| /* |
| * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver |
| * |
| * Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com> |
| * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <asm/div64.h> |
| |
| #include "dvb_frontend.h" |
| #include "mb86a20s.h" |
| |
| static int debug = 1; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); |
| |
| enum mb86a20s_bandwidth { |
| MB86A20S_13SEG = 0, |
| MB86A20S_13SEG_PARTIAL = 1, |
| MB86A20S_1SEG = 2, |
| MB86A20S_3SEG = 3, |
| }; |
| |
| u8 mb86a20s_subchannel[] = { |
| 0xb0, 0xc0, 0xd0, 0xe0, |
| 0xf0, 0x00, 0x10, 0x20, |
| }; |
| |
| struct mb86a20s_state { |
| struct i2c_adapter *i2c; |
| const struct mb86a20s_config *config; |
| u32 last_frequency; |
| |
| struct dvb_frontend frontend; |
| |
| u32 if_freq; |
| enum mb86a20s_bandwidth bw; |
| bool inversion; |
| u32 subchannel; |
| |
| u32 estimated_rate[3]; |
| unsigned long get_strength_time; |
| |
| bool need_init; |
| }; |
| |
| struct regdata { |
| u8 reg; |
| u8 data; |
| }; |
| |
| #define BER_SAMPLING_RATE 1 /* Seconds */ |
| |
| /* |
| * Initialization sequence: Use whatevere default values that PV SBTVD |
| * does on its initialisation, obtained via USB snoop |
| */ |
| static struct regdata mb86a20s_init1[] = { |
| { 0x70, 0x0f }, |
| { 0x70, 0xff }, |
| { 0x08, 0x01 }, |
| { 0x50, 0xd1 }, { 0x51, 0x20 }, |
| }; |
| |
| static struct regdata mb86a20s_init2[] = { |
| { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 }, |
| { 0x3b, 0x21 }, |
| { 0x3c, 0x38 }, |
| { 0x01, 0x0d }, |
| { 0x04, 0x08 }, { 0x05, 0x03 }, |
| { 0x04, 0x0e }, { 0x05, 0x00 }, |
| { 0x04, 0x0f }, { 0x05, 0x37 }, |
| { 0x04, 0x0b }, { 0x05, 0x78 }, |
| { 0x04, 0x00 }, { 0x05, 0x00 }, |
| { 0x04, 0x01 }, { 0x05, 0x1e }, |
| { 0x04, 0x02 }, { 0x05, 0x07 }, |
| { 0x04, 0x03 }, { 0x05, 0xd0 }, |
| { 0x04, 0x09 }, { 0x05, 0x00 }, |
| { 0x04, 0x0a }, { 0x05, 0xff }, |
| { 0x04, 0x27 }, { 0x05, 0x00 }, |
| { 0x04, 0x28 }, { 0x05, 0x00 }, |
| { 0x04, 0x1e }, { 0x05, 0x00 }, |
| { 0x04, 0x29 }, { 0x05, 0x64 }, |
| { 0x04, 0x32 }, { 0x05, 0x02 }, |
| { 0x04, 0x14 }, { 0x05, 0x02 }, |
| { 0x04, 0x04 }, { 0x05, 0x00 }, |
| { 0x04, 0x05 }, { 0x05, 0x22 }, |
| { 0x04, 0x06 }, { 0x05, 0x0e }, |
| { 0x04, 0x07 }, { 0x05, 0xd8 }, |
| { 0x04, 0x12 }, { 0x05, 0x00 }, |
| { 0x04, 0x13 }, { 0x05, 0xff }, |
| { 0x04, 0x15 }, { 0x05, 0x4e }, |
| { 0x04, 0x16 }, { 0x05, 0x20 }, |
| |
| /* |
| * On this demod, when the bit count reaches the count below, |
| * it collects the bit error count. The bit counters are initialized |
| * to 65535 here. This warrants that all of them will be quickly |
| * calculated when device gets locked. As TMCC is parsed, the values |
| * will be adjusted later in the driver's code. |
| */ |
| { 0x52, 0x01 }, /* Turn on BER before Viterbi */ |
| { 0x50, 0xa7 }, { 0x51, 0x00 }, |
| { 0x50, 0xa8 }, { 0x51, 0xff }, |
| { 0x50, 0xa9 }, { 0x51, 0xff }, |
| { 0x50, 0xaa }, { 0x51, 0x00 }, |
| { 0x50, 0xab }, { 0x51, 0xff }, |
| { 0x50, 0xac }, { 0x51, 0xff }, |
| { 0x50, 0xad }, { 0x51, 0x00 }, |
| { 0x50, 0xae }, { 0x51, 0xff }, |
| { 0x50, 0xaf }, { 0x51, 0xff }, |
| |
| /* |
| * On this demod, post BER counts blocks. When the count reaches the |
| * value below, it collects the block error count. The block counters |
| * are initialized to 127 here. This warrants that all of them will be |
| * quickly calculated when device gets locked. As TMCC is parsed, the |
| * values will be adjusted later in the driver's code. |
| */ |
| { 0x5e, 0x07 }, /* Turn on BER after Viterbi */ |
| { 0x50, 0xdc }, { 0x51, 0x00 }, |
| { 0x50, 0xdd }, { 0x51, 0x7f }, |
| { 0x50, 0xde }, { 0x51, 0x00 }, |
| { 0x50, 0xdf }, { 0x51, 0x7f }, |
| { 0x50, 0xe0 }, { 0x51, 0x00 }, |
| { 0x50, 0xe1 }, { 0x51, 0x7f }, |
| |
| /* |
| * On this demod, when the block count reaches the count below, |
| * it collects the block error count. The block counters are initialized |
| * to 127 here. This warrants that all of them will be quickly |
| * calculated when device gets locked. As TMCC is parsed, the values |
| * will be adjusted later in the driver's code. |
| */ |
| { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */ |
| { 0x50, 0xb2 }, { 0x51, 0x00 }, |
| { 0x50, 0xb3 }, { 0x51, 0x7f }, |
| { 0x50, 0xb4 }, { 0x51, 0x00 }, |
| { 0x50, 0xb5 }, { 0x51, 0x7f }, |
| { 0x50, 0xb6 }, { 0x51, 0x00 }, |
| { 0x50, 0xb7 }, { 0x51, 0x7f }, |
| |
| { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */ |
| { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */ |
| { 0x45, 0x04 }, /* CN symbol 4 */ |
| { 0x48, 0x04 }, /* CN manual mode */ |
| |
| { 0x50, 0xd5 }, { 0x51, 0x01 }, /* Serial */ |
| { 0x50, 0xd6 }, { 0x51, 0x1f }, |
| { 0x50, 0xd2 }, { 0x51, 0x03 }, |
| { 0x50, 0xd7 }, { 0x51, 0xbf }, |
| { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff }, |
| { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c }, |
| |
| { 0x04, 0x40 }, { 0x05, 0x00 }, |
| { 0x28, 0x00 }, { 0x2b, 0x08 }, |
| { 0x28, 0x05 }, { 0x2b, 0x00 }, |
| { 0x1c, 0x01 }, |
| { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f }, |
| { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 }, |
| { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 }, |
| { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 }, |
| { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 }, |
| { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 }, |
| { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 }, |
| { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 }, |
| { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b }, |
| { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 }, |
| { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d }, |
| { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 }, |
| { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b }, |
| { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 }, |
| { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 }, |
| { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 }, |
| { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 }, |
| { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 }, |
| { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f }, |
| { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef }, |
| { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 }, |
| { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 }, |
| { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d }, |
| { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 }, |
| { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba }, |
| { 0x50, 0x1e }, { 0x51, 0x5d }, |
| { 0x50, 0x22 }, { 0x51, 0x00 }, |
