blob: 759732a07ef087743993d99d78983d0c51bc3136 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) KEBA Industrial Automation Gmbh 2024
*
* Driver for KEBA I2C controller FPGA IP core
*/
#include <linux/i2c.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/misc/keba.h>
#define KI2C "i2c-keba"
#define KI2C_CAPABILITY_REG 0x02
#define KI2C_CAPABILITY_CRYPTO 0x01
#define KI2C_CAPABILITY_DC 0x02
#define KI2C_CONTROL_REG 0x04
#define KI2C_CONTROL_MEN 0x01
#define KI2C_CONTROL_MSTA 0x02
#define KI2C_CONTROL_RSTA 0x04
#define KI2C_CONTROL_MTX 0x08
#define KI2C_CONTROL_TXAK 0x10
#define KI2C_CONTROL_DISABLE 0x00
#define KI2C_CONTROL_DC_REG 0x05
#define KI2C_CONTROL_DC_SDA 0x01
#define KI2C_CONTROL_DC_SCL 0x02
#define KI2C_STATUS_REG 0x08
#define KI2C_STATUS_IN_USE 0x01
#define KI2C_STATUS_ACK_CYC 0x02
#define KI2C_STATUS_RXAK 0x04
#define KI2C_STATUS_MCF 0x08
#define KI2C_STATUS_DC_REG 0x09
#define KI2C_STATUS_DC_SDA 0x01
#define KI2C_STATUS_DC_SCL 0x02
#define KI2C_DATA_REG 0x0c
#define KI2C_INUSE_SLEEP_US (2 * USEC_PER_MSEC)
#define KI2C_INUSE_TIMEOUT_US (10 * USEC_PER_SEC)
#define KI2C_POLL_DELAY_US 5
struct ki2c {
struct keba_i2c_auxdev *auxdev;
void __iomem *base;
struct i2c_adapter adapter;
struct i2c_client **client;
int client_size;
};
static int ki2c_inuse_lock(struct ki2c *ki2c)
{
u8 sts;
int ret;
/*
* The I2C controller has an IN_USE bit for locking access to the
* controller. This enables the use of I2C controller by other none
* Linux processors.
*
* If the I2C controller is free, then the first read returns
* IN_USE == 0. After that the I2C controller is locked and further
* reads of IN_USE return 1.
*
* The I2C controller is unlocked by writing 1 into IN_USE.
*
* The IN_USE bit acts as a hardware semaphore for the I2C controller.
* Poll for semaphore, but sleep while polling to free the CPU.
*/
ret = readb_poll_timeout(ki2c->base + KI2C_STATUS_REG,
sts, (sts & KI2C_STATUS_IN_USE) == 0,
KI2C_INUSE_SLEEP_US, KI2C_INUSE_TIMEOUT_US);
if (ret)
dev_err(&ki2c->auxdev->auxdev.dev, "%s err!\n", __func__);
return ret;
}
static void ki2c_inuse_unlock(struct ki2c *ki2c)
{
/* unlock the controller by writing 1 into IN_USE */
iowrite8(KI2C_STATUS_IN_USE, ki2c->base + KI2C_STATUS_REG);
}
static int ki2c_wait_for_bit(void __iomem *addr, u8 mask, unsigned long timeout)
{
u8 val;
return readb_poll_timeout(addr, val, (val & mask), KI2C_POLL_DELAY_US,
jiffies_to_usecs(timeout));
}
static int ki2c_wait_for_mcf(struct ki2c *ki2c)
{
return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, KI2C_STATUS_MCF,
ki2c->adapter.timeout);
}
static int ki2c_wait_for_data(struct ki2c *ki2c)
{
int ret;
ret = ki2c_wait_for_mcf(ki2c);
if (ret < 0)
return ret;
return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG,
KI2C_STATUS_ACK_CYC,
ki2c->adapter.timeout);
}
static int ki2c_wait_for_data_ack(struct ki2c *ki2c)
{
unsigned int reg;
int ret;
ret = ki2c_wait_for_data(ki2c);
if (ret < 0)
return ret;
/* RXAK == 0 means ACK reveived */
reg = ioread8(ki2c->base + KI2C_STATUS_REG);
if (reg & KI2C_STATUS_RXAK)
return -EIO;
return 0;
}
static int ki2c_has_capability(struct ki2c *ki2c, unsigned int cap)
{
unsigned int reg = ioread8(ki2c->base + KI2C_CAPABILITY_REG);
return (reg & cap) != 0;
}
static int ki2c_get_scl(struct ki2c *ki2c)
{
unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
