| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| */ |
| #ifndef _LINUX_BPF_VERIFIER_H |
| #define _LINUX_BPF_VERIFIER_H 1 |
| |
| #include <linux/bpf.h> /* for enum bpf_reg_type */ |
| #include <linux/btf.h> /* for struct btf and btf_id() */ |
| #include <linux/filter.h> /* for MAX_BPF_STACK */ |
| #include <linux/tnum.h> |
| |
| /* Maximum variable offset umax_value permitted when resolving memory accesses. |
| * In practice this is far bigger than any realistic pointer offset; this limit |
| * ensures that umax_value + (int)off + (int)size cannot overflow a u64. |
| */ |
| #define BPF_MAX_VAR_OFF (1 << 29) |
| /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures |
| * that converting umax_value to int cannot overflow. |
| */ |
| #define BPF_MAX_VAR_SIZ (1 << 29) |
| /* size of tmp_str_buf in bpf_verifier. |
| * we need at least 306 bytes to fit full stack mask representation |
| * (in the "-8,-16,...,-512" form) |
| */ |
| #define TMP_STR_BUF_LEN 320 |
| /* Patch buffer size */ |
| #define INSN_BUF_SIZE 32 |
| |
| /* Liveness marks, used for registers and spilled-regs (in stack slots). |
| * Read marks propagate upwards until they find a write mark; they record that |
| * "one of this state's descendants read this reg" (and therefore the reg is |
| * relevant for states_equal() checks). |
| * Write marks collect downwards and do not propagate; they record that "the |
| * straight-line code that reached this state (from its parent) wrote this reg" |
| * (and therefore that reads propagated from this state or its descendants |
| * should not propagate to its parent). |
| * A state with a write mark can receive read marks; it just won't propagate |
| * them to its parent, since the write mark is a property, not of the state, |
| * but of the link between it and its parent. See mark_reg_read() and |
| * mark_stack_slot_read() in kernel/bpf/verifier.c. |
| */ |
| enum bpf_reg_liveness { |
| REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ |
| REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ |
| REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ |
| REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, |
| REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ |
| REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ |
| }; |
| |
| /* For every reg representing a map value or allocated object pointer, |
| * we consider the tuple of (ptr, id) for them to be unique in verifier |
| * context and conside them to not alias each other for the purposes of |
| * tracking lock state. |
| */ |
| struct bpf_active_lock { |
| /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, |
| * there's no active lock held, and other fields have no |
| * meaning. If non-NULL, it indicates that a lock is held and |
| * id member has the reg->id of the register which can be >= 0. |
| */ |
| void *ptr; |
| /* This will be reg->id */ |
| u32 id; |
| }; |
| |
| #define ITER_PREFIX "bpf_iter_" |
| |
| enum bpf_iter_state { |
| BPF_ITER_STATE_INVALID, /* for non-first slot */ |
| BPF_ITER_STATE_ACTIVE, |
| BPF_ITER_STATE_DRAINED, |
| }; |
| |
| struct bpf_reg_state { |
| /* Ordering of fields matters. See states_equal() */ |
| enum bpf_reg_type type; |
| /* |
| * Fixed part of pointer offset, pointer types only. |
| * Or constant delta between "linked" scalars with the same ID. |
| */ |
| s32 off; |
| union { |
| /* valid when type == PTR_TO_PACKET */ |
| int range; |
| |
| /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | |
| * PTR_TO_MAP_VALUE_OR_NULL |
| */ |
| struct { |
| struct bpf_map *map_ptr; |
| /* To distinguish map lookups from outer map |
| * the map_uid is non-zero for registers |
| * pointing to inner maps. |
| */ |
| u32 map_uid; |
| }; |
| |
| /* for PTR_TO_BTF_ID */ |
| struct { |
| struct btf *btf; |
| u32 btf_id; |
| }; |
| |
| struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ |
| u32 mem_size; |
| u32 dynptr_id; /* for dynptr slices */ |
| }; |
| |
| /* For dynptr stack slots */ |
| struct { |
| enum bpf_dynptr_type type; |
| /* A dynptr is 16 bytes so it takes up 2 stack slots. |
| * We need to track which slot is the first slot |
| * to protect against cases where the user may try to |
| * pass in an address starting at the second slot of the |
| * dynptr. |
| */ |
| bool first_slot; |
| } dynptr; |