| { 0x50, 0x23 }, { 0x51, 0xc8 }, |
| { 0x50, 0x24 }, { 0x51, 0x00 }, |
| { 0x50, 0x25 }, { 0x51, 0xf0 }, |
| { 0x50, 0x26 }, { 0x51, 0x00 }, |
| { 0x50, 0x27 }, { 0x51, 0xc3 }, |
| { 0x50, 0x39 }, { 0x51, 0x02 }, |
| { 0xec, 0x0f }, |
| { 0xeb, 0x1f }, |
| { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 }, |
| { 0xd0, 0x00 }, |
| }; |
| |
| static struct regdata mb86a20s_reset_reception[] = { |
| { 0x70, 0xf0 }, |
| { 0x70, 0xff }, |
| { 0x08, 0x01 }, |
| { 0x08, 0x00 }, |
| }; |
| |
| static struct regdata mb86a20s_per_ber_reset[] = { |
| { 0x53, 0x00 }, /* pre BER Counter reset */ |
| { 0x53, 0x07 }, |
| |
| { 0x5f, 0x00 }, /* post BER Counter reset */ |
| { 0x5f, 0x07 }, |
| |
| { 0x50, 0xb1 }, /* PER Counter reset */ |
| { 0x51, 0x07 }, |
| { 0x51, 0x00 }, |
| }; |
| |
| /* |
| * I2C read/write functions and macros |
| */ |
| |
| static int mb86a20s_i2c_writereg(struct mb86a20s_state *state, |
| u8 i2c_addr, u8 reg, u8 data) |
| { |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { |
| .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 |
| }; |
| int rc; |
| |
| rc = i2c_transfer(state->i2c, &msg, 1); |
| if (rc != 1) { |
| dev_err(&state->i2c->dev, |
| "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n", |
| __func__, rc, reg, data); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state, |
| u8 i2c_addr, struct regdata *rd, int size) |
| { |
| int i, rc; |
| |
| for (i = 0; i < size; i++) { |
| rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg, |
| rd[i].data); |
| if (rc < 0) |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int mb86a20s_i2c_readreg(struct mb86a20s_state *state, |
| u8 i2c_addr, u8 reg) |
| { |
| u8 val; |
| int rc; |
| struct i2c_msg msg[] = { |
| { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, |
| { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 } |
| }; |
| |
| rc = i2c_transfer(state->i2c, msg, 2); |
| |
| if (rc != 2) { |
| dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n", |
| __func__, reg, rc); |
| return (rc < 0) ? rc : -EIO; |
| } |
| |
| return val; |
| } |
| |
| #define mb86a20s_readreg(state, reg) \ |
| mb86a20s_i2c_readreg(state, state->config->demod_address, reg) |
| #define mb86a20s_writereg(state, reg, val) \ |
| mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val) |
| #define mb86a20s_writeregdata(state, regdata) \ |
| mb86a20s_i2c_writeregdata(state, state->config->demod_address, \ |
| regdata, ARRAY_SIZE(regdata)) |
| |
| /* |
| * Ancillary internal routines (likely compiled inlined) |
| * |
| * The functions below assume that gateway lock has already obtained |
| */ |
| |
| static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| int val; |
| |
| *status = 0; |
| |
| val = mb86a20s_readreg(state, 0x0a) & 0xf; |
| if (val < 0) |
| return val; |
| |
| if (val >= 2) |
| *status |= FE_HAS_SIGNAL; |
| |
| if (val >= 4) |
| *status |= FE_HAS_CARRIER; |
| |
| if (val >= 5) |
| *status |= FE_HAS_VITERBI; |
| |
| if (val >= 7) |
| *status |= FE_HAS_SYNC; |
| |
| if (val >= 8) /* Maybe 9? */ |
| *status |= FE_HAS_LOCK; |
| |
| dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n", |
| __func__, *status, val); |
| |
| return val; |
| } |
| |
| static int mb86a20s_read_signal_strength(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int rc; |
| unsigned rf_max, rf_min, rf; |
| |
| if (state->get_strength_time && |
| (!time_after(jiffies, state->get_strength_time))) |
| return c->strength.stat[0].uvalue; |
| |
| /* Reset its value if an error happen */ |
| c->strength.stat[0].uvalue = 0; |
| |
| /* Does a binary search to get RF strength */ |
| rf_max = 0xfff; |
| rf_min = 0; |
| do { |
| rf = (rf_max + rf_min) / 2; |
| rc = mb86a20s_writereg(state, 0x04, 0x1f); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x05, rf >> 8); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x04, 0x20); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x05, rf); |
| if (rc < 0) |
| return rc; |
| |
| rc = mb86a20s_readreg(state, 0x02); |
| if (rc < 0) |
| return rc; |
| if (rc & 0x08) |
| rf_min = (rf_max + rf_min) / 2; |
| else |
| rf_max = (rf_max + rf_min) / 2; |
| if (rf_max - rf_min < 4) { |
| rf = (rf_max + rf_min) / 2; |
| |
| /* Rescale it from 2^12 (4096) to 2^16 */ |
| rf = rf << (16 - 12); |
| if (rf) |
| rf |= (1 << 12) - 1; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: signal strength = %d (%d < RF=%d < %d)\n", |
| __func__, rf, rf_min, rf >> 4, rf_max); |
| c->strength.stat[0].uvalue = rf; |
| state->get_strength_time = jiffies + |
| msecs_to_jiffies(1000); |
| return 0; |
| } |
| } while (1); |
| } |
| |
| static int mb86a20s_get_modulation(struct mb86a20s_state *state, |
| unsigned layer) |
| { |
| int rc; |
| static unsigned char reg[] = { |
| [0] = 0x86, /* Layer A */ |
| [1] = 0x8a, /* Layer B */ |
| [2] = 0x8e, /* Layer C */ |
| }; |
| |
| if (layer >= ARRAY_SIZE(reg)) |
| return -EINVAL; |
| rc = mb86a20s_writereg(state, 0x6d, reg[layer]); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x6e); |
| if (rc < 0) |
| return rc; |
| switch ((rc >> 4) & 0x07) { |
| case 0: |
| return DQPSK; |
| case 1: |
| return QPSK; |
| case 2: |
| return QAM_16; |
| case 3: |
| return QAM_64; |
| default: |
| return QAM_AUTO; |
| } |
| } |
| |
| static int mb86a20s_get_fec(struct mb86a20s_state *state, |
| unsigned layer) |
| { |
| int rc; |
| |
| static unsigned char reg[] = { |
| [0] = 0x87, /* Layer A */ |
| [1] = 0x8b, /* Layer B */ |
| [2] = 0x8f, /* Layer C */ |
| }; |
| |
| if (layer >= ARRAY_SIZE(reg)) |
| return -EINVAL; |
| rc = mb86a20s_writereg(state, 0x6d, reg[layer]); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x6e); |
| if (rc < 0) |
| return rc; |
| switch ((rc >> 4) & 0x07) { |
| case 0: |
| return FEC_1_2; |
| case 1: |
| return FEC_2_3; |
| case 2: |
| return FEC_3_4; |
| case 3: |
| return FEC_5_6; |
| case 4: |
| return FEC_7_8; |
| default: |
| return FEC_AUTO; |
| } |
| } |
| |
| static int mb86a20s_get_interleaving(struct mb86a20s_state *state, |
| unsigned layer) |
| { |
| int rc; |
| |
| static unsigned char reg[] = { |
| [0] = 0x88, /* Layer A */ |
| [1] = 0x8c, /* Layer B */ |
| [2] = 0x90, /* Layer C */ |
| }; |
| |
| if (layer >= ARRAY_SIZE(reg)) |
| return -EINVAL; |
| rc = mb86a20s_writereg(state, 0x6d, reg[layer]); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x6e); |
| if (rc < 0) |
| return rc; |
| |
| switch ((rc >> 4) & 0x07) { |
| case 1: |
| return GUARD_INTERVAL_1_4; |
| case 2: |
| return GUARD_INTERVAL_1_8; |
| case 3: |
| return GUARD_INTERVAL_1_16; |
| case 4: |
| return GUARD_INTERVAL_1_32; |
| |
| default: |
| case 0: |
| return GUARD_INTERVAL_AUTO; |
| } |
