (The "old" (moved) bit is replaced with a zero) |
| * 1. Move bit 6 and 7, 4 positions to the left. |
| * 2. Move bit 3 and 5, 2 positions to the left. |
| * 3. Move bit 1-4, 1 position to the left. |
| * |
| * Nibble 2 (n2): |
| * 1. Move bit 0 and 1, 4 positions to the right. |
| * 2. Move bit 2 and 4, 2 positions to the right. |
| * 3. Move bit 3-6, 1 position to the right. |
| * |
| * Combine the two nibbles to a complete and swapped byte. |
| */ |
| static inline u8 ux500_swap_bits_in_byte(u8 b) |
| { |
| #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */ |
| #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5, |
| right shift 2 */ |
| #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4, |
| right shift 1 */ |
| #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */ |
| #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4, |
| left shift 2 */ |
| #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6, |
| left shift 1 */ |
| |
| u8 n1; |
| u8 n2; |
| |
| /* Swap most significant nibble */ |
| /* Right shift 4, bits 6 and 7 */ |
| n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4)); |
| /* Right shift 2, bits 3 and 5 */ |
| n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2)); |
| /* Right shift 1, bits 1-4 */ |
| n1 = (n1 & R_SHIFT_1_MASK) >> 1; |
| |
| /* Swap least significant nibble */ |
| /* Left shift 4, bits 0 and 1 */ |
| n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4)); |
| /* Left shift 2, bits 2 and 4 */ |
| n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2)); |
| /* Left shift 1, bits 3-6 */ |
| n2 = (n2 & L_SHIFT_1_MASK) << 1; |
| |
| return n1 | n2; |
| } |
| |
| /** |
| * ux500_swizzle_key() - Shuffle around words and bits in the AES key |
| * @in: key to swizzle |
| * @out: swizzled key |
| * @len: length of key, in bytes |
| * |
| * This "key swizzling procedure" is described in the examples in the |
| * DB8500 design specification. There is no real description of why |
| * the bits have been arranged like this in the hardware. |
| */ |
| static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len) |
| { |
| int i = 0; |
| int bpw = sizeof(u32); |
| int j; |
| int index = 0; |
| |
| j = len - bpw; |
| while (j >= 0) { |
| for (i = 0; i < bpw; i++) { |
| index = len - j - bpw + i; |
| out[j + i] = |
| ux500_swap_bits_in_byte(in[index]); |
| } |
| j -= bpw; |
| } |
| } |
| |
| static void stm32_cryp_hw_write_key(struct stm32_cryp *c) |
| { |
| unsigned int i; |
| int r_id; |
| |
| if (is_des(c)) { |
| stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0])); |
| stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1])); |
| return; |
| } |
| |
| /* |
| * On the Ux500 the AES key is considered as a single bit sequence |
| * of 128, 192 or 256 bits length. It is written linearly into the |
| * registers from K1L and down, and need to be processed to become |
| * a proper big-endian bit sequence. |
| */ |
| if (is_aes(c) && c->caps->linear_aes_key) { |
| u32 tmpkey[8]; |
| |
| ux500_swizzle_key((u8 *)c->ctx->key, |
| (u8 *)tmpkey, c->ctx->keylen); |
| |
| r_id = c->caps->k1l; |
| for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4) |
| stm32_cryp_write(c, r_id, tmpkey[i]); |
| |
| return; |
| } |
| |
| r_id = c->caps->k3r; |
| for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4) |
| stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1])); |
| } |
| |
| static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp) |
| { |
| if (is_aes(cryp) && is_ecb(cryp)) |
| return CR_AES_ECB; |
| |
| if (is_aes(cryp) && is_cbc(cryp)) |
| return CR_AES_CBC; |
| |
| if (is_aes(cryp) && is_ctr(cryp)) |
| return CR_AES_CTR; |
| |
| if (is_aes(cryp) && is_gcm(cryp)) |
| return CR_AES_GCM; |
| |
| if (is_aes(cryp) && is_ccm(cryp)) |
| return CR_AES_CCM; |
| |
| if (is_des(cryp) && is_ecb(cryp)) |
| return CR_DES_ECB; |
| |
| if (is_des(cryp) && is_cbc(cryp)) |
| return CR_DES_CBC; |
| |
| if (is_tdes(cryp) && is_ecb(cryp)) |
| return CR_TDES_ECB; |
| |
| if (is_tdes(cryp) && is_cbc(cryp)) |
| return CR_TDES_CBC; |
| |
| dev_err(cryp->dev, "Unknown mode\n"); |
| return CR_AES_UNKNOWN; |
| } |
| |
| static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp) |
| { |
| return is_encrypt(cryp) ? cryp->areq->cryptlen : |
| cryp->areq->cryptlen - cryp->authsize; |
| } |
| |
| static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg) |
| { |
| int ret; |
| __be32 iv[4]; |
| |
| /* Phase 1 : init */ |
| memcpy(iv, cryp->areq->iv, 12); |
| iv[3] = cpu_to_be32(GCM_CTR_INIT); |
| cryp->gcm_ctr = GCM_CTR_INIT; |
| stm32_cryp_hw_write_iv(cryp, iv); |
| |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN); |
| |
| /* Wait for end of processing */ |
| ret = stm32_cryp_wait_enable(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "Timeout (gcm init)\n"); |
| return ret; |
| } |
| |
| /* Prepare next phase */ |
| if (cryp->areq->assoclen) { |
| cfg |= CR_PH_HEADER; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| } else if (stm32_cryp_get_input_text_len(cryp)) { |
| cfg |= CR_PH_PAYLOAD; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| } |
| |
| return 0; |
| } |
| |
| static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp) |
| { |
| u32 cfg; |
| int err; |
| |
| /* Check if whole header written */ |
| if (!cryp->header_in) { |
| /* Wait for completion */ |
| err = stm32_cryp_wait_busy(cryp); |
| if (err) { |
| dev_err(cryp->dev, "Timeout (gcm/ccm header)\n"); |
| stm32_cryp_write(cryp, cryp->caps->imsc, 0); |
| stm32_cryp_finish_req(cryp, err); |
| return; |
| } |
| |
| if (stm32_cryp_get_input_text_len(cryp)) { |
| /* Phase 3 : payload */ |
| cfg = stm32_cryp_read(cryp, cryp->caps->cr); |
| cfg &= ~CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| cfg &= ~CR_PH_MASK; |
| cfg |= CR_PH_PAYLOAD | CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| } else { |
| /* |
| * Phase 4 : tag. |
| * Nothing to read, nothing to write, caller have to |
| * end request |
| */ |
| } |
| } |
| } |
| |
| static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp) |
| { |
| size_t written; |
| size_t len; |
| u32 alen = cryp->areq->assoclen; |
| u32 block[AES_BLOCK_32] = {0}; |
| u8 *b8 = (u8 *)block; |
| |
| if (alen <= 65280) { |
| /* Write first u32 of B1 */ |
| b8[0] = (alen >> 8) & 0xFF; |
| b8[1] = alen & 0xFF; |
| len = 2; |
| } else { |
| /* Build the two first u32 of B1 */ |
| b8[0] = 0xFF; |
| b8[1] = 0xFE; |
| b8[2] = (alen & 0xFF000000) >> 24; |
| b8[3] = (alen & 0x00FF0000) >> 16; |
| b8[4] = (alen & 0x0000FF00) >> 8; |
| b8[5] = alen & 0x000000FF; |
| len = 6; |
| } |
| |
| written = min_t(size_t, AES_BLOCK_SIZE - len, alen); |
| |
| scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0); |
| |
| writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32); |
| |
| cryp->header_in -= written; |
| |
| stm32_crypt_gcmccm_end_header(cryp); |
| } |
| |
| static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg) |
| { |
| int ret; |
| u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32]; |
| u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32; |
| __be32 *bd; |
| u32 *d; |