| |
| /* For bpf_iter stack slots */ |
| struct { |
| /* BTF container and BTF type ID describing |
| * struct bpf_iter_<type> of an iterator state |
| */ |
| struct btf *btf; |
| u32 btf_id; |
| /* packing following two fields to fit iter state into 16 bytes */ |
| enum bpf_iter_state state:2; |
| int depth:30; |
| } iter; |
| |
| /* Max size from any of the above. */ |
| struct { |
| unsigned long raw1; |
| unsigned long raw2; |
| } raw; |
| |
| u32 subprogno; /* for PTR_TO_FUNC */ |
| }; |
| /* For scalar types (SCALAR_VALUE), this represents our knowledge of |
| * the actual value. |
| * For pointer types, this represents the variable part of the offset |
| * from the pointed-to object, and is shared with all bpf_reg_states |
| * with the same id as us. |
| */ |
| struct tnum var_off; |
| /* Used to determine if any memory access using this register will |
| * result in a bad access. |
| * These refer to the same value as var_off, not necessarily the actual |
| * contents of the register. |
| */ |
| s64 smin_value; /* minimum possible (s64)value */ |
| s64 smax_value; /* maximum possible (s64)value */ |
| u64 umin_value; /* minimum possible (u64)value */ |
| u64 umax_value; /* maximum possible (u64)value */ |
| s32 s32_min_value; /* minimum possible (s32)value */ |
| s32 s32_max_value; /* maximum possible (s32)value */ |
| u32 u32_min_value; /* minimum possible (u32)value */ |
| u32 u32_max_value; /* maximum possible (u32)value */ |
| /* For PTR_TO_PACKET, used to find other pointers with the same variable |
| * offset, so they can share range knowledge. |
| * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we |
| * came from, when one is tested for != NULL. |
| * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation |
| * for the purpose of tracking that it's freed. |
| * For PTR_TO_SOCKET this is used to share which pointers retain the |
| * same reference to the socket, to determine proper reference freeing. |
| * For stack slots that are dynptrs, this is used to track references to |
| * the dynptr to determine proper reference freeing. |
| * Similarly to dynptrs, we use ID to track "belonging" of a reference |
| * to a specific instance of bpf_iter. |
| */ |
| /* |
| * Upper bit of ID is used to remember relationship between "linked" |
| * registers. Example: |
| * r1 = r2; both will have r1->id == r2->id == N |
| * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 |
| */ |
| #define BPF_ADD_CONST (1U << 31) |
| u32 id; |
| /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned |
| * from a pointer-cast helper, bpf_sk_fullsock() and |
| * bpf_tcp_sock(). |
| * |
| * Consider the following where "sk" is a reference counted |
| * pointer returned from "sk = bpf_sk_lookup_tcp();": |
| * |
| * 1: sk = bpf_sk_lookup_tcp(); |
| * 2: if (!sk) { return 0; } |
| * 3: fullsock = bpf_sk_fullsock(sk); |
| * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } |
| * 5: tp = bpf_tcp_sock(fullsock); |
| * 6: if (!tp) { bpf_sk_release(sk); return 0; } |
| * 7: bpf_sk_release(sk); |
| * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain |
| * |
| * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and |
| * "tp" ptr should be invalidated also. In order to do that, |
| * the reg holding "fullsock" and "sk" need to remember |
| * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id |
| * such that the verifier can reset all regs which have |
| * ref_obj_id matching the sk_reg->id. |
| * |
| * sk_reg->ref_obj_id is set to sk_reg->id at line 1. |
| * sk_reg->id will stay as NULL-marking purpose only. |
| * After NULL-marking is done, sk_reg->id can be reset to 0. |
| * |
| * After "fullsock = bpf_sk_fullsock(sk);" at line 3, |
| * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. |
| * |
| * After "tp = bpf_tcp_sock(fullsock);" at line 5, |
| * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id |
| * which is the same as sk_reg->ref_obj_id. |
| * |
| * From the verifier perspective, if sk, fullsock and tp |
| * are not NULL, they are the same ptr with different |
| * reg->type. In particular, bpf_sk_release(tp) is also |
| * allowed and has the same effect as bpf_sk_release(sk). |
| */ |
| u32 ref_obj_id; |
| /* parentage chain for liveness checking */ |
| struct bpf_reg_state *parent; |
| /* Inside the callee two registers can be both PTR_TO_STACK like |
