| /** |
| * IBM Accelerator Family 'GenWQE' |
| * |
| * (C) Copyright IBM Corp. 2013 |
| * |
| * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> |
| * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> |
| * Author: Michael Jung <mijung@gmx.net> |
| * Author: Michael Ruettger <michael@ibmra.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License (version 2 only) |
| * as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| /* |
| * Miscelanous functionality used in the other GenWQE driver parts. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/vmalloc.h> |
| #include <linux/page-flags.h> |
| #include <linux/scatterlist.h> |
| #include <linux/hugetlb.h> |
| #include <linux/iommu.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/ctype.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/delay.h> |
| #include <asm/pgtable.h> |
| |
| #include "genwqe_driver.h" |
| #include "card_base.h" |
| #include "card_ddcb.h" |
| |
| /** |
| * __genwqe_writeq() - Write 64-bit register |
| * @cd: genwqe device descriptor |
| * @byte_offs: byte offset within BAR |
| * @val: 64-bit value |
| * |
| * Return: 0 if success; < 0 if error |
| */ |
| int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val) |
| { |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) |
| return -EIO; |
| |
| if (cd->mmio == NULL) |
| return -EIO; |
| |
| if (pci_channel_offline(pci_dev)) |
| return -EIO; |
| |
| __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs); |
| return 0; |
| } |
| |
| /** |
| * __genwqe_readq() - Read 64-bit register |
| * @cd: genwqe device descriptor |
| * @byte_offs: offset within BAR |
| * |
| * Return: value from register |
| */ |
| u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs) |
| { |
| if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) |
| return 0xffffffffffffffffull; |
| |
| if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) && |
| (byte_offs == IO_SLC_CFGREG_GFIR)) |
| return 0x000000000000ffffull; |
| |
| if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) && |
| (byte_offs == IO_SLC_CFGREG_GFIR)) |
| return 0x00000000ffff0000ull; |
| |
| if (cd->mmio == NULL) |
| return 0xffffffffffffffffull; |
| |
| return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs)); |
| } |
| |
| /** |
| * __genwqe_writel() - Write 32-bit register |
| * @cd: genwqe device descriptor |
| * @byte_offs: byte offset within BAR |
| * @val: 32-bit value |
| * |
| * Return: 0 if success; < 0 if error |
| */ |
| int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val) |
| { |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) |
| return -EIO; |
| |
| if (cd->mmio == NULL) |
| return -EIO; |
| |
| if (pci_channel_offline(pci_dev)) |
| return -EIO; |
| |
| __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs); |
| return 0; |
| } |
| |
| /** |
| * __genwqe_readl() - Read 32-bit register |
| * @cd: genwqe device descriptor |
| * @byte_offs: offset within BAR |
| * |
| * Return: Value from register |
| */ |
| u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs) |
| { |
| if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) |
| return 0xffffffff; |
| |
| if (cd->mmio == NULL) |
| return 0xffffffff; |
| |
| return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs)); |
| } |
| |
| /** |
| * genwqe_read_app_id() - Extract app_id |
| * |
| * app_unitcfg need to be filled with valid data first |
| */ |
| int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len) |
| { |
| int i, j; |
| u32 app_id = (u32)cd->app_unitcfg; |
| |
| memset(app_name, 0, len); |
| for (i = 0, j = 0; j < min(len, 4); j++) { |
| char ch = (char)((app_id >> (24 - j*8)) & 0xff); |
| |
| if (ch == ' ') |
| continue; |
| app_name[i++] = isprint(ch) ? ch : 'X'; |
| } |
| return i; |
| } |
| |
| /** |
| * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations |
| * |
| * Existing kernel functions seem to use a different polynom, |
| * therefore we could not use them here. |
| * |
| * Genwqe's Polynomial = 0x20044009 |
| */ |
| #define CRC32_POLYNOMIAL 0x20044009 |
| static u32 crc32_tab[256]; /* crc32 lookup table */ |
| |
| void genwqe_init_crc32(void) |
| { |
| int i, j; |