| unsigned int i, textlen; |
| |
| /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */ |
| memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE); |
| memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1); |
| iv[AES_BLOCK_SIZE - 1] = 1; |
| stm32_cryp_hw_write_iv(cryp, (__be32 *)iv); |
| |
| /* Build B0 */ |
| memcpy(b0, iv, AES_BLOCK_SIZE); |
| |
| b0[0] |= (8 * ((cryp->authsize - 2) / 2)); |
| |
| if (cryp->areq->assoclen) |
| b0[0] |= 0x40; |
| |
| textlen = stm32_cryp_get_input_text_len(cryp); |
| |
| b0[AES_BLOCK_SIZE - 2] = textlen >> 8; |
| b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF; |
| |
| /* Enable HW */ |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN); |
| |
| /* Write B0 */ |
| d = (u32 *)b0; |
| bd = (__be32 *)b0; |
| |
| for (i = 0; i < AES_BLOCK_32; i++) { |
| u32 xd = d[i]; |
| |
| if (!cryp->caps->padding_wa) |
| xd = be32_to_cpu(bd[i]); |
| stm32_cryp_write(cryp, cryp->caps->din, xd); |
| } |
| |
| /* Wait for end of processing */ |
| ret = stm32_cryp_wait_enable(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "Timeout (ccm init)\n"); |
| return ret; |
| } |
| |
| /* Prepare next phase */ |
| if (cryp->areq->assoclen) { |
| cfg |= CR_PH_HEADER | CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* Write first (special) block (may move to next phase [payload]) */ |
| stm32_cryp_write_ccm_first_header(cryp); |
| } else if (stm32_cryp_get_input_text_len(cryp)) { |
| cfg |= CR_PH_PAYLOAD; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_hw_init(struct stm32_cryp *cryp) |
| { |
| int ret; |
| u32 cfg, hw_mode; |
| |
| pm_runtime_get_sync(cryp->dev); |
| |
| /* Disable interrupt */ |
| stm32_cryp_write(cryp, cryp->caps->imsc, 0); |
| |
| /* Set configuration */ |
| cfg = CR_DATA8 | CR_FFLUSH; |
| |
| switch (cryp->ctx->keylen) { |
| case AES_KEYSIZE_128: |
| cfg |= CR_KEY128; |
| break; |
| |
| case AES_KEYSIZE_192: |
| cfg |= CR_KEY192; |
| break; |
| |
| default: |
| case AES_KEYSIZE_256: |
| cfg |= CR_KEY256; |
| break; |
| } |
| |
| hw_mode = stm32_cryp_get_hw_mode(cryp); |
| if (hw_mode == CR_AES_UNKNOWN) |
| return -EINVAL; |
| |
| /* AES ECB/CBC decrypt: run key preparation first */ |
| if (is_decrypt(cryp) && |
| ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) { |
| /* Configure in key preparation mode */ |
| if (cryp->caps->kp_mode) |
| stm32_cryp_write(cryp, cryp->caps->cr, |
| cfg | CR_AES_KP); |
| else |
| stm32_cryp_write(cryp, |
| cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE); |
| |
| /* Set key only after full configuration done */ |
| stm32_cryp_hw_write_key(cryp); |
| |
| /* Start prepare key */ |
| stm32_cryp_enable(cryp); |
| /* Wait for end of processing */ |
| ret = stm32_cryp_wait_busy(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "Timeout (key preparation)\n"); |
| return ret; |
| } |
| |
| cfg |= hw_mode | CR_DEC_NOT_ENC; |
| |
| /* Apply updated config (Decrypt + algo) and flush */ |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| } else { |
| cfg |= hw_mode; |
| if (is_decrypt(cryp)) |
| cfg |= CR_DEC_NOT_ENC; |
| |
| /* Apply config and flush */ |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* Set key only after configuration done */ |
| stm32_cryp_hw_write_key(cryp); |
| } |
| |
| switch (hw_mode) { |
| case CR_AES_GCM: |
| case CR_AES_CCM: |
| /* Phase 1 : init */ |
| if (hw_mode == CR_AES_CCM) |
| ret = stm32_cryp_ccm_init(cryp, cfg); |
| else |
| ret = stm32_cryp_gcm_init(cryp, cfg); |
| |
| if (ret) |
| return ret; |
| |
| break; |
| |
| case CR_DES_CBC: |
| case CR_TDES_CBC: |
| case CR_AES_CBC: |
| case CR_AES_CTR: |
| stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Enable now */ |
| stm32_cryp_enable(cryp); |
| |
| return 0; |
| } |
| |
| static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err) |
| { |
| if (!err && (is_gcm(cryp) || is_ccm(cryp))) |
| /* Phase 4 : output tag */ |
| err = stm32_cryp_read_auth_tag(cryp); |
| |
| if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp)))) |
| stm32_cryp_get_iv(cryp); |
| |
| pm_runtime_mark_last_busy(cryp->dev); |
| pm_runtime_put_autosuspend(cryp->dev); |
| |
| if (is_gcm(cryp) || is_ccm(cryp)) |
| crypto_finalize_aead_request(cryp->engine, cryp->areq, err); |
| else |
| crypto_finalize_skcipher_request(cryp->engine, cryp->req, err); |
| } |
| |
| static void stm32_cryp_header_dma_callback(void *param) |
| { |
| struct stm32_cryp *cryp = (struct stm32_cryp *)param; |
| int ret; |
| u32 reg; |
| |
| dma_unmap_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE); |
| |
| reg = stm32_cryp_read(cryp, cryp->caps->dmacr); |
| stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN)); |
| |
| kfree(cryp->header_sg); |
| |
| reg = stm32_cryp_read(cryp, cryp->caps->cr); |
| |
| if (cryp->header_in) { |
| stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN); |
| |
| ret = stm32_cryp_wait_input(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "input header ready timeout after dma\n"); |
| stm32_cryp_finish_req(cryp, ret); |
| return; |
| } |
| stm32_cryp_irq_write_gcmccm_header(cryp); |
| WARN_ON(cryp->header_in); |
| } |
| |
| if (stm32_cryp_get_input_text_len(cryp)) { |
| /* Phase 3 : payload */ |
| reg = stm32_cryp_read(cryp, cryp->caps->cr); |
| stm32_cryp_write(cryp, cryp->caps->cr, reg & ~CR_CRYPEN); |
| |
| reg &= ~CR_PH_MASK; |
| reg |= CR_PH_PAYLOAD | CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, reg); |
| |
| if (cryp->flags & FLG_IN_OUT_DMA) { |
| ret = stm32_cryp_dma_start(cryp); |
| if (ret) |
| stm32_cryp_finish_req(cryp, ret); |
| } else { |
| stm32_cryp_it_start(cryp); |
| } |
| } else { |
| /* |
| * Phase 4 : tag. |
| * Nothing to read, nothing to write => end request |
| */ |
| stm32_cryp_finish_req(cryp, 0); |
| } |
| } |
| |
| static void stm32_cryp_dma_callback(void *param) |
| { |
| struct stm32_cryp *cryp = (struct stm32_cryp *)param; |
| int ret; |
| u32 reg; |
| |
| complete(&cryp->dma_completion); /* completion to indicate no timeout */ |
| |
| dma_sync_sg_for_device(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE); |
| |
| if (cryp->in_sg != cryp->out_sg) |
| dma_unmap_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE); |
| |
| dma_unmap_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE); |
| |
| reg = stm32_cryp_read(cryp, cryp->caps->dmacr); |
| stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN)); |
| |
| reg = stm32_cryp_read(cryp, cryp->caps->cr); |
| |
| if (is_gcm(cryp) || is_ccm(cryp)) { |
| kfree(cryp->in_sg); |
| kfree(cryp->out_sg); |
| } else { |
| if (cryp->in_sg != cryp->req->src) |
| kfree(cryp->in_sg); |
| if (cryp->out_sg != cryp->req->dst) |
| kfree(cryp->out_sg); |
| } |
| |
| if (cryp->payload_in) { |
| stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN); |
| |
| ret = stm32_cryp_wait_input(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "input ready timeout after dma\n"); |
| stm32_cryp_finish_req(cryp, ret); |
| return; |
| } |
| stm32_cryp_irq_write_data(cryp); |
| |
| ret = stm32_cryp_wait_output(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "output ready timeout after dma\n"); |
| stm32_cryp_finish_req(cryp, ret); |
