| /* SPDX-License-Identifier: GPL-2.0 |
| * |
| * Copyright 2016-2023 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| * |
| */ |
| |
| #ifndef HABANALABSP_H_ |
| #define HABANALABSP_H_ |
| |
| #include <linux/habanalabs/cpucp_if.h> |
| #include "../include/common/qman_if.h" |
| #include "../include/hw_ip/mmu/mmu_general.h" |
| #include <uapi/drm/habanalabs_accel.h> |
| |
| #include <linux/cdev.h> |
| #include <linux/iopoll.h> |
| #include <linux/irqreturn.h> |
| #include <linux/dma-direction.h> |
| #include <linux/scatterlist.h> |
| #include <linux/hashtable.h> |
| #include <linux/debugfs.h> |
| #include <linux/rwsem.h> |
| #include <linux/eventfd.h> |
| #include <linux/bitfield.h> |
| #include <linux/genalloc.h> |
| #include <linux/sched/signal.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/coresight.h> |
| #include <linux/dma-buf.h> |
| |
| #include <drm/drm_device.h> |
| #include <drm/drm_file.h> |
| |
| #include "security.h" |
| |
| #define HL_NAME "habanalabs" |
| |
| struct hl_device; |
| struct hl_fpriv; |
| |
| #define PCI_VENDOR_ID_HABANALABS 0x1da3 |
| |
| /* Use upper bits of mmap offset to store habana driver specific information. |
| * bits[63:59] - Encode mmap type |
| * bits[45:0] - mmap offset value |
| * |
| * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these |
| * defines are w.r.t to PAGE_SIZE |
| */ |
| #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) |
| #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) |
| #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) |
| #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) |
| #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) |
| |
| #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) |
| #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) |
| |
| #define HL_PENDING_RESET_PER_SEC 10 |
| #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ |
| #define HL_PENDING_RESET_LONG_SEC 60 |
| /* |
| * In device fini, wait 10 minutes for user processes to be terminated after we kill them. |
| * This is needed to prevent situation of clearing resources while user processes are still alive. |
| */ |
| #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 |
| |
| #define HL_HARD_RESET_MAX_TIMEOUT 120 |
| #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) |
| |
| #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ |
| |
| #define HL_HEARTBEAT_PER_USEC 10000000 /* 10 s */ |
| |
| #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ |
| |
| #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ |
| #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ |
| #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ |
| #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ |
| |
| #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ |
| #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ |
| |
| #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ |
| |
| #define HL_INVALID_QUEUE UINT_MAX |
| |
| #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF |
| #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE |
| |
| #define HL_STATE_DUMP_HIST_LEN 5 |
| |
| /* Default value for device reset trigger , an invalid value */ |
| #define HL_RESET_TRIGGER_DEFAULT 0xFF |
| |
| #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ |
| #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ |
| |
| /* Memory */ |
| #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ |
| |
| /* MMU */ |
| #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ |
| |
| #define TIMESTAMP_FREE_NODES_NUM 512 |
| |
| /** |
| * enum hl_mmu_page_table_location - mmu page table location |
| * @MMU_DR_PGT: page-table is located on device DRAM. |
| * @MMU_HR_PGT: page-table is located on host memory. |
| * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. |
| */ |
| enum hl_mmu_page_table_location { |
| MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ |
| MMU_HR_PGT, /* host resident MMU PGT */ |
| MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ |
| }; |
| |
| /* |
| * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream |
| * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream |
| */ |
| #define HL_RSVD_SOBS 2 |
| #define HL_RSVD_MONS 1 |
| |
| /* |
| * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream |
| */ |
| #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 |
| |
| #define HL_MAX_SOB_VAL (1 << 15) |
| |
| #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) |
| #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) |
| |
| #define HL_PCI_NUM_BARS 6 |
| |
| /* Completion queue entry relates to completed job */ |
| #define HL_COMPLETION_MODE_JOB 0 |
| /* Completion queue entry relates to completed command submission */ |
| #define HL_COMPLETION_MODE_CS 1 |
| |
| #define HL_MAX_DCORES 8 |
| |
| /* DMA alloc/free wrappers */ |
| #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ |
| hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) |
| |
| #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ |
| hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) |
| |
| #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ |
| hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) |
| |
| #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ |
| hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) |
| |
| #define hl_dma_map_sgtable(hdev, sgt, dir) \ |
| hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__) |
| #define hl_dma_unmap_sgtable(hdev, sgt, dir) \ |
| hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__) |
| |
| /* |
| * Reset Flags |
| * |
| * - HL_DRV_RESET_HARD |
| * If set do hard reset to all engines. If not set reset just |
| * compute/DMA engines. |
| * |
| * - HL_DRV_RESET_FROM_RESET_THR |
| * Set if the caller is the hard-reset thread |
| * |
| * - HL_DRV_RESET_HEARTBEAT |
| * Set if reset is due to heartbeat |
| * |
| * - HL_DRV_RESET_TDR |
| * Set if reset is due to TDR |
| * |
| * - HL_DRV_RESET_DEV_RELEASE |
| * Set if reset is due to device release |
| * |
| * - HL_DRV_RESET_BYPASS_REQ_TO_FW |
| * F/W will perform the reset. No need to ask it to reset the device. This is relevant |
| * only when running with secured f/w |
| * |
| * - HL_DRV_RESET_FW_FATAL_ERR |
| * Set if reset is due to a fatal error from FW |
| * |
| * - HL_DRV_RESET_DELAY |
| * Set if a delay should be added before the reset |
| * |
| * - HL_DRV_RESET_FROM_WD_THR |
| * Set if the caller is the device release watchdog thread |
| */ |
| |
| #define HL_DRV_RESET_HARD (1 << 0) |
| #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) |
| #define HL_DRV_RESET_HEARTBEAT (1 << 2) |
| #define HL_DRV_RESET_TDR (1 << 3) |
| #define HL_DRV_RESET_DEV_RELEASE (1 << 4) |
| #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) |
| #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) |
| #define HL_DRV_RESET_DELAY (1 << 7) |
| #define HL_DRV_RESET_FROM_WD_THR (1 << 8) |
| |
| /* |
| * Security |
| */ |
| |
| #define HL_PB_SHARED 1 |
| #define HL_PB_NA 0 |
| #define HL_PB_SINGLE_INSTANCE 1 |
| #define HL_BLOCK_SIZE 0x1000 |
| #define HL_BLOCK_GLBL_ERR_MASK 0xF40 |
| #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 |
| #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 |
| #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 |
| #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) |
| #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) |
| #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) |
| |
| enum hl_protection_levels { |
| SECURED_LVL, |
| PRIVILEGED_LVL, |
| NON_SECURED_LVL |
| }; |
| |
| /** |
| * struct iterate_module_ctx - HW module iterator |
| * @fn: function to apply to each HW module instance |
| * @data: optional internal data to the function iterator |
| * @rc: return code for optional use of iterator/iterator-caller |
| */ |
| struct iterate_module_ctx { |
| /* |
| * callback for the HW module iterator |
| * @hdev: pointer to the habanalabs device structure |
| * @block: block (ASIC specific definition can be dcore/hdcore) |
| * @inst: HW module instance within the block |
| * @offset: current HW module instance offset from the 1-st HW module instance |
| * in the 1-st block |
| * @ctx: the iterator context. |
| */ |
| void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, |
| struct iterate_module_ctx *ctx); |
| void *data; |
| int rc; |
| }; |
| |
| struct hl_block_glbl_sec { |
| u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; |
| }; |
| |
| #define HL_MAX_SOBS_PER_MONITOR 8 |
| |
| /** |
| * struct hl_gen_wait_properties - properties for generating a wait CB |
| * @data: command buffer |
| * @q_idx: queue id is used to extract fence register address |
| * @size: offset in command buffer |
| * @sob_base: SOB base to use in this wait CB |
| * @sob_val: SOB value to wait for |
| * @mon_id: monitor to use in this wait CB |
| * @sob_mask: each bit represents a SOB offset from sob_base to be used |
| */ |
| struct hl_gen_wait_properties { |
| void *data; |
| u32 q_idx; |
| u32 size; |
| u16 sob_base; |
| u16 sob_val; |
| u16 mon_id; |
| u8 sob_mask; |
| }; |
| |
| /** |
| * struct pgt_info - MMU hop page info. |
| * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and |
| * actual pgts for host resident MMU). |
| * @phys_addr: physical address of the pgt. |
| * @virt_addr: host virtual address of the pgt (see above device/host resident). |
| * @shadow_addr: shadow hop in the host for device resident MMU. |
| * @ctx: pointer to the owner ctx. |
| * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically |
| * allocated HOPs (all HOPs but HOP0) |
| * |
| * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow |
| * pgts will be stored on host memory) or on host memory (in which case no shadow is required). |
| * |
| * When a new level (hop) is needed during mapping this structure will be used to describe |
| * the newly allocated hop as well as to track number of PTEs in it. |
| * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is |
| * freed with its pgt_info structure. |
| */ |
| struct pgt_info { |
| struct hlist_node node; |
| u64 phys_addr; |
| u64 virt_addr; |
| u64 shadow_addr; |
| struct hl_ctx *ctx; |
| int num_of_ptes; |
| }; |
| |
| /** |
| * enum hl_pci_match_mode - pci match mode per region |
| * @PCI_ADDRESS_MATCH_MODE: address match mode |
| * @PCI_BAR_MATCH_MODE: bar match mode |
| */ |
| enum hl_pci_match_mode { |
| PCI_ADDRESS_MATCH_MODE, |
| PCI_BAR_MATCH_MODE |
| }; |
| |
| /** |
| * enum hl_fw_component - F/W components to read version through registers. |
| * @FW_COMP_BOOT_FIT: boot fit. |
| * @FW_COMP_PREBOOT: preboot. |
| * @FW_COMP_LINUX: linux. |
| */ |
| enum hl_fw_component { |
| FW_COMP_BOOT_FIT, |
| FW_COMP_PREBOOT, |
| FW_COMP_LINUX, |
| }; |
| |
| /** |
| * enum hl_fw_types - F/W types present in the system |
| * @FW_TYPE_NONE: no FW component indication |
| * @FW_TYPE_LINUX: Linux image for device CPU |
| * @FW_TYPE_BOOT_CPU: Boot image for device CPU |
| * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system |
| * (preboot, ppboot etc...) |
| * @FW_TYPE_ALL_TYPES: Mask for all types |
| */ |
| enum hl_fw_types { |
| FW_TYPE_NONE = 0x0, |
| FW_TYPE_LINUX = 0x1, |
| FW_TYPE_BOOT_CPU = 0x2, |
| FW_TYPE_PREBOOT_CPU = 0x4, |
| FW_TYPE_ALL_TYPES = |
| (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) |
| }; |
| |
| /** |
| * enum hl_queue_type - Supported QUEUE types. |
| * @QUEUE_TYPE_NA: queue is not available. |
| * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the |
| * host. |
| * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's |
| * memories and/or operates the compute engines. |
| * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. |
| * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion |
| * notifications are sent by H/W. |
| */ |
| enum hl_queue_type { |
| QUEUE_TYPE_NA, |
| QUEUE_TYPE_EXT, |
| QUEUE_TYPE_INT, |
| QUEUE_TYPE_CPU, |
| QUEUE_TYPE_HW |
| }; |
| |
| enum hl_cs_type { |
| CS_TYPE_DEFAULT, |
| CS_TYPE_SIGNAL, |
| CS_TYPE_WAIT, |
| CS_TYPE_COLLECTIVE_WAIT, |
| CS_RESERVE_SIGNALS, |
| CS_UNRESERVE_SIGNALS, |
| CS_TYPE_ENGINE_CORE, |
| CS_TYPE_ENGINES, |
| CS_TYPE_FLUSH_PCI_HBW_WRITES, |
| }; |
| |
| /* |
| * struct hl_inbound_pci_region - inbound region descriptor |
| * @mode: pci match mode for this region |
| * @addr: region target address |
| * @size: region size in bytes |
| * @offset_in_bar: offset within bar (address match mode) |
| * @bar: bar id |
| */ |
| struct hl_inbound_pci_region { |
| enum hl_pci_match_mode mode; |
| u64 addr; |
| u64 size; |
| u64 offset_in_bar; |
| u8 bar; |
| }; |
| |
| /* |
| * struct hl_outbound_pci_region - outbound region descriptor |
| * @addr: region target address |
| * @size: region size in bytes |
| */ |
| struct hl_outbound_pci_region { |
| u64 addr; |
| u64 size; |
| }; |
| |
| /* |
| * enum queue_cb_alloc_flags - Indicates queue support for CBs that |
| * allocated by Kernel or by User |
| * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel |
| * @CB_ALLOC_USER: support only CBs that allocated by User |
| */ |
| enum queue_cb_alloc_flags { |
| CB_ALLOC_KERNEL = 0x1, |
| CB_ALLOC_USER = 0x2 |
| }; |
| |
| /* |
| * struct hl_hw_sob - H/W SOB info. |
| * @hdev: habanalabs device structure. |
| * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. |
| * @sob_id: id of this SOB. |
| * @sob_addr: the sob offset from the base address. |
| * @q_idx: the H/W queue that uses this SOB. |
| * @need_reset: reset indication set when switching to the other sob. |
| */ |
| struct hl_hw_sob { |
| struct hl_device *hdev; |
| struct kref kref; |
| u32 sob_id; |
| u32 sob_addr; |
| u32 q_idx; |
| bool need_reset; |
| }; |
| |
| enum hl_collective_mode { |
| HL_COLLECTIVE_NOT_SUPPORTED = 0x0, |
| HL_COLLECTIVE_MASTER = 0x1, |
| HL_COLLECTIVE_SLAVE = 0x2 |
| }; |
| |
| /** |
| * struct hw_queue_properties - queue information. |
| * @type: queue type. |
| * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB |
| * that allocated by the Kernel driver and therefore, |
| * a CB handle can be provided for jobs on this queue. |
| * Otherwise, a CB address must be provided. |
| * @collective_mode: collective mode of current queue |
| * @q_dram_bd_address: PQ dram address, used when PQ need to reside in DRAM. |
| * @driver_only: true if only the driver is allowed to send a job to this queue, |
| * false otherwise. |
| * @binned: True if the queue is binned out and should not be used |
| * @supports_sync_stream: True if queue supports sync stream |
| * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram |
| */ |
| struct hw_queue_properties { |
| enum hl_queue_type type; |
| enum queue_cb_alloc_flags cb_alloc_flags; |
| enum hl_collective_mode collective_mode; |
| u64 q_dram_bd_address; |
| u8 driver_only; |
| u8 binned; |
| u8 supports_sync_stream; |
| u8 dram_bd; |
| }; |
| |
| /** |
| * enum vm_type - virtual memory mapping request information. |
| * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. |
| * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. |
| */ |
| enum vm_type { |
| VM_TYPE_USERPTR = 0x1, |
| VM_TYPE_PHYS_PACK = 0x2 |
| }; |
| |
| /** |
| * enum mmu_op_flags - mmu operation relevant information. |
| * @MMU_OP_USERPTR: operation on user memory (host resident). |
| * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). |
| * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. |
| * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. |
| */ |
| enum mmu_op_flags { |
| MMU_OP_USERPTR = 0x1, |
| MMU_OP_PHYS_PACK = 0x2, |
| MMU_OP_CLEAR_MEMCACHE = 0x4, |
| MMU_OP_SKIP_LOW_CACHE_INV = 0x8, |
| }; |
| |
| |
| /** |
| * enum hl_device_hw_state - H/W device state. use this to understand whether |
| * to do reset before hw_init or not |
| * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset |
| * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute |
| * hw_init |
| */ |
| enum hl_device_hw_state { |
| HL_DEVICE_HW_STATE_CLEAN = 0, |
| HL_DEVICE_HW_STATE_DIRTY |
| }; |
| |
| #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 |
| |
| /** |
| * struct hl_mmu_properties - ASIC specific MMU address translation properties. |
| * @start_addr: virtual start address of the memory region. |
| * @end_addr: virtual end address of the memory region. |
| * @hop_shifts: array holds HOPs shifts. |
| * @hop_masks: array holds HOPs masks. |
| * @last_mask: mask to get the bit indicating this is the last hop. |
| * @pgt_size: size for page tables. |
| * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs |
| * supporting multiple page size). |
| * @page_size: default page size used to allocate memory. |
| * @num_hops: The amount of hops supported by the translation table. |
| * @hop_table_size: HOP table size. |
| * @hop0_tables_total_size: total size for all HOP0 tables. |
| * @host_resident: Should the MMU page table reside in host memory or in the |
| * device DRAM. |
| */ |
| struct hl_mmu_properties { |
| u64 start_addr; |
| u64 end_addr; |
| u64 hop_shifts[MMU_HOP_MAX]; |
| u64 hop_masks[MMU_HOP_MAX]; |
| u64 last_mask; |
| u64 pgt_size; |
| u64 supported_pages_mask; |
| u32 page_size; |
| u32 num_hops; |
| u32 hop_table_size; |
| u32 hop0_tables_total_size; |
| u8 host_resident; |
| }; |
| |
| /** |
| * struct hl_hints_range - hint addresses reserved va range. |
| * @start_addr: start address of the va range. |
| * @end_addr: end address of the va range. |
| */ |
| struct hl_hints_range { |
| u64 start_addr; |
| u64 end_addr; |
| }; |
| |
| /** |
| * struct asic_fixed_properties - ASIC specific immutable properties. |
| * @hw_queues_props: H/W queues properties. |
| * @special_blocks: points to an array containing special blocks info. |
| * @skip_special_blocks_cfg: special blocks skip configs. |
| * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. |
| * available sensors. |
| * @uboot_ver: F/W U-boot version. |
| * @preboot_ver: F/W Preboot version. |
| * @dmmu: DRAM MMU address translation properties. |
| * @pmmu: PCI (host) MMU address translation properties. |
| * @pmmu_huge: PCI (host) MMU address translation properties for memory |
| * allocated with huge pages. |
| * @hints_dram_reserved_va_range: dram hint addresses reserved range. |
| * @hints_host_reserved_va_range: host hint addresses reserved range. |
| * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range. |
| * @sram_base_address: SRAM physical start address. |
| * @sram_end_address: SRAM physical end address. |
| * @sram_user_base_address - SRAM physical start address for user access. |
| * @dram_base_address: DRAM physical start address. |
| * @dram_end_address: DRAM physical end address. |
| * @dram_user_base_address: DRAM physical start address for user access. |
| * @dram_size: DRAM total size. |
| * @dram_pci_bar_size: size of PCI bar towards DRAM. |
| * @max_power_default: max power of the device after reset. |
| * @dc_power_default: power consumed by the device in mode idle. |
| * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page |
| * fault. |
| * @pcie_dbi_base_address: Base address of the PCIE_DBI block. |
| * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. |
| * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. |
| * @mmu_dram_default_page_addr: DRAM default page physical address. |
| * @tpc_enabled_mask: which TPCs are enabled. |
| * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. |
| * @dram_enabled_mask: which DRAMs are enabled. |
| * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. |
| * @dram_hints_align_mask: dram va hint addresses alignment mask which is used |
| * for hints validity check. |
| * @cfg_base_address: config space base address. |
| * @mmu_cache_mng_addr: address of the MMU cache. |
| * @mmu_cache_mng_size: size of the MMU cache. |