| } |
| |
| static int mb86a20s_get_segment_count(struct mb86a20s_state *state, |
| unsigned layer) |
| { |
| int rc, count; |
| static unsigned char reg[] = { |
| [0] = 0x89, /* Layer A */ |
| [1] = 0x8d, /* Layer B */ |
| [2] = 0x91, /* Layer C */ |
| }; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (layer >= ARRAY_SIZE(reg)) |
| return -EINVAL; |
| |
| rc = mb86a20s_writereg(state, 0x6d, reg[layer]); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x6e); |
| if (rc < 0) |
| return rc; |
| count = (rc >> 4) & 0x0f; |
| |
| dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count); |
| |
| return count; |
| } |
| |
| static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| /* Fixed parameters */ |
| c->delivery_system = SYS_ISDBT; |
| c->bandwidth_hz = 6000000; |
| |
| /* Initialize values that will be later autodetected */ |
| c->isdbt_layer_enabled = 0; |
| c->transmission_mode = TRANSMISSION_MODE_AUTO; |
| c->guard_interval = GUARD_INTERVAL_AUTO; |
| c->isdbt_sb_mode = 0; |
| c->isdbt_sb_segment_count = 0; |
| } |
| |
| /* |
| * Estimates the bit rate using the per-segment bit rate given by |
| * ABNT/NBR 15601 spec (table 4). |
| */ |
| static u32 isdbt_rate[3][5][4] = { |
| { /* DQPSK/QPSK */ |
| { 280850, 312060, 330420, 340430 }, /* 1/2 */ |
| { 374470, 416080, 440560, 453910 }, /* 2/3 */ |
| { 421280, 468090, 495630, 510650 }, /* 3/4 */ |
| { 468090, 520100, 550700, 567390 }, /* 5/6 */ |
| { 491500, 546110, 578230, 595760 }, /* 7/8 */ |
| }, { /* QAM16 */ |
| { 561710, 624130, 660840, 680870 }, /* 1/2 */ |
| { 748950, 832170, 881120, 907820 }, /* 2/3 */ |
| { 842570, 936190, 991260, 1021300 }, /* 3/4 */ |
| { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */ |
| { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */ |
| }, { /* QAM64 */ |
| { 842570, 936190, 991260, 1021300 }, /* 1/2 */ |
| { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */ |
| { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */ |
| { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */ |
| { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */ |
| } |
| }; |
| |
| static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer, |
| u32 modulation, u32 fec, u32 interleaving, |
| u32 segment) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| u32 rate; |
| int m, f, i; |
| |
| /* |
| * If modulation/fec/interleaving is not detected, the default is |
| * to consider the lowest bit rate, to avoid taking too long time |
| * to get BER. |
| */ |
| switch (modulation) { |
| case DQPSK: |
| case QPSK: |
| default: |
| m = 0; |
| break; |
| case QAM_16: |
| m = 1; |
| break; |
| case QAM_64: |
| m = 2; |
| break; |
| } |
| |
| switch (fec) { |
| default: |
| case FEC_1_2: |
| case FEC_AUTO: |
| f = 0; |
| break; |
| case FEC_2_3: |
| f = 1; |
| break; |
| case FEC_3_4: |
| f = 2; |
| break; |
| case FEC_5_6: |
| f = 3; |
| break; |
| case FEC_7_8: |
| f = 4; |
| break; |
| } |
| |
| switch (interleaving) { |
| default: |
| case GUARD_INTERVAL_1_4: |
| i = 0; |
| break; |
| case GUARD_INTERVAL_1_8: |
| i = 1; |
| break; |
| case GUARD_INTERVAL_1_16: |
| i = 2; |
| break; |
| case GUARD_INTERVAL_1_32: |
| i = 3; |
| break; |
| } |
| |
| /* Samples BER at BER_SAMPLING_RATE seconds */ |
| rate = isdbt_rate[m][f][i] * segment * BER_SAMPLING_RATE; |
| |
| /* Avoids sampling too quickly or to overflow the register */ |
| if (rate < 256) |
| rate = 256; |
| else if (rate > (1 << 24) - 1) |
| rate = (1 << 24) - 1; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n", |
| __func__, 'A' + layer, segment * isdbt_rate[m][f][i]/1000, |
| rate, rate); |
| |
| state->estimated_rate[i] = rate; |
| } |
| |
| |
| static int mb86a20s_get_frontend(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int i, rc; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| /* Reset frontend cache to default values */ |
| mb86a20s_reset_frontend_cache(fe); |
| |
| /* Check for partial reception */ |
| rc = mb86a20s_writereg(state, 0x6d, 0x85); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x6e); |
| if (rc < 0) |
| return rc; |
| c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0; |
| |
| /* Get per-layer data */ |
| |
| for (i = 0; i < 3; i++) { |
| dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n", |
| __func__, 'A' + i); |
| |
| rc = mb86a20s_get_segment_count(state, i); |
| if (rc < 0) |
| goto noperlayer_error; |
| if (rc >= 0 && rc < 14) { |
| c->layer[i].segment_count = rc; |
| } else { |
| c->layer[i].segment_count = 0; |
| state->estimated_rate[i] = 0; |
| continue; |
| } |
| c->isdbt_layer_enabled |= 1 << i; |
| rc = mb86a20s_get_modulation(state, i); |
| if (rc < 0) |
| goto noperlayer_error; |
| dev_dbg(&state->i2c->dev, "%s: modulation %d.\n", |
| __func__, rc); |
| c->layer[i].modulation = rc; |
| rc = mb86a20s_get_fec(state, i); |
| if (rc < 0) |
| goto noperlayer_error; |
| dev_dbg(&state->i2c->dev, "%s: FEC %d.\n", |
| __func__, rc); |
| c->layer[i].fec = rc; |
| rc = mb86a20s_get_interleaving(state, i); |
| if (rc < 0) |
| goto noperlayer_error; |
| dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n", |
| __func__, rc); |
| c->layer[i].interleaving = rc; |
| mb86a20s_layer_bitrate(fe, i, c->layer[i].modulation, |
| c->layer[i].fec, |
| c->layer[i].interleaving, |
| c->layer[i].segment_count); |
| } |
| |
| rc = mb86a20s_writereg(state, 0x6d, 0x84); |
| if (rc < 0) |
| return rc; |
| if ((rc & 0x60) == 0x20) { |
| c->isdbt_sb_mode = 1; |
| /* At least, one segment should exist */ |
| if (!c->isdbt_sb_segment_count) |
| c->isdbt_sb_segment_count = 1; |
| } |
| |
| /* Get transmission mode and guard interval */ |
| rc = mb86a20s_readreg(state, 0x07); |
| if (rc < 0) |
| return rc; |
| if ((rc & 0x60) == 0x20) { |
| switch (rc & 0x0c >> 2) { |
| case 0: |
| c->transmission_mode = TRANSMISSION_MODE_2K; |
| break; |
| case 1: |
| c->transmission_mode = TRANSMISSION_MODE_4K; |
| break; |
| case 2: |
| c->transmission_mode = TRANSMISSION_MODE_8K; |
| break; |
| } |
| } |
| if (!(rc & 0x10)) { |
| switch (rc & 0x3) { |
| case 0: |
| c->guard_interval = GUARD_INTERVAL_1_4; |
| break; |
| case 1: |
| c->guard_interval = GUARD_INTERVAL_1_8; |
| break; |
| case 2: |
| c->guard_interval = GUARD_INTERVAL_1_16; |
| break; |
| } |
| } |
| return 0; |
| |
| noperlayer_error: |
| |
| /* per-layer info is incomplete; discard all per-layer */ |
| c->isdbt_layer_enabled = 0; |
| |
| return rc; |
| } |
| |
| static int mb86a20s_reset_counters(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int rc, val; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| /* Reset the counters, if the channel changed */ |