| return; |
| } |
| stm32_cryp_irq_read_data(cryp); |
| } |
| |
| stm32_cryp_finish_req(cryp, 0); |
| } |
| |
| static int stm32_cryp_header_dma_start(struct stm32_cryp *cryp) |
| { |
| int ret; |
| struct dma_async_tx_descriptor *tx_in; |
| u32 reg; |
| size_t align_size; |
| |
| ret = dma_map_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE); |
| if (!ret) { |
| dev_err(cryp->dev, "dma_map_sg() error\n"); |
| return -ENOMEM; |
| } |
| |
| dma_sync_sg_for_device(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE); |
| |
| tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->header_sg, cryp->header_sg_len, |
| DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!tx_in) { |
| dev_err(cryp->dev, "IN prep_slave_sg() failed\n"); |
| return -EINVAL; |
| } |
| |
| tx_in->callback_param = cryp; |
| tx_in->callback = stm32_cryp_header_dma_callback; |
| |
| /* Advance scatterwalk to not DMA'ed data */ |
| align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize); |
| scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2); |
| cryp->header_in -= align_size; |
| |
| ret = dma_submit_error(dmaengine_submit(tx_in)); |
| if (ret < 0) { |
| dev_err(cryp->dev, "DMA in submit failed\n"); |
| return ret; |
| } |
| dma_async_issue_pending(cryp->dma_lch_in); |
| |
| reg = stm32_cryp_read(cryp, cryp->caps->dmacr); |
| stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DIEN); |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_dma_start(struct stm32_cryp *cryp) |
| { |
| int ret; |
| size_t align_size; |
| struct dma_async_tx_descriptor *tx_in, *tx_out; |
| u32 reg; |
| |
| if (cryp->in_sg != cryp->out_sg) { |
| ret = dma_map_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE); |
| if (!ret) { |
| dev_err(cryp->dev, "dma_map_sg() error\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| ret = dma_map_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE); |
| if (!ret) { |
| dev_err(cryp->dev, "dma_map_sg() error\n"); |
| return -ENOMEM; |
| } |
| |
| dma_sync_sg_for_device(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE); |
| |
| tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->in_sg, cryp->in_sg_len, |
| DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!tx_in) { |
| dev_err(cryp->dev, "IN prep_slave_sg() failed\n"); |
| return -EINVAL; |
| } |
| |
| /* No callback necessary */ |
| tx_in->callback_param = cryp; |
| tx_in->callback = NULL; |
| |
| tx_out = dmaengine_prep_slave_sg(cryp->dma_lch_out, cryp->out_sg, cryp->out_sg_len, |
| DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!tx_out) { |
| dev_err(cryp->dev, "OUT prep_slave_sg() failed\n"); |
| return -EINVAL; |
| } |
| |
| reinit_completion(&cryp->dma_completion); |
| tx_out->callback = stm32_cryp_dma_callback; |
| tx_out->callback_param = cryp; |
| |
| /* Advance scatterwalk to not DMA'ed data */ |
| align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize); |
| scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2); |
| cryp->payload_in -= align_size; |
| |
| ret = dma_submit_error(dmaengine_submit(tx_in)); |
| if (ret < 0) { |
| dev_err(cryp->dev, "DMA in submit failed\n"); |
| return ret; |
| } |
| dma_async_issue_pending(cryp->dma_lch_in); |
| |
| /* Advance scatterwalk to not DMA'ed data */ |
| scatterwalk_copychunks(NULL, &cryp->out_walk, align_size, 2); |
| cryp->payload_out -= align_size; |
| ret = dma_submit_error(dmaengine_submit(tx_out)); |
| if (ret < 0) { |
| dev_err(cryp->dev, "DMA out submit failed\n"); |
| return ret; |
| } |
| dma_async_issue_pending(cryp->dma_lch_out); |
| |
| reg = stm32_cryp_read(cryp, cryp->caps->dmacr); |
| stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DOEN | DMACR_DIEN); |
| |
| if (!wait_for_completion_timeout(&cryp->dma_completion, msecs_to_jiffies(1000))) { |
| dev_err(cryp->dev, "DMA out timed out\n"); |
| dmaengine_terminate_sync(cryp->dma_lch_out); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_it_start(struct stm32_cryp *cryp) |
| { |
| /* Enable interrupt and let the IRQ handler do everything */ |
| stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT); |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq); |
| |
| static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm) |
| { |
| crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx)); |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq); |
| |
| static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm) |
| { |
| crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx)); |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode) |
| { |
| struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx( |
| crypto_skcipher_reqtfm(req)); |
| struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req); |
| struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx); |
| |
| if (!cryp) |
| return -ENODEV; |
| |
| rctx->mode = mode; |
| |
| return crypto_transfer_skcipher_request_to_engine(cryp->engine, req); |
| } |
| |
| static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode) |
| { |
| struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); |
| struct stm32_cryp_reqctx *rctx = aead_request_ctx(req); |
| struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx); |
| |
| if (!cryp) |
| return -ENODEV; |
| |
| rctx->mode = mode; |
| |
| return crypto_transfer_aead_request_to_engine(cryp->engine, req); |
| } |
| |
| static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| memcpy(ctx->key, key, keylen); |
| ctx->keylen = keylen; |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && |
| keylen != AES_KEYSIZE_256) |
| return -EINVAL; |
| else |
| return stm32_cryp_setkey(tfm, key, keylen); |
| } |
| |
| static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| return verify_skcipher_des_key(tfm, key) ?: |
| stm32_cryp_setkey(tfm, key, keylen); |
| } |
| |
| static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| return verify_skcipher_des3_key(tfm, key) ?: |
| stm32_cryp_setkey(tfm, key, keylen); |
| } |
| |
| static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm); |
| |
| if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && |
| keylen != AES_KEYSIZE_256) |
| return -EINVAL; |
| |
| memcpy(ctx->key, key, keylen); |
| ctx->keylen = keylen; |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| switch (authsize) { |
| case 4: |
| case 8: |
| case 12: |
| case 13: |
| case 14: |
| case 15: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| switch (authsize) { |
| case 4: |
| case 6: |
| case 8: |
| case 10: |
| case 12: |
| case 14: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_AES | FLG_ECB); |
| } |
| |
| static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_AES | FLG_CBC); |
| } |
| |
| static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_AES | FLG_CTR); |
| } |
| |
| static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req) |
| { |
| return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req) |
| { |
| return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM); |
| } |
| |
| static inline int crypto_ccm_check_iv(const u8 *iv) |
| { |
| /* 2 <= L <= 8, so 1 <= L' <= 7. */ |
