blob: 2e3a849e0a77c2629466901757fe36e78d153a32 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RDMA Transport Layer
*
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
#include <linux/module.h>
#include <linux/inet.h>
#include "rtrs-pri.h"
#include "rtrs-log.h"
MODULE_DESCRIPTION("RDMA Transport Core");
MODULE_LICENSE("GPL");
struct rtrs_iu *rtrs_iu_alloc(u32 queue_size, size_t size, gfp_t gfp_mask,
struct ib_device *dma_dev,
enum dma_data_direction dir,
void (*done)(struct ib_cq *cq, struct ib_wc *wc))
{
struct rtrs_iu *ius, *iu;
int i;
ius = kcalloc(queue_size, sizeof(*ius), gfp_mask);
if (!ius)
return NULL;
for (i = 0; i < queue_size; i++) {
iu = &ius[i];
iu->direction = dir;
iu->buf = kzalloc(size, gfp_mask);
if (!iu->buf)
goto err;
iu->dma_addr = ib_dma_map_single(dma_dev, iu->buf, size, dir);
if (ib_dma_mapping_error(dma_dev, iu->dma_addr))
goto err;
iu->cqe.done = done;
iu->size = size;
}
return ius;
err:
rtrs_iu_free(ius, dma_dev, i);
return NULL;
}
EXPORT_SYMBOL_GPL(rtrs_iu_alloc);
void rtrs_iu_free(struct rtrs_iu *ius, struct ib_device *ibdev, u32 queue_size)
{
struct rtrs_iu *iu;
int i;
if (!ius)
return;
for (i = 0; i < queue_size; i++) {
iu = &ius[i];
ib_dma_unmap_single(ibdev, iu->dma_addr, iu->size, iu->direction);
kfree(iu->buf);
}
kfree(ius);
}
EXPORT_SYMBOL_GPL(rtrs_iu_free);
int rtrs_iu_post_recv(struct rtrs_con *con, struct rtrs_iu *iu)
{
struct rtrs_sess *sess = con->sess;
struct ib_recv_wr wr;
struct ib_sge list;
list.addr = iu->dma_addr;
list.length = iu->size;
list.lkey = sess->dev->ib_pd->local_dma_lkey;
if (list.length == 0) {
rtrs_wrn(con->sess,
"Posting receive work request failed, sg list is empty\n");
return -EINVAL;
}
wr = (struct ib_recv_wr) {
.wr_cqe = &iu->cqe,
.sg_list = &list,
.num_sge = 1,
};
return ib_post_recv(con->qp, &wr, NULL);
}
EXPORT_SYMBOL_GPL(rtrs_iu_post_recv);
int rtrs_post_recv_empty(struct rtrs_con *con, struct ib_cqe *cqe)
{
struct ib_recv_wr wr;
wr = (struct ib_recv_wr) {
.wr_cqe = cqe,
};
return ib_post_recv(con->qp, &wr, NULL);
}
EXPORT_SYMBOL_GPL(rtrs_post_recv_empty);
static int rtrs_post_send(struct ib_qp *qp, struct ib_send_wr *head,
struct ib_send_wr *wr)
{
if (head) {
struct ib_send_wr *tail = head;
while (tail->next)
tail = tail->next;
tail->next = wr;
} else {
head = wr;
}
return ib_post_send(qp, head, NULL);
}
int rtrs_iu_post_send(struct rtrs_con *con, struct rtrs_iu *iu, size_t size,
struct ib_send_wr *head)
{
struct rtrs_sess *sess = con->sess;
struct ib_send_wr wr;
struct ib_sge list;
if (WARN_ON(size == 0))
return -EINVAL;
list.addr = iu->dma_addr;
list.length = size;
list.lkey = sess->dev->ib_pd->local_dma_lkey;
wr = (struct ib_send_wr) {
.wr_cqe = &iu->cqe,
.sg_list = &list,
.num_sge = 1,
.opcode = IB_WR_SEND,
.send_flags = IB_SEND_SIGNALED,
};
return rtrs_post_send(con->qp, head, &wr);
}
EXPORT_SYMBOL_GPL(rtrs_iu_post_send);
int rtrs_iu_post_rdma_write_imm(struct rtrs_con *con, struct rtrs_iu *iu,
struct ib_sge *sge, unsigned int num_sge,
u32 rkey, u64 rdma_addr, u32 imm_data,
enum ib_send_flags flags,
struct ib_send_wr *head)
{
struct ib_rdma_wr wr;
int i;
wr = (struct ib_rdma_wr) {
.wr.wr_cqe = &iu->cqe,
.wr.sg_list = sge,
.wr.num_sge = num_sge,
.rkey = rkey,
.remote_addr = rdma_addr,
.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM,