| * R1=fp-8 and R2=fp-8, but one of them points to this function stack |
| * while another to the caller's stack. To differentiate them 'frameno' |
| * is used which is an index in bpf_verifier_state->frame[] array |
| * pointing to bpf_func_state. |
| */ |
| u32 frameno; |
| /* Tracks subreg definition. The stored value is the insn_idx of the |
| * writing insn. This is safe because subreg_def is used before any insn |
| * patching which only happens after main verification finished. |
| */ |
| s32 subreg_def; |
| enum bpf_reg_liveness live; |
| /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ |
| bool precise; |
| }; |
| |
| enum bpf_stack_slot_type { |
| STACK_INVALID, /* nothing was stored in this stack slot */ |
| STACK_SPILL, /* register spilled into stack */ |
| STACK_MISC, /* BPF program wrote some data into this slot */ |
| STACK_ZERO, /* BPF program wrote constant zero */ |
| /* A dynptr is stored in this stack slot. The type of dynptr |
| * is stored in bpf_stack_state->spilled_ptr.dynptr.type |
| */ |
| STACK_DYNPTR, |
| STACK_ITER, |
| }; |
| |
| #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ |
| |
| #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ |
| (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ |
| (1 << BPF_REG_5)) |
| |
| #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) |
| #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) |
| |
| struct bpf_stack_state { |
| struct bpf_reg_state spilled_ptr; |
| u8 slot_type[BPF_REG_SIZE]; |
| }; |
| |
| struct bpf_reference_state { |
| /* Track each reference created with a unique id, even if the same |
| * instruction creates the reference multiple times (eg, via CALL). |
| */ |
| int id; |
| /* Instruction where the allocation of this reference occurred. This |
| * is used purely to inform the user of a reference leak. |
| */ |
| int insn_idx; |
| /* There can be a case like: |
| * main (frame 0) |
| * cb (frame 1) |
| * func (frame 3) |
| * cb (frame 4) |
| * Hence for frame 4, if callback_ref just stored boolean, it would be |
| * impossible to distinguish nested callback refs. Hence store the |
| * frameno and compare that to callback_ref in check_reference_leak when |
| * exiting a callback function. |
| */ |
| int callback_ref; |
| }; |
| |
| struct bpf_retval_range { |
| s32 minval; |
| s32 maxval; |
| }; |
| |
| /* state of the program: |
| * type of all registers and stack info |
| */ |
| struct bpf_func_state { |
| struct bpf_reg_state regs[MAX_BPF_REG]; |
| /* index of call instruction that called into this func */ |
| int callsite; |
| /* stack frame number of this function state from pov of |
| * enclosing bpf_verifier_state. |
| * 0 = main function, 1 = first callee. |
| */ |
| u32 frameno; |
| /* subprog number == index within subprog_info |
| * zero == main subprog |
| */ |
| u32 subprogno; |
| /* Every bpf_timer_start will increment async_entry_cnt. |
| * It's used to distinguish: |
| * void foo(void) { for(;;); } |
| * void foo(void) { bpf_timer_set_callback(,foo); } |
| */ |
| u32 async_entry_cnt; |
| struct bpf_retval_range callback_ret_range; |
| bool in_callback_fn; |
| bool in_async_callback_fn; |
| bool in_exception_callback_fn; |
| /* For callback calling functions that limit number of possible |
| * callback executions (e.g. bpf_loop) keeps track of current |
| * simulated iteration number. |
| * Value in frame N refers to number of times callback with frame |
| * N+1 was simulated, e.g. for the following call: |
| * |
| * bpf_loop(..., fn, ...); | suppose current frame is N |
| * | fn would be simulated in frame N+1 |
| * | number of simulations is tracked in frame N |
| */ |
| u32 callback_depth; |
| |
| /* The following fields should be last. See copy_func_state() */ |
| int acquired_refs; |
| struct bpf_reference_state *refs; |
| /* The state of the stack. Each element of the array describes BPF_REG_SIZE |
| * (i.e. 8) bytes worth of stack memory. |
| * stack[0] represents bytes [*(r10-8)..*(r10-1)] |
| * stack[1] represents bytes [*(r10-16)..*(r10-9)] |
| * ... |
| * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] |
| */ |
| struct bpf_stack_state *stack; |
| /* Size of the current stack, in bytes. The stack state is tracked below, in |
| * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. |