| if (iv[0] < 1 || iv[0] > 7) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req) |
| { |
| int err; |
| |
| err = crypto_ccm_check_iv(req->iv); |
| if (err) |
| return err; |
| |
| return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req) |
| { |
| int err; |
| |
| err = crypto_ccm_check_iv(req->iv); |
| if (err) |
| return err; |
| |
| return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM); |
| } |
| |
| static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_DES | FLG_ECB); |
| } |
| |
| static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_DES | FLG_CBC); |
| } |
| |
| static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB); |
| } |
| |
| static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT); |
| } |
| |
| static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req) |
| { |
| if (req->cryptlen % DES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC); |
| } |
| |
| static enum stm32_dma_mode stm32_cryp_dma_check_sg(struct scatterlist *test_sg, size_t len, |
| size_t block_size) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| if (len <= 16) |
| return NO_DMA; /* Faster */ |
| |
| for_each_sg(test_sg, sg, sg_nents(test_sg), i) { |
| if (!IS_ALIGNED(sg->length, block_size) && !sg_is_last(sg)) |
| return NO_DMA; |
| |
| if (sg->offset % sizeof(u32)) |
| return NO_DMA; |
| |
| if (sg_is_last(sg) && !IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) |
| return DMA_NEED_SG_TRUNC; |
| } |
| |
| return DMA_PLAIN_SG; |
| } |
| |
| static enum stm32_dma_mode stm32_cryp_dma_check(struct stm32_cryp *cryp, struct scatterlist *in_sg, |
| struct scatterlist *out_sg) |
| { |
| enum stm32_dma_mode ret = DMA_PLAIN_SG; |
| |
| if (!is_aes(cryp)) |
| return NO_DMA; |
| |
| if (!cryp->dma_lch_in || !cryp->dma_lch_out) |
| return NO_DMA; |
| |
| ret = stm32_cryp_dma_check_sg(in_sg, cryp->payload_in, AES_BLOCK_SIZE); |
| if (ret == NO_DMA) |
| return ret; |
| |
| ret = stm32_cryp_dma_check_sg(out_sg, cryp->payload_out, AES_BLOCK_SIZE); |
| if (ret == NO_DMA) |
| return ret; |
| |
| /* Check CTR counter overflow */ |
| if (is_aes(cryp) && is_ctr(cryp)) { |
| u32 c; |
| __be32 iv3; |
| |
| memcpy(&iv3, &cryp->req->iv[3 * sizeof(u32)], sizeof(iv3)); |
| c = be32_to_cpu(iv3); |
| if ((c + cryp->payload_in) < cryp->payload_in) |
| return NO_DMA; |
| } |
| |
| /* Workaround */ |
| if (is_aes(cryp) && is_ctr(cryp) && ret == DMA_NEED_SG_TRUNC) |
| return NO_DMA; |
| |
| return ret; |
| } |
| |
| static int stm32_cryp_truncate_sg(struct scatterlist **new_sg, size_t *new_sg_len, |
| struct scatterlist *sg, off_t skip, size_t size) |
| { |
| struct scatterlist *cur; |
| int alloc_sg_len; |
| |
| *new_sg_len = 0; |
| |
| if (!sg || !size) { |
| *new_sg = NULL; |
| return 0; |
| } |
| |
| alloc_sg_len = sg_nents_for_len(sg, skip + size); |
| if (alloc_sg_len < 0) |
| return alloc_sg_len; |
| |
| /* We allocate to much sg entry, but it is easier */ |
| *new_sg = kmalloc_array((size_t)alloc_sg_len, sizeof(struct scatterlist), GFP_KERNEL); |
| if (!*new_sg) |
| return -ENOMEM; |
| |
| sg_init_table(*new_sg, (unsigned int)alloc_sg_len); |
| |
| cur = *new_sg; |
| while (sg && size) { |
| unsigned int len = sg->length; |
| unsigned int offset = sg->offset; |
| |
| if (skip > len) { |
| skip -= len; |
| sg = sg_next(sg); |
| continue; |
| } |
| |
| if (skip) { |
| len -= skip; |
| offset += skip; |
| skip = 0; |
| } |
| |
| if (size < len) |
| len = size; |
| |
| if (len > 0) { |
| (*new_sg_len)++; |
| size -= len; |
| sg_set_page(cur, sg_page(sg), len, offset); |
| if (size == 0) |
| sg_mark_end(cur); |
| cur = sg_next(cur); |
| } |
| |
| sg = sg_next(sg); |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_cipher_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg, |
| struct scatterlist *out_sg) |
| { |
| size_t align_size; |
| int ret; |
| |
| cryp->dma_mode = stm32_cryp_dma_check(cryp, in_sg, out_sg); |
| |
| scatterwalk_start(&cryp->in_walk, in_sg); |
| scatterwalk_start(&cryp->out_walk, out_sg); |
| |
| if (cryp->dma_mode == NO_DMA) { |
| cryp->flags &= ~FLG_IN_OUT_DMA; |
| |
| if (is_ctr(cryp)) |
| memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr)); |
| |
| } else if (cryp->dma_mode == DMA_NEED_SG_TRUNC) { |
| |
| cryp->flags |= FLG_IN_OUT_DMA; |
| |
| align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize); |
| ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, 0, align_size); |
| if (ret) |
| return ret; |
| |
| ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, 0, |
| align_size); |
| if (ret) { |
| kfree(cryp->in_sg); |
| return ret; |
| } |
| } else { |
| cryp->flags |= FLG_IN_OUT_DMA; |
| |
| cryp->in_sg = in_sg; |
| cryp->out_sg = out_sg; |
| |
| ret = sg_nents_for_len(cryp->in_sg, cryp->payload_in); |
| if (ret < 0) |
| return ret; |
| cryp->in_sg_len = (size_t)ret; |
| |
| ret = sg_nents_for_len(out_sg, cryp->payload_out); |
| if (ret < 0) |
| return ret; |
| cryp->out_sg_len = (size_t)ret; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_aead_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg, |
| struct scatterlist *out_sg) |
| { |
| size_t align_size; |
| off_t skip; |
| int ret, ret2; |
| |
| cryp->header_sg = NULL; |
| cryp->in_sg = NULL; |
| cryp->out_sg = NULL; |
| |
| if (!cryp->dma_lch_in || !cryp->dma_lch_out) { |
| cryp->dma_mode = NO_DMA; |
| cryp->flags &= ~(FLG_IN_OUT_DMA | FLG_HEADER_DMA); |
| |
| return 0; |
| } |
| |
| /* CCM hw_init may have advanced in header */ |
| skip = cryp->areq->assoclen - cryp->header_in; |
| |
| align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize); |
| ret = stm32_cryp_truncate_sg(&cryp->header_sg, &cryp->header_sg_len, in_sg, skip, |
| align_size); |
| if (ret) |
| return ret; |
| |
| ret = stm32_cryp_dma_check_sg(cryp->header_sg, align_size, AES_BLOCK_SIZE); |
| if (ret == NO_DMA) { |
| /* We cannot DMA the header */ |
| kfree(cryp->header_sg); |
| cryp->header_sg = NULL; |
| |
| cryp->flags &= ~FLG_HEADER_DMA; |
| } else { |
| cryp->flags |= FLG_HEADER_DMA; |
| } |
| |
| /* Now skip all header to be at payload start */ |
| skip = cryp->areq->assoclen; |
| align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize); |
| ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, skip, align_size); |
| if (ret) { |
| kfree(cryp->header_sg); |
| return ret; |
| } |
| |
| /* For out buffer align_size is same as in buffer */ |
| ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, skip, align_size); |
| if (ret) { |
| kfree(cryp->header_sg); |
| kfree(cryp->in_sg); |
| return ret; |
| } |
| |
| ret = stm32_cryp_dma_check_sg(cryp->in_sg, align_size, AES_BLOCK_SIZE); |
| ret2 = stm32_cryp_dma_check_sg(cryp->out_sg, align_size, AES_BLOCK_SIZE); |
| if (ret == NO_DMA || ret2 == NO_DMA) { |
| kfree(cryp->in_sg); |
| cryp->in_sg = NULL; |
| |
| kfree(cryp->out_sg); |
| cryp->out_sg = NULL; |
| |
| cryp->flags &= ~FLG_IN_OUT_DMA; |
| } else { |
| cryp->flags |= FLG_IN_OUT_DMA; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_prepare_req(struct skcipher_request *req, |
| struct aead_request *areq) |
| { |
| struct stm32_cryp_ctx *ctx; |