/* capability KI2C_CAPABILITY_DC required */
return (reg & KI2C_STATUS_DC_SCL) != 0;
}
static int ki2c_get_sda(struct ki2c *ki2c)
{
unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
/* capability KI2C_CAPABILITY_DC required */
return (reg & KI2C_STATUS_DC_SDA) != 0;
}
static void ki2c_set_scl(struct ki2c *ki2c, int val)
{
u8 control_dc;
/* capability KI2C_CAPABILITY_DC and KI2C_CONTROL_MEN = 0 reqired */
control_dc = ioread8(ki2c->base + KI2C_CONTROL_DC_REG);
if (val)
control_dc |= KI2C_CONTROL_DC_SCL;
else
control_dc &= ~KI2C_CONTROL_DC_SCL;
iowrite8(control_dc, ki2c->base + KI2C_CONTROL_DC_REG);
}
/*
* Resetting bus bitwise is done by checking SDA and applying clock cycles as
* long as SDA is low. 9 clock cycles are applied at most.
*
* Clock cycles are generated and udelay() determines the duration of clock
* cycles. Generated clock rate is 100 KHz and so duration of both clock levels
* is: delay in ns = (10^6 / 100) / 2
*/
#define KI2C_RECOVERY_CLK_CNT (9 * 2)
#define KI2C_RECOVERY_UDELAY 5
static int ki2c_reset_bus_bitwise(struct ki2c *ki2c)
{
int val = 1;
int ret = 0;
int i;
/* disable I2C controller (MEN = 0) to get direct access to SCL/SDA */
iowrite8(0, ki2c->base + KI2C_CONTROL_REG);
/* generate clock cycles */
ki2c_set_scl(ki2c, val);
udelay(KI2C_RECOVERY_UDELAY);
for (i = 0; i < KI2C_RECOVERY_CLK_CNT; i++) {
if (val) {
/* SCL shouldn't be low here */
if (!ki2c_get_scl(ki2c)) {
dev_err(&ki2c->auxdev->auxdev.dev,
"SCL is stuck low!\n");
ret = -EBUSY;
break;
}
/* break if SDA is high */
if (ki2c_get_sda(ki2c))
break;
}
val = !val;
ki2c_set_scl(ki2c, val);
udelay(KI2C_RECOVERY_UDELAY);
}
if (!ki2c_get_sda(ki2c)) {
dev_err(&ki2c->auxdev->auxdev.dev, "SDA is still low!\n");
ret = -EBUSY;
}
/* reenable controller */
iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
return ret;
}
/*
* Resetting bus bytewise is done by writing start bit, 9 data bits and stop
* bit.
*
* This is not 100% safe. If target is an EEPROM and a write access was
* interrupted during the ACK cycle, this approach might not be able to recover
* the bus. The reason is, that after the 9 clock cycles the EEPROM will be in
* ACK cycle again and will hold SDA low like it did before the start of the
* routine. Furthermore the EEPROM might get written one additional byte with
* 0xff into it. Thus, use bitwise approach whenever possible, especially when
* EEPROMs are on the bus.
*/
static int ki2c_reset_bus_bytewise(struct ki2c *ki2c)
{
int ret;
/* hold data line high for 9 clock cycles */
iowrite8(0xFF, ki2c->base + KI2C_DATA_REG);
/* create start condition */
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
ki2c->base + KI2C_CONTROL_REG);
ret = ki2c_wait_for_mcf(ki2c);
if (ret < 0) {
dev_err(&ki2c->auxdev->auxdev.dev, "Start condition failed\n");
return ret;
}
/* create stop condition */
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_TXAK,
ki2c->base + KI2C_CONTROL_REG);
ret = ki2c_wait_for_mcf(ki2c);
if (ret < 0)
dev_err(&ki2c->auxdev->auxdev.dev, "Stop condition failed\n");
return ret;
}
static int ki2c_reset_bus(struct ki2c *ki2c)
{
int ret;
ret = ki2c_inuse_lock(ki2c);
if (ret < 0)
return ret;
/*
* If the I2C controller is capable of direct control of SCL/SDA, then a
* bitwise reset is used. Otherwise fall back to bytewise reset.
