| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * Macros and functions to access KVM PTEs (also known as SPTEs) |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2020 Red Hat, Inc. and/or its affiliates. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_host.h> |
| #include "mmu.h" |
| #include "mmu_internal.h" |
| #include "x86.h" |
| #include "spte.h" |
| |
| #include <asm/e820/api.h> |
| #include <asm/memtype.h> |
| #include <asm/vmx.h> |
| |
| bool __read_mostly enable_mmio_caching = true; |
| static bool __ro_after_init allow_mmio_caching; |
| module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); |
| EXPORT_SYMBOL_GPL(enable_mmio_caching); |
| |
| u64 __read_mostly shadow_host_writable_mask; |
| u64 __read_mostly shadow_mmu_writable_mask; |
| u64 __read_mostly shadow_nx_mask; |
| u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ |
| u64 __read_mostly shadow_user_mask; |
| u64 __read_mostly shadow_accessed_mask; |
| u64 __read_mostly shadow_dirty_mask; |
| u64 __read_mostly shadow_mmio_value; |
| u64 __read_mostly shadow_mmio_mask; |
| u64 __read_mostly shadow_mmio_access_mask; |
| u64 __read_mostly shadow_present_mask; |
| u64 __read_mostly shadow_memtype_mask; |
| u64 __read_mostly shadow_me_value; |
| u64 __read_mostly shadow_me_mask; |
| u64 __read_mostly shadow_acc_track_mask; |
| |
| u64 __read_mostly shadow_nonpresent_or_rsvd_mask; |
| u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| |
| static u8 __init kvm_get_host_maxphyaddr(void) |
| { |
| /* |
| * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected |
| * in CPU detection code, but the processor treats those reduced bits as |
| * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at |
| * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR, |
| * when reasoning about CPU behavior with respect to MAXPHYADDR. |
| */ |
| if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) |
| return cpuid_eax(0x80000008) & 0xff; |
| |
| /* |
| * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with |
| * custom CPUID. Proceed with whatever the kernel found since these features |
| * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). |
| */ |
| return boot_cpu_data.x86_phys_bits; |
| } |
| |
| void __init kvm_mmu_spte_module_init(void) |
| { |
| /* |
| * Snapshot userspace's desire to allow MMIO caching. Whether or not |
| * KVM can actually enable MMIO caching depends on vendor-specific |
| * hardware capabilities and other module params that can't be resolved |
| * until the vendor module is loaded, i.e. enable_mmio_caching can and |
| * will change when the vendor module is (re)loaded. |
| */ |
| allow_mmio_caching = enable_mmio_caching; |
| |
| kvm_host.maxphyaddr = kvm_get_host_maxphyaddr(); |
| } |
| |
| static u64 generation_mmio_spte_mask(u64 gen) |
| { |
| u64 mask; |
| |
| WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK); |
| |
| mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; |
| mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; |
| return mask; |
| } |
| |
| u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) |
| { |
| u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; |
| u64 spte = generation_mmio_spte_mask(gen); |
| u64 gpa = gfn << PAGE_SHIFT; |
| |
| WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value); |
| |
| access &= shadow_mmio_access_mask; |
| spte |= vcpu->kvm->arch.shadow_mmio_value | access; |
| spte |= gpa | shadow_nonpresent_or_rsvd_mask; |
| spte |= (gpa & shadow_nonpresent_or_rsvd_mask) |
| << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; |
| |
| return spte; |
| } |
| |
| static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) |
| { |
| if (pfn_valid(pfn)) |
| return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && |
| /* |
| * Some reserved pages, such as those from NVDIMM |
| * DAX devices, are not for MMIO, and can be mapped |
| * with cached memory type for better performance. |
| * However, the above check misconceives those pages |
| * as MMIO, and results in KVM mapping them with UC |
| * memory type, which would hurt the performance. |
| * Therefore, we check the host memory type in addition |
| * and only treat UC/UC-/WC pages as MMIO. |
| */ |
| (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); |
| |