| struct stm32_cryp *cryp; |
| struct stm32_cryp_reqctx *rctx; |
| struct scatterlist *in_sg, *out_sg; |
| int ret; |
| |
| if (!req && !areq) |
| return -EINVAL; |
| |
| ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) : |
| crypto_aead_ctx(crypto_aead_reqtfm(areq)); |
| |
| cryp = ctx->cryp; |
| |
| rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq); |
| rctx->mode &= FLG_MODE_MASK; |
| |
| cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode; |
| cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE; |
| cryp->ctx = ctx; |
| |
| if (req) { |
| cryp->req = req; |
| cryp->areq = NULL; |
| cryp->header_in = 0; |
| cryp->payload_in = req->cryptlen; |
| cryp->payload_out = req->cryptlen; |
| cryp->authsize = 0; |
| |
| in_sg = req->src; |
| out_sg = req->dst; |
| |
| ret = stm32_cryp_cipher_prepare(cryp, in_sg, out_sg); |
| if (ret) |
| return ret; |
| |
| ret = stm32_cryp_hw_init(cryp); |
| } else { |
| /* |
| * Length of input and output data: |
| * Encryption case: |
| * INPUT = AssocData || PlainText |
| * <- assoclen -> <- cryptlen -> |
| * |
| * OUTPUT = AssocData || CipherText || AuthTag |
| * <- assoclen -> <-- cryptlen --> <- authsize -> |
| * |
| * Decryption case: |
| * INPUT = AssocData || CipherTex || AuthTag |
| * <- assoclen ---> <---------- cryptlen ----------> |
| * |
| * OUTPUT = AssocData || PlainText |
| * <- assoclen -> <- cryptlen - authsize -> |
| */ |
| cryp->areq = areq; |
| cryp->req = NULL; |
| cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq)); |
| if (is_encrypt(cryp)) { |
| cryp->payload_in = areq->cryptlen; |
| cryp->header_in = areq->assoclen; |
| cryp->payload_out = areq->cryptlen; |
| } else { |
| cryp->payload_in = areq->cryptlen - cryp->authsize; |
| cryp->header_in = areq->assoclen; |
| cryp->payload_out = cryp->payload_in; |
| } |
| |
| in_sg = areq->src; |
| out_sg = areq->dst; |
| |
| scatterwalk_start(&cryp->in_walk, in_sg); |
| scatterwalk_start(&cryp->out_walk, out_sg); |
| /* In output, jump after assoc data */ |
| scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2); |
| |
| ret = stm32_cryp_hw_init(cryp); |
| if (ret) |
| return ret; |
| |
| ret = stm32_cryp_aead_prepare(cryp, in_sg, out_sg); |
| } |
| |
| return ret; |
| } |
| |
| static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq) |
| { |
| struct skcipher_request *req = container_of(areq, |
| struct skcipher_request, |
| base); |
| struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx( |
| crypto_skcipher_reqtfm(req)); |
| struct stm32_cryp *cryp = ctx->cryp; |
| int ret; |
| |
| if (!cryp) |
| return -ENODEV; |
| |
| ret = stm32_cryp_prepare_req(req, NULL); |
| if (ret) |
| return ret; |
| |
| if (cryp->flags & FLG_IN_OUT_DMA) |
| ret = stm32_cryp_dma_start(cryp); |
| else |
| ret = stm32_cryp_it_start(cryp); |
| |
| if (ret == -ETIMEDOUT) |
| stm32_cryp_finish_req(cryp, ret); |
| |
| return ret; |
| } |
| |
| static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq) |
| { |
| struct aead_request *req = container_of(areq, struct aead_request, |
| base); |
| struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); |
| struct stm32_cryp *cryp = ctx->cryp; |
| int err; |
| |
| if (!cryp) |
| return -ENODEV; |
| |
| err = stm32_cryp_prepare_req(NULL, req); |
| if (err) |
| return err; |
| |
| if (!stm32_cryp_get_input_text_len(cryp) && !cryp->header_in && |
| !(cryp->flags & FLG_HEADER_DMA)) { |
| /* No input data to process: get tag and finish */ |
| stm32_cryp_finish_req(cryp, 0); |
| return 0; |
| } |
| |
| if (cryp->flags & FLG_HEADER_DMA) |
| return stm32_cryp_header_dma_start(cryp); |
| |
| if (!cryp->header_in && cryp->flags & FLG_IN_OUT_DMA) |
| return stm32_cryp_dma_start(cryp); |
| |
| return stm32_cryp_it_start(cryp); |
| } |
| |
| static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp) |
| { |
| u32 cfg, size_bit; |
| unsigned int i; |
| int ret = 0; |
| |
| /* Update Config */ |
| cfg = stm32_cryp_read(cryp, cryp->caps->cr); |
| |
| cfg &= ~CR_PH_MASK; |
| cfg |= CR_PH_FINAL; |
| cfg &= ~CR_DEC_NOT_ENC; |
| cfg |= CR_CRYPEN; |
| |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| if (is_gcm(cryp)) { |
| /* GCM: write aad and payload size (in bits) */ |
| size_bit = cryp->areq->assoclen * 8; |
| if (cryp->caps->swap_final) |
| size_bit = (__force u32)cpu_to_be32(size_bit); |
| |
| stm32_cryp_write(cryp, cryp->caps->din, 0); |
| stm32_cryp_write(cryp, cryp->caps->din, size_bit); |
| |
| size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen : |
| cryp->areq->cryptlen - cryp->authsize; |
| size_bit *= 8; |
| if (cryp->caps->swap_final) |
| size_bit = (__force u32)cpu_to_be32(size_bit); |
| |
| stm32_cryp_write(cryp, cryp->caps->din, 0); |
| stm32_cryp_write(cryp, cryp->caps->din, size_bit); |
| } else { |
| /* CCM: write CTR0 */ |
| u32 iv32[AES_BLOCK_32]; |
| u8 *iv = (u8 *)iv32; |
| __be32 *biv = (__be32 *)iv32; |
| |
| memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE); |
| memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1); |
| |
| for (i = 0; i < AES_BLOCK_32; i++) { |
| u32 xiv = iv32[i]; |
| |
| if (!cryp->caps->padding_wa) |
| xiv = be32_to_cpu(biv[i]); |
| stm32_cryp_write(cryp, cryp->caps->din, xiv); |
| } |
| } |
| |
| /* Wait for output data */ |
| ret = stm32_cryp_wait_output(cryp); |
| if (ret) { |
| dev_err(cryp->dev, "Timeout (read tag)\n"); |
| return ret; |
| } |
| |
| if (is_encrypt(cryp)) { |
| u32 out_tag[AES_BLOCK_32]; |
| |
| /* Get and write tag */ |
| readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32); |
| scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1); |
| } else { |
| /* Get and check tag */ |
| u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32]; |
| |
| scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0); |
| readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32); |
| |
| if (crypto_memneq(in_tag, out_tag, cryp->authsize)) |
| ret = -EBADMSG; |
| } |
| |
| /* Disable cryp */ |
| cfg &= ~CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| return ret; |
| } |
| |
| static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp) |
| { |
| u32 cr; |
| |
| if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) { |
| /* |
| * In this case, we need to increment manually the ctr counter, |
| * as HW doesn't handle the U32 carry. |
| */ |
| crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr)); |
| |
| cr = stm32_cryp_read(cryp, cryp->caps->cr); |
| stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN); |
| |
| stm32_cryp_hw_write_iv(cryp, cryp->last_ctr); |
| |
| stm32_cryp_write(cryp, cryp->caps->cr, cr); |
| } |
| |
| /* The IV registers are BE */ |
| cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l)); |
| cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r)); |
| cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l)); |
| cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r)); |
| } |
| |
| static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp) |
| { |
| u32 block[AES_BLOCK_32]; |
| |
| readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32)); |
| scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize, |