*/
if (ki2c_has_capability(ki2c, KI2C_CAPABILITY_DC))
ret = ki2c_reset_bus_bitwise(ki2c);
else
ret = ki2c_reset_bus_bytewise(ki2c);
ki2c_inuse_unlock(ki2c);
return ret;
}
static void ki2c_write_target_addr(struct ki2c *ki2c, struct i2c_msg *m)
{
u8 addr;
addr = m->addr << 1;
/* Bit 0 signals RD/WR */
if (m->flags & I2C_M_RD)
addr |= 0x01;
iowrite8(addr, ki2c->base + KI2C_DATA_REG);
}
static int ki2c_start_addr(struct ki2c *ki2c, struct i2c_msg *m)
{
int ret;
/*
* Store target address byte in the controller. This has to be done
* before sending START condition.
*/
ki2c_write_target_addr(ki2c, m);
/* enable controller for TX */
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX,
ki2c->base + KI2C_CONTROL_REG);
/* send START condition and target address byte */
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA,
ki2c->base + KI2C_CONTROL_REG);
ret = ki2c_wait_for_data_ack(ki2c);
if (ret < 0)
/*
* For EEPROMs this is normal behavior during internal write
* operation.
*/
dev_dbg(&ki2c->auxdev->auxdev.dev,
"%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
return ret;
}
static int ki2c_repstart_addr(struct ki2c *ki2c, struct i2c_msg *m)
{
int ret;
/* repeated start and write is not supported */
if ((m->flags & I2C_M_RD) == 0) {
dev_err(&ki2c->auxdev->auxdev.dev,
"Repeated start not supported for writes\n");
return -EINVAL;
}
/* send repeated start */
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_RSTA,
ki2c->base + KI2C_CONTROL_REG);
ret = ki2c_wait_for_mcf(ki2c);
if (ret < 0) {
dev_err(&ki2c->auxdev->auxdev.dev,
"%s wait for MCF err at 0x%02x!\n", __func__, m->addr);
return ret;
}
/* write target-address byte */
ki2c_write_target_addr(ki2c, m);
ret = ki2c_wait_for_data_ack(ki2c);
if (ret < 0)
dev_err(&ki2c->auxdev->auxdev.dev,
"%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
return ret;
}
static void ki2c_stop(struct ki2c *ki2c)
{
iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
ki2c_wait_for_mcf(ki2c);
}
static int ki2c_write(struct ki2c *ki2c, const u8 *data, int len)
{
int ret;
int i;
for (i = 0; i < len; i++) {
/* write data byte */
iowrite8(data[i], ki2c->base + KI2C_DATA_REG);
ret = ki2c_wait_for_data_ack(ki2c);
if (ret < 0)
return ret;
}
return 0;
}
static int ki2c_read(struct ki2c *ki2c, u8 *data, int len)
{
u8 control;
int ret;
int i;
if (len == 0)
return 0; /* nothing to do */
control = KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA;
/* if just one byte => send tx-nack after transfer */
if (len == 1)
control |= KI2C_CONTROL_TXAK;
iowrite8(control, ki2c->base + KI2C_CONTROL_REG);
/* dummy read to start transfer on bus */
ioread8(ki2c->base + KI2C_DATA_REG);
for (i = 0; i < len; i++) {
ret = ki2c_wait_for_data(ki2c);
if (ret < 0)
return ret;
if (i == len - 2)
/* send tx-nack after transfer of last byte */
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
ki2c->base + KI2C_CONTROL_REG);
else if (i == len - 1)
/*
* switch to TX on last byte, so that reading DATA
* register does not trigger another read transfer
*/
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_MTX,
ki2c->base + KI2C_CONTROL_REG);
/* read byte and start next transfer (if not last byte) */
data[i] = ioread8(ki2c->base + KI2C_DATA_REG);
}
return len;
}
static int ki2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct ki2c *ki2c = i2c_get_adapdata(adap);
int ret;
int i;
ret = ki2c_inuse_lock(ki2c);