| u32 crc; |
| |
| for (i = 0; i < 256; i++) { |
| crc = i << 24; |
| for (j = 0; j < 8; j++) { |
| if (crc & 0x80000000) |
| crc = (crc << 1) ^ CRC32_POLYNOMIAL; |
| else |
| crc = (crc << 1); |
| } |
| crc32_tab[i] = crc; |
| } |
| } |
| |
| /** |
| * genwqe_crc32() - Generate 32-bit crc as required for DDCBs |
| * @buff: pointer to data buffer |
| * @len: length of data for calculation |
| * @init: initial crc (0xffffffff at start) |
| * |
| * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009) |
| |
| * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should |
| * result in a crc32 of 0xf33cb7d3. |
| * |
| * The existing kernel crc functions did not cover this polynom yet. |
| * |
| * Return: crc32 checksum. |
| */ |
| u32 genwqe_crc32(u8 *buff, size_t len, u32 init) |
| { |
| int i; |
| u32 crc; |
| |
| crc = init; |
| while (len--) { |
| i = ((crc >> 24) ^ *buff++) & 0xFF; |
| crc = (crc << 8) ^ crc32_tab[i]; |
| } |
| return crc; |
| } |
| |
| void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, |
| dma_addr_t *dma_handle) |
| { |
| if (get_order(size) >= MAX_ORDER) |
| return NULL; |
| |
| return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle, |
| GFP_KERNEL); |
| } |
| |
| void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, |
| void *vaddr, dma_addr_t dma_handle) |
| { |
| if (vaddr == NULL) |
| return; |
| |
| dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle); |
| } |
| |
| static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list, |
| int num_pages) |
| { |
| int i; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) { |
| pci_unmap_page(pci_dev, dma_list[i], |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| dma_list[i] = 0x0; |
| } |
| } |
| |
| static int genwqe_map_pages(struct genwqe_dev *cd, |
| struct page **page_list, int num_pages, |
| dma_addr_t *dma_list) |
| { |
| int i; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| /* establish DMA mapping for requested pages */ |
| for (i = 0; i < num_pages; i++) { |
| dma_addr_t daddr; |
| |
| dma_list[i] = 0x0; |
| daddr = pci_map_page(pci_dev, page_list[i], |
| 0, /* map_offs */ |
| PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */ |
| |
| if (pci_dma_mapping_error(pci_dev, daddr)) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: no dma addr daddr=%016llx!\n", |
| __func__, (long long)daddr); |
| goto err; |
| } |
| |
| dma_list[i] = daddr; |
| } |
| return 0; |
| |
| err: |
| genwqe_unmap_pages(cd, dma_list, num_pages); |
| return -EIO; |
| } |
| |
| static int genwqe_sgl_size(int num_pages) |
| { |
| int len, num_tlb = num_pages / 7; |
| |
| len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1); |
| return roundup(len, PAGE_SIZE); |
| } |
| |
| /** |
| * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages |
| * |
| * Allocates memory for sgl and overlapping pages. Pages which might |
| * overlap other user-space memory blocks are being cached for DMAs, |
| * such that we do not run into syncronization issues. Data is copied |
| * from user-space into the cached pages. |
| */ |
| int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, |
| void __user *user_addr, size_t user_size, int write) |
| { |
| int ret = -ENOMEM; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| sgl->fpage_offs = offset_in_page((unsigned long)user_addr); |
| sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size); |
| sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE); |
| sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE; |
| |
| dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n", |
| __func__, user_addr, user_size, sgl->nr_pages, |
| sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size); |
| |
| sgl->user_addr = user_addr; |
| sgl->user_size = user_size; |
| sgl->write = write; |
| sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages); |
| |
| if (get_order(sgl->sgl_size) > MAX_ORDER) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: too much memory requested!\n", __func__); |
| return ret; |
| } |
| |
| sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size, |
| &sgl->sgl_dma_addr); |