| return !e820__mapped_raw_any(pfn_to_hpa(pfn), |
| pfn_to_hpa(pfn + 1) - 1, |
| E820_TYPE_RAM); |
| } |
| |
| /* |
| * Returns true if the SPTE has bits that may be set without holding mmu_lock. |
| * The caller is responsible for checking if the SPTE is shadow-present, and |
| * for determining whether or not the caller cares about non-leaf SPTEs. |
| */ |
| bool spte_has_volatile_bits(u64 spte) |
| { |
| /* |
| * Always atomically update spte if it can be updated |
| * out of mmu-lock, it can ensure dirty bit is not lost, |
| * also, it can help us to get a stable is_writable_pte() |
| * to ensure tlb flush is not missed. |
| */ |
| if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) |
| return true; |
| |
| if (is_access_track_spte(spte)) |
| return true; |
| |
| if (spte_ad_enabled(spte)) { |
| if (!(spte & shadow_accessed_mask) || |
| (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| const struct kvm_memory_slot *slot, |
| unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, |
| u64 old_spte, bool prefetch, bool can_unsync, |
| bool host_writable, u64 *new_spte) |
| { |
| int level = sp->role.level; |
| u64 spte = SPTE_MMU_PRESENT_MASK; |
| bool wrprot = false; |
| |
| /* |
| * For the EPT case, shadow_present_mask has no RWX bits set if |
| * exec-only page table entries are supported. In that case, |
| * ACC_USER_MASK and shadow_user_mask are used to represent |
| * read access. See FNAME(gpte_access) in paging_tmpl.h. |
| */ |
| WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE); |
| |
| if (sp->role.ad_disabled) |
| spte |= SPTE_TDP_AD_DISABLED; |
| else if (kvm_mmu_page_ad_need_write_protect(sp)) |
| spte |= SPTE_TDP_AD_WRPROT_ONLY; |
| |
| spte |= shadow_present_mask; |
| if (!prefetch) |
| spte |= spte_shadow_accessed_mask(spte); |
| |
| /* |
| * For simplicity, enforce the NX huge page mitigation even if not |
| * strictly necessary. KVM could ignore the mitigation if paging is |
| * disabled in the guest, as the guest doesn't have any page tables to |
| * abuse. But to safely ignore the mitigation, KVM would have to |
| * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG |
| * is toggled on, and that's a net negative for performance when TDP is |
| * enabled. When TDP is disabled, KVM will always switch to a new MMU |
| * when CR0.PG is toggled, but leveraging that to ignore the mitigation |
| * would tie make_spte() further to vCPU/MMU state, and add complexity |
| * just to optimize a mode that is anything but performance critical. |
| */ |
| if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && |
| is_nx_huge_page_enabled(vcpu->kvm)) { |
| pte_access &= ~ACC_EXEC_MASK; |
| } |
| |
| if (pte_access & ACC_EXEC_MASK) |
| spte |= shadow_x_mask; |
| else |
| spte |= shadow_nx_mask; |
| |
| if (pte_access & ACC_USER_MASK) |
| spte |= shadow_user_mask; |
| |
| if (level > PG_LEVEL_4K) |
| spte |= PT_PAGE_SIZE_MASK; |
| |
| if (shadow_memtype_mask) |
| spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn, |
| kvm_is_mmio_pfn(pfn)); |
| if (host_writable) |
| spte |= shadow_host_writable_mask; |
| else |
| pte_access &= ~ACC_WRITE_MASK; |
| |
| if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) |
| spte |= shadow_me_value; |
| |
| spte |= (u64)pfn << PAGE_SHIFT; |
| |
| if (pte_access & ACC_WRITE_MASK) { |
| spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; |
| |
| /* |
| * Optimization: for pte sync, if spte was writable the hash |
| * lookup is unnecessary (and expensive). Write protection |
| * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. |
| * Same reasoning can be applied to dirty page accounting. |
| */ |
| if (is_writable_pte(old_spte)) |
| goto out; |
| |
| /* |
| * Unsync shadow pages that are reachable by the new, writable |
| * SPTE. Write-protect the SPTE if the page can't be unsync'd, |
| * e.g. it's write-tracked (upper-level SPs) or has one or more |
| * shadow pages and unsync'ing pages is not allowed. |
| */ |
| if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { |
| wrprot = true; |
| pte_access &= ~ACC_WRITE_MASK; |
| spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); |
| } |
| } |
| |
| if (pte_access & ACC_WRITE_MASK) |
| spte |= spte_shadow_dirty_mask(spte); |
| |
| out: |
| if (prefetch) |
| spte = mark_spte_for_access_track(spte); |
| |
| WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), |
| "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, |
| get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); |
| |
| if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { |
| /* Enforced by kvm_mmu_hugepage_adjust. */ |
| WARN_ON_ONCE(level > PG_LEVEL_4K); |
| mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); |
| } |
| |
| *new_spte = spte; |
| return wrprot; |
| } |
| |
| static u64 make_spte_executable(u64 spte) |
| { |
| bool is_access_track = is_access_track_spte(spte); |
| |
| if (is_access_track) |
| spte = restore_acc_track_spte(spte); |
| |
| spte &= ~shadow_nx_mask; |
| spte |= shadow_x_mask; |
| |
| if (is_access_track) |
| spte = mark_spte_for_access_track(spte); |
| |
| return spte; |
| } |
| |
| /* |
| * Construct an SPTE that maps a sub-page of the given huge page SPTE where |
| * `index` identifies which sub-page. |
| * |
| * This is used during huge page splitting to build the SPTEs that make up the |
| * new page table. |
| */ |
| u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, |
| union kvm_mmu_page_role role, int index) |
| { |
| u64 child_spte = huge_spte; |
| |
| KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm); |
| |
| /* |
| * The child_spte already has the base address of the huge page being |
| * split. So we just have to OR in the offset to the page at the next |
| * lower level for the given index. |
| */ |
| child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; |
| |
| if (role.level == PG_LEVEL_4K) { |
| child_spte &= ~PT_PAGE_SIZE_MASK; |
| |
| /* |
| * When splitting to a 4K page where execution is allowed, mark |
| * the page executable as the NX hugepage mitigation no longer |
| * applies. |
| */ |
| if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) |
| child_spte = make_spte_executable(child_spte); |
| } |
| |
| return child_spte; |
| } |
| |
| |
| u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) |
| { |
| u64 spte = SPTE_MMU_PRESENT_MASK; |
| |
| spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | |
| shadow_user_mask | shadow_x_mask | shadow_me_value; |
| |
| if (ad_disabled) |
| spte |= SPTE_TDP_AD_DISABLED; |
| else |
| spte |= shadow_accessed_mask; |
| |
| return spte; |
| } |
| |
| u64 mark_spte_for_access_track(u64 spte) |
| { |
| if (spte_ad_enabled(spte)) |
| return spte & ~shadow_accessed_mask; |
| |
| if (is_access_track_spte(spte)) |
| return spte; |
| |
| check_spte_writable_invariants(spte); |
| |
| WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), |
| "Access Tracking saved bit locations are not zero\n"); |
| |
| spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; |
| spte &= ~shadow_acc_track_mask; |
| |
| return spte; |
| } |
| |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) |
| { |
| BUG_ON((u64)(unsigned)access_mask != access_mask); |
| WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); |
| |
| /* |
| * Reset to the original module param value to honor userspace's desire |
| * to (dis)allow MMIO caching. Update the param itself so that |
| * userspace can see whether or not KVM is actually using MMIO caching. |
| */ |
| enable_mmio_caching = allow_mmio_caching; |
| if (!enable_mmio_caching) |
| mmio_value = 0; |
| |
| /* |
| * The mask must contain only bits that are carved out specifically for |
| * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO |
| * generation. |
| */ |
| if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) |
| mmio_value = 0; |
| |
| /* |
| * Disable MMIO caching if the MMIO value collides with the bits that |
| * are used to hold the relocated GFN when the L1TF mitigation is |
| * enabled. This should never fire as there is no known hardware that |
| * can trigger this condition, e.g. SME/SEV CPUs that require a custom |
| * MMIO value are not susceptible to L1TF. |
| */ |
| if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << |
| SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) |
| mmio_value = 0; |
| |
| /* |
| * The masked MMIO value must obviously match itself and a frozen SPTE |
| * must not get a false positive. Frozen SPTEs and MMIO SPTEs should |
| * never collide as MMIO must set some RWX bits, and frozen SPTEs must |
| * not set any RWX bits. |
| */ |