if (ret < 0)
return ret;
for (i = 0; i < num; i++) {
struct i2c_msg *m = &msgs[i];
if (i == 0)
ret = ki2c_start_addr(ki2c, m);
else
ret = ki2c_repstart_addr(ki2c, m);
if (ret < 0)
break;
if (m->flags & I2C_M_RD)
ret = ki2c_read(ki2c, m->buf, m->len);
else
ret = ki2c_write(ki2c, m->buf, m->len);
if (ret < 0)
break;
}
ki2c_stop(ki2c);
ki2c_inuse_unlock(ki2c);
return ret < 0 ? ret : num;
}
static void ki2c_unregister_devices(struct ki2c *ki2c)
{
int i;
for (i = 0; i < ki2c->client_size; i++) {
struct i2c_client *client = ki2c->client[i];
if (client)
i2c_unregister_device(client);
}
}
static int ki2c_register_devices(struct ki2c *ki2c)
{
struct i2c_board_info *info = ki2c->auxdev->info;
int i;
/* register all known I2C devices */
for (i = 0; i < ki2c->client_size; i++) {
struct i2c_client *client;
unsigned short const addr_list[2] = { info[i].addr,
I2C_CLIENT_END };
client = i2c_new_scanned_device(&ki2c->adapter, &info[i],
addr_list, NULL);
if (!IS_ERR(client)) {
ki2c->client[i] = client;
} else if (PTR_ERR(client) != -ENODEV) {
ki2c->client_size = i;
ki2c_unregister_devices(ki2c);
return PTR_ERR(client);
}
}
return 0;
}
static u32 ki2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm ki2c_algo = {
.master_xfer = ki2c_xfer,
.functionality = ki2c_func,
};
static int ki2c_probe(struct auxiliary_device *auxdev,
const struct auxiliary_device_id *id)
{
struct device *dev = &auxdev->dev;
struct i2c_adapter *adap;
struct ki2c *ki2c;
int ret;
ki2c = devm_kzalloc(dev, sizeof(*ki2c), GFP_KERNEL);
if (!ki2c)
return -ENOMEM;
ki2c->auxdev = container_of(auxdev, struct keba_i2c_auxdev, auxdev);
ki2c->client = devm_kcalloc(dev, ki2c->auxdev->info_size,
sizeof(*ki2c->client), GFP_KERNEL);
if (!ki2c->client)
return -ENOMEM;
ki2c->client_size = ki2c->auxdev->info_size;
auxiliary_set_drvdata(auxdev, ki2c);
ki2c->base = devm_ioremap_resource(dev, &ki2c->auxdev->io);
if (IS_ERR(ki2c->base))
return PTR_ERR(ki2c->base);
adap = &ki2c->adapter;
strscpy(adap->name, "KEBA I2C adapter", sizeof(adap->name));
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_HWMON;
adap->algo = &ki2c_algo;
adap->dev.parent = dev;
i2c_set_adapdata(adap, ki2c);
/* enable controller */
iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
/* reset bus before probing I2C devices */
ret = ki2c_reset_bus(ki2c);
if (ret)
goto out;
ret = devm_i2c_add_adapter(dev, adap);
if (ret) {
dev_err(dev, "Failed to add adapter (%d)!\n", ret);
goto out;
}
ret = ki2c_register_devices(ki2c);
if (ret) {
dev_err(dev, "Failed to register devices (%d)!\n", ret);
goto out;
}
return 0;
out:
iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
return ret;
}
static void ki2c_remove(struct auxiliary_device *auxdev)
{
struct ki2c *ki2c = auxiliary_get_drvdata(auxdev);
ki2c_unregister_devices(ki2c);
/* disable controller */
iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
auxiliary_set_drvdata(auxdev, NULL);
}
static const struct auxiliary_device_id ki2c_devtype_aux[] = {
{ .name = "keba.i2c" },
{ }
};
MODULE_DEVICE_TABLE(auxiliary, ki2c_devtype_aux);
static struct auxiliary_driver ki2c_driver_aux = {
.name = KI2C,
.id_table = ki2c_devtype_aux,
.probe = ki2c_probe,
.remove = ki2c_remove,
};
module_auxiliary_driver(ki2c_driver_aux);
MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
MODULE_DESCRIPTION("KEBA I2C bus controller driver");
MODULE_LICENSE("GPL");