| if (sgl->sgl == NULL) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: no memory available!\n", __func__); |
| return ret; |
| } |
| |
| /* Only use buffering on incomplete pages */ |
| if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) { |
| sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, |
| &sgl->fpage_dma_addr); |
| if (sgl->fpage == NULL) |
| goto err_out; |
| |
| /* Sync with user memory */ |
| if (copy_from_user(sgl->fpage + sgl->fpage_offs, |
| user_addr, sgl->fpage_size)) { |
| ret = -EFAULT; |
| goto err_out; |
| } |
| } |
| if (sgl->lpage_size != 0) { |
| sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, |
| &sgl->lpage_dma_addr); |
| if (sgl->lpage == NULL) |
| goto err_out1; |
| |
| /* Sync with user memory */ |
| if (copy_from_user(sgl->lpage, user_addr + user_size - |
| sgl->lpage_size, sgl->lpage_size)) { |
| ret = -EFAULT; |
| goto err_out2; |
| } |
| } |
| return 0; |
| |
| err_out2: |
| __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, |
| sgl->lpage_dma_addr); |
| sgl->lpage = NULL; |
| sgl->lpage_dma_addr = 0; |
| err_out1: |
| __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, |
| sgl->fpage_dma_addr); |
| sgl->fpage = NULL; |
| sgl->fpage_dma_addr = 0; |
| err_out: |
| __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, |
| sgl->sgl_dma_addr); |
| sgl->sgl = NULL; |
| sgl->sgl_dma_addr = 0; |
| sgl->sgl_size = 0; |
| |
| return ret; |
| } |
| |
| int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, |
| dma_addr_t *dma_list) |
| { |
| int i = 0, j = 0, p; |
| unsigned long dma_offs, map_offs; |
| dma_addr_t prev_daddr = 0; |
| struct sg_entry *s, *last_s = NULL; |
| size_t size = sgl->user_size; |
| |
| dma_offs = 128; /* next block if needed/dma_offset */ |
| map_offs = sgl->fpage_offs; /* offset in first page */ |
| |
| s = &sgl->sgl[0]; /* first set of 8 entries */ |
| p = 0; /* page */ |
| while (p < sgl->nr_pages) { |
| dma_addr_t daddr; |
| unsigned int size_to_map; |
| |
| /* always write the chaining entry, cleanup is done later */ |
| j = 0; |
| s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs); |
| s[j].len = cpu_to_be32(128); |
| s[j].flags = cpu_to_be32(SG_CHAINED); |
| j++; |
| |
| while (j < 8) { |
| /* DMA mapping for requested page, offs, size */ |
| size_to_map = min(size, PAGE_SIZE - map_offs); |
| |
| if ((p == 0) && (sgl->fpage != NULL)) { |
| daddr = sgl->fpage_dma_addr + map_offs; |
| |
| } else if ((p == sgl->nr_pages - 1) && |
| (sgl->lpage != NULL)) { |
| daddr = sgl->lpage_dma_addr; |
| } else { |
| daddr = dma_list[p] + map_offs; |
| } |
| |
| size -= size_to_map; |
| map_offs = 0; |
| |
| if (prev_daddr == daddr) { |
| u32 prev_len = be32_to_cpu(last_s->len); |
| |
| /* pr_info("daddr combining: " |
| "%016llx/%08x -> %016llx\n", |
| prev_daddr, prev_len, daddr); */ |
| |
| last_s->len = cpu_to_be32(prev_len + |
| size_to_map); |
| |
| p++; /* process next page */ |
| if (p == sgl->nr_pages) |
| goto fixup; /* nothing to do */ |
| |
| prev_daddr = daddr + size_to_map; |
| continue; |
| } |
| |
| /* start new entry */ |
| s[j].target_addr = cpu_to_be64(daddr); |
| s[j].len = cpu_to_be32(size_to_map); |
| s[j].flags = cpu_to_be32(SG_DATA); |
| prev_daddr = daddr + size_to_map; |
| last_s = &s[j]; |
| j++; |
| |
| p++; /* process next page */ |
| if (p == sgl->nr_pages) |
| goto fixup; /* nothing to do */ |
| } |
| dma_offs += 128; |
| s += 8; /* continue 8 elements further */ |
| } |
| fixup: |
| if (j == 1) { /* combining happened on last entry! */ |
| s -= 8; /* full shift needed on previous sgl block */ |
| j = 7; /* shift all elements */ |
| } |
| |
| for (i = 0; i < j; i++) /* move elements 1 up */ |
| s[i] = s[i + 1]; |
| |
| s[i].target_addr = cpu_to_be64(0); |
| s[i].len = cpu_to_be32(0); |
| s[i].flags = cpu_to_be32(SG_END_LIST); |
| return 0; |
| } |
| |
| /** |
| * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages |
| * |
| * After the DMA transfer has been completed we free the memory for |
| * the sgl and the cached pages. Data is being transferred from cached |
| * pages into user-space buffers. |
| */ |
| int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl) |
| { |
| int rc = 0; |
| size_t offset; |