.wr.ex.imm_data = cpu_to_be32(imm_data),
.wr.send_flags = flags,
};
/*
* If one of the sges has 0 size, the operation will fail with a
* length error
*/
for (i = 0; i < num_sge; i++)
if (WARN_ON(sge[i].length == 0))
return -EINVAL;
return rtrs_post_send(con->qp, head, &wr.wr);
}
EXPORT_SYMBOL_GPL(rtrs_iu_post_rdma_write_imm);
int rtrs_post_rdma_write_imm_empty(struct rtrs_con *con, struct ib_cqe *cqe,
u32 imm_data, enum ib_send_flags flags,
struct ib_send_wr *head)
{
struct ib_send_wr wr;
wr = (struct ib_send_wr) {
.wr_cqe = cqe,
.send_flags = flags,
.opcode = IB_WR_RDMA_WRITE_WITH_IMM,
.ex.imm_data = cpu_to_be32(imm_data),
};
return rtrs_post_send(con->qp, head, &wr);
}
EXPORT_SYMBOL_GPL(rtrs_post_rdma_write_imm_empty);
static void qp_event_handler(struct ib_event *ev, void *ctx)
{
struct rtrs_con *con = ctx;
switch (ev->event) {
case IB_EVENT_COMM_EST:
rtrs_info(con->sess, "QP event %s (%d) received\n",
ib_event_msg(ev->event), ev->event);
rdma_notify(con->cm_id, IB_EVENT_COMM_EST);
break;
default:
rtrs_info(con->sess, "Unhandled QP event %s (%d) received\n",
ib_event_msg(ev->event), ev->event);
break;
}
}
static int create_cq(struct rtrs_con *con, int cq_vector, u16 cq_size,
enum ib_poll_context poll_ctx)
{
struct rdma_cm_id *cm_id = con->cm_id;
struct ib_cq *cq;
cq = ib_alloc_cq(cm_id->device, con, cq_size,
cq_vector, poll_ctx);
if (IS_ERR(cq)) {
rtrs_err(con->sess, "Creating completion queue failed, errno: %ld\n",
PTR_ERR(cq));
return PTR_ERR(cq);
}
con->cq = cq;
return 0;
}
static int create_qp(struct rtrs_con *con, struct ib_pd *pd,
u16 wr_queue_size, u32 max_sge)
{
struct ib_qp_init_attr init_attr = {NULL};
struct rdma_cm_id *cm_id = con->cm_id;
int ret;
init_attr.cap.max_send_wr = wr_queue_size;
init_attr.cap.max_recv_wr = wr_queue_size;
init_attr.cap.max_recv_sge = 1;
init_attr.event_handler = qp_event_handler;
init_attr.qp_context = con;
init_attr.cap.max_send_sge = max_sge;
init_attr.qp_type = IB_QPT_RC;
init_attr.send_cq = con->cq;
init_attr.recv_cq = con->cq;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
ret = rdma_create_qp(cm_id, pd, &init_attr);
if (ret) {
rtrs_err(con->sess, "Creating QP failed, err: %d\n", ret);
return ret;
}
con->qp = cm_id->qp;
return ret;
}
int rtrs_cq_qp_create(struct rtrs_sess *sess, struct rtrs_con *con,
u32 max_send_sge, int cq_vector, u16 cq_size,
u16 wr_queue_size, enum ib_poll_context poll_ctx)
{
int err;
err = create_cq(con, cq_vector, cq_size, poll_ctx);
if (err)
return err;
err = create_qp(con, sess->dev->ib_pd, wr_queue_size, max_send_sge);
if (err) {
ib_free_cq(con->cq);
con->cq = NULL;
return err;
}
con->sess = sess;
return 0;
}
EXPORT_SYMBOL_GPL(rtrs_cq_qp_create);
void rtrs_cq_qp_destroy(struct rtrs_con *con)
{
if (con->qp) {
rdma_destroy_qp(con->cm_id);
con->qp = NULL;
}
if (con->cq) {
ib_free_cq(con->cq);
con->cq = NULL;
}
}
EXPORT_SYMBOL_GPL(rtrs_cq_qp_destroy);
static void schedule_hb(struct rtrs_sess *sess)
{
queue_delayed_work(sess->hb_wq, &sess->hb_dwork,
msecs_to_jiffies(sess->hb_interval_ms));
}
void rtrs_send_hb_ack(struct rtrs_sess *sess)
{
struct rtrs_con *usr_con = sess->con[0];
u32 imm;
int err;
imm = rtrs_to_imm(RTRS_HB_ACK_IMM, 0);
err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
IB_SEND_SIGNALED, NULL);