| if (state->last_frequency != c->frequency) { |
| memset(&c->cnr, 0, sizeof(c->cnr)); |
| memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error)); |
| memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count)); |
| memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); |
| memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); |
| memset(&c->block_error, 0, sizeof(c->block_error)); |
| memset(&c->block_count, 0, sizeof(c->block_count)); |
| |
| state->last_frequency = c->frequency; |
| } |
| |
| /* Clear status for most stats */ |
| |
| /* BER/PER counter reset */ |
| rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset); |
| if (rc < 0) |
| goto err; |
| |
| /* CNR counter reset */ |
| rc = mb86a20s_readreg(state, 0x45); |
| if (rc < 0) |
| goto err; |
| val = rc; |
| rc = mb86a20s_writereg(state, 0x45, val | 0x10); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x45, val & 0x6f); |
| if (rc < 0) |
| goto err; |
| |
| /* MER counter reset */ |
| rc = mb86a20s_writereg(state, 0x50, 0x50); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| goto err; |
| val = rc; |
| rc = mb86a20s_writereg(state, 0x51, val | 0x01); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x51, val & 0x06); |
| if (rc < 0) |
| goto err; |
| |
| goto ok; |
| err: |
| dev_err(&state->i2c->dev, |
| "%s: Can't reset FE statistics (error %d).\n", |
| __func__, rc); |
| ok: |
| return rc; |
| } |
| |
| static int mb86a20s_get_pre_ber(struct dvb_frontend *fe, |
| unsigned layer, |
| u32 *error, u32 *count) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| int rc, val; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (layer >= 3) |
| return -EINVAL; |
| |
| /* Check if the BER measures are already available */ |
| rc = mb86a20s_readreg(state, 0x54); |
| if (rc < 0) |
| return rc; |
| |
| /* Check if data is available for that layer */ |
| if (!(rc & (1 << layer))) { |
| dev_dbg(&state->i2c->dev, |
| "%s: preBER for layer %c is not available yet.\n", |
| __func__, 'A' + layer); |
| return -EBUSY; |
| } |
| |
| /* Read Bit Error Count */ |
| rc = mb86a20s_readreg(state, 0x55 + layer * 3); |
| if (rc < 0) |
| return rc; |
| *error = rc << 16; |
| rc = mb86a20s_readreg(state, 0x56 + layer * 3); |
| if (rc < 0) |
| return rc; |
| *error |= rc << 8; |
| rc = mb86a20s_readreg(state, 0x57 + layer * 3); |
| if (rc < 0) |
| return rc; |
| *error |= rc; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: bit error before Viterbi for layer %c: %d.\n", |
| __func__, 'A' + layer, *error); |
| |
| /* Read Bit Count */ |
| rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *count = rc << 16; |
| rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *count |= rc << 8; |
| rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *count |= rc; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: bit count before Viterbi for layer %c: %d.\n", |
| __func__, 'A' + layer, *count); |
| |
| |
| /* |
| * As we get TMCC data from the frontend, we can better estimate the |
| * BER bit counters, in order to do the BER measure during a longer |
| * time. Use those data, if available, to update the bit count |
| * measure. |
| */ |
| |
| if (state->estimated_rate[layer] |
| && state->estimated_rate[layer] != *count) { |
| dev_dbg(&state->i2c->dev, |
| "%s: updating layer %c preBER counter to %d.\n", |
| __func__, 'A' + layer, state->estimated_rate[layer]); |
| |
| /* Turn off BER before Viterbi */ |
| rc = mb86a20s_writereg(state, 0x52, 0x00); |
| |
| /* Update counter for this layer */ |
| rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, |
| state->estimated_rate[layer] >> 16); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, |
| state->estimated_rate[layer] >> 8); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, |
| state->estimated_rate[layer]); |
| if (rc < 0) |
| return rc; |
| |
| /* Turn on BER before Viterbi */ |
| rc = mb86a20s_writereg(state, 0x52, 0x01); |
| |
| /* Reset all preBER counters */ |
| rc = mb86a20s_writereg(state, 0x53, 0x00); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x53, 0x07); |
| } else { |
| /* Reset counter to collect new data */ |
| rc = mb86a20s_readreg(state, 0x53); |
| if (rc < 0) |
| return rc; |
| val = rc; |
| rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer)); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x53, val | (1 << layer)); |
| } |
| |
| return rc; |
| } |
| |
| static int mb86a20s_get_post_ber(struct dvb_frontend *fe, |
| unsigned layer, |
| u32 *error, u32 *count) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| u32 counter, collect_rate; |
| int rc, val; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (layer >= 3) |
| return -EINVAL; |
| |
| /* Check if the BER measures are already available */ |
| rc = mb86a20s_readreg(state, 0x60); |
| if (rc < 0) |
| return rc; |
| |
| /* Check if data is available for that layer */ |
| if (!(rc & (1 << layer))) { |
| dev_dbg(&state->i2c->dev, |
| "%s: post BER for layer %c is not available yet.\n", |
| __func__, 'A' + layer); |
| return -EBUSY; |
| } |
| |
| /* Read Bit Error Count */ |
| rc = mb86a20s_readreg(state, 0x64 + layer * 3); |
| if (rc < 0) |
| return rc; |
| *error = rc << 16; |
| rc = mb86a20s_readreg(state, 0x65 + layer * 3); |
| if (rc < 0) |
| return rc; |
| *error |= rc << 8; |
| rc = mb86a20s_readreg(state, 0x66 + layer * 3); |
| if (rc < 0) |
| return rc; |
| *error |= rc; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: post bit error for layer %c: %d.\n", |
| __func__, 'A' + layer, *error); |
| |
| /* Read Bit Count */ |
| rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| counter = rc << 8; |
| rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| counter |= rc; |
| *count = counter * 204 * 8; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: post bit count for layer %c: %d.\n", |
| __func__, 'A' + layer, *count); |
| |
| /* |
| * As we get TMCC data from the frontend, we can better estimate the |
| * BER bit counters, in order to do the BER measure during a longer |
| * time. Use those data, if available, to update the bit count |
| * measure. |
| */ |
| |
| if (!state->estimated_rate[layer]) |
| goto reset_measurement; |
| |
| collect_rate = state->estimated_rate[layer] / 204 / 8; |
| if (collect_rate < 32) |
| collect_rate = 32; |
| if (collect_rate > 65535) |
| collect_rate = 65535; |
| if (collect_rate != counter) { |
| dev_dbg(&state->i2c->dev, |
| "%s: updating postBER counter on layer %c to %d.\n", |
| __func__, 'A' + layer, collect_rate); |
| |
| /* Turn off BER after Viterbi */ |
| rc = mb86a20s_writereg(state, 0x5e, 0x00); |
| |
| /* Update counter for this layer */ |
| rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); |
| if (rc < 0) |
| return rc; |
| |
| /* Turn on BER after Viterbi */ |
| rc = mb86a20s_writereg(state, 0x5e, 0x07); |
| |
| /* Reset all preBER counters */ |
| rc = mb86a20s_writereg(state, 0x5f, 0x00); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x5f, 0x07); |
| |
| return rc; |
| } |
| |
| reset_measurement: |
| /* Reset counter to collect new data */ |
| rc = mb86a20s_readreg(state, 0x5f); |
| if (rc < 0) |
| return rc; |
| val = rc; |
| rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer)); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer)); |
| |
| return rc; |
| } |
| |
| static int mb86a20s_get_blk_error(struct dvb_frontend *fe, |
| unsigned layer, |
| u32 *error, u32 *count) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| int rc, val; |
| u32 collect_rate; |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (layer >= 3) |
| return -EINVAL; |
| |
| /* Check if the PER measures are already available */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb8); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| |
| /* Check if data is available for that layer */ |
| |
| if (!(rc & (1 << layer))) { |
| dev_dbg(&state->i2c->dev, |
| "%s: block counts for layer %c aren't available yet.\n", |
| __func__, 'A' + layer); |
| return -EBUSY; |
| } |
| |
| /* Read Packet error Count */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *error = rc << 8; |
| rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *error |= rc; |
| dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n", |
| __func__, 'A' + layer, *error); |
| |
| /* Read Bit Count */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *count = rc << 8; |
| rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| *count |= rc; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: block count for layer %c: %d.\n", |
| __func__, 'A' + layer, *count); |
| |
| /* |
| * As we get TMCC data from the frontend, we can better estimate the |
| * BER bit counters, in order to do the BER measure during a longer |
| * time. Use those data, if available, to update the bit count |
| * measure. |
| */ |
| |
| if (!state->estimated_rate[layer]) |
| goto reset_measurement; |
| |
| collect_rate = state->estimated_rate[layer] / 204 / 8; |
| if (collect_rate < 32) |
| collect_rate = 32; |
| if (collect_rate > 65535) |
| collect_rate = 65535; |
| |
| if (collect_rate != *count) { |
| dev_dbg(&state->i2c->dev, |
| "%s: updating PER counter on layer %c to %d.\n", |
| __func__, 'A' + layer, collect_rate); |
| |
| /* Stop PER measurement */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb0); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, 0x00); |
| if (rc < 0) |
| return rc; |
| |
| /* Update this layer's counter */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); |
| if (rc < 0) |
| return rc; |
| |
| /* start PER measurement */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb0); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, 0x07); |
| if (rc < 0) |
| return rc; |
| |
| /* Reset all counters to collect new data */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb1); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, 0x07); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, 0x00); |
| |
| return rc; |
| } |
| |
| reset_measurement: |
| /* Reset counter to collect new data */ |
| rc = mb86a20s_writereg(state, 0x50, 0xb1); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| val = rc; |
| rc = mb86a20s_writereg(state, 0x51, val | (1 << layer)); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer)); |
| |
| return rc; |
| } |
| |
| struct linear_segments { |
| unsigned x, y; |
| }; |
| |
| /* |
| * All tables below return a dB/1000 measurement |
| */ |
| |
| static struct linear_segments cnr_to_db_table[] = { |
| { 19648, 0}, |
| { 18187, 1000}, |
| { 16534, 2000}, |
| { 14823, 3000}, |
| { 13161, 4000}, |
| { 11622, 5000}, |
| { 10279, 6000}, |
| { 9089, 7000}, |
| { 8042, 8000}, |
| { 7137, 9000}, |
| { 6342, 10000}, |
| { 5641, 11000}, |
| { 5030, 12000}, |
| { 4474, 13000}, |
| { 3988, 14000}, |
| { 3556, 15000}, |
| { 3180, 16000}, |
| { 2841, 17000}, |
| { 2541, 18000}, |
| { 2276, 19000}, |
| { 2038, 20000}, |
| { 1800, 21000}, |
| { 1625, 22000}, |
| { 1462, 23000}, |
| { 1324, 24000}, |
| { 1175, 25000}, |
| { 1063, 26000}, |
| { 980, 27000}, |
| { 907, 28000}, |
| { 840, 29000}, |
| { 788, 30000}, |
| }; |
| |
| static struct linear_segments cnr_64qam_table[] = { |
| { 3922688, 0}, |
| { 3920384, 1000}, |
| { 3902720, 2000}, |
| { 3894784, 3000}, |
| { 3882496, 4000}, |
| { 3872768, 5000}, |
| { 3858944, 6000}, |
| { 3851520, 7000}, |
| { 3838976, 8000}, |
| { 3829248, 9000}, |
| { 3818240, 10000}, |
| { 3806976, 11000}, |
| { 3791872, 12000}, |
| { 3767040, 13000}, |
| { 3720960, 14000}, |
| { 3637504, 15000}, |
| { 3498496, 16000}, |
| { 3296000, 17000}, |
| { 3031040, 18000}, |
| { 2715392, 19000}, |
| { 2362624, 20000}, |
| { 1963264, 21000}, |
| { 1649664, 22000}, |
| { 1366784, 23000}, |
| { 1120768, 24000}, |
| { 890880, 25000}, |
| { 723456, 26000}, |
| { 612096, 27000}, |
| { 518912, 28000}, |
| { 448256, 29000}, |
| { 388864, 30000}, |
| }; |
| |
| static struct linear_segments cnr_16qam_table[] = { |
| { 5314816, 0}, |
| { 5219072, 1000}, |
| { 5118720, 2000}, |
| { 4998912, 3000}, |
| { 4875520, 4000}, |
| { 4736000, 5000}, |
| { 4604160, 6000}, |
| { 4458752, 7000}, |
| { 4300288, 8000}, |
| { 4092928, 9000}, |
| { 3836160, 10000}, |
| { 3521024, 11000}, |
| { 3155968, 12000}, |
| { 2756864, 13000}, |
| { 2347008, 14000}, |
| { 1955072, 15000}, |
| { 1593600, 16000}, |
| { 1297920, 17000}, |
| { 1043968, 18000}, |
| { 839680, 19000}, |
| { 672256, 20000}, |
| { 523008, 21000}, |
| { 424704, 22000}, |
| { 345088, 23000}, |
| { 280064, 24000}, |
| { 221440, 25000}, |
| { 179712, 26000}, |
| { 151040, 27000}, |
| { 128512, 28000}, |
| { 110080, 29000}, |
| { 95744, 30000}, |
| }; |
| |
| struct linear_segments cnr_qpsk_table[] = { |
| { 2834176, 0}, |
| { 2683648, 1000}, |
| { 2536960, 2000}, |
| { 2391808, 3000}, |
| { 2133248, 4000}, |
| { 1906176, 5000}, |
| { 1666560, 6000}, |
| { 1422080, 7000}, |
| { 1189632, 8000}, |
| { 976384, 9000}, |
| { 790272, 10000}, |
| { 633344, 11000}, |
| { 505600, 12000}, |
| { 402944, 13000}, |
| { 320768, 14000}, |
| { 255488, 15000}, |
| { 204032, 16000}, |
| { 163072, 17000}, |
| { 130304, 18000}, |
| { 105216, 19000}, |
| { 83456, 20000}, |
| { 65024, 21000}, |
| { 52480, 22000}, |
| { 42752, 23000}, |
| { 34560, 24000}, |
| { 27136, 25000}, |
| { 22016, 26000}, |
| { 18432, 27000}, |
| { 15616, 28000}, |