| */ |
| int allocated_stack; |
| }; |
| |
| #define MAX_CALL_FRAMES 8 |
| |
| /* instruction history flags, used in bpf_jmp_history_entry.flags field */ |
| enum { |
| /* instruction references stack slot through PTR_TO_STACK register; |
| * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) |
| * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, |
| * 8 bytes per slot, so slot index (spi) is [0, 63]) |
| */ |
| INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ |
| |
| INSN_F_SPI_MASK = 0x3f, /* 6 bits */ |
| INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ |
| |
| INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */ |
| }; |
| |
| static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); |
| static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); |
| |
| struct bpf_jmp_history_entry { |
| u32 idx; |
| /* insn idx can't be bigger than 1 million */ |
| u32 prev_idx : 22; |
| /* special flags, e.g., whether insn is doing register stack spill/load */ |
| u32 flags : 10; |
| /* additional registers that need precision tracking when this |
| * jump is backtracked, vector of six 10-bit records |
| */ |
| u64 linked_regs; |
| }; |
| |
| /* Maximum number of register states that can exist at once */ |
| #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) |
| struct bpf_verifier_state { |
| /* call stack tracking */ |
| struct bpf_func_state *frame[MAX_CALL_FRAMES]; |
| struct bpf_verifier_state *parent; |
| /* |
| * 'branches' field is the number of branches left to explore: |
| * 0 - all possible paths from this state reached bpf_exit or |
| * were safely pruned |
| * 1 - at least one path is being explored. |
| * This state hasn't reached bpf_exit |
| * 2 - at least two paths are being explored. |
| * This state is an immediate parent of two children. |
| * One is fallthrough branch with branches==1 and another |
| * state is pushed into stack (to be explored later) also with |
| * branches==1. The parent of this state has branches==1. |
| * The verifier state tree connected via 'parent' pointer looks like: |
| * 1 |
| * 1 |
| * 2 -> 1 (first 'if' pushed into stack) |
| * 1 |
| * 2 -> 1 (second 'if' pushed into stack) |
| * 1 |
| * 1 |
| * 1 bpf_exit. |
| * |
| * Once do_check() reaches bpf_exit, it calls update_branch_counts() |
| * and the verifier state tree will look: |
| * 1 |
| * 1 |
| * 2 -> 1 (first 'if' pushed into stack) |
| * 1 |
| * 1 -> 1 (second 'if' pushed into stack) |
| * 0 |
| * 0 |
| * 0 bpf_exit. |
| * After pop_stack() the do_check() will resume at second 'if'. |
| * |
| * If is_state_visited() sees a state with branches > 0 it means |
| * there is a loop. If such state is exactly equal to the current state |
| * it's an infinite loop. Note states_equal() checks for states |
| * equivalency, so two states being 'states_equal' does not mean |
| * infinite loop. The exact comparison is provided by |
| * states_maybe_looping() function. It's a stronger pre-check and |
| * much faster than states_equal(). |
| * |
| * This algorithm may not find all possible infinite loops or |
| * loop iteration count may be too high. |
| * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. |
| */ |
| u32 branches; |
| u32 insn_idx; |
| u32 curframe; |
| |
| struct bpf_active_lock active_lock; |
| bool speculative; |
| bool active_rcu_lock; |
| u32 active_preempt_lock; |
| /* If this state was ever pointed-to by other state's loop_entry field |
| * this flag would be set to true. Used to avoid freeing such states |
| * while they are still in use. |
| */ |
| bool used_as_loop_entry; |
| bool in_sleepable; |
| |
| /* first and last insn idx of this verifier state */ |
| u32 first_insn_idx; |
| u32 last_insn_idx; |
| /* If this state is a part of states loop this field points to some |
| * parent of this state such that: |
| * - it is also a member of the same states loop; |
| * - DFS states traversal starting from initial state visits loop_entry |
| * state before this state. |
| * Used to compute topmost loop entry for state loops. |
| * State loops might appear because of open coded iterators logic. |
| * See get_loop_entry() for more information. |
| */ |
| struct bpf_verifier_state *loop_entry; |
| /* jmp history recorded from first to last. |
| * backtracking is using it to go from last to first. |