| unsigned long res; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (sgl->fpage) { |
| if (sgl->write) { |
| res = copy_to_user(sgl->user_addr, |
| sgl->fpage + sgl->fpage_offs, sgl->fpage_size); |
| if (res) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: copying fpage! (res=%lu)\n", |
| __func__, res); |
| rc = -EFAULT; |
| } |
| } |
| __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, |
| sgl->fpage_dma_addr); |
| sgl->fpage = NULL; |
| sgl->fpage_dma_addr = 0; |
| } |
| if (sgl->lpage) { |
| if (sgl->write) { |
| offset = sgl->user_size - sgl->lpage_size; |
| res = copy_to_user(sgl->user_addr + offset, sgl->lpage, |
| sgl->lpage_size); |
| if (res) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: copying lpage! (res=%lu)\n", |
| __func__, res); |
| rc = -EFAULT; |
| } |
| } |
| __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, |
| sgl->lpage_dma_addr); |
| sgl->lpage = NULL; |
| sgl->lpage_dma_addr = 0; |
| } |
| __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, |
| sgl->sgl_dma_addr); |
| |
| sgl->sgl = NULL; |
| sgl->sgl_dma_addr = 0x0; |
| sgl->sgl_size = 0; |
| return rc; |
| } |
| |
| /** |
| * genwqe_free_user_pages() - Give pinned pages back |
| * |
| * Documentation of get_user_pages is in mm/gup.c: |
| * |
| * If the page is written to, set_page_dirty (or set_page_dirty_lock, |
| * as appropriate) must be called after the page is finished with, and |
| * before put_page is called. |
| */ |
| static int genwqe_free_user_pages(struct page **page_list, |
| unsigned int nr_pages, int dirty) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < nr_pages; i++) { |
| if (page_list[i] != NULL) { |
| if (dirty) |
| set_page_dirty_lock(page_list[i]); |
| put_page(page_list[i]); |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * genwqe_user_vmap() - Map user-space memory to virtual kernel memory |
| * @cd: pointer to genwqe device |
| * @m: mapping params |
| * @uaddr: user virtual address |
| * @size: size of memory to be mapped |
| * |
| * We need to think about how we could speed this up. Of course it is |
| * not a good idea to do this over and over again, like we are |
| * currently doing it. Nevertheless, I am curious where on the path |
| * the performance is spend. Most probably within the memory |
| * allocation functions, but maybe also in the DMA mapping code. |
| * |
| * Restrictions: The maximum size of the possible mapping currently depends |
| * on the amount of memory we can get using kzalloc() for the |
| * page_list and pci_alloc_consistent for the sg_list. |
| * The sg_list is currently itself not scattered, which could |
| * be fixed with some effort. The page_list must be split into |
| * PAGE_SIZE chunks too. All that will make the complicated |
| * code more complicated. |
| * |
| * Return: 0 if success |
| */ |
| int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, |
| unsigned long size) |
| { |
| int rc = -EINVAL; |
| unsigned long data, offs; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if ((uaddr == NULL) || (size == 0)) { |
| m->size = 0; /* mark unused and not added */ |
| return -EINVAL; |
| } |
| m->u_vaddr = uaddr; |
| m->size = size; |
| |
| /* determine space needed for page_list. */ |
| data = (unsigned long)uaddr; |
| offs = offset_in_page(data); |
| m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE); |
| |
| m->page_list = kcalloc(m->nr_pages, |
| sizeof(struct page *) + sizeof(dma_addr_t), |
| GFP_KERNEL); |
| if (!m->page_list) { |
| dev_err(&pci_dev->dev, "err: alloc page_list failed\n"); |
| m->nr_pages = 0; |
| m->u_vaddr = NULL; |
| m->size = 0; /* mark unused and not added */ |
| return -ENOMEM; |
| } |
| m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages); |
| |
| /* pin user pages in memory */ |
| rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */ |
| m->nr_pages, |
| m->write, /* readable/writable */ |
| m->page_list); /* ptrs to pages */ |
| if (rc < 0) |
| goto fail_get_user_pages; |
| |
| /* assumption: get_user_pages can be killed by signals. */ |
| if (rc < m->nr_pages) { |
| genwqe_free_user_pages(m->page_list, rc, m->write); |
| rc = -EFAULT; |
| goto fail_get_user_pages; |