if (err) {
sess->hb_err_handler(usr_con);
return;
}
}
EXPORT_SYMBOL_GPL(rtrs_send_hb_ack);
static void hb_work(struct work_struct *work)
{
struct rtrs_con *usr_con;
struct rtrs_sess *sess;
u32 imm;
int err;
sess = container_of(to_delayed_work(work), typeof(*sess), hb_dwork);
usr_con = sess->con[0];
if (sess->hb_missed_cnt > sess->hb_missed_max) {
sess->hb_err_handler(usr_con);
return;
}
if (sess->hb_missed_cnt++) {
/* Reschedule work without sending hb */
schedule_hb(sess);
return;
}
imm = rtrs_to_imm(RTRS_HB_MSG_IMM, 0);
err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm,
IB_SEND_SIGNALED, NULL);
if (err) {
sess->hb_err_handler(usr_con);
return;
}
schedule_hb(sess);
}
void rtrs_init_hb(struct rtrs_sess *sess, struct ib_cqe *cqe,
unsigned int interval_ms, unsigned int missed_max,
void (*err_handler)(struct rtrs_con *con),
struct workqueue_struct *wq)
{
sess->hb_cqe = cqe;
sess->hb_interval_ms = interval_ms;
sess->hb_err_handler = err_handler;
sess->hb_wq = wq;
sess->hb_missed_max = missed_max;
sess->hb_missed_cnt = 0;
INIT_DELAYED_WORK(&sess->hb_dwork, hb_work);
}
EXPORT_SYMBOL_GPL(rtrs_init_hb);
void rtrs_start_hb(struct rtrs_sess *sess)
{
schedule_hb(sess);
}
EXPORT_SYMBOL_GPL(rtrs_start_hb);
void rtrs_stop_hb(struct rtrs_sess *sess)
{
cancel_delayed_work_sync(&sess->hb_dwork);
sess->hb_missed_cnt = 0;
sess->hb_missed_max = 0;
}
EXPORT_SYMBOL_GPL(rtrs_stop_hb);
static int rtrs_str_gid_to_sockaddr(const char *addr, size_t len,
short port, struct sockaddr_storage *dst)
{
struct sockaddr_ib *dst_ib = (struct sockaddr_ib *)dst;
int ret;
/*
* We can use some of the IPv6 functions since GID is a valid
* IPv6 address format
*/
ret = in6_pton(addr, len, dst_ib->sib_addr.sib_raw, '\0', NULL);
if (ret == 0)
return -EINVAL;
dst_ib->sib_family = AF_IB;
/*
* Use the same TCP server port number as the IB service ID
* on the IB port space range
*/
dst_ib->sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port);
dst_ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
dst_ib->sib_pkey = cpu_to_be16(0xffff);
return 0;
}
/**
* rtrs_str_to_sockaddr() - Convert rtrs address string to sockaddr
* @addr: String representation of an addr (IPv4, IPv6 or IB GID):
* - "ip:192.168.1.1"
* - "ip:fe80::200:5aee:feaa:20a2"
* - "gid:fe80::200:5aee:feaa:20a2"
* @len: String address length
* @port: Destination port
* @dst: Destination sockaddr structure
*
* Returns 0 if conversion successful. Non-zero on error.
*/
static int rtrs_str_to_sockaddr(const char *addr, size_t len,
u16 port, struct sockaddr_storage *dst)
{
if (strncmp(addr, "gid:", 4) == 0) {
return rtrs_str_gid_to_sockaddr(addr + 4, len - 4, port, dst);
} else if (strncmp(addr, "ip:", 3) == 0) {
char port_str[8];
char *cpy;
int err;
snprintf(port_str, sizeof(port_str), "%u", port);
cpy = kstrndup(addr + 3, len - 3, GFP_KERNEL);
err = cpy ? inet_pton_with_scope(&init_net, AF_UNSPEC,
cpy, port_str, dst) : -ENOMEM;
kfree(cpy);
return err;
}
return -EPROTONOSUPPORT;
}
/**
* sockaddr_to_str() - convert sockaddr to a string.
* @addr: the sockadddr structure to be converted.
* @buf: string containing socket addr.
* @len: string length.
*
* The return value is the number of characters written into buf not
* including the trailing '\0'. If len is == 0 the function returns 0..