| if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || |
| WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value)) |
| mmio_value = 0; |
| |
| if (!mmio_value) |
| enable_mmio_caching = false; |
| |
| shadow_mmio_value = mmio_value; |
| shadow_mmio_mask = mmio_mask; |
| shadow_mmio_access_mask = access_mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); |
| |
| void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) |
| { |
| /* shadow_me_value must be a subset of shadow_me_mask */ |
| if (WARN_ON(me_value & ~me_mask)) |
| me_value = me_mask = 0; |
| |
| shadow_me_value = me_value; |
| shadow_me_mask = me_mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); |
| |
| void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) |
| { |
| shadow_user_mask = VMX_EPT_READABLE_MASK; |
| shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; |
| shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; |
| shadow_nx_mask = 0ull; |
| shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; |
| /* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */ |
| shadow_present_mask = |
| (has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT; |
| /* |
| * EPT overrides the host MTRRs, and so KVM must program the desired |
| * memtype directly into the SPTEs. Note, this mask is just the mask |
| * of all bits that factor into the memtype, the actual memtype must be |
| * dynamically calculated, e.g. to ensure host MMIO is mapped UC. |
| */ |
| shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; |
| shadow_acc_track_mask = VMX_EPT_RWX_MASK; |
| shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; |
| shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; |
| |
| /* |
| * EPT Misconfigurations are generated if the value of bits 2:0 |
| * of an EPT paging-structure entry is 110b (write/execute). |
| */ |
| kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, |
| VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); |
| |
| void kvm_mmu_reset_all_pte_masks(void) |
| { |
| u8 low_phys_bits; |
| u64 mask; |
| |
| /* |
| * If the CPU has 46 or less physical address bits, then set an |
| * appropriate mask to guard against L1TF attacks. Otherwise, it is |
| * assumed that the CPU is not vulnerable to L1TF. |
| * |
| * Some Intel CPUs address the L1 cache using more PA bits than are |
| * reported by CPUID. Use the PA width of the L1 cache when possible |
| * to achieve more effective mitigation, e.g. if system RAM overlaps |
| * the most significant bits of legal physical address space. |
| */ |
| shadow_nonpresent_or_rsvd_mask = 0; |
| low_phys_bits = boot_cpu_data.x86_phys_bits; |
| if (boot_cpu_has_bug(X86_BUG_L1TF) && |
| !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= |
| 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { |
| low_phys_bits = boot_cpu_data.x86_cache_bits |
| - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; |
| shadow_nonpresent_or_rsvd_mask = |
| rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); |
| } |
| |
| shadow_nonpresent_or_rsvd_lower_gfn_mask = |
| GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); |
| |
| shadow_user_mask = PT_USER_MASK; |
| shadow_accessed_mask = PT_ACCESSED_MASK; |
| shadow_dirty_mask = PT_DIRTY_MASK; |
| shadow_nx_mask = PT64_NX_MASK; |
| shadow_x_mask = 0; |
| shadow_present_mask = PT_PRESENT_MASK; |
| |
| /* |
| * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB |
| * memtype in the SPTEs, i.e. relies on host MTRRs to provide the |
| * correct memtype (WB is the "weakest" memtype). |
| */ |
| shadow_memtype_mask = 0; |
| shadow_acc_track_mask = 0; |
| shadow_me_mask = 0; |
| shadow_me_value = 0; |
| |
| shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; |
| shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; |
| |
| /* |
| * Set a reserved PA bit in MMIO SPTEs to generate page faults with |
| * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT |
| * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports |
| * 52-bit physical addresses then there are no reserved PA bits in the |
| * PTEs and so the reserved PA approach must be disabled. |
| */ |
| if (kvm_host.maxphyaddr < 52) |
| mask = BIT_ULL(51) | PT_PRESENT_MASK; |
| else |
| mask = 0; |
| |
| kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); |
| } |