| cryp->payload_out), 1); |
| cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, |
| cryp->payload_out); |
| } |
| |
| static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp) |
| { |
| u32 block[AES_BLOCK_32] = {0}; |
| |
| scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize, |
| cryp->payload_in), 0); |
| writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32)); |
| cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in); |
| } |
| |
| static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp) |
| { |
| int err; |
| u32 cfg, block[AES_BLOCK_32] = {0}; |
| unsigned int i; |
| |
| /* 'Special workaround' procedure described in the datasheet */ |
| |
| /* a) disable ip */ |
| stm32_cryp_write(cryp, cryp->caps->imsc, 0); |
| cfg = stm32_cryp_read(cryp, cryp->caps->cr); |
| cfg &= ~CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* b) Update IV1R */ |
| stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2); |
| |
| /* c) change mode to CTR */ |
| cfg &= ~CR_ALGO_MASK; |
| cfg |= CR_AES_CTR; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* a) enable IP */ |
| cfg |= CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* b) pad and write the last block */ |
| stm32_cryp_irq_write_block(cryp); |
| /* wait end of process */ |
| err = stm32_cryp_wait_output(cryp); |
| if (err) { |
| dev_err(cryp->dev, "Timeout (write gcm last data)\n"); |
| return stm32_cryp_finish_req(cryp, err); |
| } |
| |
| /* c) get and store encrypted data */ |
| /* |
| * Same code as stm32_cryp_irq_read_data(), but we want to store |
| * block value |
| */ |
| readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32)); |
| |
| scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize, |
| cryp->payload_out), 1); |
| cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, |
| cryp->payload_out); |
| |
| /* d) change mode back to AES GCM */ |
| cfg &= ~CR_ALGO_MASK; |
| cfg |= CR_AES_GCM; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* e) change phase to Final */ |
| cfg &= ~CR_PH_MASK; |
| cfg |= CR_PH_FINAL; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* f) write padded data */ |
| writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32); |
| |
| /* g) Empty fifo out */ |
| err = stm32_cryp_wait_output(cryp); |
| if (err) { |
| dev_err(cryp->dev, "Timeout (write gcm padded data)\n"); |
| return stm32_cryp_finish_req(cryp, err); |
| } |
| |
| for (i = 0; i < AES_BLOCK_32; i++) |
| stm32_cryp_read(cryp, cryp->caps->dout); |
| |
| /* h) run the he normal Final phase */ |
| stm32_cryp_finish_req(cryp, 0); |
| } |
| |
| static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp) |
| { |
| u32 cfg; |
| |
| /* disable ip, set NPBLB and reneable ip */ |
| cfg = stm32_cryp_read(cryp, cryp->caps->cr); |
| cfg &= ~CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT; |
| cfg |= CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| } |
| |
| static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp) |
| { |
| int err = 0; |
| u32 cfg, iv1tmp; |
| u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32]; |
| u32 block[AES_BLOCK_32] = {0}; |
| unsigned int i; |
| |
| /* 'Special workaround' procedure described in the datasheet */ |
| |
| /* a) disable ip */ |
| stm32_cryp_write(cryp, cryp->caps->imsc, 0); |
| |
| cfg = stm32_cryp_read(cryp, cryp->caps->cr); |
| cfg &= ~CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* b) get IV1 from CRYP_CSGCMCCM7 */ |
| iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4); |
| |
| /* c) Load CRYP_CSGCMCCMxR */ |
| for (i = 0; i < ARRAY_SIZE(cstmp1); i++) |
| cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4); |
| |
| /* d) Write IV1R */ |
| stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp); |
| |
| /* e) change mode to CTR */ |
| cfg &= ~CR_ALGO_MASK; |
| cfg |= CR_AES_CTR; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* a) enable IP */ |
| cfg |= CR_CRYPEN; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* b) pad and write the last block */ |
| stm32_cryp_irq_write_block(cryp); |
| /* wait end of process */ |
| err = stm32_cryp_wait_output(cryp); |
| if (err) { |
| dev_err(cryp->dev, "Timeout (write ccm padded data)\n"); |
| return stm32_cryp_finish_req(cryp, err); |
| } |
| |
| /* c) get and store decrypted data */ |
| /* |
| * Same code as stm32_cryp_irq_read_data(), but we want to store |
| * block value |
| */ |
| readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32)); |
| |
| scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize, |
| cryp->payload_out), 1); |
| cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out); |
| |
| /* d) Load again CRYP_CSGCMCCMxR */ |
| for (i = 0; i < ARRAY_SIZE(cstmp2); i++) |
| cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4); |
| |
| /* e) change mode back to AES CCM */ |
| cfg &= ~CR_ALGO_MASK; |
| cfg |= CR_AES_CCM; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* f) change phase to header */ |
| cfg &= ~CR_PH_MASK; |
| cfg |= CR_PH_HEADER; |
| stm32_cryp_write(cryp, cryp->caps->cr, cfg); |
| |
| /* g) XOR and write padded data */ |
| for (i = 0; i < ARRAY_SIZE(block); i++) { |
| block[i] ^= cstmp1[i]; |
| block[i] ^= cstmp2[i]; |
| stm32_cryp_write(cryp, cryp->caps->din, block[i]); |
| } |
| |
| /* h) wait for completion */ |
| err = stm32_cryp_wait_busy(cryp); |
| if (err) |
| dev_err(cryp->dev, "Timeout (write ccm padded data)\n"); |
| |
| /* i) run the he normal Final phase */ |
| stm32_cryp_finish_req(cryp, err); |
| } |
| |
| static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp) |
| { |
| if (unlikely(!cryp->payload_in)) { |
| dev_warn(cryp->dev, "No more data to process\n"); |
| return; |
| } |
| |
| if (unlikely(cryp->payload_in < AES_BLOCK_SIZE && |
| (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) && |
| is_encrypt(cryp))) { |
| /* Padding for AES GCM encryption */ |
| if (cryp->caps->padding_wa) { |
| /* Special case 1 */ |
| stm32_cryp_irq_write_gcm_padded_data(cryp); |
| return; |
| } |
| |
| /* Setting padding bytes (NBBLB) */ |
| stm32_cryp_irq_set_npblb(cryp); |
| } |
| |
| if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) && |
| (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) && |
| is_decrypt(cryp))) { |
| /* Padding for AES CCM decryption */ |
| if (cryp->caps->padding_wa) { |
| /* Special case 2 */ |
| stm32_cryp_irq_write_ccm_padded_data(cryp); |
| return; |
| } |
| |
| /* Setting padding bytes (NBBLB) */ |
| stm32_cryp_irq_set_npblb(cryp); |
| } |
| |
| if (is_aes(cryp) && is_ctr(cryp)) |
| stm32_cryp_check_ctr_counter(cryp); |
| |
| stm32_cryp_irq_write_block(cryp); |
| } |
| |
| static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp) |
| { |
| u32 block[AES_BLOCK_32] = {0}; |
| size_t written; |
| |
| written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in); |
| |
| scatterwalk_copychunks(block, &cryp->in_walk, written, 0); |
| |
| writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32); |
| |
| cryp->header_in -= written; |
| |
| stm32_crypt_gcmccm_end_header(cryp); |
| } |
| |
| static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg) |