| * @device_dma_offset_for_host_access: the offset to add to host DMA addresses |
| * to enable the device to access them. |
| * @host_base_address: host physical start address for host DMA from device |
| * @host_end_address: host physical end address for host DMA from device |
| * @max_freq_value: current max clk frequency. |
| * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use |
| * in order to raise events toward FW. |
| * @clk_pll_index: clock PLL index that specify which PLL determines the clock |
| * we display to the user |
| * @mmu_pgt_size: MMU page tables total size. |
| * @mmu_pte_size: PTE size in MMU page tables. |
| * @dram_page_size: The DRAM physical page size. |
| * @cfg_size: configuration space size on SRAM. |
| * @sram_size: total size of SRAM. |
| * @max_asid: maximum number of open contexts (ASIDs). |
| * @num_of_events: number of possible internal H/W IRQs. |
| * @psoc_pci_pll_nr: PCI PLL NR value. |
| * @psoc_pci_pll_nf: PCI PLL NF value. |
| * @psoc_pci_pll_od: PCI PLL OD value. |
| * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. |
| * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. |
| * @high_pll: high PLL frequency used by the device. |
| * @cb_pool_cb_cnt: number of CBs in the CB pool. |
| * @cb_pool_cb_size: size of each CB in the CB pool. |
| * @decoder_enabled_mask: which decoders are enabled. |
| * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. |
| * @rotator_enabled_mask: which rotators are enabled. |
| * @edma_enabled_mask: which EDMAs are enabled. |
| * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means |
| * binned (at most one binned DMA). |
| * @max_pending_cs: maximum of concurrent pending command submissions |
| * @max_queues: maximum amount of queues in the system |
| * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu |
| * capabilities reported by FW, bit description |
| * can be found in CPU_BOOT_DEV_STS0 |
| * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu |
| * capabilities reported by FW, bit description |
| * can be found in CPU_BOOT_DEV_STS1 |
| * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security |
| * status reported by FW, bit description can be |
| * found in CPU_BOOT_DEV_STS0 |
| * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security |
| * status reported by FW, bit description can be |
| * found in CPU_BOOT_DEV_STS1 |
| * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security |
| * status reported by FW, bit description can be |
| * found in CPU_BOOT_DEV_STS0 |
| * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security |
| * status reported by FW, bit description can be |
| * found in CPU_BOOT_DEV_STS1 |
| * @max_dec: maximum number of decoders |
| * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) |
| * 1- enabled, 0- isolated. |
| * @faulty_dram_cluster_map: mask of faulty DRAM cluster. |
| * 1- faulty cluster, 0- good cluster. |
| * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) |
| * 1- enabled, 0- isolated. |
| * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for |
| * which the property supports_user_set_page_size is true |
| * (i.e. the DRAM supports multiple page sizes), otherwise |
| * it will shall be equal to dram_page_size. |
| * @num_engine_cores: number of engine cpu cores. |
| * @max_num_of_engines: maximum number of all engines in the ASIC. |
| * @num_of_special_blocks: special_blocks array size. |
| * @glbl_err_max_cause_num: global err max cause number. |
| * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is |
| * not supported. |
| * @reserved_fw_mem_size: size of dram memory reserved for FW. |
| * @fw_event_queue_size: queue size for events from CPU-CP. |
| * A value of 0 means using the default HL_EQ_SIZE_IN_BYTES value. |
| * @collective_first_sob: first sync object available for collective use |
| * @collective_first_mon: first monitor available for collective use |
| * @sync_stream_first_sob: first sync object available for sync stream use |
| * @sync_stream_first_mon: first monitor available for sync stream use |
| * @first_available_user_sob: first sob available for the user |
| * @first_available_user_mon: first monitor available for the user |
| * @first_available_user_interrupt: first available interrupt reserved for the user |
| * @first_available_cq: first available CQ for the user. |
| * @user_interrupt_count: number of user interrupts. |
| * @user_dec_intr_count: number of decoder interrupts exposed to user. |
| * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. |
| * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. |
| * @cache_line_size: device cache line size. |
| * @server_type: Server type that the ASIC is currently installed in. |
| * The value is according to enum hl_server_type in uapi file. |
| * @completion_queues_count: number of completion queues. |
| * @completion_mode: 0 - job based completion, 1 - cs based completion |
| * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works |
| * in Master/Slave mode |
| * @fw_security_enabled: true if security measures are enabled in firmware, |
| * false otherwise |
| * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from |
| * BOOT_DEV_STS0 |
| * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from |
| * BOOT_DEV_STS1 |
| * @dram_supports_virtual_memory: is there an MMU towards the DRAM |
| * @hard_reset_done_by_fw: true if firmware is handling hard reset flow |
| * @num_functional_hbms: number of functional HBMs in each DCORE. |
| * @hints_range_reservation: device support hint addresses range reservation. |
| * @iatu_done_by_fw: true if iATU configuration is being done by FW. |
| * @dynamic_fw_load: is dynamic FW load is supported. |
| * @gic_interrupts_enable: true if FW is not blocking GIC controller, |
| * false otherwise. |
| * @use_get_power_for_reset_history: To support backward compatibility for Goya |
| * and Gaudi |
| * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. |
| * @allow_inference_soft_reset: true if the ASIC supports soft reset that is |
| * initiated by user or TDR. This is only true |
| * in inference ASICs, as there is no real-world |
| * use-case of doing soft-reset in training (due |
| * to the fact that training runs on multiple |
| * devices) |
| * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. |
| * @set_max_power_on_device_init: true if need to set max power in F/W on device init. |
| * @supports_user_set_page_size: true if user can set the allocation page size. |
| * @dma_mask: the dma mask to be set for this device. |
| * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. |
| * @supports_engine_modes: true if changing engines/engine_cores modes is supported. |
| * @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw. |
| */ |
| struct asic_fixed_properties { |
| struct hw_queue_properties *hw_queues_props; |
| struct hl_special_block_info *special_blocks; |
| struct hl_skip_blocks_cfg skip_special_blocks_cfg; |
| struct cpucp_info cpucp_info; |
| char uboot_ver[VERSION_MAX_LEN]; |
| char preboot_ver[VERSION_MAX_LEN]; |
| struct hl_mmu_properties dmmu; |
| struct hl_mmu_properties pmmu; |
| struct hl_mmu_properties pmmu_huge; |
| struct hl_hints_range hints_dram_reserved_va_range; |
| struct hl_hints_range hints_host_reserved_va_range; |
| struct hl_hints_range hints_host_hpage_reserved_va_range; |
| u64 sram_base_address; |
| u64 sram_end_address; |
| u64 sram_user_base_address; |
| u64 dram_base_address; |
| u64 dram_end_address; |
| u64 dram_user_base_address; |
| u64 dram_size; |
| u64 dram_pci_bar_size; |
| u64 max_power_default; |
| u64 dc_power_default; |
| u64 dram_size_for_default_page_mapping; |
| u64 pcie_dbi_base_address; |
| u64 pcie_aux_dbi_reg_addr; |
| u64 mmu_pgt_addr; |
| u64 mmu_dram_default_page_addr; |
| u64 tpc_enabled_mask; |
| u64 tpc_binning_mask; |
| u64 dram_enabled_mask; |
| u64 dram_binning_mask; |
| u64 dram_hints_align_mask; |
| u64 cfg_base_address; |
| u64 mmu_cache_mng_addr; |
| u64 mmu_cache_mng_size; |
| u64 device_dma_offset_for_host_access; |
| u64 host_base_address; |
| u64 host_end_address; |
| u64 max_freq_value; |
| u64 engine_core_interrupt_reg_addr; |
| u32 clk_pll_index; |
| u32 mmu_pgt_size; |
| u32 mmu_pte_size; |
| u32 dram_page_size; |
| u32 cfg_size; |
| u32 sram_size; |
| u32 max_asid; |
| u32 num_of_events; |
| u32 psoc_pci_pll_nr; |
| u32 psoc_pci_pll_nf; |
| u32 psoc_pci_pll_od; |
| u32 psoc_pci_pll_div_factor; |
| u32 psoc_timestamp_frequency; |
| u32 high_pll; |
| u32 cb_pool_cb_cnt; |
| u32 cb_pool_cb_size; |
| u32 decoder_enabled_mask; |
| u32 decoder_binning_mask; |
| u32 rotator_enabled_mask; |
| u32 edma_enabled_mask; |
| u32 edma_binning_mask; |
| u32 max_pending_cs; |
| u32 max_queues; |
| u32 fw_preboot_cpu_boot_dev_sts0; |
| u32 fw_preboot_cpu_boot_dev_sts1; |
| u32 fw_bootfit_cpu_boot_dev_sts0; |
| u32 fw_bootfit_cpu_boot_dev_sts1; |
| u32 fw_app_cpu_boot_dev_sts0; |
| u32 fw_app_cpu_boot_dev_sts1; |
| u32 max_dec; |
| u32 hmmu_hif_enabled_mask; |
| u32 faulty_dram_cluster_map; |
| u32 xbar_edge_enabled_mask; |
| u32 device_mem_alloc_default_page_size; |
| u32 num_engine_cores; |
| u32 max_num_of_engines; |
| u32 num_of_special_blocks; |
| u32 glbl_err_max_cause_num; |
| u32 hbw_flush_reg; |
| u32 reserved_fw_mem_size; |
| u32 fw_event_queue_size; |
| u16 collective_first_sob; |
| u16 collective_first_mon; |
| u16 sync_stream_first_sob; |
| u16 sync_stream_first_mon; |
| u16 first_available_user_sob[HL_MAX_DCORES]; |
| u16 first_available_user_mon[HL_MAX_DCORES]; |
| u16 first_available_user_interrupt; |
| u16 first_available_cq[HL_MAX_DCORES]; |
| u16 user_interrupt_count; |
| u16 user_dec_intr_count; |
| u16 tpc_interrupt_id; |
| u16 eq_interrupt_id; |
| u16 cache_line_size; |
| u16 server_type; |
| u8 completion_queues_count; |
| u8 completion_mode; |
| u8 mme_master_slave_mode; |
| u8 fw_security_enabled; |
| u8 fw_cpu_boot_dev_sts0_valid; |
| u8 fw_cpu_boot_dev_sts1_valid; |
| u8 dram_supports_virtual_memory; |
| u8 hard_reset_done_by_fw; |
| u8 num_functional_hbms; |
| u8 hints_range_reservation; |
| u8 iatu_done_by_fw; |
| u8 dynamic_fw_load; |
| u8 gic_interrupts_enable; |
| u8 use_get_power_for_reset_history; |
| u8 supports_compute_reset; |
| u8 allow_inference_soft_reset; |
| u8 configurable_stop_on_err; |
| u8 set_max_power_on_device_init; |
| u8 supports_user_set_page_size; |
| u8 dma_mask; |
| u8 supports_advanced_cpucp_rc; |
| u8 supports_engine_modes; |
| u8 support_dynamic_resereved_fw_size; |
| }; |
| |
| /** |
| * struct hl_fence - software synchronization primitive |
| * @completion: fence is implemented using completion |
| * @refcount: refcount for this fence |
| * @cs_sequence: sequence of the corresponding command submission |
| * @stream_master_qid_map: streams masters QID bitmap to represent all streams |
| * masters QIDs that multi cs is waiting on |
| * @error: mark this fence with error |
| * @timestamp: timestamp upon completion |
| * @mcs_handling_done: indicates that corresponding command submission has |
| * finished msc handling, this does not mean it was part |
| * of the mcs |
| */ |
| struct hl_fence { |
| struct completion completion; |
| struct kref refcount; |
| u64 cs_sequence; |
| u32 stream_master_qid_map; |
| int error; |
| ktime_t timestamp; |
| u8 mcs_handling_done; |
| }; |
| |
| /** |
| * struct hl_cs_compl - command submission completion object. |
| * @base_fence: hl fence object. |
| * @lock: spinlock to protect fence. |
| * @hdev: habanalabs device structure. |
| * @hw_sob: the H/W SOB used in this signal/wait CS. |
| * @encaps_sig_hdl: encaps signals handler. |
| * @cs_seq: command submission sequence number. |
| * @type: type of the CS - signal/wait. |
| * @sob_val: the SOB value that is used in this signal/wait CS. |
| * @sob_group: the SOB group that is used in this collective wait CS. |
| * @encaps_signals: indication whether it's a completion object of cs with |
| * encaps signals or not. |
| */ |
| struct hl_cs_compl { |
| struct hl_fence base_fence; |
| spinlock_t lock; |
| struct hl_device *hdev; |
| struct hl_hw_sob *hw_sob; |
| struct hl_cs_encaps_sig_handle *encaps_sig_hdl; |
| u64 cs_seq; |
| enum hl_cs_type type; |
| u16 sob_val; |
| u16 sob_group; |
| bool encaps_signals; |
| }; |
| |
| /* |
| * Command Buffers |
| */ |
| |
| /** |
| * struct hl_ts_buff - describes a timestamp buffer. |
| * @kernel_buff_address: Holds the internal buffer's kernel virtual address. |
| * @user_buff_address: Holds the user buffer's kernel virtual address. |
| * @kernel_buff_size: Holds the internal kernel buffer size. |
| */ |
| struct hl_ts_buff { |
| void *kernel_buff_address; |
| void *user_buff_address; |
| u32 kernel_buff_size; |
| }; |
| |
| struct hl_mmap_mem_buf; |
| |
| /** |
| * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. |
| * @dev: back pointer to the owning device |
| * @lock: protects handles |
| * @handles: an idr holding all active handles to the memory buffers in the system. |
| */ |
| struct hl_mem_mgr { |
| struct device *dev; |
| spinlock_t lock; |
| struct idr handles; |
| }; |
| |
| /** |
| * struct hl_mem_mgr_fini_stats - describes statistics returned during memory manager teardown. |
| * @n_busy_cb: the amount of CB handles that could not be removed |
| * @n_busy_ts: the amount of TS handles that could not be removed |
| * @n_busy_other: the amount of any other type of handles that could not be removed |
| */ |
| struct hl_mem_mgr_fini_stats { |
| u32 n_busy_cb; |
| u32 n_busy_ts; |
| u32 n_busy_other; |
| }; |
| |
| /** |
| * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior |
| * @topic: string identifier used for logging |
| * @mem_id: memory type identifier, embedded in the handle and used to identify |
| * the memory type by handle. |
| * @alloc: callback executed on buffer allocation, shall allocate the memory, |
| * set it under buffer private, and set mappable size. |
| * @mmap: callback executed on mmap, must map the buffer to vma |
| * @release: callback executed on release, must free the resources used by the buffer |
| */ |
| struct hl_mmap_mem_buf_behavior { |
| const char *topic; |
| u64 mem_id; |
| |
| int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); |
| int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); |
| void (*release)(struct hl_mmap_mem_buf *buf); |
| }; |
| |
| /** |
| * struct hl_mmap_mem_buf - describes a single unified memory buffer |
| * @behavior: buffer behavior |
| * @mmg: back pointer to the unified memory manager |
| * @refcount: reference counter for buffer users |
| * @private: pointer to buffer behavior private data |
| * @mmap: atomic boolean indicating whether or not the buffer is mapped right now |
| * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, |
| * may change at runtime. |
| * @mappable_size: the original mappable size of the buffer, does not change after |
| * the allocation. |
| * @handle: the buffer id in mmg handles store |
| */ |
| struct hl_mmap_mem_buf { |
| struct hl_mmap_mem_buf_behavior *behavior; |
| struct hl_mem_mgr *mmg; |
| struct kref refcount; |
| void *private; |
| atomic_t mmap; |
| u64 real_mapped_size; |
| u64 mappable_size; |
| u64 handle; |
| }; |
| |
| /** |
| * struct hl_cb - describes a Command Buffer. |
| * @hdev: pointer to device this CB belongs to. |
| * @ctx: pointer to the CB owner's context. |
| * @buf: back pointer to the parent mappable memory buffer |
| * @debugfs_list: node in debugfs list of command buffers. |
| * @pool_list: node in pool list of command buffers. |
| * @kernel_address: Holds the CB's kernel virtual address. |
| * @virtual_addr: Holds the CB's virtual address. |
| * @bus_address: Holds the CB's DMA address. |
| * @size: holds the CB's size. |
| * @roundup_size: holds the cb size after roundup to page size. |
| * @cs_cnt: holds number of CS that this CB participates in. |
| * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. |
| * @is_pool: true if CB was acquired from the pool, false otherwise. |
| * @is_internal: internally allocated |
| * @is_mmu_mapped: true if the CB is mapped to the device's MMU. |
| */ |
| struct hl_cb { |
| struct hl_device *hdev; |
| struct hl_ctx *ctx; |
| struct hl_mmap_mem_buf *buf; |
| struct list_head debugfs_list; |
| struct list_head pool_list; |
| void *kernel_address; |
| u64 virtual_addr; |
| dma_addr_t bus_address; |
| u32 size; |
| u32 roundup_size; |
| atomic_t cs_cnt; |
| atomic_t is_handle_destroyed; |
| u8 is_pool; |
| u8 is_internal; |
| u8 is_mmu_mapped; |
| }; |
| |
| |
| /* |
| * QUEUES |
| */ |
| |
| struct hl_cs_job; |
| |
| /* Queue length of external and HW queues */ |
| #define HL_QUEUE_LENGTH 4096 |
| #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) |
| |
| #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) |
| #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" |
| #endif |
| |
| /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ |
| #define HL_CQ_LENGTH HL_QUEUE_LENGTH |
| #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) |
| |
| /* Must be power of 2 */ |
| #define HL_EQ_LENGTH 64 |
| #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) |
| |
| /* Host <-> CPU-CP shared memory size */ |
| #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M |
| |
| /** |
| * struct hl_sync_stream_properties - |
| * describes a H/W queue sync stream properties |
| * @hw_sob: array of the used H/W SOBs by this H/W queue. |
| * @next_sob_val: the next value to use for the currently used SOB. |
| * @base_sob_id: the base SOB id of the SOBs used by this queue. |
| * @base_mon_id: the base MON id of the MONs used by this queue. |
| * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue |
| * in order to sync with all slave queues. |
| * @collective_slave_mon_id: the MON id used by this slave queue in order to |
| * sync with its master queue. |
| * @collective_sob_id: current SOB id used by this collective slave queue |
| * to signal its collective master queue upon completion. |
| * @curr_sob_offset: the id offset to the currently used SOB from the |
| * HL_RSVD_SOBS that are being used by this queue. |
| */ |
| struct hl_sync_stream_properties { |
| struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; |
| u16 next_sob_val; |
| u16 base_sob_id; |
| u16 base_mon_id; |
| u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; |
| u16 collective_slave_mon_id; |
| u16 collective_sob_id; |
| u8 curr_sob_offset; |
| }; |
| |
| /** |
| * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals |
| * handlers manager |
| * @lock: protects handles. |
| * @handles: an idr to hold all encapsulated signals handles. |
| */ |
| struct hl_encaps_signals_mgr { |
| spinlock_t lock; |
| struct idr handles; |
| }; |
| |
| /** |
| * struct hl_hw_queue - describes a H/W transport queue. |
| * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. |
| * @sync_stream_prop: sync stream queue properties |
| * @queue_type: type of queue. |
| * @collective_mode: collective mode of current queue |
| * @kernel_address: holds the queue's kernel virtual address. |
| * @bus_address: holds the queue's DMA address. |
| * @pq_dram_address: hold the dram address when the PQ is allocated, used when dram_bd is true in |
| * queue properites. |
| * @pi: holds the queue's pi value. |
| * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). |
| * @hw_queue_id: the id of the H/W queue. |
| * @cq_id: the id for the corresponding CQ for this H/W queue. |
| * @msi_vec: the IRQ number of the H/W queue. |
| * @int_queue_len: length of internal queue (number of entries). |
| * @valid: is the queue valid (we have array of 32 queues, not all of them |
| * exist). |
| * @supports_sync_stream: True if queue supports sync stream |
| * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram |
| */ |
| struct hl_hw_queue { |
| struct hl_cs_job **shadow_queue; |
| struct hl_sync_stream_properties sync_stream_prop; |
| enum hl_queue_type queue_type; |
| enum hl_collective_mode collective_mode; |
| void *kernel_address; |
| dma_addr_t bus_address; |
| u64 pq_dram_address; |
| u32 pi; |
| atomic_t ci; |
| u32 hw_queue_id; |
| u32 cq_id; |
| u32 msi_vec; |
| u16 int_queue_len; |
| u8 valid; |
| u8 supports_sync_stream; |
| u8 dram_bd; |
| }; |
| |
| /** |
| * struct hl_cq - describes a completion queue |
| * @hdev: pointer to the device structure |
| * @kernel_address: holds the queue's kernel virtual address |
| * @bus_address: holds the queue's DMA address |
| * @cq_idx: completion queue index in array |
| * @hw_queue_id: the id of the matching H/W queue |
| * @ci: ci inside the queue |
| * @pi: pi inside the queue |
| * @free_slots_cnt: counter of free slots in queue |
| */ |
| struct hl_cq { |
| struct hl_device *hdev; |
| void *kernel_address; |
| dma_addr_t bus_address; |
| u32 cq_idx; |
| u32 hw_queue_id; |
| u32 ci; |
| u32 pi; |
| atomic_t free_slots_cnt; |
| }; |
| |
| enum hl_user_interrupt_type { |
| HL_USR_INTERRUPT_CQ = 0, |
| HL_USR_INTERRUPT_DECODER, |
| HL_USR_INTERRUPT_TPC, |
| HL_USR_INTERRUPT_UNEXPECTED |
| }; |
| |
| /** |
| * struct hl_ts_free_jobs - holds user interrupt ts free nodes related data |
| * @free_nodes_pool: pool of nodes to be used for free timestamp jobs |
| * @free_nodes_length: number of nodes in free_nodes_pool |
| * @next_avail_free_node_idx: index of the next free node in the pool |
| * |
| * the free nodes pool must be protected by the user interrupt lock |
| * to avoid race between different interrupts which are using the same |
| * ts buffer with different offsets. |
| */ |
| struct hl_ts_free_jobs { |
| struct timestamp_reg_free_node *free_nodes_pool; |
| u32 free_nodes_length; |
| u32 next_avail_free_node_idx; |
| }; |
| |
| /** |
| * struct hl_user_interrupt - holds user interrupt information |
| * @hdev: pointer to the device structure |
| * @ts_free_jobs_data: timestamp free jobs related data |
| * @type: user interrupt type |
| * @wait_list_head: head to the list of user threads pending on this interrupt |
| * @ts_list_head: head to the list of timestamp records |
| * @wait_list_lock: protects wait_list_head |
| * @ts_list_lock: protects ts_list_head |
| * @timestamp: last timestamp taken upon interrupt |
| * @interrupt_id: msix interrupt id |
| */ |
| struct hl_user_interrupt { |
| struct hl_device *hdev; |
| struct hl_ts_free_jobs ts_free_jobs_data; |
| enum hl_user_interrupt_type type; |
| struct list_head wait_list_head; |
| struct list_head ts_list_head; |
| spinlock_t wait_list_lock; |
| spinlock_t ts_list_lock; |
| ktime_t timestamp; |
| u32 interrupt_id; |
| }; |
| |
| /** |
| * struct timestamp_reg_free_node - holds the timestamp registration free objects node |
| * @free_objects_node: node in the list free_obj_jobs |
| * @cq_cb: pointer to cq command buffer to be freed |
| * @buf: pointer to timestamp buffer to be freed |
| * @in_use: indicates whether the node still in use in workqueue thread. |
| * @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler |
| */ |
| struct timestamp_reg_free_node { |
| struct list_head free_objects_node; |
| struct hl_cb *cq_cb; |
| struct hl_mmap_mem_buf *buf; |
| atomic_t in_use; |
| u8 dynamic_alloc; |
| }; |
| |
| /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job |
| * the job will be to pass over the free_obj_jobs list and put refcount to objects |
| * in each node of the list |
| * @free_obj: workqueue object to free timestamp registration node objects |
| * @hdev: pointer to the device structure |
| * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) |
| * @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the |
| * interrupt handler. |
| */ |
| struct timestamp_reg_work_obj { |
| struct work_struct free_obj; |
| struct hl_device *hdev; |
| struct list_head *free_obj_head; |
| struct list_head *dynamic_alloc_free_obj_head; |
| }; |
| |
| /* struct timestamp_reg_info - holds the timestamp registration related data. |
| * @buf: pointer to the timestamp buffer which include both user/kernel buffers. |
| * relevant only when doing timestamps records registration. |
| * @cq_cb: pointer to CQ counter CB. |
| * @interrupt: interrupt that the node hanged on it's wait list. |
| * @timestamp_kernel_addr: timestamp handle address, where to set timestamp |
| * relevant only when doing timestamps records |
| * registration. |
| * @in_use: indicates if the node already in use. relevant only when doing |
| * timestamps records registration, since in this case the driver |
| * will have it's own buffer which serve as a records pool instead of |
| * allocating records dynamically. |
| */ |
| struct timestamp_reg_info { |
| struct hl_mmap_mem_buf *buf; |
| struct hl_cb *cq_cb; |
| struct hl_user_interrupt *interrupt; |
| u64 *timestamp_kernel_addr; |
| bool in_use; |
| }; |
| |
| /** |
| * struct hl_user_pending_interrupt - holds a context to a user thread |
| * pending on an interrupt |
| * @ts_reg_info: holds the timestamps registration nodes info |
| * @list_node: node in the list of user threads pending on an interrupt or timestamp |
| * @fence: hl fence object for interrupt completion |
| * @cq_target_value: CQ target value |
| * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt |
| * handler for target value comparison |
| */ |
| struct hl_user_pending_interrupt { |
| struct timestamp_reg_info ts_reg_info; |
| struct list_head list_node; |
| struct hl_fence fence; |
| u64 cq_target_value; |
| u64 *cq_kernel_addr; |
| }; |
| |
| /** |
| * struct hl_eq - describes the event queue (single one per device) |
| * @hdev: pointer to the device structure |
| * @kernel_address: holds the queue's kernel virtual address |
| * @bus_address: holds the queue's DMA address |
| * @size: the event queue size |
| * @ci: ci inside the queue |
| * @prev_eqe_index: the index of the previous event queue entry. The index of |
| * the current entry's index must be +1 of the previous one. |
| * @check_eqe_index: do we need to check the index of the current entry vs. the |
| * previous one. This is for backward compatibility with older |
| * firmwares |
| */ |
| struct hl_eq { |
| struct hl_device *hdev; |
| void *kernel_address; |
| dma_addr_t bus_address; |
| u32 size; |
| u32 ci; |
| u32 prev_eqe_index; |
| bool check_eqe_index; |
| }; |
| |
| /** |
| * struct hl_dec - describes a decoder sw instance. |
| * @hdev: pointer to the device structure. |
| * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. |
| * @core_id: ID of the decoder. |
| * @base_addr: base address of the decoder. |
| */ |
| struct hl_dec { |
| struct hl_device *hdev; |
| struct work_struct abnrm_intr_work; |
| u32 core_id; |
| u32 base_addr; |
| }; |
| |
| /** |
| * enum hl_asic_type - supported ASIC types. |
| * @ASIC_INVALID: Invalid ASIC type. |
| * @ASIC_GOYA: Goya device (HL-1000). |
| * @ASIC_GAUDI: Gaudi device (HL-2000). |
| * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). |
| * @ASIC_GAUDI2: Gaudi2 device. |
| * @ASIC_GAUDI2B: Gaudi2B device. |
| * @ASIC_GAUDI2C: Gaudi2C device. |
| * @ASIC_GAUDI2D: Gaudi2D device. |
| */ |
| enum hl_asic_type { |
| ASIC_INVALID, |
| |
| ASIC_GOYA, |
| ASIC_GAUDI, |
| ASIC_GAUDI_SEC, |
| ASIC_GAUDI2, |
| ASIC_GAUDI2B, |
| ASIC_GAUDI2C, |
| ASIC_GAUDI2D, |
| }; |
| |
| struct hl_cs_parser; |
| |
| /** |
| * enum hl_pm_mng_profile - power management profile. |
| * @PM_AUTO: internal clock is set by the Linux driver. |
| * @PM_MANUAL: internal clock is set by the user. |
| * @PM_LAST: last power management type. |
| */ |
| enum hl_pm_mng_profile { |
| PM_AUTO = 1, |
| PM_MANUAL, |
| PM_LAST |
| }; |
| |
| /** |
| * enum hl_pll_frequency - PLL frequency. |
| * @PLL_HIGH: high frequency. |
| * @PLL_LOW: low frequency. |
| * @PLL_LAST: last frequency values that were configured by the user. |
| */ |
| enum hl_pll_frequency { |
| PLL_HIGH = 1, |
| PLL_LOW, |
| PLL_LAST |
| }; |
| |
| #define PLL_REF_CLK 50 |
| |
| enum div_select_defs { |
| DIV_SEL_REF_CLK = 0, |
| DIV_SEL_PLL_CLK = 1, |
| DIV_SEL_DIVIDED_REF = 2, |
| DIV_SEL_DIVIDED_PLL = 3, |
| }; |
| |
| enum debugfs_access_type { |
| DEBUGFS_READ8, |
| DEBUGFS_WRITE8, |
| DEBUGFS_READ32, |
| DEBUGFS_WRITE32, |
| DEBUGFS_READ64, |
| DEBUGFS_WRITE64, |
| }; |
| |
| enum pci_region { |
| PCI_REGION_CFG, |
| PCI_REGION_SRAM, |
| PCI_REGION_DRAM, |
| PCI_REGION_SP_SRAM, |
| PCI_REGION_NUMBER, |
| }; |
| |
| /** |
| * struct pci_mem_region - describe memory region in a PCI bar |
| * @region_base: region base address |
| * @region_size: region size |
| * @bar_size: size of the BAR |
| * @offset_in_bar: region offset into the bar |
| * @bar_id: bar ID of the region |
| * @used: if used 1, otherwise 0 |
| */ |
| struct pci_mem_region { |
| u64 region_base; |
| u64 region_size; |
| u64 bar_size; |
| u64 offset_in_bar; |
| u8 bar_id; |
| u8 used; |
| }; |
| |
| /** |
| * struct static_fw_load_mgr - static FW load manager |
| * @preboot_version_max_off: max offset to preboot version |
| * @boot_fit_version_max_off: max offset to boot fit version |
| * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages |
| * @cpu_cmd_status_to_host_reg: register address for CPU command status response |
| * @cpu_boot_status_reg: boot status register |
| * @cpu_boot_dev_status0_reg: boot device status register 0 |
| * @cpu_boot_dev_status1_reg: boot device status register 1 |
| * @boot_err0_reg: boot error register 0 |
| * @boot_err1_reg: boot error register 1 |
| * @preboot_version_offset_reg: SRAM offset to preboot version register |
| * @boot_fit_version_offset_reg: SRAM offset to boot fit version register |
| * @sram_offset_mask: mask for getting offset into the SRAM |
| * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg |
| */ |
| struct static_fw_load_mgr { |
| u64 preboot_version_max_off; |
| u64 boot_fit_version_max_off; |
| u32 kmd_msg_to_cpu_reg; |
| u32 cpu_cmd_status_to_host_reg; |
| u32 cpu_boot_status_reg; |
| u32 cpu_boot_dev_status0_reg; |
| u32 cpu_boot_dev_status1_reg; |
| u32 boot_err0_reg; |
| u32 boot_err1_reg; |
| u32 preboot_version_offset_reg; |
| u32 boot_fit_version_offset_reg; |
| u32 sram_offset_mask; |
| u32 cpu_reset_wait_msec; |
| }; |
| |
| /** |
| * struct fw_response - FW response to LKD command |
| * @ram_offset: descriptor offset into the RAM |
| * @ram_type: RAM type containing the descriptor (SRAM/DRAM) |
| * @status: command status |
| */ |
| struct fw_response { |
| u32 ram_offset; |
| u8 ram_type; |
| u8 status; |
| }; |
| |
| /** |
| * struct dynamic_fw_load_mgr - dynamic FW load manager |
| * @response: FW to LKD response |
| * @comm_desc: the communication descriptor with FW |
| * @image_region: region to copy the FW image to |
| * @fw_image_size: size of FW image to load |
| * @wait_for_bl_timeout: timeout for waiting for boot loader to respond |
| * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used |
| */ |
| struct dynamic_fw_load_mgr { |
| struct fw_response response; |
| struct lkd_fw_comms_desc comm_desc; |
| struct pci_mem_region *image_region; |
| size_t fw_image_size; |
| u32 wait_for_bl_timeout; |
| bool fw_desc_valid; |
| }; |
| |
| /** |
| * struct pre_fw_load_props - needed properties for pre-FW load |
| * @cpu_boot_status_reg: cpu_boot_status register address |
| * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address |
| * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address |
| * @boot_err0_reg: boot_err0 register address |
| * @boot_err1_reg: boot_err1 register address |
| * @wait_for_preboot_timeout: timeout to poll for preboot ready |
| * @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know |
| * preboot needs longer time. |
| */ |
| struct pre_fw_load_props { |
| u32 cpu_boot_status_reg; |
| u32 sts_boot_dev_sts0_reg; |
| u32 sts_boot_dev_sts1_reg; |
| u32 boot_err0_reg; |
| u32 boot_err1_reg; |
| u32 wait_for_preboot_timeout; |
| u32 wait_for_preboot_extended_timeout; |
| }; |
| |
| /** |
| * struct fw_image_props - properties of FW image |
| * @image_name: name of the image |
| * @src_off: offset in src FW to copy from |
| * @copy_size: amount of bytes to copy (0 to copy the whole binary) |
| */ |
| struct fw_image_props { |
| char *image_name; |
| u32 src_off; |
| u32 copy_size; |
| }; |
| |
| /** |
| * struct fw_load_mgr - manager FW loading process |
| * @dynamic_loader: specific structure for dynamic load |
| * @static_loader: specific structure for static load |
| * @pre_fw_load_props: parameter for pre FW load |
| * @boot_fit_img: boot fit image properties |
| * @linux_img: linux image properties |
| * @cpu_timeout: CPU response timeout in usec |
| * @boot_fit_timeout: Boot fit load timeout in usec |
| * @skip_bmc: should BMC be skipped |
| * @sram_bar_id: SRAM bar ID |
| * @dram_bar_id: DRAM bar ID |
| * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded |
| * component. values are set according to enum hl_fw_types. |
| */ |
| struct fw_load_mgr { |
| union { |
| struct dynamic_fw_load_mgr dynamic_loader; |
| struct static_fw_load_mgr static_loader; |
| }; |
| struct pre_fw_load_props pre_fw_load; |
| struct fw_image_props boot_fit_img; |
| struct fw_image_props linux_img; |
| u32 cpu_timeout; |
| u32 boot_fit_timeout; |
| u8 skip_bmc; |
| u8 sram_bar_id; |
| u8 dram_bar_id; |
| u8 fw_comp_loaded; |
| }; |
| |
| struct hl_cs; |
| |
| /** |
| * struct engines_data - asic engines data |
| * @buf: buffer for engines data in ascii |
| * @actual_size: actual size of data that was written by the driver to the allocated buffer |
| * @allocated_buf_size: total size of allocated buffer |
| */ |
| struct engines_data { |
| char *buf; |
| int actual_size; |
| u32 allocated_buf_size; |
| }; |
| |
| /** |
| * struct hl_asic_funcs - ASIC specific functions that are can be called from |
| * common code. |
| * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. |
| * @early_fini: tears down what was done in early_init. |
| * @late_init: sets up late driver/hw state (post hw_init) - Optional. |
| * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. |
| * @sw_init: sets up driver state, does not configure H/W. |
| * @sw_fini: tears down driver state, does not configure H/W. |
| * @hw_init: sets up the H/W state. |
| * @hw_fini: tears down the H/W state. |
| * @halt_engines: halt engines, needed for reset sequence. This also disables |
| * interrupts from the device. Should be called before |
| * hw_fini and before CS rollback. |
| * @suspend: handles IP specific H/W or SW changes for suspend. |
| * @resume: handles IP specific H/W or SW changes for resume. |
| * @mmap: maps a memory. |
| * @ring_doorbell: increment PI on a given QMAN. |
| * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific |
| * function because the PQs are located in different memory areas |
| * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of |
| * writing the PQE must match the destination memory area |
| * properties. |
| * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling |
| * dma_alloc_coherent(). This is ASIC function because |
| * its implementation is not trivial when the driver |
| * is loaded in simulation mode (not upstreamed). |
| * @asic_dma_free_coherent: Free coherent DMA memory by calling |
| * dma_free_coherent(). This is ASIC function because |
| * its implementation is not trivial when the driver |
| * is loaded in simulation mode (not upstreamed). |
| * @scrub_device_mem: Scrub the entire SRAM and DRAM. |
| * @scrub_device_dram: Scrub the dram memory of the device. |
| * @get_int_queue_base: get the internal queue base address. |
| * @test_queues: run simple test on all queues for sanity check. |
| * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. |
| * size of allocation is HL_DMA_POOL_BLK_SIZE. |
| * @asic_dma_pool_free: free small DMA allocation from pool. |
| * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. |
| * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. |
| * @dma_unmap_sgtable: DMA unmap scatter-gather table. |
| * @dma_map_sgtable: DMA map scatter-gather table. |
| * @cs_parser: parse Command Submission. |
| * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. |
| * @update_eq_ci: update event queue CI. |
| * @context_switch: called upon ASID context switch. |
| * @restore_phase_topology: clear all SOBs amd MONs. |
| * @debugfs_read_dma: debug interface for reading up to 2MB from the device's |
| * internal memory via DMA engine. |
| * @add_device_attr: add ASIC specific device attributes. |
| * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. |
| * @get_events_stat: retrieve event queue entries histogram. |
| * @read_pte: read MMU page table entry from DRAM. |
| * @write_pte: write MMU page table entry to DRAM. |
| * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft |
| * (L1 only) or hard (L0 & L1) flush. |
| * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. |
| * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. |
| * @send_heartbeat: send is-alive packet to CPU-CP and verify response. |
| * @debug_coresight: perform certain actions on Coresight for debugging. |
| * @is_device_idle: return true if device is idle, false otherwise. |
| * @compute_reset_late_init: perform certain actions needed after a compute reset |
| * @hw_queues_lock: acquire H/W queues lock. |
| * @hw_queues_unlock: release H/W queues lock. |
| * @get_pci_id: retrieve PCI ID. |
| * @get_eeprom_data: retrieve EEPROM data from F/W. |
| * @get_monitor_dump: retrieve monitor registers dump from F/W. |
| * @send_cpu_message: send message to F/W. If the message is timedout, the |
| * driver will eventually reset the device. The timeout can |
| * be determined by the calling function or it can be 0 and |
| * then the timeout is the default timeout for the specific |
| * ASIC |
| * @get_hw_state: retrieve the H/W state |
| * @pci_bars_map: Map PCI BARs. |
| * @init_iatu: Initialize the iATU unit inside the PCI controller. |
| * @rreg: Read a register. Needed for simulator support. |
| * @wreg: Write a register. Needed for simulator support. |
| * @halt_coresight: stop the ETF and ETR traces. |
| * @ctx_init: context dependent initialization. |
| * @ctx_fini: context dependent cleanup. |
| * @pre_schedule_cs: Perform pre-CS-scheduling operations. |
| * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. |
| * @load_firmware_to_device: load the firmware to the device's memory |
| * @load_boot_fit_to_device: load boot fit to device's memory |
| * @get_signal_cb_size: Get signal CB size. |
| * @get_wait_cb_size: Get wait CB size. |
| * @gen_signal_cb: Generate a signal CB. |
| * @gen_wait_cb: Generate a wait CB. |
| * @reset_sob: Reset a SOB. |
| * @reset_sob_group: Reset SOB group |
| * @get_device_time: Get the device time. |
| * @pb_print_security_errors: print security errors according block and cause |
| * @collective_wait_init_cs: Generate collective master/slave packets |
| * and place them in the relevant cs jobs |
| * @collective_wait_create_jobs: allocate collective wait cs jobs |
| * @get_dec_base_addr: get the base address of a given decoder. |
| * @scramble_addr: Routine to scramble the address prior of mapping it |
| * in the MMU. |
| * @descramble_addr: Routine to de-scramble the address prior of |
| * showing it to users. |
| * @ack_protection_bits_errors: ack and dump all security violations |
| * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. |
| * also returns the size of the block if caller supplies |
| * a valid pointer for it |
| * @hw_block_mmap: mmap a HW block with a given id. |
| * @enable_events_from_fw: send interrupt to firmware to notify them the |