*/
int sockaddr_to_str(const struct sockaddr *addr, char *buf, size_t len)
{
switch (addr->sa_family) {
case AF_IB:
return scnprintf(buf, len, "gid:%pI6",
&((struct sockaddr_ib *)addr)->sib_addr.sib_raw);
case AF_INET:
return scnprintf(buf, len, "ip:%pI4",
&((struct sockaddr_in *)addr)->sin_addr);
case AF_INET6:
return scnprintf(buf, len, "ip:%pI6c",
&((struct sockaddr_in6 *)addr)->sin6_addr);
}
return scnprintf(buf, len, "<invalid address family>");
}
EXPORT_SYMBOL(sockaddr_to_str);
/**
* rtrs_addr_to_sockaddr() - convert path string "src,dst" or "src@dst"
* to sockaddreses
* @str: string containing source and destination addr of a path
* separated by ',' or '@' I.e. "ip:1.1.1.1,ip:1.1.1.2" or
* "ip:1.1.1.1@ip:1.1.1.2". If str contains only one address it's
* considered to be destination.
* @len: string length
* @port: Destination port number.
* @addr: will be set to the source/destination address or to NULL
* if str doesn't contain any source address.
*
* Returns zero if conversion successful. Non-zero otherwise.
*/
int rtrs_addr_to_sockaddr(const char *str, size_t len, u16 port,
struct rtrs_addr *addr)
{
const char *d;
d = strchr(str, ',');
if (!d)
d = strchr(str, '@');
if (d) {
if (rtrs_str_to_sockaddr(str, d - str, 0, addr->src))
return -EINVAL;
d += 1;
len -= d - str;
str = d;
} else {
addr->src = NULL;
}
return rtrs_str_to_sockaddr(str, len, port, addr->dst);
}
EXPORT_SYMBOL(rtrs_addr_to_sockaddr);
void rtrs_rdma_dev_pd_init(enum ib_pd_flags pd_flags,
struct rtrs_rdma_dev_pd *pool)
{
WARN_ON(pool->ops && (!pool->ops->alloc ^ !pool->ops->free));
INIT_LIST_HEAD(&pool->list);
mutex_init(&pool->mutex);
pool->pd_flags = pd_flags;
}
EXPORT_SYMBOL(rtrs_rdma_dev_pd_init);
void rtrs_rdma_dev_pd_deinit(struct rtrs_rdma_dev_pd *pool)
{
mutex_destroy(&pool->mutex);
WARN_ON(!list_empty(&pool->list));
}
EXPORT_SYMBOL(rtrs_rdma_dev_pd_deinit);
static void dev_free(struct kref *ref)
{
struct rtrs_rdma_dev_pd *pool;
struct rtrs_ib_dev *dev;
dev = container_of(ref, typeof(*dev), ref);
pool = dev->pool;
mutex_lock(&pool->mutex);
list_del(&dev->entry);
mutex_unlock(&pool->mutex);
if (pool->ops && pool->ops->deinit)
pool->ops->deinit(dev);
ib_dealloc_pd(dev->ib_pd);
if (pool->ops && pool->ops->free)
pool->ops->free(dev);
else
kfree(dev);
}
int rtrs_ib_dev_put(struct rtrs_ib_dev *dev)
{
return kref_put(&dev->ref, dev_free);
}
EXPORT_SYMBOL(rtrs_ib_dev_put);
static int rtrs_ib_dev_get(struct rtrs_ib_dev *dev)
{
return kref_get_unless_zero(&dev->ref);
}
struct rtrs_ib_dev *
rtrs_ib_dev_find_or_add(struct ib_device *ib_dev,
struct rtrs_rdma_dev_pd *pool)
{
struct rtrs_ib_dev *dev;
mutex_lock(&pool->mutex);
list_for_each_entry(dev, &pool->list, entry) {
if (dev->ib_dev->node_guid == ib_dev->node_guid &&
rtrs_ib_dev_get(dev))
goto out_unlock;
}
mutex_unlock(&pool->mutex);
if (pool->ops && pool->ops->alloc)
dev = pool->ops->alloc();
else
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (IS_ERR_OR_NULL(dev))
goto out_err;
kref_init(&dev->ref);
dev->pool = pool;
dev->ib_dev = ib_dev;
dev->ib_pd = ib_alloc_pd(ib_dev, pool->pd_flags);
if (IS_ERR(dev->ib_pd))
goto out_free_dev;
if (pool->ops && pool->ops->init && pool->ops->init(dev))
goto out_free_pd;
mutex_lock(&pool->mutex);
list_add(&dev->entry, &pool->list);
out_unlock:
mutex_unlock(&pool->mutex);
return dev;
out_free_pd:
ib_dealloc_pd(dev->ib_pd);
out_free_dev:
if (pool->ops && pool->ops->free)
pool->ops->free(dev);
else
kfree(dev);
out_err:
return NULL;
}
EXPORT_SYMBOL(rtrs_ib_dev_find_or_add);