| { 13312, 29000}, |
| { 11520, 30000}, |
| }; |
| |
| static u32 interpolate_value(u32 value, struct linear_segments *segments, |
| unsigned len) |
| { |
| u64 tmp64; |
| u32 dx, dy; |
| int i, ret; |
| |
| if (value >= segments[0].x) |
| return segments[0].y; |
| if (value < segments[len-1].x) |
| return segments[len-1].y; |
| |
| for (i = 1; i < len - 1; i++) { |
| /* If value is identical, no need to interpolate */ |
| if (value == segments[i].x) |
| return segments[i].y; |
| if (value > segments[i].x) |
| break; |
| } |
| |
| /* Linear interpolation between the two (x,y) points */ |
| dy = segments[i].y - segments[i - 1].y; |
| dx = segments[i - 1].x - segments[i].x; |
| tmp64 = value - segments[i].x; |
| tmp64 *= dy; |
| do_div(tmp64, dx); |
| ret = segments[i].y - tmp64; |
| |
| return ret; |
| } |
| |
| static int mb86a20s_get_main_CNR(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| u32 cnr_linear, cnr; |
| int rc, val; |
| |
| /* Check if CNR is available */ |
| rc = mb86a20s_readreg(state, 0x45); |
| if (rc < 0) |
| return rc; |
| |
| if (!(rc & 0x40)) { |
| dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n", |
| __func__); |
| return -EBUSY; |
| } |
| val = rc; |
| |
| rc = mb86a20s_readreg(state, 0x46); |
| if (rc < 0) |
| return rc; |
| cnr_linear = rc << 8; |
| |
| rc = mb86a20s_readreg(state, 0x46); |
| if (rc < 0) |
| return rc; |
| cnr_linear |= rc; |
| |
| cnr = interpolate_value(cnr_linear, |
| cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table)); |
| |
| c->cnr.stat[0].scale = FE_SCALE_DECIBEL; |
| c->cnr.stat[0].svalue = cnr; |
| |
| dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n", |
| __func__, cnr / 1000, cnr % 1000, cnr_linear); |
| |
| /* CNR counter reset */ |
| rc = mb86a20s_writereg(state, 0x45, val | 0x10); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x45, val & 0x6f); |
| |
| return rc; |
| } |
| |
| static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| u32 mer, cnr; |
| int rc, val, i; |
| struct linear_segments *segs; |
| unsigned segs_len; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| /* Check if the measures are already available */ |
| rc = mb86a20s_writereg(state, 0x50, 0x5b); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| |
| /* Check if data is available */ |
| if (!(rc & 0x01)) { |
| dev_dbg(&state->i2c->dev, |
| "%s: MER measures aren't available yet.\n", __func__); |
| return -EBUSY; |
| } |
| |
| /* Read all layers */ |
| for (i = 0; i < 3; i++) { |
| if (!(c->isdbt_layer_enabled & (1 << i))) { |
| c->cnr.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| continue; |
| } |
| |
| rc = mb86a20s_writereg(state, 0x50, 0x52 + i * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| mer = rc << 16; |
| rc = mb86a20s_writereg(state, 0x50, 0x53 + i * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| mer |= rc << 8; |
| rc = mb86a20s_writereg(state, 0x50, 0x54 + i * 3); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| mer |= rc; |
| |
| switch (c->layer[i].modulation) { |
| case DQPSK: |
| case QPSK: |
| segs = cnr_qpsk_table; |
| segs_len = ARRAY_SIZE(cnr_qpsk_table); |
| break; |
| case QAM_16: |
| segs = cnr_16qam_table; |
| segs_len = ARRAY_SIZE(cnr_16qam_table); |
| break; |
| default: |
| case QAM_64: |
| segs = cnr_64qam_table; |
| segs_len = ARRAY_SIZE(cnr_64qam_table); |
| break; |
| } |
| cnr = interpolate_value(mer, segs, segs_len); |
| |
| c->cnr.stat[1 + i].scale = FE_SCALE_DECIBEL; |
| c->cnr.stat[1 + i].svalue = cnr; |
| |
| dev_dbg(&state->i2c->dev, |
| "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n", |
| __func__, 'A' + i, cnr / 1000, cnr % 1000, mer); |
| |
| } |
| |
| /* Start a new MER measurement */ |
| /* MER counter reset */ |
| rc = mb86a20s_writereg(state, 0x50, 0x50); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_readreg(state, 0x51); |
| if (rc < 0) |
| return rc; |
| val = rc; |
| |
| rc = mb86a20s_writereg(state, 0x51, val | 0x01); |
| if (rc < 0) |
| return rc; |
| rc = mb86a20s_writereg(state, 0x51, val & 0x06); |
| if (rc < 0) |
| return rc; |
| |
| return 0; |
| } |
| |
| static void mb86a20s_stats_not_ready(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int i; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| /* Fill the length of each status counter */ |
| |
| /* Only global stats */ |
| c->strength.len = 1; |
| |
| /* Per-layer stats - 3 layers + global */ |
| c->cnr.len = 4; |
| c->pre_bit_error.len = 4; |
| c->pre_bit_count.len = 4; |
| c->post_bit_error.len = 4; |
| c->post_bit_count.len = 4; |
| c->block_error.len = 4; |
| c->block_count.len = 4; |
| |
| /* Signal is always available */ |
| c->strength.stat[0].scale = FE_SCALE_RELATIVE; |
| c->strength.stat[0].uvalue = 0; |
| |
| /* Put all of them at FE_SCALE_NOT_AVAILABLE */ |
| for (i = 0; i < 4; i++) { |
| c->cnr.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->pre_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->pre_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE; |
| } |
| } |
| |
| static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int rc = 0, i; |
| u32 bit_error = 0, bit_count = 0; |
| u32 t_pre_bit_error = 0, t_pre_bit_count = 0; |
| u32 t_post_bit_error = 0, t_post_bit_count = 0; |
| u32 block_error = 0, block_count = 0; |
| u32 t_block_error = 0, t_block_count = 0; |
| int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0; |
| int per_layers = 0; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| mb86a20s_get_main_CNR(fe); |
| |
| /* Get per-layer stats */ |
| mb86a20s_get_blk_error_layer_CNR(fe); |
| |
| /* |
| * At state 7, only CNR is available |
| * For BER measures, state=9 is required |
| * FIXME: we may get MER measures with state=8 |
| */ |
| if (status_nr < 9) |
| return 0; |
| |
| for (i = 0; i < 3; i++) { |
| if (c->isdbt_layer_enabled & (1 << i)) { |
| /* Layer is active and has rc segments */ |
| active_layers++; |
| |
| /* Handle BER before vterbi */ |
| rc = mb86a20s_get_pre_ber(fe, i, |
| &bit_error, &bit_count); |
| if (rc >= 0) { |
| c->pre_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->pre_bit_error.stat[1 + i].uvalue += bit_error; |
| c->pre_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->pre_bit_count.stat[1 + i].uvalue += bit_count; |
| } else if (rc != -EBUSY) { |
| /* |
| * If an I/O error happened, |
| * measures are now unavailable |
| */ |
| c->pre_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->pre_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| dev_err(&state->i2c->dev, |
| "%s: Can't get BER for layer %c (error %d).\n", |
| __func__, 'A' + i, rc); |
| } |
| if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE) |