| * driver is ready to receive asynchronous events. This |
| * function should be called during the first init and |
| * after every hard-reset of the device |
| * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. |
| * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event |
| * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to |
| * generic f/w compatible PLL Indexes |
| * @init_firmware_preload_params: initialize pre FW-load parameters. |
| * @init_firmware_loader: initialize data for FW loader. |
| * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling |
| * @state_dump_init: initialize constants required for state dump |
| * @get_sob_addr: get SOB base address offset. |
| * @set_pci_memory_regions: setting properties of PCI memory regions |
| * @get_stream_master_qid_arr: get pointer to stream masters QID array |
| * @check_if_razwi_happened: check if there was a razwi due to RR violation. |
| * @access_dev_mem: access device memory |
| * @set_dram_bar_base: set the base of the DRAM BAR |
| * @set_engine_cores: set a config command to engine cores |
| * @set_engines: set a config command to user engines |
| * @send_device_activity: indication to FW about device availability |
| * @set_dram_properties: set DRAM related properties. |
| * @set_binning_masks: set binning/enable masks for all relevant components. |
| */ |
| struct hl_asic_funcs { |
| int (*early_init)(struct hl_device *hdev); |
| int (*early_fini)(struct hl_device *hdev); |
| int (*late_init)(struct hl_device *hdev); |
| void (*late_fini)(struct hl_device *hdev); |
| int (*sw_init)(struct hl_device *hdev); |
| int (*sw_fini)(struct hl_device *hdev); |
| int (*hw_init)(struct hl_device *hdev); |
| int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); |
| void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); |
| int (*suspend)(struct hl_device *hdev); |
| int (*resume)(struct hl_device *hdev); |
| int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size); |
| void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); |
| void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, |
| struct hl_bd *bd); |
| void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flag); |
| void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, |
| void *cpu_addr, dma_addr_t dma_handle); |
| int (*scrub_device_mem)(struct hl_device *hdev); |
| int (*scrub_device_dram)(struct hl_device *hdev, u64 val); |
| void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, |
| dma_addr_t *dma_handle, u16 *queue_len); |
| int (*test_queues)(struct hl_device *hdev); |
| void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, |
| gfp_t mem_flags, dma_addr_t *dma_handle); |
| void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, |
| dma_addr_t dma_addr); |
| void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, |
| size_t size, dma_addr_t *dma_handle); |
| void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, |
| size_t size, void *vaddr); |
| void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir); |
| int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir); |
| int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); |
| void (*add_end_of_cb_packets)(struct hl_device *hdev, |
| void *kernel_address, u32 len, |
| u32 original_len, |
| u64 cq_addr, u32 cq_val, u32 msix_num, |
| bool eb); |
| void (*update_eq_ci)(struct hl_device *hdev, u32 val); |
| int (*context_switch)(struct hl_device *hdev, u32 asid); |
| void (*restore_phase_topology)(struct hl_device *hdev); |
| int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, |
| void *blob_addr); |
| void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, |
| struct attribute_group *dev_vrm_attr_grp); |
| void (*handle_eqe)(struct hl_device *hdev, |
| struct hl_eq_entry *eq_entry); |
| void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, |
| u32 *size); |
| u64 (*read_pte)(struct hl_device *hdev, u64 addr); |
| void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); |
| int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, |
| u32 flags); |
| int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, |
| u32 flags, u32 asid, u64 va, u64 size); |
| int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); |
| int (*send_heartbeat)(struct hl_device *hdev); |
| int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); |
| bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e); |
| int (*compute_reset_late_init)(struct hl_device *hdev); |
| void (*hw_queues_lock)(struct hl_device *hdev); |
| void (*hw_queues_unlock)(struct hl_device *hdev); |
| u32 (*get_pci_id)(struct hl_device *hdev); |
| int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); |
| int (*get_monitor_dump)(struct hl_device *hdev, void *data); |
| int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, |
| u16 len, u32 timeout, u64 *result); |
| int (*pci_bars_map)(struct hl_device *hdev); |
| int (*init_iatu)(struct hl_device *hdev); |
| u32 (*rreg)(struct hl_device *hdev, u32 reg); |
| void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); |
| void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); |
| int (*ctx_init)(struct hl_ctx *ctx); |
| void (*ctx_fini)(struct hl_ctx *ctx); |
| int (*pre_schedule_cs)(struct hl_cs *cs); |
| u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); |
| int (*load_firmware_to_device)(struct hl_device *hdev); |
| int (*load_boot_fit_to_device)(struct hl_device *hdev); |
| u32 (*get_signal_cb_size)(struct hl_device *hdev); |
| u32 (*get_wait_cb_size)(struct hl_device *hdev); |
| u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, |
| u32 size, bool eb); |
| u32 (*gen_wait_cb)(struct hl_device *hdev, |
| struct hl_gen_wait_properties *prop); |
| void (*reset_sob)(struct hl_device *hdev, void *data); |
| void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); |
| u64 (*get_device_time)(struct hl_device *hdev); |
| void (*pb_print_security_errors)(struct hl_device *hdev, |
| u32 block_addr, u32 cause, u32 offended_addr); |
| int (*collective_wait_init_cs)(struct hl_cs *cs); |
| int (*collective_wait_create_jobs)(struct hl_device *hdev, |
| struct hl_ctx *ctx, struct hl_cs *cs, |
| u32 wait_queue_id, u32 collective_engine_id, |
| u32 encaps_signal_offset); |
| u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); |
| u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); |
| u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); |
| void (*ack_protection_bits_errors)(struct hl_device *hdev); |
| int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, |
| u32 *block_size, u32 *block_id); |
| int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, |
| u32 block_id, u32 block_size); |
| void (*enable_events_from_fw)(struct hl_device *hdev); |
| int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); |
| void (*get_msi_info)(__le32 *table); |
| int (*map_pll_idx_to_fw_idx)(u32 pll_idx); |
| void (*init_firmware_preload_params)(struct hl_device *hdev); |
| void (*init_firmware_loader)(struct hl_device *hdev); |
| void (*init_cpu_scrambler_dram)(struct hl_device *hdev); |
| void (*state_dump_init)(struct hl_device *hdev); |
| u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); |
| void (*set_pci_memory_regions)(struct hl_device *hdev); |
| u32* (*get_stream_master_qid_arr)(void); |
| void (*check_if_razwi_happened)(struct hl_device *hdev); |
| int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, |
| u32 page_size, u32 *real_page_size, bool is_dram_addr); |
| int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, |
| u64 addr, u64 *val, enum debugfs_access_type acc_type); |
| u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); |
| int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, |
| u32 num_cores, u32 core_command); |
| int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, |
| u32 num_engines, u32 engine_command); |
| int (*send_device_activity)(struct hl_device *hdev, bool open); |
| int (*set_dram_properties)(struct hl_device *hdev); |
| int (*set_binning_masks)(struct hl_device *hdev); |
| }; |
| |
| |
| /* |
| * CONTEXTS |
| */ |
| |
| #define HL_KERNEL_ASID_ID 0 |
| |
| /** |
| * enum hl_va_range_type - virtual address range type. |
| * @HL_VA_RANGE_TYPE_HOST: range type of host pages |
| * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages |
| * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages |
| */ |
| enum hl_va_range_type { |
| HL_VA_RANGE_TYPE_HOST, |
| HL_VA_RANGE_TYPE_HOST_HUGE, |
| HL_VA_RANGE_TYPE_DRAM, |
| HL_VA_RANGE_TYPE_MAX |
| }; |
| |
| /** |
| * struct hl_va_range - virtual addresses range. |
| * @lock: protects the virtual addresses list. |
| * @list: list of virtual addresses blocks available for mappings. |
| * @start_addr: range start address. |
| * @end_addr: range end address. |
| * @page_size: page size of this va range. |
| */ |
| struct hl_va_range { |
| struct mutex lock; |
| struct list_head list; |
| u64 start_addr; |
| u64 end_addr; |
| u32 page_size; |
| }; |
| |
| /** |
| * struct hl_cs_counters_atomic - command submission counters |
| * @out_of_mem_drop_cnt: dropped due to memory allocation issue |
| * @parsing_drop_cnt: dropped due to error in packet parsing |
| * @queue_full_drop_cnt: dropped due to queue full |
| * @device_in_reset_drop_cnt: dropped due to device in reset |
| * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight |
| * @validation_drop_cnt: dropped due to error in validation |
| */ |
| struct hl_cs_counters_atomic { |
| atomic64_t out_of_mem_drop_cnt; |
| atomic64_t parsing_drop_cnt; |
| atomic64_t queue_full_drop_cnt; |
| atomic64_t device_in_reset_drop_cnt; |
| atomic64_t max_cs_in_flight_drop_cnt; |
| atomic64_t validation_drop_cnt; |
| }; |
| |
| /** |
| * struct hl_dmabuf_priv - a dma-buf private object. |
| * @dmabuf: pointer to dma-buf object. |
| * @ctx: pointer to the dma-buf owner's context. |
| * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported |
| * where virtual memory is supported. |
| * @memhash_hnode: pointer to the memhash node. this object holds the export count. |
| * @offset: the offset into the buffer from which the memory is exported. |
| * Relevant only if virtual memory is supported and phys_pg_pack is being used. |
| * device_phys_addr: physical address of the device's memory. Relevant only |
| * if phys_pg_pack is NULL (dma-buf was exported from address). |
| * The total size can be taken from the dmabuf object. |
| */ |
| struct hl_dmabuf_priv { |
| struct dma_buf *dmabuf; |
| struct hl_ctx *ctx; |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| struct hl_vm_hash_node *memhash_hnode; |
| u64 offset; |
| u64 device_phys_addr; |
| }; |
| |
| #define HL_CS_OUTCOME_HISTORY_LEN 256 |
| |
| /** |
| * struct hl_cs_outcome - represents a single completed CS outcome |
| * @list_link: link to either container's used list or free list |
| * @map_link: list to the container hash map |
| * @ts: completion ts |
| * @seq: the original cs sequence |
| * @error: error code cs completed with, if any |
| */ |
| struct hl_cs_outcome { |
| struct list_head list_link; |
| struct hlist_node map_link; |
| ktime_t ts; |
| u64 seq; |
| int error; |
| }; |
| |
| /** |
| * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes |
| * @outcome_map: index of completed CS searchable by sequence number |
| * @used_list: list of outcome objects currently in use |
| * @free_list: list of outcome objects currently not in use |
| * @nodes_pool: a static pool of pre-allocated outcome objects |
| * @db_lock: any operation on the store must take this lock |
| */ |
| struct hl_cs_outcome_store { |
| DECLARE_HASHTABLE(outcome_map, 8); |
| struct list_head used_list; |
| struct list_head free_list; |
| struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; |
| spinlock_t db_lock; |
| }; |
| |
| /** |
| * struct hl_ctx - user/kernel context. |
| * @mem_hash: holds mapping from virtual address to virtual memory area |
| * descriptor (hl_vm_phys_pg_list or hl_userptr). |
| * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. |
| * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from |
| * MMU-hop-page physical address to its host-resident |
| * pgt_info structure. |
| * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). |
| * @hdev: pointer to the device structure. |
| * @refcount: reference counter for the context. Context is released only when |
| * this hits 0. It is incremented on CS and CS_WAIT. |
| * @cs_pending: array of hl fence objects representing pending CS. |
| * @outcome_store: storage data structure used to remember outcomes of completed |
| * command submissions for a long time after CS id wraparound. |
| * @va_range: holds available virtual addresses for host and dram mappings. |
| * @mem_hash_lock: protects the mem_hash. |
| * @hw_block_list_lock: protects the HW block memory list. |
| * @ts_reg_lock: timestamp registration ioctls lock. |
| * @debugfs_list: node in debugfs list of contexts. |
| * @hw_block_mem_list: list of HW block virtual mapped addresses. |
| * @cs_counters: context command submission counters. |
| * @cb_va_pool: device VA pool for command buffers which are mapped to the |
| * device's MMU. |
| * @sig_mgr: encaps signals handle manager. |
| * @cb_va_pool_base: the base address for the device VA pool |
| * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed |
| * to user so user could inquire about CS. It is used as |
| * index to cs_pending array. |
| * @dram_default_hops: array that holds all hops addresses needed for default |
| * DRAM mapping. |
| * @cs_lock: spinlock to protect cs_sequence. |
| * @dram_phys_mem: amount of used physical DRAM memory by this context. |
| * @thread_ctx_switch_token: token to prevent multiple threads of the same |
| * context from running the context switch phase. |
| * Only a single thread should run it. |
| * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run |
| * the context switch phase from moving to their |
| * execution phase before the context switch phase |
| * has finished. |
| * @asid: context's unique address space ID in the device's MMU. |
| * @handle: context's opaque handle for user |
| */ |
| struct hl_ctx { |
| DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); |
| DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); |
| DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); |
| struct hl_fpriv *hpriv; |
| struct hl_device *hdev; |
| struct kref refcount; |
| struct hl_fence **cs_pending; |
| struct hl_cs_outcome_store outcome_store; |
| struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; |
| struct mutex mem_hash_lock; |
| struct mutex hw_block_list_lock; |
| struct mutex ts_reg_lock; |
| struct list_head debugfs_list; |
| struct list_head hw_block_mem_list; |
| struct hl_cs_counters_atomic cs_counters; |
| struct gen_pool *cb_va_pool; |
| struct hl_encaps_signals_mgr sig_mgr; |
| u64 cb_va_pool_base; |
| u64 cs_sequence; |
| u64 *dram_default_hops; |
| spinlock_t cs_lock; |
| atomic64_t dram_phys_mem; |
| atomic_t thread_ctx_switch_token; |
| u32 thread_ctx_switch_wait_token; |
| u32 asid; |
| u32 handle; |
| }; |
| |
| /** |
| * struct hl_ctx_mgr - for handling multiple contexts. |
| * @lock: protects ctx_handles. |
| * @handles: idr to hold all ctx handles. |
| */ |
| struct hl_ctx_mgr { |
| struct mutex lock; |
| struct idr handles; |
| }; |
| |
| |
| /* |
| * COMMAND SUBMISSIONS |
| */ |
| |
| /** |
| * struct hl_userptr - memory mapping chunk information |
| * @vm_type: type of the VM. |
| * @job_node: linked-list node for hanging the object on the Job's list. |
| * @pages: pointer to struct page array |
| * @npages: size of @pages array |
| * @sgt: pointer to the scatter-gather table that holds the pages. |
| * @dir: for DMA unmapping, the direction must be supplied, so save it. |
| * @debugfs_list: node in debugfs list of command submissions. |
| * @pid: the pid of the user process owning the memory |
| * @addr: user-space virtual address of the start of the memory area. |
| * @size: size of the memory area to pin & map. |
| * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. |
| */ |
| struct hl_userptr { |
| enum vm_type vm_type; /* must be first */ |
| struct list_head job_node; |
| struct page **pages; |
| unsigned int npages; |
| struct sg_table *sgt; |
| enum dma_data_direction dir; |
| struct list_head debugfs_list; |
| pid_t pid; |
| u64 addr; |
| u64 size; |
| u8 dma_mapped; |
| }; |
| |
| /** |
| * struct hl_cs - command submission. |
| * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. |
| * @ctx: the context this CS belongs to. |
| * @job_list: list of the CS's jobs in the various queues. |
| * @job_lock: spinlock for the CS's jobs list. Needed for free_job. |
| * @refcount: reference counter for usage of the CS. |
| * @fence: pointer to the fence object of this CS. |
| * @signal_fence: pointer to the fence object of the signal CS (used by wait |
| * CS only). |
| * @finish_work: workqueue object to run when CS is completed by H/W. |
| * @work_tdr: delayed work node for TDR. |
| * @mirror_node : node in device mirror list of command submissions. |
| * @staged_cs_node: node in the staged cs list. |
| * @debugfs_list: node in debugfs list of command submissions. |
| * @encaps_sig_hdl: holds the encaps signals handle. |
| * @sequence: the sequence number of this CS. |
| * @staged_sequence: the sequence of the staged submission this CS is part of, |
| * relevant only if staged_cs is set. |
| * @timeout_jiffies: cs timeout in jiffies. |
| * @submission_time_jiffies: submission time of the cs |
| * @type: CS_TYPE_*. |
| * @jobs_cnt: counter of submitted jobs on all queues. |
| * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. |
| * @completion_timestamp: timestamp of the last completed cs job. |
| * @sob_addr_offset: sob offset from the configuration base address. |
| * @initial_sob_count: count of completed signals in SOB before current submission of signal or |
| * cs with encaps signals. |
| * @submitted: true if CS was submitted to H/W. |
| * @completed: true if CS was completed by device. |
| * @timedout : true if CS was timedout. |
| * @tdr_active: true if TDR was activated for this CS (to prevent |
| * double TDR activation). |
| * @aborted: true if CS was aborted due to some device error. |
| * @timestamp: true if a timestamp must be captured upon completion. |
| * @staged_last: true if this is the last staged CS and needs completion. |
| * @staged_first: true if this is the first staged CS and we need to receive |
| * timeout for this CS. |
| * @staged_cs: true if this CS is part of a staged submission. |
| * @skip_reset_on_timeout: true if we shall not reset the device in case |
| * timeout occurs (debug scenario). |
| * @encaps_signals: true if this CS has encaps reserved signals. |
| */ |
| struct hl_cs { |
| u16 *jobs_in_queue_cnt; |
| struct hl_ctx *ctx; |
| struct list_head job_list; |
| spinlock_t job_lock; |
| struct kref refcount; |
| struct hl_fence *fence; |
| struct hl_fence *signal_fence; |
| struct work_struct finish_work; |
| struct delayed_work work_tdr; |
| struct list_head mirror_node; |
| struct list_head staged_cs_node; |
| struct list_head debugfs_list; |
| struct hl_cs_encaps_sig_handle *encaps_sig_hdl; |
| ktime_t completion_timestamp; |
| u64 sequence; |
| u64 staged_sequence; |
| u64 timeout_jiffies; |
| u64 submission_time_jiffies; |
| enum hl_cs_type type; |
| u32 jobs_cnt; |
| u32 encaps_sig_hdl_id; |
| u32 sob_addr_offset; |
| u16 initial_sob_count; |
| u8 submitted; |
| u8 completed; |
| u8 timedout; |
| u8 tdr_active; |
| u8 aborted; |
| u8 timestamp; |
| u8 staged_last; |
| u8 staged_first; |
| u8 staged_cs; |
| u8 skip_reset_on_timeout; |
| u8 encaps_signals; |
| }; |
| |
| /** |