| } |
| |
| rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list); |
| if (rc != 0) |
| goto fail_free_user_pages; |
| |
| return 0; |
| |
| fail_free_user_pages: |
| genwqe_free_user_pages(m->page_list, m->nr_pages, m->write); |
| |
| fail_get_user_pages: |
| kfree(m->page_list); |
| m->page_list = NULL; |
| m->dma_list = NULL; |
| m->nr_pages = 0; |
| m->u_vaddr = NULL; |
| m->size = 0; /* mark unused and not added */ |
| return rc; |
| } |
| |
| /** |
| * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel |
| * memory |
| * @cd: pointer to genwqe device |
| * @m: mapping params |
| */ |
| int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m) |
| { |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (!dma_mapping_used(m)) { |
| dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n", |
| __func__, m); |
| return -EINVAL; |
| } |
| |
| if (m->dma_list) |
| genwqe_unmap_pages(cd, m->dma_list, m->nr_pages); |
| |
| if (m->page_list) { |
| genwqe_free_user_pages(m->page_list, m->nr_pages, m->write); |
| |
| kfree(m->page_list); |
| m->page_list = NULL; |
| m->dma_list = NULL; |
| m->nr_pages = 0; |
| } |
| |
| m->u_vaddr = NULL; |
| m->size = 0; /* mark as unused and not added */ |
| return 0; |
| } |
| |
| /** |
| * genwqe_card_type() - Get chip type SLU Configuration Register |
| * @cd: pointer to the genwqe device descriptor |
| * Return: 0: Altera Stratix-IV 230 |
| * 1: Altera Stratix-IV 530 |
| * 2: Altera Stratix-V A4 |
| * 3: Altera Stratix-V A7 |
| */ |
| u8 genwqe_card_type(struct genwqe_dev *cd) |
| { |
| u64 card_type = cd->slu_unitcfg; |
| |
| return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20); |
| } |
| |
| /** |
| * genwqe_card_reset() - Reset the card |
| * @cd: pointer to the genwqe device descriptor |
| */ |
| int genwqe_card_reset(struct genwqe_dev *cd) |
| { |
| u64 softrst; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (!genwqe_is_privileged(cd)) |
| return -ENODEV; |
| |
| /* new SL */ |
| __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull); |
| msleep(1000); |
| __genwqe_readq(cd, IO_HSU_FIR_CLR); |
| __genwqe_readq(cd, IO_APP_FIR_CLR); |
| __genwqe_readq(cd, IO_SLU_FIR_CLR); |
| |
| /* |
| * Read-modify-write to preserve the stealth bits |
| * |
| * For SL >= 039, Stealth WE bit allows removing |
| * the read-modify-wrote. |
| * r-m-w may require a mask 0x3C to avoid hitting hard |
| * reset again for error reset (should be 0, chicken). |
| */ |
| softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull; |
| __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull); |
| |
| /* give ERRORRESET some time to finish */ |
| msleep(50); |
| |
| if (genwqe_need_err_masking(cd)) { |
| dev_info(&pci_dev->dev, |
| "[%s] masking errors for old bitstreams\n", __func__); |
| __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); |
| } |
| return 0; |
| } |
| |
| int genwqe_read_softreset(struct genwqe_dev *cd) |
| { |
| u64 bitstream; |
| |
| if (!genwqe_is_privileged(cd)) |
| return -ENODEV; |
| |
| bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1; |
| cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull; |
| return 0; |
| } |
| |
| /** |
| * genwqe_set_interrupt_capability() - Configure MSI capability structure |
| * @cd: pointer to the device |
| * Return: 0 if no error |
| */ |
| int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count) |
| { |
| int rc; |
| |
| rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI); |
| if (rc < 0) |
| return rc; |
| return 0; |
| } |
| |
| /** |
| * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability() |
| * @cd: pointer to the device |
| */ |
| void genwqe_reset_interrupt_capability(struct genwqe_dev *cd) |
| { |
| pci_free_irq_vectors(cd->pci_dev); |
| } |
| |
| /** |
| * set_reg_idx() - Fill array with data. Ignore illegal offsets. |
| * @cd: card device |
| * @r: debug register array |
| * @i: index to desired entry |
| * @m: maximum possible entries |
| * @addr: addr which is read |
| * @index: index in debug array |
| * @val: read value |
| */ |
| static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r, |
| unsigned int *i, unsigned int m, u32 addr, u32 idx, |