| * For most states jmp_history_cnt is [0-3]. |
| * For loops can go up to ~40. |
| */ |
| struct bpf_jmp_history_entry *jmp_history; |
| u32 jmp_history_cnt; |
| u32 dfs_depth; |
| u32 callback_unroll_depth; |
| u32 may_goto_depth; |
| }; |
| |
| #define bpf_get_spilled_reg(slot, frame, mask) \ |
| (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ |
| ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ |
| ? &frame->stack[slot].spilled_ptr : NULL) |
| |
| /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ |
| #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ |
| for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ |
| iter < frame->allocated_stack / BPF_REG_SIZE; \ |
| iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) |
| |
| #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ |
| ({ \ |
| struct bpf_verifier_state *___vstate = __vst; \ |
| int ___i, ___j; \ |
| for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ |
| struct bpf_reg_state *___regs; \ |
| __state = ___vstate->frame[___i]; \ |
| ___regs = __state->regs; \ |
| for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ |
| __reg = &___regs[___j]; \ |
| (void)(__expr); \ |
| } \ |
| bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ |
| if (!__reg) \ |
| continue; \ |
| (void)(__expr); \ |
| } \ |
| } \ |
| }) |
| |
| /* Invoke __expr over regsiters in __vst, setting __state and __reg */ |
| #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ |
| bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) |
| |
| /* linked list of verifier states used to prune search */ |
| struct bpf_verifier_state_list { |
| struct bpf_verifier_state state; |
| struct bpf_verifier_state_list *next; |
| int miss_cnt, hit_cnt; |
| }; |
| |
| struct bpf_loop_inline_state { |
| unsigned int initialized:1; /* set to true upon first entry */ |
| unsigned int fit_for_inline:1; /* true if callback function is the same |
| * at each call and flags are always zero |
| */ |
| u32 callback_subprogno; /* valid when fit_for_inline is true */ |
| }; |
| |
| /* pointer and state for maps */ |
| struct bpf_map_ptr_state { |
| struct bpf_map *map_ptr; |
| bool poison; |
| bool unpriv; |
| }; |
| |
| /* Possible states for alu_state member. */ |
| #define BPF_ALU_SANITIZE_SRC (1U << 0) |
| #define BPF_ALU_SANITIZE_DST (1U << 1) |
| #define BPF_ALU_NEG_VALUE (1U << 2) |
| #define BPF_ALU_NON_POINTER (1U << 3) |
| #define BPF_ALU_IMMEDIATE (1U << 4) |
| #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ |
| BPF_ALU_SANITIZE_DST) |
| |
| struct bpf_insn_aux_data { |
| union { |
| enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ |
| struct bpf_map_ptr_state map_ptr_state; |
| s32 call_imm; /* saved imm field of call insn */ |
| u32 alu_limit; /* limit for add/sub register with pointer */ |
| struct { |
| u32 map_index; /* index into used_maps[] */ |
| u32 map_off; /* offset from value base address */ |
| }; |
| struct { |
| enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ |
| union { |
| struct { |
| struct btf *btf; |
| u32 btf_id; /* btf_id for struct typed var */ |
| }; |
| u32 mem_size; /* mem_size for non-struct typed var */ |
| }; |
| } btf_var; |
| /* if instruction is a call to bpf_loop this field tracks |
| * the state of the relevant registers to make decision about inlining |
| */ |
| struct bpf_loop_inline_state loop_inline_state; |
| }; |
| union { |
| /* remember the size of type passed to bpf_obj_new to rewrite R1 */ |
| u64 obj_new_size; |
| /* remember the offset of node field within type to rewrite */ |
| u64 insert_off; |
| }; |
| struct btf_struct_meta *kptr_struct_meta; |
| u64 map_key_state; /* constant (32 bit) key tracking for maps */ |
| int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ |
| u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ |
| bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ |
| bool zext_dst; /* this insn zero extends dst reg */ |
| bool needs_zext; /* alu op needs to clear upper bits */ |
| bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ |
| bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ |
| bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ |
| u8 alu_state; /* used in combination with alu_limit */ |
| /* true if STX or LDX instruction is a part of a spill/fill |