| * struct hl_cs_job - command submission job. |
| * @cs_node: the node to hang on the CS jobs list. |
| * @cs: the CS this job belongs to. |
| * @user_cb: the CB we got from the user. |
| * @patched_cb: in case of patching, this is internal CB which is submitted on |
| * the queue instead of the CB we got from the IOCTL. |
| * @finish_work: workqueue object to run when job is completed. |
| * @userptr_list: linked-list of userptr mappings that belong to this job and |
| * wait for completion. |
| * @debugfs_list: node in debugfs list of command submission jobs. |
| * @refcount: reference counter for usage of the CS job. |
| * @queue_type: the type of the H/W queue this job is submitted to. |
| * @timestamp: timestamp upon job completion |
| * @id: the id of this job inside a CS. |
| * @hw_queue_id: the id of the H/W queue this job is submitted to. |
| * @user_cb_size: the actual size of the CB we got from the user. |
| * @job_cb_size: the actual size of the CB that we put on the queue. |
| * @encaps_sig_wait_offset: encapsulated signals offset, which allow user |
| * to wait on part of the reserved signals. |
| * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a |
| * handle to a kernel-allocated CB object, false |
| * otherwise (SRAM/DRAM/host address). |
| * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This |
| * info is needed later, when adding the 2xMSG_PROT at the |
| * end of the JOB, to know which barriers to put in the |
| * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't |
| * have streams so the engine can't be busy by another |
| * stream. |
| */ |
| struct hl_cs_job { |
| struct list_head cs_node; |
| struct hl_cs *cs; |
| struct hl_cb *user_cb; |
| struct hl_cb *patched_cb; |
| struct work_struct finish_work; |
| struct list_head userptr_list; |
| struct list_head debugfs_list; |
| struct kref refcount; |
| enum hl_queue_type queue_type; |
| ktime_t timestamp; |
| u32 id; |
| u32 hw_queue_id; |
| u32 user_cb_size; |
| u32 job_cb_size; |
| u32 encaps_sig_wait_offset; |
| u8 is_kernel_allocated_cb; |
| u8 contains_dma_pkt; |
| }; |
| |
| /** |
| * struct hl_cs_parser - command submission parser properties. |
| * @user_cb: the CB we got from the user. |
| * @patched_cb: in case of patching, this is internal CB which is submitted on |
| * the queue instead of the CB we got from the IOCTL. |
| * @job_userptr_list: linked-list of userptr mappings that belong to the related |
| * job and wait for completion. |
| * @cs_sequence: the sequence number of the related CS. |
| * @queue_type: the type of the H/W queue this job is submitted to. |
| * @ctx_id: the ID of the context the related CS belongs to. |
| * @hw_queue_id: the id of the H/W queue this job is submitted to. |
| * @user_cb_size: the actual size of the CB we got from the user. |
| * @patched_cb_size: the size of the CB after parsing. |
| * @job_id: the id of the related job inside the related CS. |
| * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a |
| * handle to a kernel-allocated CB object, false |
| * otherwise (SRAM/DRAM/host address). |
| * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This |
| * info is needed later, when adding the 2xMSG_PROT at the |
| * end of the JOB, to know which barriers to put in the |
| * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't |
| * have streams so the engine can't be busy by another |
| * stream. |
| * @completion: true if we need completion for this CS. |
| */ |
| struct hl_cs_parser { |
| struct hl_cb *user_cb; |
| struct hl_cb *patched_cb; |
| struct list_head *job_userptr_list; |
| u64 cs_sequence; |
| enum hl_queue_type queue_type; |
| u32 ctx_id; |
| u32 hw_queue_id; |
| u32 user_cb_size; |
| u32 patched_cb_size; |
| u8 job_id; |
| u8 is_kernel_allocated_cb; |
| u8 contains_dma_pkt; |
| u8 completion; |
| }; |
| |
| /* |
| * MEMORY STRUCTURE |
| */ |
| |
| /** |
| * struct hl_vm_hash_node - hash element from virtual address to virtual |
| * memory area descriptor (hl_vm_phys_pg_list or |
| * hl_userptr). |
| * @node: node to hang on the hash table in context object. |
| * @vaddr: key virtual address. |
| * @handle: memory handle for device memory allocation. |
| * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). |
| * @export_cnt: number of exports from within the VA block. |
| */ |
| struct hl_vm_hash_node { |
| struct hlist_node node; |
| u64 vaddr; |
| u64 handle; |
| void *ptr; |
| int export_cnt; |
| }; |
| |
| /** |
| * struct hl_vm_hw_block_list_node - list element from user virtual address to |
| * HW block id. |
| * @node: node to hang on the list in context object. |
| * @ctx: the context this node belongs to. |
| * @vaddr: virtual address of the HW block. |
| * @block_size: size of the block. |
| * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. |
| * @id: HW block id (handle). |
| */ |
| struct hl_vm_hw_block_list_node { |
| struct list_head node; |
| struct hl_ctx *ctx; |
| unsigned long vaddr; |
| u32 block_size; |
| u32 mapped_size; |
| u32 id; |
| }; |
| |
| /** |
| * struct hl_vm_phys_pg_pack - physical page pack. |
| * @vm_type: describes the type of the virtual area descriptor. |
| * @pages: the physical page array. |
| * @npages: num physical pages in the pack. |
| * @total_size: total size of all the pages in this list. |
| * @node: used to attach to deletion list that is used when all the allocations are cleared |
| * at the teardown of the context. |
| * @mapping_cnt: number of shared mappings. |
| * @asid: the context related to this list. |
| * @page_size: size of each page in the pack. |
| * @flags: HL_MEM_* flags related to this list. |
| * @handle: the provided handle related to this list. |
| * @offset: offset from the first page. |
| * @contiguous: is contiguous physical memory. |
| * @created_from_userptr: is product of host virtual address. |
| */ |
| struct hl_vm_phys_pg_pack { |
| enum vm_type vm_type; /* must be first */ |
| u64 *pages; |
| u64 npages; |
| u64 total_size; |
| struct list_head node; |
| atomic_t mapping_cnt; |
| u32 asid; |
| u32 page_size; |
| u32 flags; |
| u32 handle; |
| u32 offset; |
| u8 contiguous; |
| u8 created_from_userptr; |
| }; |
| |
| /** |
| * struct hl_vm_va_block - virtual range block information. |
| * @node: node to hang on the virtual range list in context object. |
| * @start: virtual range start address. |
| * @end: virtual range end address. |
| * @size: virtual range size. |
| */ |
| struct hl_vm_va_block { |
| struct list_head node; |
| u64 start; |
| u64 end; |
| u64 size; |
| }; |
| |
| /** |
| * struct hl_vm - virtual memory manager for MMU. |
| * @dram_pg_pool: pool for DRAM physical pages of 2MB. |
| * @dram_pg_pool_refcount: reference counter for the pool usage. |
| * @idr_lock: protects the phys_pg_list_handles. |
| * @phys_pg_pack_handles: idr to hold all device allocations handles. |
| * @init_done: whether initialization was done. We need this because VM |
| * initialization might be skipped during device initialization. |
| */ |
| struct hl_vm { |
| struct gen_pool *dram_pg_pool; |
| struct kref dram_pg_pool_refcount; |
| spinlock_t idr_lock; |
| struct idr phys_pg_pack_handles; |
| u8 init_done; |
| }; |
| |
| |
| /* |
| * DEBUG, PROFILING STRUCTURE |
| */ |
| |
| /** |
| * struct hl_debug_params - Coresight debug parameters. |
| * @input: pointer to component specific input parameters. |
| * @output: pointer to component specific output parameters. |
| * @output_size: size of output buffer. |
| * @reg_idx: relevant register ID. |
| * @op: component operation to execute. |
| * @enable: true if to enable component debugging, false otherwise. |
| */ |
| struct hl_debug_params { |
| void *input; |
| void *output; |
| u32 output_size; |
| u32 reg_idx; |
| u32 op; |
| bool enable; |
| }; |
| |
| /** |
| * struct hl_notifier_event - holds the notifier data structure |
| * @eventfd: the event file descriptor to raise the notifications |
| * @lock: mutex lock to protect the notifier data flows |
| * @events_mask: indicates the bitmap events |
| */ |
| struct hl_notifier_event { |
| struct eventfd_ctx *eventfd; |
| struct mutex lock; |
| u64 events_mask; |
| }; |
| |
| /* |
| * FILE PRIVATE STRUCTURE |
| */ |
| |
| /** |
| * struct hl_fpriv - process information stored in FD private data. |
| * @hdev: habanalabs device structure. |
| * @file_priv: pointer to the DRM file private data structure. |
| * @taskpid: current process ID. |
| * @ctx: current executing context. TODO: remove for multiple ctx per process |
| * @ctx_mgr: context manager to handle multiple context for this FD. |
| * @mem_mgr: manager descriptor for memory exportable via mmap |
| * @notifier_event: notifier eventfd towards user process |
| * @debugfs_list: list of relevant ASIC debugfs. |
| * @dev_node: node in the device list of file private data |
| * @refcount: number of related contexts. |
| * @restore_phase_mutex: lock for context switch and restore phase. |
| * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple |
| * ctx per process. |
| */ |
| struct hl_fpriv { |
| struct hl_device *hdev; |
| struct drm_file *file_priv; |
| struct pid *taskpid; |
| struct hl_ctx *ctx; |
| struct hl_ctx_mgr ctx_mgr; |
| struct hl_mem_mgr mem_mgr; |
| struct hl_notifier_event notifier_event; |
| struct list_head debugfs_list; |
| struct list_head dev_node; |
| struct kref refcount; |
| struct mutex restore_phase_mutex; |
| struct mutex ctx_lock; |
| }; |
| |
| |
| /* |
| * DebugFS |
| */ |
| |
| /** |
| * struct hl_info_list - debugfs file ops. |
| * @name: file name. |
| * @show: function to output information. |
| * @write: function to write to the file. |
| */ |
| struct hl_info_list { |
| const char *name; |
| int (*show)(struct seq_file *s, void *data); |
| ssize_t (*write)(struct file *file, const char __user *buf, |
| size_t count, loff_t *f_pos); |
| }; |
| |
| /** |
| * struct hl_debugfs_entry - debugfs dentry wrapper. |
| * @info_ent: dentry related ops. |
| * @dev_entry: ASIC specific debugfs manager. |
| */ |
| struct hl_debugfs_entry { |
| const struct hl_info_list *info_ent; |
| struct hl_dbg_device_entry *dev_entry; |
| }; |
| |
| /** |
| * struct hl_dbg_device_entry - ASIC specific debugfs manager. |
| * @root: root dentry. |
| * @hdev: habanalabs device structure. |
| * @entry_arr: array of available hl_debugfs_entry. |
| * @file_list: list of available debugfs files. |
| * @file_mutex: protects file_list. |
| * @cb_list: list of available CBs. |
| * @cb_spinlock: protects cb_list. |
| * @cs_list: list of available CSs. |
| * @cs_spinlock: protects cs_list. |
| * @cs_job_list: list of available CB jobs. |
| * @cs_job_spinlock: protects cs_job_list. |
| * @userptr_list: list of available userptrs (virtual memory chunk descriptor). |
| * @userptr_spinlock: protects userptr_list. |
| * @ctx_mem_hash_list: list of available contexts with MMU mappings. |
| * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. |
| * @data_dma_blob_desc: data DMA descriptor of blob. |
| * @mon_dump_blob_desc: monitor dump descriptor of blob. |
| * @state_dump: data of the system states in case of a bad cs. |
| * @state_dump_sem: protects state_dump. |
| * @addr: next address to read/write from/to in read/write32. |
| * @mmu_addr: next virtual address to translate to physical address in mmu_show. |
| * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. |
| * @userptr_lookup: the target user ptr to look up for on demand. |
| * @mmu_asid: ASID to use while translating in mmu_show. |
| * @state_dump_head: index of the latest state dump |
| * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. |
| * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. |
| * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. |
| * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. |
| */ |
| struct hl_dbg_device_entry { |
| struct dentry *root; |
| struct hl_device *hdev; |
| struct hl_debugfs_entry *entry_arr; |
| struct list_head file_list; |
| struct mutex file_mutex; |
| struct list_head cb_list; |
| spinlock_t cb_spinlock; |
| struct list_head cs_list; |
| spinlock_t cs_spinlock; |
| struct list_head cs_job_list; |
| spinlock_t cs_job_spinlock; |
| struct list_head userptr_list; |
| spinlock_t userptr_spinlock; |
| struct list_head ctx_mem_hash_list; |
| struct mutex ctx_mem_hash_mutex; |
| struct debugfs_blob_wrapper data_dma_blob_desc; |
| struct debugfs_blob_wrapper mon_dump_blob_desc; |
| char *state_dump[HL_STATE_DUMP_HIST_LEN]; |
| struct rw_semaphore state_dump_sem; |
| u64 addr; |
| u64 mmu_addr; |
| u64 mmu_cap_mask; |
| u64 userptr_lookup; |
| u32 mmu_asid; |
| u32 state_dump_head; |
| u8 i2c_bus; |
| u8 i2c_addr; |
| u8 i2c_reg; |
| u8 i2c_len; |
| }; |
| |
| /** |
| * struct hl_hw_obj_name_entry - single hw object name, member of |
| * hl_state_dump_specs |
| * @node: link to the containing hash table |
| * @name: hw object name |
| * @id: object identifier |
| */ |
| struct hl_hw_obj_name_entry { |
| struct hlist_node node; |
| const char *name; |
| u32 id; |
| }; |
| |
| enum hl_state_dump_specs_props { |
| SP_SYNC_OBJ_BASE_ADDR, |
| SP_NEXT_SYNC_OBJ_ADDR, |
| SP_SYNC_OBJ_AMOUNT, |
| SP_MON_OBJ_WR_ADDR_LOW, |
| SP_MON_OBJ_WR_ADDR_HIGH, |
| SP_MON_OBJ_WR_DATA, |
| SP_MON_OBJ_ARM_DATA, |
| SP_MON_OBJ_STATUS, |
| SP_MONITORS_AMOUNT, |
| SP_TPC0_CMDQ, |
| SP_TPC0_CFG_SO, |
| SP_NEXT_TPC, |
| SP_MME_CMDQ, |
| SP_MME_CFG_SO, |
| SP_NEXT_MME, |
| SP_DMA_CMDQ, |
| SP_DMA_CFG_SO, |
| SP_DMA_QUEUES_OFFSET, |
| SP_NUM_OF_MME_ENGINES, |
| SP_SUB_MME_ENG_NUM, |
| SP_NUM_OF_DMA_ENGINES, |
| SP_NUM_OF_TPC_ENGINES, |
| SP_ENGINE_NUM_OF_QUEUES, |
| SP_ENGINE_NUM_OF_STREAMS, |
| SP_ENGINE_NUM_OF_FENCES, |
| SP_FENCE0_CNT_OFFSET, |
| SP_FENCE0_RDATA_OFFSET, |
| SP_CP_STS_OFFSET, |
| SP_NUM_CORES, |
| |
| SP_MAX |
| }; |
| |
| enum hl_sync_engine_type { |
| ENGINE_TPC, |
| ENGINE_DMA, |
| ENGINE_MME, |
| }; |
| |
| /** |
| * struct hl_mon_state_dump - represents a state dump of a single monitor |
| * @id: monitor id |
| * @wr_addr_low: address monitor will write to, low bits |
| * @wr_addr_high: address monitor will write to, high bits |
| * @wr_data: data monitor will write |
| * @arm_data: register value containing monitor configuration |
| * @status: monitor status |
| */ |
| struct hl_mon_state_dump { |
| u32 id; |
| u32 wr_addr_low; |
| u32 wr_addr_high; |
| u32 wr_data; |
| u32 arm_data; |
| u32 status; |
| }; |
| |
| /** |
| * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry |
| * @engine_type: type of the engine |
| * @engine_id: id of the engine |
| * @sync_id: id of the sync object |
| */ |
| struct hl_sync_to_engine_map_entry { |
| struct hlist_node node; |
| enum hl_sync_engine_type engine_type; |
| u32 engine_id; |
| u32 sync_id; |
| }; |
| |
| /** |
| * struct hl_sync_to_engine_map - maps sync object id to associated engine id |
| * @tb: hash table containing the mapping, each element is of type |
| * struct hl_sync_to_engine_map_entry |
| */ |
| struct hl_sync_to_engine_map { |
| DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); |
| }; |
| |
| /** |
| * struct hl_state_dump_specs_funcs - virtual functions used by the state dump |
| * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine |
| * @print_single_monitor: format monitor data as string |
| * @monitor_valid: return true if given monitor dump is valid |
| * @print_fences_single_engine: format fences data as string |
| */ |
| struct hl_state_dump_specs_funcs { |
| int (*gen_sync_to_engine_map)(struct hl_device *hdev, |
| struct hl_sync_to_engine_map *map); |
| int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, |
| struct hl_device *hdev, |
| struct hl_mon_state_dump *mon); |
| int (*monitor_valid)(struct hl_mon_state_dump *mon); |
| int (*print_fences_single_engine)(struct hl_device *hdev, |
| u64 base_offset, |
| u64 status_base_offset, |
| enum hl_sync_engine_type engine_type, |
| u32 engine_id, char **buf, |
| size_t *size, size_t *offset); |
| }; |
| |
| /** |
| * struct hl_state_dump_specs - defines ASIC known hw objects names |
| * @so_id_to_str_tb: sync objects names index table |
| * @monitor_id_to_str_tb: monitors names index table |
| * @funcs: virtual functions used for state dump |
| * @sync_namager_names: readable names for sync manager if available (ex: N_E) |
| * @props: pointer to a per asic const props array required for state dump |
| */ |
| struct hl_state_dump_specs { |
| DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); |
| DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); |
| struct hl_state_dump_specs_funcs funcs; |
| const char * const *sync_namager_names; |
| s64 *props; |
| }; |
| |
| |
| /* |
| * DEVICES |
| */ |
| |
| #define HL_STR_MAX 64 |
| |
| #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) |
| |
| /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe |
| * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. |
| */ |
| #define HL_MAX_MINORS 256 |
| |
| /* |
| * Registers read & write functions. |
| */ |
| |
| u32 hl_rreg(struct hl_device *hdev, u32 reg); |
| void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); |
| |
| #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) |
| #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) |
| #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ |
| hdev->asic_funcs->rreg(hdev, (reg))) |
| |
| #define WREG32_P(reg, val, mask) \ |
| do { \ |
| u32 tmp_ = RREG32(reg); \ |
| tmp_ &= (mask); \ |
| tmp_ |= ((val) & ~(mask)); \ |
| WREG32(reg, tmp_); \ |
| } while (0) |
| #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) |
| #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) |
| |
| #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) |
| |
| #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) |
| |
| #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) |
| |
| #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT |
| #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK |
| #define WREG32_FIELD(reg, offset, field, val) \ |
| WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ |
| ~REG_FIELD_MASK(reg, field)) | \ |
| (val) << REG_FIELD_SHIFT(reg, field)) |
| |
| /* Timeout should be longer when working with simulator but cap the |
| * increased timeout to some maximum |
| */ |
| #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ |
| ({ \ |
| ktime_t __timeout; \ |
| u32 __elbi_read; \ |
| int __rc = 0; \ |
| __timeout = ktime_add_us(ktime_get(), timeout_us); \ |
| might_sleep_if(sleep_us); \ |
| for (;;) { \ |
| if (elbi) { \ |
| __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ |
| if (__rc) \ |
| break; \ |
| (val) = __elbi_read; \ |
| } else {\ |
| (val) = RREG32(lower_32_bits(addr)); \ |
| } \ |
| if (cond) \ |
| break; \ |
| if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ |
| if (elbi) { \ |
| __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ |
| if (__rc) \ |
| break; \ |
| (val) = __elbi_read; \ |
| } else {\ |
| (val) = RREG32(lower_32_bits(addr)); \ |
| } \ |
| break; \ |
| } \ |
| if (sleep_us) \ |
| usleep_range((sleep_us >> 2) + 1, sleep_us); \ |
| } \ |
| __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ |
| }) |
| |
| #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ |
| hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) |
| |
| #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ |
| hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) |
| |
| /* |
| * poll array of register addresses. |
| * condition is satisfied if all registers values match the expected value. |
| * once some register in the array satisfies the condition it will not be polled again, |
| * this is done both for efficiency and due to some registers are "clear on read". |
| * TODO: use read from PCI bar in other places in the code (SW-91406) |