| pre_ber_layers++; |
| |
| /* Handle BER post vterbi */ |
| rc = mb86a20s_get_post_ber(fe, i, |
| &bit_error, &bit_count); |
| if (rc >= 0) { |
| c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->post_bit_error.stat[1 + i].uvalue += bit_error; |
| c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->post_bit_count.stat[1 + i].uvalue += bit_count; |
| } else if (rc != -EBUSY) { |
| /* |
| * If an I/O error happened, |
| * measures are now unavailable |
| */ |
| c->post_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| dev_err(&state->i2c->dev, |
| "%s: Can't get BER for layer %c (error %d).\n", |
| __func__, 'A' + i, rc); |
| } |
| if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE) |
| post_ber_layers++; |
| |
| /* Handle Block errors for PER/UCB reports */ |
| rc = mb86a20s_get_blk_error(fe, i, |
| &block_error, |
| &block_count); |
| if (rc >= 0) { |
| c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->block_error.stat[1 + i].uvalue += block_error; |
| c->block_count.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->block_count.stat[1 + i].uvalue += block_count; |
| } else if (rc != -EBUSY) { |
| /* |
| * If an I/O error happened, |
| * measures are now unavailable |
| */ |
| c->block_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE; |
| dev_err(&state->i2c->dev, |
| "%s: Can't get PER for layer %c (error %d).\n", |
| __func__, 'A' + i, rc); |
| |
| } |
| if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE) |
| per_layers++; |
| |
| /* Update total preBER */ |
| t_pre_bit_error += c->pre_bit_error.stat[1 + i].uvalue; |
| t_pre_bit_count += c->pre_bit_count.stat[1 + i].uvalue; |
| |
| /* Update total postBER */ |
| t_post_bit_error += c->post_bit_error.stat[1 + i].uvalue; |
| t_post_bit_count += c->post_bit_count.stat[1 + i].uvalue; |
| |
| /* Update total PER */ |
| t_block_error += c->block_error.stat[1 + i].uvalue; |
| t_block_count += c->block_count.stat[1 + i].uvalue; |
| } |
| } |
| |
| /* |
| * Start showing global count if at least one error count is |
| * available. |
| */ |
| if (pre_ber_layers) { |
| /* |
| * At least one per-layer BER measure was read. We can now |
| * calculate the total BER |
| * |
| * Total Bit Error/Count is calculated as the sum of the |
| * bit errors on all active layers. |
| */ |
| c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->pre_bit_error.stat[0].uvalue = t_pre_bit_error; |
| c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->pre_bit_count.stat[0].uvalue = t_pre_bit_count; |
| } else { |
| c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| } |
| |
| /* |
| * Start showing global count if at least one error count is |
| * available. |
| */ |
| if (post_ber_layers) { |
| /* |
| * At least one per-layer BER measure was read. We can now |
| * calculate the total BER |
| * |
| * Total Bit Error/Count is calculated as the sum of the |
| * bit errors on all active layers. |
| */ |
| c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->post_bit_error.stat[0].uvalue = t_post_bit_error; |
| c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->post_bit_count.stat[0].uvalue = t_post_bit_count; |
| } else { |
| c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| } |
| |
| if (per_layers) { |
| /* |
| * At least one per-layer UCB measure was read. We can now |
| * calculate the total UCB |
| * |
| * Total block Error/Count is calculated as the sum of the |
| * block errors on all active layers. |
| */ |
| c->block_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_error.stat[0].uvalue = t_block_error; |
| c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_count.stat[0].uvalue = t_block_count; |
| } else { |
| c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * The functions below are called via DVB callbacks, so they need to |
| * properly use the I2C gate control |
| */ |
| |
| static int mb86a20s_initfe(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| u64 pll; |
| u32 fclk; |
| int rc; |
| u8 regD5 = 1, reg71, reg09 = 0x3a; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| |
| /* Initialize the frontend */ |
| rc = mb86a20s_writeregdata(state, mb86a20s_init1); |
| if (rc < 0) |
| goto err; |
| |
| if (!state->inversion) |
| reg09 |= 0x04; |
| rc = mb86a20s_writereg(state, 0x09, reg09); |
| if (rc < 0) |
| goto err; |
| if (!state->bw) |
| reg71 = 1; |
| else |
| reg71 = 0; |
| rc = mb86a20s_writereg(state, 0x39, reg71); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x71, state->bw); |
| if (rc < 0) |
| goto err; |
| if (state->subchannel) { |
| rc = mb86a20s_writereg(state, 0x44, state->subchannel); |
| if (rc < 0) |
| goto err; |
| } |
| |
| fclk = state->config->fclk; |
| if (!fclk) |
| fclk = 32571428; |
| |
| /* Adjust IF frequency to match tuner */ |
| if (fe->ops.tuner_ops.get_if_frequency) |
| fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq); |
| |
| if (!state->if_freq) |
| state->if_freq = 3300000; |
| |
| pll = (((u64)1) << 34) * state->if_freq; |
| do_div(pll, 63 * fclk); |
| pll = (1 << 25) - pll; |
| rc = mb86a20s_writereg(state, 0x28, 0x2a); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); |
| if (rc < 0) |
| goto err; |
| dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n", |
| __func__, fclk, state->if_freq, (long long)pll); |
| |
| /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */ |
| pll = state->if_freq * 1677721600L; |
| do_div(pll, 1628571429L); |
| rc = mb86a20s_writereg(state, 0x28, 0x20); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); |
| if (rc < 0) |
| goto err; |
| dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n", |
| __func__, state->if_freq, (long long)pll); |
| |
| if (!state->config->is_serial) { |
| regD5 &= ~1; |
| |
| rc = mb86a20s_writereg(state, 0x50, 0xd5); |
| if (rc < 0) |
| goto err; |
| rc = mb86a20s_writereg(state, 0x51, regD5); |
| if (rc < 0) |
| goto err; |
| } |
| |
| rc = mb86a20s_writeregdata(state, mb86a20s_init2); |
| if (rc < 0) |
| goto err; |
| |
| |
| err: |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 1); |
| |
| if (rc < 0) { |
| state->need_init = true; |
| dev_info(&state->i2c->dev, |
| "mb86a20s: Init failed. Will try again later\n"); |
| } else { |
| state->need_init = false; |
| dev_dbg(&state->i2c->dev, "Initialization succeeded.\n"); |
| } |
| return rc; |
| } |
| |
| static int mb86a20s_set_frontend(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int rc, if_freq; |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (!c->isdbt_layer_enabled) |
| c->isdbt_layer_enabled = 7; |
| |
| if (c->isdbt_layer_enabled == 1) |
| state->bw = MB86A20S_1SEG; |