| * pattern for a bpf_fastcall call. |
| */ |
| u8 fastcall_pattern:1; |
| /* for CALL instructions, a number of spill/fill pairs in the |
| * bpf_fastcall pattern. |
| */ |
| u8 fastcall_spills_num:3; |
| |
| /* below fields are initialized once */ |
| unsigned int orig_idx; /* original instruction index */ |
| bool jmp_point; |
| bool prune_point; |
| /* ensure we check state equivalence and save state checkpoint and |
| * this instruction, regardless of any heuristics |
| */ |
| bool force_checkpoint; |
| /* true if instruction is a call to a helper function that |
| * accepts callback function as a parameter. |
| */ |
| bool calls_callback; |
| }; |
| |
| #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ |
| #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ |
| |
| #define BPF_VERIFIER_TMP_LOG_SIZE 1024 |
| |
| struct bpf_verifier_log { |
| /* Logical start and end positions of a "log window" of the verifier log. |
| * start_pos == 0 means we haven't truncated anything. |
| * Once truncation starts to happen, start_pos + len_total == end_pos, |
| * except during log reset situations, in which (end_pos - start_pos) |
| * might get smaller than len_total (see bpf_vlog_reset()). |
| * Generally, (end_pos - start_pos) gives number of useful data in |
| * user log buffer. |
| */ |
| u64 start_pos; |
| u64 end_pos; |
| char __user *ubuf; |
| u32 level; |
| u32 len_total; |
| u32 len_max; |
| char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; |
| }; |
| |
| #define BPF_LOG_LEVEL1 1 |
| #define BPF_LOG_LEVEL2 2 |
| #define BPF_LOG_STATS 4 |
| #define BPF_LOG_FIXED 8 |
| #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) |
| #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) |
| #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ |
| #define BPF_LOG_MIN_ALIGNMENT 8U |
| #define BPF_LOG_ALIGNMENT 40U |
| |
| static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) |
| { |
| return log && log->level; |
| } |
| |
| #define BPF_MAX_SUBPROGS 256 |
| |
| struct bpf_subprog_arg_info { |
| enum bpf_arg_type arg_type; |
| union { |
| u32 mem_size; |
| u32 btf_id; |
| }; |
| }; |
| |
| struct bpf_subprog_info { |
| /* 'start' has to be the first field otherwise find_subprog() won't work */ |
| u32 start; /* insn idx of function entry point */ |
| u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ |
| u16 stack_depth; /* max. stack depth used by this function */ |
| u16 stack_extra; |
| /* offsets in range [stack_depth .. fastcall_stack_off) |
| * are used for bpf_fastcall spills and fills. |
| */ |
| s16 fastcall_stack_off; |
| bool has_tail_call: 1; |
| bool tail_call_reachable: 1; |
| bool has_ld_abs: 1; |
| bool is_cb: 1; |
| bool is_async_cb: 1; |
| bool is_exception_cb: 1; |
| bool args_cached: 1; |
| /* true if bpf_fastcall stack region is used by functions that can't be inlined */ |
| bool keep_fastcall_stack: 1; |
| |
| u8 arg_cnt; |
| struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; |
| }; |
| |
| struct bpf_verifier_env; |
| |
| struct backtrack_state { |
| struct bpf_verifier_env *env; |
| u32 frame; |
| u32 reg_masks[MAX_CALL_FRAMES]; |
| u64 stack_masks[MAX_CALL_FRAMES]; |
| }; |
| |
| struct bpf_id_pair { |
| u32 old; |
| u32 cur; |
| }; |
| |
| struct bpf_idmap { |
| u32 tmp_id_gen; |
| struct bpf_id_pair map[BPF_ID_MAP_SIZE]; |
| }; |
| |
| struct bpf_idset { |
| u32 count; |
| u32 ids[BPF_ID_MAP_SIZE]; |
| }; |
| |
| /* single container for all structs |
| * one verifier_env per bpf_check() call |
| */ |
| struct bpf_verifier_env { |
| u32 insn_idx; |
| u32 prev_insn_idx; |
| struct bpf_prog *prog; /* eBPF program being verified */ |
| const struct bpf_verifier_ops *ops; |
| struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ |
| struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ |
| int stack_size; /* number of states to be processed */ |
| bool strict_alignment; /* perform strict pointer alignment checks */ |
| bool test_state_freq; /* test verifier with different pruning frequency */ |
| bool test_reg_invariants; /* fail verification on register invariants violations */ |
| struct bpf_verifier_state *cur_state; /* current verifier state */ |
| struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ |
| struct bpf_verifier_state_list *free_list; |
| struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ |
| struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ |
| u32 used_map_cnt; /* number of used maps */ |
| u32 used_btf_cnt; /* number of used BTF objects */ |
| u32 id_gen; /* used to generate unique reg IDs */ |
| u32 hidden_subprog_cnt; /* number of hidden subprogs */ |
| int exception_callback_subprog; |
| bool explore_alu_limits; |
| bool allow_ptr_leaks; |
| /* Allow access to uninitialized stack memory. Writes with fixed offset are |
| * always allowed, so this refers to reads (with fixed or variable offset), |
| * to writes with variable offset and to indirect (helper) accesses. |
| */ |
| bool allow_uninit_stack; |
| bool bpf_capable; |
| bool bypass_spec_v1; |
| bool bypass_spec_v4; |
| bool seen_direct_write; |
| bool seen_exception; |
| struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ |
| const struct bpf_line_info *prev_linfo; |
| struct bpf_verifier_log log; |
| struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ |
| union { |
| struct bpf_idmap idmap_scratch; |
| struct bpf_idset idset_scratch; |
| }; |
| struct { |
| int *insn_state; |
| int *insn_stack; |
| int cur_stack; |
| } cfg; |
| struct backtrack_state bt; |
| struct bpf_jmp_history_entry *cur_hist_ent; |
| u32 pass_cnt; /* number of times do_check() was called */ |
| u32 subprog_cnt; |
| /* number of instructions analyzed by the verifier */ |
| u32 prev_insn_processed, insn_processed; |
| /* number of jmps, calls, exits analyzed so far */ |
| u32 prev_jmps_processed, jmps_processed; |
| /* total verification time */ |
| u64 verification_time; |
| /* maximum number of verifier states kept in 'branching' instructions */ |
| u32 max_states_per_insn; |
| /* total number of allocated verifier states */ |
| u32 total_states; |
| /* some states are freed during program analysis. |
| * this is peak number of states. this number dominates kernel |
| * memory consumption during verification |
| */ |
| u32 peak_states; |
| /* longest register parentage chain walked for liveness marking */ |
| u32 longest_mark_read_walk; |
| bpfptr_t fd_array; |
| |
| /* bit mask to keep track of whether a register has been accessed |
| * since the last time the function state was printed |
| */ |
| u32 scratched_regs; |
| /* Same as scratched_regs but for stack slots */ |
| u64 scratched_stack_slots; |
| u64 prev_log_pos, prev_insn_print_pos; |
| /* buffer used to temporary hold constants as scalar registers */ |
| struct bpf_reg_state fake_reg[2]; |
| /* buffer used to generate temporary string representations, |
| * e.g., in reg_type_str() to generate reg_type string |
| */ |
| char tmp_str_buf[TMP_STR_BUF_LEN]; |
| struct bpf_insn insn_buf[INSN_BUF_SIZE]; |
| struct bpf_insn epilogue_buf[INSN_BUF_SIZE]; |
| }; |
| |
| static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) |
| { |
| return &env->prog->aux->func_info_aux[subprog]; |
| } |
| |
| static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) |
| { |
| return &env->subprog_info[subprog]; |
| } |
| |
| __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, |
| const char *fmt, va_list args); |
| __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, |
| const char *fmt, ...); |
| __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, |
| const char *fmt, ...); |
| int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, |
| char __user *log_buf, u32 log_size); |
| void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); |
| int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); |
| |
| __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, |
| u32 insn_off, |
| const char *prefix_fmt, ...); |
| |
| static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| |
| return cur->frame[cur->curframe]; |
| } |
| |
| static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) |
| { |
| return cur_func(env)->regs; |
| } |
| |
| int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); |
| int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx); |
| int bpf_prog_offload_finalize(struct bpf_verifier_env *env); |
| void |
| bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, |
| struct bpf_insn *insn); |
| void |
| bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); |
| |
| /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ |
| static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, |