| */ |
| #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ |
| timeout_us, elbi) \ |
| ({ \ |
| ktime_t __timeout; \ |
| u64 __elem_bitmask; \ |
| u32 __read_val; \ |
| u8 __arr_idx; \ |
| int __rc = 0; \ |
| \ |
| __timeout = ktime_add_us(ktime_get(), timeout_us); \ |
| might_sleep_if(sleep_us); \ |
| if (arr_size >= 64) \ |
| __rc = -EINVAL; \ |
| else \ |
| __elem_bitmask = BIT_ULL(arr_size) - 1; \ |
| for (;;) { \ |
| if (__rc) \ |
| break; \ |
| for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ |
| if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ |
| continue; \ |
| if (elbi) { \ |
| __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ |
| if (__rc) \ |
| break; \ |
| } else { \ |
| __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ |
| } \ |
| if (__read_val == (expected_val)) \ |
| __elem_bitmask &= ~BIT_ULL(__arr_idx); \ |
| } \ |
| if (__rc || (__elem_bitmask == 0)) \ |
| break; \ |
| if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ |
| break; \ |
| if (sleep_us) \ |
| usleep_range((sleep_us >> 2) + 1, sleep_us); \ |
| } \ |
| __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ |
| }) |
| |
| #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ |
| timeout_us) \ |
| hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ |
| timeout_us, false) |
| |
| #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ |
| timeout_us) \ |
| hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ |
| timeout_us, true) |
| |
| /* |
| * address in this macro points always to a memory location in the |
| * host's (server's) memory. That location is updated asynchronously |
| * either by the direct access of the device or by another core. |
| * |
| * To work both in LE and BE architectures, we need to distinguish between the |
| * two states (device or another core updates the memory location). Therefore, |
| * if mem_written_by_device is true, the host memory being polled will be |
| * updated directly by the device. If false, the host memory being polled will |
| * be updated by host CPU. Required so host knows whether or not the memory |
| * might need to be byte-swapped before returning value to caller. |
| * |
| * On the first 4 polling iterations the macro goes to sleep for short period of |
| * time that gradually increases and reaches sleep_us on the fifth iteration. |
| */ |
| #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ |
| mem_written_by_device) \ |
| ({ \ |
| u64 __sleep_step_us; \ |
| ktime_t __timeout; \ |
| u8 __step = 8; \ |
| \ |
| __timeout = ktime_add_us(ktime_get(), timeout_us); \ |
| might_sleep_if(sleep_us); \ |
| for (;;) { \ |
| /* Verify we read updates done by other cores or by device */ \ |
| mb(); \ |
| (val) = *((u32 *)(addr)); \ |
| if (mem_written_by_device) \ |
| (val) = le32_to_cpu(*(__le32 *) &(val)); \ |
| if (cond) \ |
| break; \ |
| if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ |
| (val) = *((u32 *)(addr)); \ |
| if (mem_written_by_device) \ |
| (val) = le32_to_cpu(*(__le32 *) &(val)); \ |
| break; \ |
| } \ |
| __sleep_step_us = sleep_us >> __step; \ |
| if (__sleep_step_us) \ |
| usleep_range((__sleep_step_us >> 2) + 1, __sleep_step_us); \ |
| __step >>= 1; \ |
| } \ |
| (cond) ? 0 : -ETIMEDOUT; \ |
| }) |
| |
| #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ |
| ({ \ |
| struct user_mapped_block *p = blk; \ |
| \ |
| p->address = base; \ |
| p->size = sz; \ |
| }) |
| |
| #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ |
| ({ \ |
| usr_intr.hdev = hdev; \ |
| usr_intr.interrupt_id = intr_id; \ |
| usr_intr.type = intr_type; \ |
| INIT_LIST_HEAD(&usr_intr.wait_list_head); \ |
| spin_lock_init(&usr_intr.wait_list_lock); \ |
| INIT_LIST_HEAD(&usr_intr.ts_list_head); \ |
| spin_lock_init(&usr_intr.ts_list_lock); \ |
| }) |
| |
| struct hwmon_chip_info; |
| |
| /** |
| * struct hl_device_reset_work - reset work wrapper. |
| * @reset_work: reset work to be done. |
| * @hdev: habanalabs device structure. |
| * @flags: reset flags. |
| */ |
| struct hl_device_reset_work { |
| struct delayed_work reset_work; |
| struct hl_device *hdev; |
| u32 flags; |
| }; |
| |
| /** |
| * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident |
| * page-table internal information. |
| * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for |
| * allocating hops. |
| * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. |
| */ |
| struct hl_mmu_hr_priv { |
| struct gen_pool *mmu_pgt_pool; |
| struct pgt_info *mmu_asid_hop0; |
| }; |
| |
| /** |
| * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident |
| * page-table internal information. |
| * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. |
| * @mmu_shadow_hop0: shadow array of hop0 tables. |
| */ |
| struct hl_mmu_dr_priv { |
| struct gen_pool *mmu_pgt_pool; |
| void *mmu_shadow_hop0; |
| }; |
| |
| /** |
| * struct hl_mmu_priv - used for holding per-device mmu internal information. |
| * @dr: information on the device-resident MMU, when exists. |
| * @hr: information on the host-resident MMU, when exists. |
| */ |
| struct hl_mmu_priv { |
| struct hl_mmu_dr_priv dr; |
| struct hl_mmu_hr_priv hr; |
| }; |
| |
| /** |
| * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry |
| * that was created in order to translate a virtual address to a |
| * physical one. |
| * @hop_addr: The address of the hop. |
| * @hop_pte_addr: The address of the hop entry. |
| * @hop_pte_val: The value in the hop entry. |
| */ |
| struct hl_mmu_per_hop_info { |
| u64 hop_addr; |
| u64 hop_pte_addr; |
| u64 hop_pte_val; |
| }; |
| |
| /** |
| * struct hl_mmu_hop_info - A structure describing the TLB hops and their |
| * hop-entries that were created in order to translate a virtual address to a |
| * physical one. |
| * @scrambled_vaddr: The value of the virtual address after scrambling. This |
| * address replaces the original virtual-address when mapped |
| * in the MMU tables. |
| * @unscrambled_paddr: The un-scrambled physical address. |
| * @hop_info: Array holding the per-hop information used for the translation. |
| * @used_hops: The number of hops used for the translation. |
| * @range_type: virtual address range type. |
| */ |
| struct hl_mmu_hop_info { |
| u64 scrambled_vaddr; |
| u64 unscrambled_paddr; |
| struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; |
| u32 used_hops; |
| enum hl_va_range_type range_type; |
| }; |
| |
| /** |
| * struct hl_hr_mmu_funcs - Device related host resident MMU functions. |
| * @get_hop0_pgt_info: get page table info structure for HOP0. |
| * @get_pgt_info: get page table info structure for HOP other than HOP0. |
| * @add_pgt_info: add page table info structure to hash. |
| * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. |
| */ |
| struct hl_hr_mmu_funcs { |
| struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); |
| struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); |
| void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); |
| int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, |
| struct hl_mmu_hop_info *hops, |
| u64 virt_addr, bool *is_huge); |
| }; |
| |
| /** |
| * struct hl_mmu_funcs - Device related MMU functions. |
| * @init: initialize the MMU module. |
| * @fini: release the MMU module. |
| * @ctx_init: Initialize a context for using the MMU module. |
| * @ctx_fini: disable a ctx from using the mmu module. |
| * @map: maps a virtual address to physical address for a context. |
| * @unmap: unmap a virtual address of a context. |
| * @flush: flush all writes from all cores to reach device MMU. |
| * @swap_out: marks all mapping of the given context as swapped out. |
| * @swap_in: marks all mapping of the given context as swapped in. |
| * @get_tlb_info: returns the list of hops and hop-entries used that were |
| * created in order to translate the giver virtual address to a |
| * physical one. |
| * @hr_funcs: functions specific to host resident MMU. |
| */ |
| struct hl_mmu_funcs { |
| int (*init)(struct hl_device *hdev); |
| void (*fini)(struct hl_device *hdev); |
| int (*ctx_init)(struct hl_ctx *ctx); |
| void (*ctx_fini)(struct hl_ctx *ctx); |
| int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, |
| bool is_dram_addr); |
| int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); |
| void (*flush)(struct hl_ctx *ctx); |
| void (*swap_out)(struct hl_ctx *ctx); |
| void (*swap_in)(struct hl_ctx *ctx); |
| int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); |
| struct hl_hr_mmu_funcs hr_funcs; |
| }; |
| |
| /** |
| * struct hl_prefetch_work - prefetch work structure handler |
| * @prefetch_work: actual work struct. |
| * @ctx: compute context. |
| * @va: virtual address to pre-fetch. |
| * @size: pre-fetch size. |
| * @flags: operation flags. |
| * @asid: ASID for maintenance operation. |
| */ |
| struct hl_prefetch_work { |
| struct work_struct prefetch_work; |
| struct hl_ctx *ctx; |
| u64 va; |
| u64 size; |
| u32 flags; |
| u32 asid; |
| }; |
| |
| /* |
| * number of user contexts allowed to call wait_for_multi_cs ioctl in |
| * parallel |
| */ |
| #define MULTI_CS_MAX_USER_CTX 2 |
| |
| /** |
| * struct multi_cs_completion - multi CS wait completion. |
| * @completion: completion of any of the CS in the list |
| * @lock: spinlock for the completion structure |
| * @timestamp: timestamp for the multi-CS completion |
| * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS |
| * is waiting |
| * @used: 1 if in use, otherwise 0 |
| */ |
| struct multi_cs_completion { |
| struct completion completion; |
| spinlock_t lock; |
| s64 timestamp; |
| u32 stream_master_qid_map; |
| u8 used; |
| }; |
| |
| /** |
| * struct multi_cs_data - internal data for multi CS call |
| * @ctx: pointer to the context structure |
| * @fence_arr: array of fences of all CSs |
| * @seq_arr: array of CS sequence numbers |
| * @timeout_jiffies: timeout in jiffies for waiting for CS to complete |
| * @timestamp: timestamp of first completed CS |
| * @wait_status: wait for CS status |
| * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) |
| * @arr_len: fence_arr and seq_arr array length |
| * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) |
| * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. |
| */ |
| struct multi_cs_data { |
| struct hl_ctx *ctx; |
| struct hl_fence **fence_arr; |
| u64 *seq_arr; |
| s64 timeout_jiffies; |
| s64 timestamp; |
| long wait_status; |
| u32 completion_bitmap; |
| u8 arr_len; |
| u8 gone_cs; |
| u8 update_ts; |
| }; |
| |
| /** |
| * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp |
| * @start: timestamp taken when 'start' event is received in driver |
| * @end: timestamp taken when 'end' event is received in driver |
| */ |
| struct hl_clk_throttle_timestamp { |
| ktime_t start; |
| ktime_t end; |
| }; |
| |
| /** |
| * struct hl_clk_throttle - keeps current/last clock throttling timestamps |
| * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER |
| * index 1 refers to THERMAL |
| * @lock: protects this structure as it can be accessed from both event queue |
| * context and info_ioctl context |
| * @current_reason: bitmask represents the current clk throttling reasons |
| * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load |
| */ |
| struct hl_clk_throttle { |
| struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; |
| struct mutex lock; |
| u32 current_reason; |
| u32 aggregated_reason; |
| }; |
| |
| /** |
| * struct user_mapped_block - describes a hw block allowed to be mmapped by user |
| * @address: physical HW block address |
| * @size: allowed size for mmap |
| */ |
| struct user_mapped_block { |
| u32 address; |
| u32 size; |
| }; |
| |
| /** |
| * struct cs_timeout_info - info of last CS timeout occurred. |
| * @timestamp: CS timeout timestamp. |
| * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, |
| * so the first (root cause) CS timeout will not be overwritten. |
| * @seq: CS timeout sequence number. |
| */ |
| struct cs_timeout_info { |
| ktime_t timestamp; |
| atomic_t write_enable; |
| u64 seq; |
| }; |
| |
| #define MAX_QMAN_STREAMS_INFO 4 |
| #define OPCODE_INFO_MAX_ADDR_SIZE 8 |
| /** |
| * struct undefined_opcode_info - info about last undefined opcode error |
| * @timestamp: timestamp of the undefined opcode error |
| * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ |
| * entries. In case all streams array entries are |
| * filled with values, it means the execution was in Lower-CP. |
| * @cq_addr: the address of the current handled command buffer |
| * @cq_size: the size of the current handled command buffer |
| * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. |
| * should be equal to 1 in case of undefined opcode |
| * in Upper-CP (specific stream) and equal to 4 in case |
| * of undefined opcode in Lower-CP. |
| * @engine_id: engine-id that the error occurred on |
| * @stream_id: the stream id the error occurred on. In case the stream equals to |
| * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. |
| * @write_enable: if set, writing to undefined opcode parameters in the structure |
| * is enable so the first (root cause) undefined opcode will not be |
| * overwritten. |
| */ |
| struct undefined_opcode_info { |
| ktime_t timestamp; |
| u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; |
| u64 cq_addr; |
| u32 cq_size; |
| u32 cb_addr_streams_len; |
| u32 engine_id; |
| u32 stream_id; |
| bool write_enable; |
| }; |
| |
| /** |
| * struct page_fault_info - page fault information. |
| * @page_fault: holds information collected during a page fault. |
| * @user_mappings: buffer containing user mappings. |
| * @num_of_user_mappings: number of user mappings. |
| * @page_fault_detected: if set as 1, then a page-fault was discovered for the |
| * first time after the driver has finished booting-up. |
| * Since we're looking for the page-fault's root cause, |
| * we don't care of the others that might follow it- |
| * so once changed to 1, it will remain that way. |
| * @page_fault_info_available: indicates that a page fault info is now available. |
| */ |
| struct page_fault_info { |
| struct hl_page_fault_info page_fault; |
| struct hl_user_mapping *user_mappings; |
| u64 num_of_user_mappings; |
| atomic_t page_fault_detected; |
| bool page_fault_info_available; |
| }; |
| |
| /** |
| * struct razwi_info - RAZWI information. |
| * @razwi: holds information collected during a RAZWI |
| * @razwi_detected: if set as 1, then a RAZWI was discovered for the |
| * first time after the driver has finished booting-up. |
| * Since we're looking for the RAZWI's root cause, |
| * we don't care of the others that might follow it- |
| * so once changed to 1, it will remain that way. |
| * @razwi_info_available: indicates that a RAZWI info is now available. |
| */ |
| struct razwi_info { |
| struct hl_info_razwi_event razwi; |
| atomic_t razwi_detected; |
| bool razwi_info_available; |
| }; |
| |
| /** |
| * struct hw_err_info - HW error information. |
| * @event: holds information on the event. |
| * @event_detected: if set as 1, then a HW event was discovered for the |
| * first time after the driver has finished booting-up. |
| * currently we assume that only fatal events (that require hard-reset) are |
| * reported so we don't care of the others that might follow it. |
| * so once changed to 1, it will remain that way. |
| * TODO: support multiple events. |
| * @event_info_available: indicates that a HW event info is now available. |
| */ |
| struct hw_err_info { |
| struct hl_info_hw_err_event event; |
| atomic_t event_detected; |
| bool event_info_available; |
| }; |
| |
| /** |
| * struct fw_err_info - FW error information. |
| * @event: holds information on the event. |
| * @event_detected: if set as 1, then a FW event was discovered for the |
| * first time after the driver has finished booting-up. |
| * currently we assume that only fatal events (that require hard-reset) are |
| * reported so we don't care of the others that might follow it. |
| * so once changed to 1, it will remain that way. |
| * TODO: support multiple events. |
| * @event_info_available: indicates that a HW event info is now available. |
| */ |
| struct fw_err_info { |
| struct hl_info_fw_err_event event; |
| atomic_t event_detected; |
| bool event_info_available; |
| }; |
| |
| /** |
| * struct engine_err_info - engine error information. |
| * @event: holds information on the event. |
| * @event_detected: if set as 1, then an engine event was discovered for the |
| * first time after the driver has finished booting-up. |
| * @event_info_available: indicates that an engine event info is now available. |
| */ |
| struct engine_err_info { |
| struct hl_info_engine_err_event event; |
| atomic_t event_detected; |
| bool event_info_available; |
| }; |
| |
| |
| /** |
| * struct hl_error_info - holds information collected during an error. |
| * @cs_timeout: CS timeout error information. |
| * @razwi_info: RAZWI information. |
| * @undef_opcode: undefined opcode information. |
| * @page_fault_info: page fault information. |
| * @hw_err: (fatal) hardware error information. |
| * @fw_err: firmware error information. |
| * @engine_err: engine error information. |
| */ |
| struct hl_error_info { |
| struct cs_timeout_info cs_timeout; |
| struct razwi_info razwi_info; |
| struct undefined_opcode_info undef_opcode; |
| struct page_fault_info page_fault_info; |
| struct hw_err_info hw_err; |
| struct fw_err_info fw_err; |
| struct engine_err_info engine_err; |
| }; |
| |
| /** |
| * struct hl_reset_info - holds current device reset information. |
| * @lock: lock to protect critical reset flows. |
| * @compute_reset_cnt: number of compute resets since the driver was loaded. |
| * @hard_reset_cnt: number of hard resets since the driver was loaded. |
| * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, |
| * here we hold the hard reset flags. |
| * @in_reset: is device in reset flow. |
| * @in_compute_reset: Device is currently in reset but not in hard-reset. |
| * @needs_reset: true if reset_on_lockup is false and device should be reset |
| * due to lockup. |
| * @hard_reset_pending: is there a hard reset work pending. |
| * @curr_reset_cause: saves an enumerated reset cause when a hard reset is |
| * triggered, and cleared after it is shared with preboot. |
| * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden |
| * with a new value on next reset |
| * @reset_trigger_repeated: set if device reset is triggered more than once with |
| * same cause. |
| * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to |
| * complete instead. |
| * @watchdog_active: true if a device release watchdog work is scheduled. |
| */ |
| struct hl_reset_info { |
| spinlock_t lock; |
| u32 compute_reset_cnt; |
| u32 hard_reset_cnt; |
| u32 hard_reset_schedule_flags; |
| u8 in_reset; |
| u8 in_compute_reset; |
| u8 needs_reset; |
| u8 hard_reset_pending; |
| u8 curr_reset_cause; |
| u8 prev_reset_trigger; |
| u8 reset_trigger_repeated; |
| u8 skip_reset_on_timeout; |
| u8 watchdog_active; |
| }; |
| |
| /** |
| * struct eq_heartbeat_debug_info - stores debug info to be used upon heartbeat failure. |
| * @last_pq_heartbeat_ts: timestamp of the last test packet that was sent to FW. |
| * This packet is the trigger in FW to send the EQ heartbeat event. |
| * @last_eq_heartbeat_ts: timestamp of the last EQ heartbeat event that was received from FW. |
| * @heartbeat_event_counter: number of heartbeat events received. |
| * @cpu_queue_id: used to read the queue pi/ci |
| */ |
| struct eq_heartbeat_debug_info { |
| time64_t last_pq_heartbeat_ts; |
| time64_t last_eq_heartbeat_ts; |
| u32 heartbeat_event_counter; |
| u32 cpu_queue_id; |
| }; |
| |
| /** |
| * struct hl_device - habanalabs device structure. |