| u64 val) |
| { |
| if (WARN_ON_ONCE(*i >= m)) |
| return -EFAULT; |
| |
| r[*i].addr = addr; |
| r[*i].idx = idx; |
| r[*i].val = val; |
| ++*i; |
| return 0; |
| } |
| |
| static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r, |
| unsigned int *i, unsigned int m, u32 addr, u64 val) |
| { |
| return set_reg_idx(cd, r, i, m, addr, 0, val); |
| } |
| |
| int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, |
| unsigned int max_regs, int all) |
| { |
| unsigned int i, j, idx = 0; |
| u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr; |
| u64 gfir, sluid, appid, ufir, ufec, sfir, sfec; |
| |
| /* Global FIR */ |
| gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); |
| set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir); |
| |
| /* UnitCfg for SLU */ |
| sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */ |
| set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid); |
| |
| /* UnitCfg for APP */ |
| appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */ |
| set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid); |
| |
| /* Check all chip Units */ |
| for (i = 0; i < GENWQE_MAX_UNITS; i++) { |
| |
| /* Unit FIR */ |
| ufir_addr = (i << 24) | 0x008; |
| ufir = __genwqe_readq(cd, ufir_addr); |
| set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir); |
| |
| /* Unit FEC */ |
| ufec_addr = (i << 24) | 0x018; |
| ufec = __genwqe_readq(cd, ufec_addr); |
| set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec); |
| |
| for (j = 0; j < 64; j++) { |
| /* wherever there is a primary 1, read the 2ndary */ |
| if (!all && (!(ufir & (1ull << j)))) |
| continue; |
| |
| sfir_addr = (i << 24) | (0x100 + 8 * j); |
| sfir = __genwqe_readq(cd, sfir_addr); |
| set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir); |
| |
| sfec_addr = (i << 24) | (0x300 + 8 * j); |
| sfec = __genwqe_readq(cd, sfec_addr); |
| set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec); |
| } |
| } |
| |
| /* fill with invalid data until end */ |
| for (i = idx; i < max_regs; i++) { |
| regs[i].addr = 0xffffffff; |
| regs[i].val = 0xffffffffffffffffull; |
| } |
| return idx; |
| } |
| |
| /** |
| * genwqe_ffdc_buff_size() - Calculates the number of dump registers |
| */ |
| int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid) |
| { |
| int entries = 0, ring, traps, traces, trace_entries; |
| u32 eevptr_addr, l_addr, d_len, d_type; |
| u64 eevptr, val, addr; |
| |
| eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; |
| eevptr = __genwqe_readq(cd, eevptr_addr); |
| |
| if ((eevptr != 0x0) && (eevptr != -1ull)) { |
| l_addr = GENWQE_UID_OFFS(uid) | eevptr; |
| |
| while (1) { |
| val = __genwqe_readq(cd, l_addr); |
| |
| if ((val == 0x0) || (val == -1ull)) |
| break; |
| |
| /* 38:24 */ |
| d_len = (val & 0x0000007fff000000ull) >> 24; |
| |
| /* 39 */ |
| d_type = (val & 0x0000008000000000ull) >> 36; |
| |
| if (d_type) { /* repeat */ |
| entries += d_len; |
| } else { /* size in bytes! */ |
| entries += d_len >> 3; |
| } |
| |
| l_addr += 8; |
| } |
| } |
| |
| for (ring = 0; ring < 8; ring++) { |
| addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); |
| val = __genwqe_readq(cd, addr); |
| |
| if ((val == 0x0ull) || (val == -1ull)) |
| continue; |
| |
| traps = (val >> 24) & 0xff; |
| traces = (val >> 16) & 0xff; |
| trace_entries = val & 0xffff; |
| |
| entries += traps + (traces * trace_entries); |
| } |
| return entries; |
| } |
| |
| /** |
| * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure |
| */ |
| int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid, |
| struct genwqe_reg *regs, unsigned int max_regs) |
| { |
| int i, traps, traces, trace, trace_entries, trace_entry, ring; |
| unsigned int idx = 0; |
| u32 eevptr_addr, l_addr, d_addr, d_len, d_type; |
| u64 eevptr, e, val, addr; |
| |
| eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; |
| eevptr = __genwqe_readq(cd, eevptr_addr); |
| |
| if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) { |
| l_addr = GENWQE_UID_OFFS(uid) | eevptr; |
| while (1) { |
| e = __genwqe_readq(cd, l_addr); |
| if ((e == 0x0) || (e == 0xffffffffffffffffull)) |
| break; |
| |