| struct btf *btf, u32 btf_id) |
| { |
| if (tgt_prog) |
| return ((u64)tgt_prog->aux->id << 32) | btf_id; |
| else |
| return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; |
| } |
| |
| /* unpack the IDs from the key as constructed above */ |
| static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) |
| { |
| if (obj_id) |
| *obj_id = key >> 32; |
| if (btf_id) |
| *btf_id = key & 0x7FFFFFFF; |
| } |
| |
| int bpf_check_attach_target(struct bpf_verifier_log *log, |
| const struct bpf_prog *prog, |
| const struct bpf_prog *tgt_prog, |
| u32 btf_id, |
| struct bpf_attach_target_info *tgt_info); |
| void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); |
| |
| int mark_chain_precision(struct bpf_verifier_env *env, int regno); |
| |
| #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) |
| |
| /* extract base type from bpf_{arg, return, reg}_type. */ |
| static inline u32 base_type(u32 type) |
| { |
| return type & BPF_BASE_TYPE_MASK; |
| } |
| |
| /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ |
| static inline u32 type_flag(u32 type) |
| { |
| return type & ~BPF_BASE_TYPE_MASK; |
| } |
| |
| /* only use after check_attach_btf_id() */ |
| static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) |
| { |
| return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? |
| prog->aux->saved_dst_prog_type : prog->type; |
| } |
| |
| static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) |
| { |
| switch (resolve_prog_type(prog)) { |
| case BPF_PROG_TYPE_TRACING: |
| return prog->expected_attach_type != BPF_TRACE_ITER; |
| case BPF_PROG_TYPE_STRUCT_OPS: |
| case BPF_PROG_TYPE_LSM: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) |
| |
| static inline bool bpf_type_has_unsafe_modifiers(u32 type) |
| { |
| return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; |
| } |
| |
| static inline bool type_is_ptr_alloc_obj(u32 type) |
| { |
| return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; |
| } |
| |
| static inline bool type_is_non_owning_ref(u32 type) |
| { |
| return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; |
| } |
| |
| static inline bool type_is_pkt_pointer(enum bpf_reg_type type) |
| { |
| type = base_type(type); |
| return type == PTR_TO_PACKET || |
| type == PTR_TO_PACKET_META; |
| } |
| |
| static inline bool type_is_sk_pointer(enum bpf_reg_type type) |
| { |
| return type == PTR_TO_SOCKET || |
| type == PTR_TO_SOCK_COMMON || |
| type == PTR_TO_TCP_SOCK || |
| type == PTR_TO_XDP_SOCK; |
| } |
| |
| static inline bool type_may_be_null(u32 type) |
| { |
| return type & PTR_MAYBE_NULL; |
| } |
| |
| static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) |
| { |
| env->scratched_regs |= 1U << regno; |
| } |
| |
| static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) |
| { |
| env->scratched_stack_slots |= 1ULL << spi; |
| } |
| |
| static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) |
| { |
| return (env->scratched_regs >> regno) & 1; |
| } |
| |
| static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) |
| { |
| return (env->scratched_stack_slots >> regno) & 1; |
| } |
| |
| static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) |
| { |
| return env->scratched_regs || env->scratched_stack_slots; |
| } |
| |
| static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) |
| { |
| env->scratched_regs = 0U; |
| env->scratched_stack_slots = 0ULL; |
| } |
| |
| /* Used for printing the entire verifier state. */ |
| static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) |
| { |
| env->scratched_regs = ~0U; |
| env->scratched_stack_slots = ~0ULL; |
| } |
| |
| static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) |
| { |
| #ifdef __BIG_ENDIAN |
| off -= spill_size - fill_size; |
| #endif |
| |
| return !(off % BPF_REG_SIZE); |
| } |
| |
| const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); |
| const char *dynptr_type_str(enum bpf_dynptr_type type); |
| const char *iter_type_str(const struct btf *btf, u32 btf_id); |
| const char *iter_state_str(enum bpf_iter_state state); |
| |
| void print_verifier_state(struct bpf_verifier_env *env, |
| const struct bpf_func_state *state, bool print_all); |
| void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state); |
| |
| #endif /* _LINUX_BPF_VERIFIER_H */ |