| * @pdev: pointer to PCI device, can be NULL in case of simulator device. |
| * @pcie_bar_phys: array of available PCIe bars physical addresses. |
| * (required only for PCI address match mode) |
| * @pcie_bar: array of available PCIe bars virtual addresses. |
| * @rmmio: configuration area address on SRAM. |
| * @drm: related DRM device. |
| * @cdev_ctrl: char device for control operations only (INFO IOCTL) |
| * @dev: related kernel basic device structure. |
| * @dev_ctrl: related kernel device structure for the control device |
| * @work_heartbeat: delayed work for CPU-CP is-alive check. |
| * @device_reset_work: delayed work which performs hard reset |
| * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release |
| * device upon certain error cases. |
| * @asic_name: ASIC specific name. |
| * @asic_type: ASIC specific type. |
| * @completion_queue: array of hl_cq. |
| * @user_interrupt: array of hl_user_interrupt. upon the corresponding user |
| * interrupt, driver will monitor the list of fences |
| * registered to this interrupt. |
| * @tpc_interrupt: single TPC interrupt for all TPCs. |
| * @unexpected_error_interrupt: single interrupt for unexpected user error indication. |
| * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. |
| * upon any user CQ interrupt, driver will monitor the |
| * list of fences registered to this common structure. |
| * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. |
| * @shadow_cs_queue: pointer to a shadow queue that holds pointers to |
| * outstanding command submissions. |
| * @cq_wq: work queues of completion queues for executing work in process |
| * context. |
| * @eq_wq: work queue of event queue for executing work in process context. |
| * @cs_cmplt_wq: work queue of CS completions for executing work in process |
| * context. |
| * @ts_free_obj_wq: work queue for timestamp registration objects release. |
| * @prefetch_wq: work queue for MMU pre-fetch operations. |
| * @reset_wq: work queue for device reset procedure. |
| * @kernel_ctx: Kernel driver context structure. |
| * @kernel_queues: array of hl_hw_queue. |
| * @cs_mirror_list: CS mirror list for TDR. |
| * @cs_mirror_lock: protects cs_mirror_list. |
| * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. |
| * @event_queue: event queue for IRQ from CPU-CP. |
| * @dma_pool: DMA pool for small allocations. |
| * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. |
| * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. |
| * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. |
| * @asid_bitmap: holds used/available ASIDs. |
| * @asid_mutex: protects asid_bitmap. |
| * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. |
| * @debug_lock: protects critical section of setting debug mode for device |
| * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the |
| * page tables are per context, the invalidation h/w is per MMU. |
| * Therefore, we can't allow multiple contexts (we only have two, |
| * user and kernel) to access the invalidation h/w at the same time. |
| * In addition, any change to the PGT, modifying the MMU hash or |
| * walking the PGT requires talking this lock. |
| * @asic_prop: ASIC specific immutable properties. |
| * @asic_funcs: ASIC specific functions. |
| * @asic_specific: ASIC specific information to use only from ASIC files. |
| * @vm: virtual memory manager for MMU. |
| * @hwmon_dev: H/W monitor device. |
| * @hl_chip_info: ASIC's sensors information. |
| * @device_status_description: device status description. |
| * @hl_debugfs: device's debugfs manager. |
| * @cb_pool: list of pre allocated CBs. |
| * @cb_pool_lock: protects the CB pool. |
| * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. |
| * @internal_cb_pool_dma_addr: internal command buffer pool dma address. |
| * @internal_cb_pool: internal command buffer memory pool. |
| * @internal_cb_va_base: internal cb pool mmu virtual address base |
| * @fpriv_list: list of file private data structures. Each structure is created |
| * when a user opens the device |
| * @fpriv_ctrl_list: list of file private data structures. Each structure is created |
| * when a user opens the control device |
| * @fpriv_list_lock: protects the fpriv_list |
| * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list |
| * @aggregated_cs_counters: aggregated cs counters among all contexts |
| * @mmu_priv: device-specific MMU data. |
| * @mmu_func: device-related MMU functions. |
| * @dec: list of decoder sw instance |
| * @fw_loader: FW loader manager. |
| * @pci_mem_region: array of memory regions in the PCI |
| * @state_dump_specs: constants and dictionaries needed to dump system state. |
| * @multi_cs_completion: array of multi-CS completion. |
| * @clk_throttling: holds information about current/previous clock throttling events |
| * @captured_err_info: holds information about errors. |
| * @reset_info: holds current device reset information. |
| * @heartbeat_debug_info: counters used to debug heartbeat failures. |
| * @irq_affinity_mask: mask of available CPU cores for user and decoder interrupt handling. |
| * @stream_master_qid_arr: pointer to array with QIDs of master streams. |
| * @fw_inner_major_ver: the major of current loaded preboot inner version. |
| * @fw_inner_minor_ver: the minor of current loaded preboot inner version. |
| * @fw_sw_major_ver: the major of current loaded preboot SW version. |
| * @fw_sw_minor_ver: the minor of current loaded preboot SW version. |
| * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version. |
| * @dram_used_mem: current DRAM memory consumption. |
| * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram |
| * @timeout_jiffies: device CS timeout value. |
| * @max_power: the max power of the device, as configured by the sysadmin. This |
| * value is saved so in case of hard-reset, the driver will restore |
| * this value and update the F/W after the re-initialization |
| * @boot_error_status_mask: contains a mask of the device boot error status. |
| * Each bit represents a different error, according to |
| * the defines in hl_boot_if.h. If the bit is cleared, |
| * the error will be ignored by the driver during |
| * device initialization. Mainly used to debug and |
| * workaround firmware bugs |
| * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. |
| * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. |
| * @last_successful_open_jif: timestamp (jiffies) of the last successful |
| * device open. |
| * @last_open_session_duration_jif: duration (jiffies) of the last device open |
| * session. |
| * @open_counter: number of successful device open operations. |
| * @fw_poll_interval_usec: FW status poll interval in usec. |
| * used for CPU boot status |
| * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. |
| * used for COMMs protocols cmds(COMMS_STS_*) |
| * @dram_binning: contains mask of drams that is received from the f/w which indicates which |
| * drams are binned-out |
| * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which |
| * tpc engines are binned-out |
| * @dmabuf_export_cnt: number of dma-buf exporting. |
| * @card_type: Various ASICs have several card types. This indicates the card |
| * type of the current device. |
| * @major: habanalabs kernel driver major. |
| * @high_pll: high PLL profile frequency. |
| * @decoder_binning: contains mask of decoder engines that is received from the f/w which |
| * indicates which decoder engines are binned-out |
| * @edma_binning: contains mask of edma engines that is received from the f/w which |
| * indicates which edma engines are binned-out |
| * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. |
| * @rotator_binning: contains mask of rotators engines that is received from the f/w |
| * which indicates which rotator engines are binned-out(Gaudi3 and above). |
| * @id: device minor. |
| * @cdev_idx: char device index. |
| * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit |
| * addresses. |
| * @is_in_dram_scrub: true if dram scrub operation is on going. |
| * @disabled: is device disabled. |
| * @late_init_done: is late init stage was done during initialization. |
| * @hwmon_initialized: is H/W monitor sensors was initialized. |
| * @reset_on_lockup: true if a reset should be done in case of stuck CS, false |
| * otherwise. |
| * @dram_default_page_mapping: is DRAM default page mapping enabled. |
| * @memory_scrub: true to perform device memory scrub in various locations, |
| * such as context-switch, context close, page free, etc. |
| * @pmmu_huge_range: is a different virtual addresses range used for PMMU with |
| * huge pages. |
| * @init_done: is the initialization of the device done. |
| * @device_cpu_disabled: is the device CPU disabled (due to timeouts) |
| * @in_debug: whether the device is in a state where the profiling/tracing infrastructure |
| * can be used. This indication is needed because in some ASICs we need to do |
| * specific operations to enable that infrastructure. |
| * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created. |
| * @stop_on_err: true if engines should stop on error. |
| * @supports_sync_stream: is sync stream supported. |
| * @sync_stream_queue_idx: helper index for sync stream queues initialization. |
| * @collective_mon_idx: helper index for collective initialization |
| * @supports_coresight: is CoreSight supported. |
| * @supports_cb_mapping: is mapping a CB to the device's MMU supported. |
| * @process_kill_trial_cnt: number of trials reset thread tried killing |
| * user processes |
| * @device_fini_pending: true if device_fini was called and might be |
| * waiting for the reset thread to finish |
| * @supports_staged_submission: true if staged submissions are supported |
| * @device_cpu_is_halted: Flag to indicate whether the device CPU was already |
| * halted. We can't halt it again because the COMMS |
| * protocol will throw an error. Relevant only for |
| * cases where Linux was not loaded to device CPU |
| * @supports_wait_for_multi_cs: true if wait for multi CS is supported |
| * @is_compute_ctx_active: Whether there is an active compute context executing. |
| * @compute_ctx_in_release: true if the current compute context is being released. |
| * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. |
| * @reset_upon_device_release: reset the device when the user closes the file descriptor of the |
| * device. |
| * @supports_ctx_switch: true if a ctx switch is required upon first submission. |
| * @support_preboot_binning: true if we support read binning info from preboot. |
| * @eq_heartbeat_received: indication that eq heartbeat event has received from FW. |
| * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. |
| * @fw_components: Controls which f/w components to load to the device. There are multiple f/w |
| * stages and sometimes we want to stop at a certain stage. Used only for testing. |
| * @mmu_disable: Disable the device MMU(s). Used only for testing. |
| * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. |
| * @pldm: Whether we are running in Palladium environment. Used only for testing. |
| * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from |
| * the f/w. Used only for testing. |
| * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. |
| * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. |
| * Used only for testing. |
| * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies |
| * that the f/w is always alive. Used only for testing. |
| */ |
| struct hl_device { |
| struct pci_dev *pdev; |
| u64 pcie_bar_phys[HL_PCI_NUM_BARS]; |
| void __iomem *pcie_bar[HL_PCI_NUM_BARS]; |
| void __iomem *rmmio; |
| struct drm_device drm; |
| struct cdev cdev_ctrl; |
| struct device *dev; |
| struct device *dev_ctrl; |
| struct delayed_work work_heartbeat; |
| struct hl_device_reset_work device_reset_work; |
| struct hl_device_reset_work device_release_watchdog_work; |
| char asic_name[HL_STR_MAX]; |
| char status[HL_DEV_STS_MAX][HL_STR_MAX]; |
| enum hl_asic_type asic_type; |
| struct hl_cq *completion_queue; |
| struct hl_user_interrupt *user_interrupt; |
| struct hl_user_interrupt tpc_interrupt; |
| struct hl_user_interrupt unexpected_error_interrupt; |
| struct hl_user_interrupt common_user_cq_interrupt; |
| struct hl_user_interrupt common_decoder_interrupt; |
| struct hl_cs **shadow_cs_queue; |
| struct workqueue_struct **cq_wq; |
| struct workqueue_struct *eq_wq; |
| struct workqueue_struct *cs_cmplt_wq; |
| struct workqueue_struct *ts_free_obj_wq; |
| struct workqueue_struct *prefetch_wq; |
| struct workqueue_struct *reset_wq; |
| struct hl_ctx *kernel_ctx; |
| struct hl_hw_queue *kernel_queues; |
| struct list_head cs_mirror_list; |
| spinlock_t cs_mirror_lock; |
| struct hl_mem_mgr kernel_mem_mgr; |
| struct hl_eq event_queue; |
| struct dma_pool *dma_pool; |
| void *cpu_accessible_dma_mem; |
| dma_addr_t cpu_accessible_dma_address; |
| struct gen_pool *cpu_accessible_dma_pool; |
| unsigned long *asid_bitmap; |
| struct mutex asid_mutex; |
| struct mutex send_cpu_message_lock; |
| struct mutex debug_lock; |
| struct mutex mmu_lock; |
| struct asic_fixed_properties asic_prop; |
| const struct hl_asic_funcs *asic_funcs; |
| void *asic_specific; |
| struct hl_vm vm; |
| struct device *hwmon_dev; |
| struct hwmon_chip_info *hl_chip_info; |
| |
| struct hl_dbg_device_entry hl_debugfs; |
| |
| struct list_head cb_pool; |
| spinlock_t cb_pool_lock; |
| |
| void *internal_cb_pool_virt_addr; |
| dma_addr_t internal_cb_pool_dma_addr; |
| struct gen_pool *internal_cb_pool; |
| u64 internal_cb_va_base; |
| |
| struct list_head fpriv_list; |
| struct list_head fpriv_ctrl_list; |
| struct mutex fpriv_list_lock; |
| struct mutex fpriv_ctrl_list_lock; |
| |
| struct hl_cs_counters_atomic aggregated_cs_counters; |
| |
| struct hl_mmu_priv mmu_priv; |
| struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; |
| |
| struct hl_dec *dec; |
| |
| struct fw_load_mgr fw_loader; |
| |
| struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; |
| |
| struct hl_state_dump_specs state_dump_specs; |
| |
| struct multi_cs_completion multi_cs_completion[ |
| MULTI_CS_MAX_USER_CTX]; |
| struct hl_clk_throttle clk_throttling; |
| struct hl_error_info captured_err_info; |
| |
| struct hl_reset_info reset_info; |
| |
| struct eq_heartbeat_debug_info heartbeat_debug_info; |
| |
| cpumask_t irq_affinity_mask; |
| |
| u32 *stream_master_qid_arr; |
| u32 fw_inner_major_ver; |
| u32 fw_inner_minor_ver; |
| u32 fw_sw_major_ver; |
| u32 fw_sw_minor_ver; |
| u32 fw_sw_sub_minor_ver; |
| atomic64_t dram_used_mem; |
| u64 memory_scrub_val; |
| u64 timeout_jiffies; |
| u64 max_power; |
| u64 boot_error_status_mask; |
| u64 dram_pci_bar_start; |
| u64 last_successful_open_jif; |
| u64 last_open_session_duration_jif; |
| u64 open_counter; |
| u64 fw_poll_interval_usec; |
| ktime_t last_successful_open_ktime; |
| u64 fw_comms_poll_interval_usec; |
| u64 dram_binning; |
| u64 tpc_binning; |
| atomic_t dmabuf_export_cnt; |
| enum cpucp_card_types card_type; |
| u32 major; |
| u32 high_pll; |
| u32 decoder_binning; |
| u32 edma_binning; |
| u32 device_release_watchdog_timeout_sec; |
| u32 rotator_binning; |
| u16 id; |
| u16 cdev_idx; |
| u16 cpu_pci_msb_addr; |
| u8 is_in_dram_scrub; |
| u8 disabled; |
| u8 late_init_done; |
| u8 hwmon_initialized; |
| u8 reset_on_lockup; |
| u8 dram_default_page_mapping; |
| u8 memory_scrub; |
| u8 pmmu_huge_range; |
| u8 init_done; |
| u8 device_cpu_disabled; |
| u8 in_debug; |
| u8 cdev_sysfs_debugfs_created; |
| u8 stop_on_err; |
| u8 supports_sync_stream; |
| u8 sync_stream_queue_idx; |
| u8 collective_mon_idx; |
| u8 supports_coresight; |
| u8 supports_cb_mapping; |
| u8 process_kill_trial_cnt; |
| u8 device_fini_pending; |
| u8 supports_staged_submission; |
| u8 device_cpu_is_halted; |
| u8 supports_wait_for_multi_cs; |
| u8 stream_master_qid_arr_size; |
| u8 is_compute_ctx_active; |
| u8 compute_ctx_in_release; |
| u8 supports_mmu_prefetch; |
| u8 reset_upon_device_release; |
| u8 supports_ctx_switch; |
| u8 support_preboot_binning; |
| u8 eq_heartbeat_received; |
| |
| /* Parameters for bring-up to be upstreamed */ |
| u64 nic_ports_mask; |
| u64 fw_components; |
| u8 mmu_disable; |
| u8 cpu_queues_enable; |
| u8 pldm; |
| u8 hard_reset_on_fw_events; |
| u8 bmc_enable; |
| u8 reset_on_preboot_fail; |
| u8 heartbeat; |
| }; |
| |
| /* Retrieve PCI device name in case of a PCI device or dev name in simulator */ |
| #define HL_DEV_NAME(hdev) \ |
| ((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE") |
| |
| /** |
| * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure |
| * @refcount: refcount used to protect removing this id when several |
| * wait cs are used to wait of the reserved encaps signals. |
| * @hdev: pointer to habanalabs device structure. |
| * @hw_sob: pointer to H/W SOB used in the reservation. |
| * @ctx: pointer to the user's context data structure |
| * @cs_seq: staged cs sequence which contains encapsulated signals |
| * @id: idr handler id to be used to fetch the handler info |
| * @q_idx: stream queue index |
| * @pre_sob_val: current SOB value before reservation |
| * @count: signals number |
| */ |
| struct hl_cs_encaps_sig_handle { |
| struct kref refcount; |
| struct hl_device *hdev; |
| struct hl_hw_sob *hw_sob; |
| struct hl_ctx *ctx; |
| u64 cs_seq; |
| u32 id; |
| u32 q_idx; |
| u32 pre_sob_val; |
| u32 count; |
| }; |
| |
| /** |
| * struct hl_info_fw_err_info - firmware error information structure |
| * @err_type: The type of error detected (or reported). |
| * @event_mask: Pointer to the event mask to be modified with the detected error flag |
| * (can be NULL) |
| * @event_id: The id of the event that reported the error |
| * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). |
| */ |
| struct hl_info_fw_err_info { |
| enum hl_info_fw_err_type err_type; |
| u64 *event_mask; |
| u16 event_id; |
| }; |
| |
| /* |
| * IOCTLs |
| */ |
| |
| /** |
| * typedef hl_ioctl_t - typedef for ioctl function in the driver |
| * @hpriv: pointer to the FD's private data, which contains state of |
| * user process |
| * @data: pointer to the input/output arguments structure of the IOCTL |
| * |
| * Return: 0 for success, negative value for error |
| */ |
| typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); |
| |
| /** |
| * struct hl_ioctl_desc - describes an IOCTL entry of the driver. |
| * @cmd: the IOCTL code as created by the kernel macros. |
| * @func: pointer to the driver's function that should be called for this IOCTL. |
| */ |
| struct hl_ioctl_desc { |
| unsigned int cmd; |
| hl_ioctl_t *func; |
| }; |
| |
| /* |
| * Kernel module functions that can be accessed by entire module |
| */ |
| |
| /** |
| * hl_get_sg_info() - get number of pages and the DMA address from SG list. |
| * @sg: the SG list. |
| * @dma_addr: pointer to DMA address to return. |
| * |
| * Calculate the number of consecutive pages described by the SG list. Take the |
| * offset of the address in the first page, add to it the length and round it up |
| * to the number of needed pages. |
| */ |
| static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) |
| { |
| *dma_addr = sg_dma_address(sg); |
| |
| return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + |
| (PAGE_SIZE - 1)) >> PAGE_SHIFT; |
| } |
| |
| /** |
| * hl_mem_area_inside_range() - Checks whether address+size are inside a range. |
| * @address: The start address of the area we want to validate. |
| * @size: The size in bytes of the area we want to validate. |
| * @range_start_address: The start address of the valid range. |
| * @range_end_address: The end address of the valid range. |
| * |
| * Return: true if the area is inside the valid range, false otherwise. |
| */ |