| { |
| struct stm32_cryp *cryp = arg; |
| u32 ph; |
| u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc); |
| |
| if (cryp->irq_status & MISR_OUT) |
| /* Output FIFO IRQ: read data */ |
| stm32_cryp_irq_read_data(cryp); |
| |
| if (cryp->irq_status & MISR_IN) { |
| if (is_gcm(cryp) || is_ccm(cryp)) { |
| ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK; |
| if (unlikely(ph == CR_PH_HEADER)) |
| /* Write Header */ |
| stm32_cryp_irq_write_gcmccm_header(cryp); |
| else |
| /* Input FIFO IRQ: write data */ |
| stm32_cryp_irq_write_data(cryp); |
| if (is_gcm(cryp)) |
| cryp->gcm_ctr++; |
| } else { |
| /* Input FIFO IRQ: write data */ |
| stm32_cryp_irq_write_data(cryp); |
| } |
| } |
| |
| /* Mask useless interrupts */ |
| if (!cryp->payload_in && !cryp->header_in) |
| it_mask &= ~IMSCR_IN; |
| if (!cryp->payload_out) |
| it_mask &= ~IMSCR_OUT; |
| stm32_cryp_write(cryp, cryp->caps->imsc, it_mask); |
| |
| if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out) { |
| local_bh_disable(); |
| stm32_cryp_finish_req(cryp, 0); |
| local_bh_enable(); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t stm32_cryp_irq(int irq, void *arg) |
| { |
| struct stm32_cryp *cryp = arg; |
| |
| cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static int stm32_cryp_dma_init(struct stm32_cryp *cryp) |
| { |
| struct dma_slave_config dma_conf; |
| struct dma_chan *chan; |
| int ret; |
| |
| memset(&dma_conf, 0, sizeof(dma_conf)); |
| |
| dma_conf.direction = DMA_MEM_TO_DEV; |
| dma_conf.dst_addr = cryp->phys_base + cryp->caps->din; |
| dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_conf.dst_maxburst = CRYP_DMA_BURST_REG; |
| dma_conf.device_fc = false; |
| |
| chan = dma_request_chan(cryp->dev, "in"); |
| if (IS_ERR(chan)) |
| return PTR_ERR(chan); |
| |
| cryp->dma_lch_in = chan; |
| ret = dmaengine_slave_config(cryp->dma_lch_in, &dma_conf); |
| if (ret) { |
| dma_release_channel(cryp->dma_lch_in); |
| cryp->dma_lch_in = NULL; |
| dev_err(cryp->dev, "Couldn't configure DMA in slave.\n"); |
| return ret; |
| } |
| |
| memset(&dma_conf, 0, sizeof(dma_conf)); |
| |
| dma_conf.direction = DMA_DEV_TO_MEM; |
| dma_conf.src_addr = cryp->phys_base + cryp->caps->dout; |
| dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_conf.src_maxburst = CRYP_DMA_BURST_REG; |
| dma_conf.device_fc = false; |
| |
| chan = dma_request_chan(cryp->dev, "out"); |
| if (IS_ERR(chan)) { |
| dma_release_channel(cryp->dma_lch_in); |
| cryp->dma_lch_in = NULL; |
| return PTR_ERR(chan); |
| } |
| |
| cryp->dma_lch_out = chan; |
| |
| ret = dmaengine_slave_config(cryp->dma_lch_out, &dma_conf); |
| if (ret) { |
| dma_release_channel(cryp->dma_lch_out); |
| cryp->dma_lch_out = NULL; |
| dev_err(cryp->dev, "Couldn't configure DMA out slave.\n"); |
| dma_release_channel(cryp->dma_lch_in); |
| cryp->dma_lch_in = NULL; |
| return ret; |
| } |
| |
| init_completion(&cryp->dma_completion); |
| |
| return 0; |
| } |
| |
| static struct skcipher_engine_alg crypto_algs[] = { |
| { |
| .base = { |
| .base.cra_name = "ecb(aes)", |
| .base.cra_driver_name = "stm32-ecb-aes", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = stm32_cryp_aes_setkey, |
| .encrypt = stm32_cryp_aes_ecb_encrypt, |
| .decrypt = stm32_cryp_aes_ecb_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| { |
| .base = { |
| .base.cra_name = "cbc(aes)", |
| .base.cra_driver_name = "stm32-cbc-aes", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = stm32_cryp_aes_setkey, |
| .encrypt = stm32_cryp_aes_cbc_encrypt, |
| .decrypt = stm32_cryp_aes_cbc_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| { |
| .base = { |
| .base.cra_name = "ctr(aes)", |
| .base.cra_driver_name = "stm32-ctr-aes", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = stm32_cryp_aes_setkey, |
| .encrypt = stm32_cryp_aes_ctr_encrypt, |
| .decrypt = stm32_cryp_aes_ctr_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| { |
| .base = { |
| .base.cra_name = "ecb(des)", |
| .base.cra_driver_name = "stm32-ecb-des", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = DES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = DES_BLOCK_SIZE, |
| .max_keysize = DES_BLOCK_SIZE, |
| .setkey = stm32_cryp_des_setkey, |
| .encrypt = stm32_cryp_des_ecb_encrypt, |
| .decrypt = stm32_cryp_des_ecb_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| { |
| .base = { |
| .base.cra_name = "cbc(des)", |
| .base.cra_driver_name = "stm32-cbc-des", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = DES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = DES_BLOCK_SIZE, |
| .max_keysize = DES_BLOCK_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| .setkey = stm32_cryp_des_setkey, |
| .encrypt = stm32_cryp_des_cbc_encrypt, |
| .decrypt = stm32_cryp_des_cbc_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| { |
| .base = { |
| .base.cra_name = "ecb(des3_ede)", |
| .base.cra_driver_name = "stm32-ecb-des3", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = DES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = 3 * DES_BLOCK_SIZE, |
| .max_keysize = 3 * DES_BLOCK_SIZE, |
| .setkey = stm32_cryp_tdes_setkey, |
| .encrypt = stm32_cryp_tdes_ecb_encrypt, |
| .decrypt = stm32_cryp_tdes_ecb_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| { |
| .base = { |
| .base.cra_name = "cbc(des3_ede)", |
| .base.cra_driver_name = "stm32-cbc-des3", |
| .base.cra_priority = 300, |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .base.cra_blocksize = DES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .base.cra_alignmask = 0, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = stm32_cryp_init_tfm, |
| .min_keysize = 3 * DES_BLOCK_SIZE, |
| .max_keysize = 3 * DES_BLOCK_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| .setkey = stm32_cryp_tdes_setkey, |
| .encrypt = stm32_cryp_tdes_cbc_encrypt, |
| .decrypt = stm32_cryp_tdes_cbc_decrypt, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_cipher_one_req, |
| }, |
| }, |
| }; |
| |
| static struct aead_engine_alg aead_algs[] = { |
| { |
| .base.setkey = stm32_cryp_aes_aead_setkey, |
| .base.setauthsize = stm32_cryp_aes_gcm_setauthsize, |
| .base.encrypt = stm32_cryp_aes_gcm_encrypt, |
| .base.decrypt = stm32_cryp_aes_gcm_decrypt, |
| .base.init = stm32_cryp_aes_aead_init, |
| .base.ivsize = 12, |
| .base.maxauthsize = AES_BLOCK_SIZE, |
| |
| .base.base = { |
| .cra_name = "gcm(aes)", |
| .cra_driver_name = "stm32-gcm-aes", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_aead_one_req, |
| }, |
| }, |
| { |
| .base.setkey = stm32_cryp_aes_aead_setkey, |
| .base.setauthsize = stm32_cryp_aes_ccm_setauthsize, |
| .base.encrypt = stm32_cryp_aes_ccm_encrypt, |
| .base.decrypt = stm32_cryp_aes_ccm_decrypt, |
| .base.init = stm32_cryp_aes_aead_init, |
| .base.ivsize = AES_BLOCK_SIZE, |
| .base.maxauthsize = AES_BLOCK_SIZE, |
| |
| .base.base = { |
| .cra_name = "ccm(aes)", |
| .cra_driver_name = "stm32-ccm-aes", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct stm32_cryp_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .op = { |
| .do_one_request = stm32_cryp_aead_one_req, |
| }, |
| }, |
| }; |
| |