| d_addr = (e & 0x0000000000ffffffull); /* 23:0 */ |
| d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */ |
| d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */ |
| d_addr |= GENWQE_UID_OFFS(uid); |
| |
| if (d_type) { |
| for (i = 0; i < (int)d_len; i++) { |
| val = __genwqe_readq(cd, d_addr); |
| set_reg_idx(cd, regs, &idx, max_regs, |
| d_addr, i, val); |
| } |
| } else { |
| d_len >>= 3; /* Size in bytes! */ |
| for (i = 0; i < (int)d_len; i++, d_addr += 8) { |
| val = __genwqe_readq(cd, d_addr); |
| set_reg_idx(cd, regs, &idx, max_regs, |
| d_addr, 0, val); |
| } |
| } |
| l_addr += 8; |
| } |
| } |
| |
| /* |
| * To save time, there are only 6 traces poplulated on Uid=2, |
| * Ring=1. each with iters=512. |
| */ |
| for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds, |
| 2...7 are ASI rings */ |
| addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); |
| val = __genwqe_readq(cd, addr); |
| |
| if ((val == 0x0ull) || (val == -1ull)) |
| continue; |
| |
| traps = (val >> 24) & 0xff; /* Number of Traps */ |
| traces = (val >> 16) & 0xff; /* Number of Traces */ |
| trace_entries = val & 0xffff; /* Entries per trace */ |
| |
| /* Note: This is a combined loop that dumps both the traps */ |
| /* (for the trace == 0 case) as well as the traces 1 to */ |
| /* 'traces'. */ |
| for (trace = 0; trace <= traces; trace++) { |
| u32 diag_sel = |
| GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace); |
| |
| addr = (GENWQE_UID_OFFS(uid) | |
| IO_EXTENDED_DIAG_SELECTOR); |
| __genwqe_writeq(cd, addr, diag_sel); |
| |
| for (trace_entry = 0; |
| trace_entry < (trace ? trace_entries : traps); |
| trace_entry++) { |
| addr = (GENWQE_UID_OFFS(uid) | |
| IO_EXTENDED_DIAG_READ_MBX); |
| val = __genwqe_readq(cd, addr); |
| set_reg_idx(cd, regs, &idx, max_regs, addr, |
| (diag_sel<<16) | trace_entry, val); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * genwqe_write_vreg() - Write register in virtual window |
| * |
| * Note, these registers are only accessible to the PF through the |
| * VF-window. It is not intended for the VF to access. |
| */ |
| int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func) |
| { |
| __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); |
| __genwqe_writeq(cd, reg, val); |
| return 0; |
| } |
| |
| /** |
| * genwqe_read_vreg() - Read register in virtual window |
| * |
| * Note, these registers are only accessible to the PF through the |
| * VF-window. It is not intended for the VF to access. |
| */ |
| u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func) |
| { |
| __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); |
| return __genwqe_readq(cd, reg); |
| } |
| |
| /** |
| * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card |
| * |
| * Note: From a design perspective it turned out to be a bad idea to |
| * use codes here to specifiy the frequency/speed values. An old |
| * driver cannot understand new codes and is therefore always a |
| * problem. Better is to measure out the value or put the |
| * speed/frequency directly into a register which is always a valid |
| * value for old as well as for new software. |
| * |
| * Return: Card clock in MHz |
| */ |
| int genwqe_base_clock_frequency(struct genwqe_dev *cd) |
| { |
| u16 speed; /* MHz MHz MHz MHz */ |
| static const int speed_grade[] = { 250, 200, 166, 175 }; |
| |
| speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full); |
| if (speed >= ARRAY_SIZE(speed_grade)) |
| return 0; /* illegal value */ |
| |
| return speed_grade[speed]; |
| } |
| |
| /** |
| * genwqe_stop_traps() - Stop traps |
| * |
| * Before reading out the analysis data, we need to stop the traps. |
| */ |
| void genwqe_stop_traps(struct genwqe_dev *cd) |
| { |
| __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull); |
| } |
| |
| /** |
| * genwqe_start_traps() - Start traps |
| * |
| * After having read the data, we can/must enable the traps again. |
| */ |
| void genwqe_start_traps(struct genwqe_dev *cd) |
| { |
| __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull); |
| |
| if (genwqe_need_err_masking(cd)) |
| __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); |
| } |