| else if (c->isdbt_partial_reception) |
| state->bw = MB86A20S_13SEG_PARTIAL; |
| else |
| state->bw = MB86A20S_13SEG; |
| |
| if (c->inversion == INVERSION_ON) |
| state->inversion = true; |
| else |
| state->inversion = false; |
| |
| if (!c->isdbt_sb_mode) { |
| state->subchannel = 0; |
| } else { |
| if (c->isdbt_sb_subchannel > ARRAY_SIZE(mb86a20s_subchannel)) |
| c->isdbt_sb_subchannel = 0; |
| |
| state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel]; |
| } |
| |
| /* |
| * Gate should already be opened, but it doesn't hurt to |
| * double-check |
| */ |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 1); |
| fe->ops.tuner_ops.set_params(fe); |
| |
| if (fe->ops.tuner_ops.get_if_frequency) |
| fe->ops.tuner_ops.get_if_frequency(fe, &if_freq); |
| |
| /* |
| * Make it more reliable: if, for some reason, the initial |
| * device initialization doesn't happen, initialize it when |
| * a SBTVD parameters are adjusted. |
| * |
| * Unfortunately, due to a hard to track bug at tda829x/tda18271, |
| * the agc callback logic is not called during DVB attach time, |
| * causing mb86a20s to not be initialized with Kworld SBTVD. |
| * So, this hack is needed, in order to make Kworld SBTVD to work. |
| * |
| * It is also needed to change the IF after the initial init. |
| * |
| * HACK: Always init the frontend when set_frontend is called: |
| * it was noticed that, on some devices, it fails to lock on a |
| * different channel. So, it is better to reset everything, even |
| * wasting some time, than to loose channel lock. |
| */ |
| mb86a20s_initfe(fe); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| |
| rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception); |
| mb86a20s_reset_counters(fe); |
| mb86a20s_stats_not_ready(fe); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 1); |
| |
| return rc; |
| } |
| |
| static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe, |
| fe_status_t *status) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| int rc, status_nr; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| |
| /* Get lock */ |
| status_nr = mb86a20s_read_status(fe, status); |
| if (status_nr < 7) { |
| mb86a20s_stats_not_ready(fe); |
| mb86a20s_reset_frontend_cache(fe); |
| } |
| if (status_nr < 0) { |
| dev_err(&state->i2c->dev, |
| "%s: Can't read frontend lock status\n", __func__); |
| goto error; |
| } |
| |
| /* Get signal strength */ |
| rc = mb86a20s_read_signal_strength(fe); |
| if (rc < 0) { |
| dev_err(&state->i2c->dev, |
| "%s: Can't reset VBER registers.\n", __func__); |
| mb86a20s_stats_not_ready(fe); |
| mb86a20s_reset_frontend_cache(fe); |
| |
| rc = 0; /* Status is OK */ |
| goto error; |
| } |
| |
| if (status_nr >= 7) { |
| /* Get TMCC info*/ |
| rc = mb86a20s_get_frontend(fe); |
| if (rc < 0) { |
| dev_err(&state->i2c->dev, |
| "%s: Can't get FE TMCC data.\n", __func__); |
| rc = 0; /* Status is OK */ |
| goto error; |
| } |
| |
| /* Get statistics */ |
| rc = mb86a20s_get_stats(fe, status_nr); |
| if (rc < 0 && rc != -EBUSY) { |
| dev_err(&state->i2c->dev, |
| "%s: Can't get FE statistics.\n", __func__); |
| rc = 0; |
| goto error; |
| } |
| rc = 0; /* Don't return EBUSY to userspace */ |
| } |
| goto ok; |
| |
| error: |
| mb86a20s_stats_not_ready(fe); |
| |
| ok: |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 1); |
| |
| return rc; |
| } |
| |
| static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe, |
| u16 *strength) |
| { |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| |
| |
| *strength = c->strength.stat[0].uvalue; |
| |
| return 0; |
| } |
| |
| static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe) |
| { |
| /* |
| * get_frontend is now handled together with other stats |
| * retrival, when read_status() is called, as some statistics |
| * will depend on the layers detection. |
| */ |
| return 0; |
| }; |
| |
| static int mb86a20s_tune(struct dvb_frontend *fe, |
| bool re_tune, |
| unsigned int mode_flags, |
| unsigned int *delay, |
| fe_status_t *status) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| int rc = 0; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| if (re_tune) |
| rc = mb86a20s_set_frontend(fe); |
| |
| if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) |
| mb86a20s_read_status_and_stats(fe, status); |
| |
| return rc; |
| } |
| |
| static void mb86a20s_release(struct dvb_frontend *fe) |
| { |
| struct mb86a20s_state *state = fe->demodulator_priv; |
| |
| dev_dbg(&state->i2c->dev, "%s called.\n", __func__); |
| |
| kfree(state); |
| } |
| |
| static struct dvb_frontend_ops mb86a20s_ops; |
| |
| struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config, |
| struct i2c_adapter *i2c) |
| { |
| struct mb86a20s_state *state; |
| u8 rev; |
| |
| dev_dbg(&i2c->dev, "%s called.\n", __func__); |
| |
| /* allocate memory for the internal state */ |
| state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL); |
| if (state == NULL) { |
| dev_err(&i2c->dev, |
| "%s: unable to allocate memory for state\n", __func__); |
| goto error; |
| } |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| |
| /* create dvb_frontend */ |
| memcpy(&state->frontend.ops, &mb86a20s_ops, |
| sizeof(struct dvb_frontend_ops)); |
| state->frontend.demodulator_priv = state; |
| |
| /* Check if it is a mb86a20s frontend */ |
| rev = mb86a20s_readreg(state, 0); |
| |
| if (rev == 0x13) { |
| dev_info(&i2c->dev, |
| "Detected a Fujitsu mb86a20s frontend\n"); |
| } else { |
| dev_dbg(&i2c->dev, |
| "Frontend revision %d is unknown - aborting.\n", |
| rev); |
| goto error; |
| } |
| |
| return &state->frontend; |
| |
| error: |
| kfree(state); |
| return NULL; |
| } |
| EXPORT_SYMBOL(mb86a20s_attach); |
| |
| static struct dvb_frontend_ops mb86a20s_ops = { |
| .delsys = { SYS_ISDBT }, |
| /* Use dib8000 values per default */ |
| .info = { |
| .name = "Fujitsu mb86A20s", |
| .caps = FE_CAN_RECOVER | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO | |
| FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, |
| /* Actually, those values depend on the used tuner */ |
| .frequency_min = 45000000, |
| .frequency_max = 864000000, |
| .frequency_stepsize = 62500, |
| }, |
| |
| .release = mb86a20s_release, |
| |
| .init = mb86a20s_initfe, |
| .set_frontend = mb86a20s_set_frontend, |
| .get_frontend = mb86a20s_get_frontend_dummy, |
| .read_status = mb86a20s_read_status_and_stats, |
| .read_signal_strength = mb86a20s_read_signal_strength_from_cache, |
| .tune = mb86a20s_tune, |
| }; |
| |
| MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware"); |
| MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
| MODULE_LICENSE("GPL"); |