| static const struct stm32_cryp_caps ux500_data = { |
| .aeads_support = false, |
| .linear_aes_key = true, |
| .kp_mode = false, |
| .iv_protection = true, |
| .swap_final = true, |
| .padding_wa = true, |
| .cr = UX500_CRYP_CR, |
| .sr = UX500_CRYP_SR, |
| .din = UX500_CRYP_DIN, |
| .dout = UX500_CRYP_DOUT, |
| .dmacr = UX500_CRYP_DMACR, |
| .imsc = UX500_CRYP_IMSC, |
| .mis = UX500_CRYP_MIS, |
| .k1l = UX500_CRYP_K1L, |
| .k1r = UX500_CRYP_K1R, |
| .k3r = UX500_CRYP_K3R, |
| .iv0l = UX500_CRYP_IV0L, |
| .iv0r = UX500_CRYP_IV0R, |
| .iv1l = UX500_CRYP_IV1L, |
| .iv1r = UX500_CRYP_IV1R, |
| }; |
| |
| static const struct stm32_cryp_caps f7_data = { |
| .aeads_support = true, |
| .linear_aes_key = false, |
| .kp_mode = true, |
| .iv_protection = false, |
| .swap_final = true, |
| .padding_wa = true, |
| .cr = CRYP_CR, |
| .sr = CRYP_SR, |
| .din = CRYP_DIN, |
| .dout = CRYP_DOUT, |
| .dmacr = CRYP_DMACR, |
| .imsc = CRYP_IMSCR, |
| .mis = CRYP_MISR, |
| .k1l = CRYP_K1LR, |
| .k1r = CRYP_K1RR, |
| .k3r = CRYP_K3RR, |
| .iv0l = CRYP_IV0LR, |
| .iv0r = CRYP_IV0RR, |
| .iv1l = CRYP_IV1LR, |
| .iv1r = CRYP_IV1RR, |
| }; |
| |
| static const struct stm32_cryp_caps mp1_data = { |
| .aeads_support = true, |
| .linear_aes_key = false, |
| .kp_mode = true, |
| .iv_protection = false, |
| .swap_final = false, |
| .padding_wa = false, |
| .cr = CRYP_CR, |
| .sr = CRYP_SR, |
| .din = CRYP_DIN, |
| .dout = CRYP_DOUT, |
| .dmacr = CRYP_DMACR, |
| .imsc = CRYP_IMSCR, |
| .mis = CRYP_MISR, |
| .k1l = CRYP_K1LR, |
| .k1r = CRYP_K1RR, |
| .k3r = CRYP_K3RR, |
| .iv0l = CRYP_IV0LR, |
| .iv0r = CRYP_IV0RR, |
| .iv1l = CRYP_IV1LR, |
| .iv1r = CRYP_IV1RR, |
| }; |
| |
| static const struct of_device_id stm32_dt_ids[] = { |
| { .compatible = "stericsson,ux500-cryp", .data = &ux500_data}, |
| { .compatible = "st,stm32f756-cryp", .data = &f7_data}, |
| { .compatible = "st,stm32mp1-cryp", .data = &mp1_data}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_dt_ids); |
| |
| static int stm32_cryp_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct stm32_cryp *cryp; |
| struct reset_control *rst; |
| int irq, ret; |
| |
| cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL); |
| if (!cryp) |
| return -ENOMEM; |
| |
| cryp->caps = of_device_get_match_data(dev); |
| if (!cryp->caps) |
| return -ENODEV; |
| |
| cryp->dev = dev; |
| |
| cryp->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(cryp->regs)) |
| return PTR_ERR(cryp->regs); |
| |
| cryp->phys_base = platform_get_resource(pdev, IORESOURCE_MEM, 0)->start; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq, |
| stm32_cryp_irq_thread, IRQF_ONESHOT, |
| dev_name(dev), cryp); |
| if (ret) { |
| dev_err(dev, "Cannot grab IRQ\n"); |
| return ret; |
| } |
| |
| cryp->clk = devm_clk_get(dev, NULL); |
| if (IS_ERR(cryp->clk)) { |
| dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n"); |
| |
| return PTR_ERR(cryp->clk); |
| } |
| |
| ret = clk_prepare_enable(cryp->clk); |
| if (ret) { |
| dev_err(cryp->dev, "Failed to enable clock\n"); |
| return ret; |
| } |
| |
| pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY); |
| pm_runtime_use_autosuspend(dev); |
| |
| pm_runtime_get_noresume(dev); |
| pm_runtime_set_active(dev); |
| pm_runtime_enable(dev); |
| |
| rst = devm_reset_control_get(dev, NULL); |
| if (IS_ERR(rst)) { |
| ret = PTR_ERR(rst); |
| if (ret == -EPROBE_DEFER) |
| goto err_rst; |
| } else { |
| reset_control_assert(rst); |
| udelay(2); |
| reset_control_deassert(rst); |
| } |
| |
| platform_set_drvdata(pdev, cryp); |
| |
| ret = stm32_cryp_dma_init(cryp); |
| switch (ret) { |
| case 0: |
| break; |
| case -ENODEV: |
| dev_dbg(dev, "DMA mode not available\n"); |
| break; |
| default: |
| goto err_dma; |
| } |
| |
| spin_lock(&cryp_list.lock); |
| list_add(&cryp->list, &cryp_list.dev_list); |
| spin_unlock(&cryp_list.lock); |
| |
| /* Initialize crypto engine */ |
| cryp->engine = crypto_engine_alloc_init(dev, 1); |
| if (!cryp->engine) { |
| dev_err(dev, "Could not init crypto engine\n"); |
| ret = -ENOMEM; |
| goto err_engine1; |
| } |
| |
| ret = crypto_engine_start(cryp->engine); |
| if (ret) { |
| dev_err(dev, "Could not start crypto engine\n"); |
| goto err_engine2; |
| } |
| |
| ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs)); |
| if (ret) { |
| dev_err(dev, "Could not register algs\n"); |
| goto err_algs; |
| } |
| |
| if (cryp->caps->aeads_support) { |
| ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs)); |
| if (ret) |
| goto err_aead_algs; |
| } |
| |
| dev_info(dev, "Initialized\n"); |
| |
| pm_runtime_put_sync(dev); |
| |
| return 0; |
| |
| err_aead_algs: |
| crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs)); |
| err_algs: |
| err_engine2: |
| crypto_engine_exit(cryp->engine); |
| err_engine1: |
| spin_lock(&cryp_list.lock); |
| list_del(&cryp->list); |
| spin_unlock(&cryp_list.lock); |
| |
| if (cryp->dma_lch_in) |
| dma_release_channel(cryp->dma_lch_in); |
| if (cryp->dma_lch_out) |
| dma_release_channel(cryp->dma_lch_out); |
| err_dma: |
| err_rst: |
| pm_runtime_disable(dev); |
| pm_runtime_put_noidle(dev); |
| |
| clk_disable_unprepare(cryp->clk); |
| |
| return ret; |
| } |
| |
| static void stm32_cryp_remove(struct platform_device *pdev) |
| { |
| struct stm32_cryp *cryp = platform_get_drvdata(pdev); |
| int ret; |
| |
| ret = pm_runtime_get_sync(cryp->dev); |
| |
| if (cryp->caps->aeads_support) |
| crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs)); |
| crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs)); |
| |
| crypto_engine_exit(cryp->engine); |
| |
| spin_lock(&cryp_list.lock); |
| list_del(&cryp->list); |
| spin_unlock(&cryp_list.lock); |
| |
| if (cryp->dma_lch_in) |
| dma_release_channel(cryp->dma_lch_in); |
| |
| if (cryp->dma_lch_out) |
| dma_release_channel(cryp->dma_lch_out); |
| |
| pm_runtime_disable(cryp->dev); |
| pm_runtime_put_noidle(cryp->dev); |
| |
| if (ret >= 0) |
| clk_disable_unprepare(cryp->clk); |
| } |
| |
| #ifdef CONFIG_PM |
| static int stm32_cryp_runtime_suspend(struct device *dev) |
| { |
| struct stm32_cryp *cryp = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(cryp->clk); |
| |
| return 0; |
| } |
| |
| static int stm32_cryp_runtime_resume(struct device *dev) |
| { |
| struct stm32_cryp *cryp = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_prepare_enable(cryp->clk); |
| if (ret) { |
| dev_err(cryp->dev, "Failed to prepare_enable clock\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops stm32_cryp_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, |
| pm_runtime_force_resume) |
| SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend, |
| stm32_cryp_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver stm32_cryp_driver = { |
| .probe = stm32_cryp_probe, |
| .remove_new = stm32_cryp_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .pm = &stm32_cryp_pm_ops, |
| .of_match_table = stm32_dt_ids, |
| }, |
| }; |
| |
| module_platform_driver(stm32_cryp_driver); |
| |
| MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>"); |
| MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver"); |
| MODULE_LICENSE("GPL"); |