| static inline bool hl_mem_area_inside_range(u64 address, u64 size, |
| u64 range_start_address, u64 range_end_address) |
| { |
| u64 end_address = address + size; |
| |
| if ((address >= range_start_address) && |
| (end_address <= range_end_address) && |
| (end_address > address)) |
| return true; |
| |
| return false; |
| } |
| |
| static inline struct hl_device *to_hl_device(struct drm_device *ddev) |
| { |
| return container_of(ddev, struct hl_device, drm); |
| } |
| |
| /** |
| * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. |
| * @address: The start address of the area we want to validate. |
| * @size: The size in bytes of the area we want to validate. |
| * @range_start_address: The start address of the valid range. |
| * @range_end_address: The end address of the valid range. |
| * |
| * Return: true if the area overlaps part or all of the valid range, |
| * false otherwise. |
| */ |
| static inline bool hl_mem_area_crosses_range(u64 address, u32 size, |
| u64 range_start_address, u64 range_end_address) |
| { |
| u64 end_address = address + size - 1; |
| |
| return ((address <= range_end_address) && (range_start_address <= end_address)); |
| } |
| |
| uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); |
| void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); |
| void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); |
| void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, |
| gfp_t flag, const char *caller); |
| void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle, const char *caller); |
| void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, |
| dma_addr_t *dma_handle, const char *caller); |
| void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, |
| const char *caller); |
| int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir, const char *caller); |
| void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir, const char *caller); |
| int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir); |
| void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir); |
| int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, |
| enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); |
| int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, |
| enum debugfs_access_type acc_type); |
| int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, |
| u64 addr, u64 *val, enum debugfs_access_type acc_type); |
| |
| int hl_mmap(struct file *filp, struct vm_area_struct *vma); |
| |
| int hl_device_open(struct drm_device *drm, struct drm_file *file_priv); |
| void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv); |
| |
| int hl_device_open_ctrl(struct inode *inode, struct file *filp); |
| bool hl_device_operational(struct hl_device *hdev, |
| enum hl_device_status *status); |
| bool hl_ctrl_device_operational(struct hl_device *hdev, |
| enum hl_device_status *status); |
| enum hl_device_status hl_device_status(struct hl_device *hdev); |
| int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); |
| int hl_hw_queues_create(struct hl_device *hdev); |
| void hl_hw_queues_destroy(struct hl_device *hdev); |
| int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, |
| u32 cb_size, u64 cb_ptr); |
| void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, |
| u32 ctl, u32 len, u64 ptr); |
| int hl_hw_queue_schedule_cs(struct hl_cs *cs); |
| u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); |
| void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); |
| void hl_hw_queue_update_ci(struct hl_cs *cs); |
| void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); |
| |
| #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) |
| #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) |
| |
| int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); |
| void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); |
| int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); |
| void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); |
| void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); |
| void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); |
| void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q); |
| irqreturn_t hl_irq_handler_cq(int irq, void *arg); |
| irqreturn_t hl_irq_handler_eq(int irq, void *arg); |
| irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); |
| irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg); |
| irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); |
| irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg); |
| u32 hl_cq_inc_ptr(u32 ptr); |
| |
| int hl_asid_init(struct hl_device *hdev); |
| void hl_asid_fini(struct hl_device *hdev); |
| unsigned long hl_asid_alloc(struct hl_device *hdev); |
| void hl_asid_free(struct hl_device *hdev, unsigned long asid); |
| |
| int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); |
| void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); |
| int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); |
| void hl_ctx_do_release(struct kref *ref); |
| void hl_ctx_get(struct hl_ctx *ctx); |
| int hl_ctx_put(struct hl_ctx *ctx); |
| struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); |
| struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); |
| int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, |
| struct hl_fence **fence, u32 arr_len); |
| void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); |
| void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); |
| |
| int hl_device_init(struct hl_device *hdev); |
| void hl_device_fini(struct hl_device *hdev); |
| int hl_device_suspend(struct hl_device *hdev); |
| int hl_device_resume(struct hl_device *hdev); |
| int hl_device_reset(struct hl_device *hdev, u32 flags); |
| int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); |
| void hl_hpriv_get(struct hl_fpriv *hpriv); |
| int hl_hpriv_put(struct hl_fpriv *hpriv); |
| int hl_device_utilization(struct hl_device *hdev, u32 *utilization); |
| |
| int hl_build_hwmon_channel_info(struct hl_device *hdev, |
| struct cpucp_sensor *sensors_arr); |
| |
| void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); |
| |
| int hl_sysfs_init(struct hl_device *hdev); |
| void hl_sysfs_fini(struct hl_device *hdev); |
| |
| int hl_hwmon_init(struct hl_device *hdev); |
| void hl_hwmon_fini(struct hl_device *hdev); |
| void hl_hwmon_release_resources(struct hl_device *hdev); |
| |
| int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, |
| struct hl_ctx *ctx, u32 cb_size, bool internal_cb, |
| bool map_cb, u64 *handle); |
| int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); |
| int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); |
| struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); |
| void hl_cb_put(struct hl_cb *cb); |
| struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, |
| bool internal_cb); |
| int hl_cb_pool_init(struct hl_device *hdev); |
| int hl_cb_pool_fini(struct hl_device *hdev); |
| int hl_cb_va_pool_init(struct hl_ctx *ctx); |
| void hl_cb_va_pool_fini(struct hl_ctx *ctx); |
| |
| void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); |
| struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, |
| enum hl_queue_type queue_type, bool is_kernel_allocated_cb); |
| void hl_sob_reset_error(struct kref *ref); |
| int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); |
| void hl_fence_put(struct hl_fence *fence); |
| void hl_fences_put(struct hl_fence **fence, int len); |
| void hl_fence_get(struct hl_fence *fence); |
| void cs_get(struct hl_cs *cs); |
| bool cs_needs_completion(struct hl_cs *cs); |
| bool cs_needs_timeout(struct hl_cs *cs); |
| bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); |
| struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); |
| void hl_multi_cs_completion_init(struct hl_device *hdev); |
| u32 hl_get_active_cs_num(struct hl_device *hdev); |
| |
| void goya_set_asic_funcs(struct hl_device *hdev); |
| void gaudi_set_asic_funcs(struct hl_device *hdev); |
| void gaudi2_set_asic_funcs(struct hl_device *hdev); |
| |
| int hl_vm_ctx_init(struct hl_ctx *ctx); |
| void hl_vm_ctx_fini(struct hl_ctx *ctx); |
| |
| int hl_vm_init(struct hl_device *hdev); |
| void hl_vm_fini(struct hl_device *hdev); |
| |
| void hl_hw_block_mem_init(struct hl_ctx *ctx); |
| void hl_hw_block_mem_fini(struct hl_ctx *ctx); |
| |
| u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, |
| enum hl_va_range_type type, u64 size, u32 alignment); |
| int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, |
| u64 start_addr, u64 size); |
| int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, |
| struct hl_userptr *userptr); |
| void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); |
| void hl_userptr_delete_list(struct hl_device *hdev, |
| struct list_head *userptr_list); |
| bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, |
| struct list_head *userptr_list, |
| struct hl_userptr **userptr); |
| |
| int hl_mmu_init(struct hl_device *hdev); |
| void hl_mmu_fini(struct hl_device *hdev); |
| int hl_mmu_ctx_init(struct hl_ctx *ctx); |
| void hl_mmu_ctx_fini(struct hl_ctx *ctx); |
| int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, |
| u32 page_size, bool flush_pte); |
| int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, |
| u32 page_size, u32 *real_page_size, bool is_dram_addr); |
| int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, |
| bool flush_pte); |
| int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, |
| u64 phys_addr, u32 size); |
| int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); |
| int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); |
| int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, |
| u32 flags, u32 asid, u64 va, u64 size); |
| int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); |
| u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); |
| u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, |
| u8 hop_idx, u64 hop_addr, u64 virt_addr); |
| void hl_mmu_hr_flush(struct hl_ctx *ctx); |
| int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, |
| u64 pgt_size); |
| void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); |
| void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, |
| u32 hop_table_size); |
| u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, |
| u32 hop_table_size); |
| void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, |
| u64 val, u32 hop_table_size); |
| void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, |
| u32 hop_table_size); |
| int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, |
| u32 hop_table_size); |
| void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); |
| struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, |
| struct hl_hr_mmu_funcs *hr_func, |
| u64 curr_pte); |
| struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, |
| struct hl_hr_mmu_funcs *hr_func, |
| struct hl_mmu_properties *mmu_prop); |
| struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, |
| struct hl_mmu_hr_priv *hr_priv, |
| struct hl_hr_mmu_funcs *hr_func, |
| struct hl_mmu_properties *mmu_prop, |
| u64 curr_pte, bool *is_new_hop); |
| int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, |
| struct hl_hr_mmu_funcs *hr_func); |
| int hl_mmu_if_set_funcs(struct hl_device *hdev); |
| void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); |
| void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); |
| void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); |
| int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); |
| int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, |
| struct hl_mmu_hop_info *hops); |
| u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); |
| u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); |
| bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); |
| struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr); |
| void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr); |
| void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info); |
| u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx); |
| u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx); |
| void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val); |
| void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val); |
| void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr); |
| u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); |
| void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr); |
| int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr); |
| u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop); |
| u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx); |
| void hl_mmu_dr_flush(struct hl_ctx *ctx); |
| int hl_mmu_dr_init(struct hl_device *hdev); |
| void hl_mmu_dr_fini(struct hl_device *hdev); |
| |
| int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor); |
| int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, |
| void __iomem *dst, u32 src_offset, u32 size); |
| int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); |
| int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, |
| u16 len, u32 timeout, u64 *result); |
| int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); |
| int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, |
| size_t irq_arr_size); |
| int hl_fw_test_cpu_queue(struct hl_device *hdev); |
| void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle); |
| void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, |
| void *vaddr); |
| int hl_fw_send_heartbeat(struct hl_device *hdev); |
| int hl_fw_cpucp_info_get(struct hl_device *hdev, |
| u32 sts_boot_dev_sts0_reg, |
| u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, |
| u32 boot_err1_reg); |
| int hl_fw_cpucp_handshake(struct hl_device *hdev, |
| u32 sts_boot_dev_sts0_reg, |
| u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, |
| u32 boot_err1_reg); |
| int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); |
| int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); |
| int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, |
| struct hl_info_pci_counters *counters); |
| int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, |
| u64 *total_energy); |
| int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, |
| enum pll_index *pll_index); |
| int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, |
| u16 *pll_freq_arr); |
| int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); |
| void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); |
| void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); |
| int hl_fw_init_cpu(struct hl_device *hdev); |
| int hl_fw_wait_preboot_ready(struct hl_device *hdev); |
| int hl_fw_read_preboot_status(struct hl_device *hdev); |
| int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| enum comms_cmd cmd, unsigned int size, |
| bool wait_ok, u32 timeout); |
| int hl_fw_dram_replaced_row_get(struct hl_device *hdev, |
| struct cpucp_hbm_row_info *info); |
| int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); |
| int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); |
| int hl_fw_send_device_activity(struct hl_device *hdev, bool open); |
| int hl_fw_send_soft_reset(struct hl_device *hdev); |
| int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], |
| bool is_wc[3]); |
| int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); |
| int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); |
| int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, |
| struct hl_inbound_pci_region *pci_region); |
| int hl_pci_set_outbound_region(struct hl_device *hdev, |
| struct hl_outbound_pci_region *pci_region); |
| enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); |
| int hl_pci_init(struct hl_device *hdev); |
| void hl_pci_fini(struct hl_device *hdev); |
| |
| long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); |
| void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); |
| int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); |
| int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); |
| int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); |
| int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); |
| int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); |
| int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); |
| void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); |
| long hl_fw_get_max_power(struct hl_device *hdev); |
| void hl_fw_set_max_power(struct hl_device *hdev); |
| int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, |
| u32 nonce); |
| int hl_fw_get_dev_info_signed(struct hl_device *hdev, |
| struct cpucp_dev_info_signed *dev_info_signed, u32 nonce); |
| int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); |
| int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); |
| int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); |
| int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); |
| int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); |
| void hl_fw_set_pll_profile(struct hl_device *hdev); |
| void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); |
| void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); |
| int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, |
| dma_addr_t buff, u32 *size); |
| |
| void hw_sob_get(struct hl_hw_sob *hw_sob); |
| void hw_sob_put(struct hl_hw_sob *hw_sob); |
| void hl_encaps_release_handle_and_put_ctx(struct kref *ref); |
| void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); |
| void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, |
| struct hl_cs *cs, struct hl_cs_job *job, |
| struct hl_cs_compl *cs_cmpl); |
| |
| int hl_dec_init(struct hl_device *hdev); |
| void hl_dec_fini(struct hl_device *hdev); |
| void hl_dec_ctx_fini(struct hl_ctx *ctx); |
| |
| void hl_release_pending_user_interrupts(struct hl_device *hdev); |
| void hl_abort_waiting_for_cs_completions(struct hl_device *hdev); |
| int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, |
| struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); |
| |
| int hl_state_dump(struct hl_device *hdev); |
| const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); |
| const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, |
| struct hl_mon_state_dump *mon); |
| void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); |
| __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, |
| const char *format, ...); |
| char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); |
| const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); |
| |
| void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); |
| void hl_mem_mgr_fini(struct hl_mem_mgr *mmg, struct hl_mem_mgr_fini_stats *stats); |
| void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); |
| int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, |
| void *args); |
| struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, |
| u64 handle); |
| int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); |
| int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); |
| struct hl_mmap_mem_buf * |
| hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, |
| struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, |
| void *args); |
| __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); |
| void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, |
| u8 flags); |
| void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, |
| u8 flags, u64 *event_mask); |
| void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); |
| void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, |
| u64 *event_mask); |
| void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); |
| void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); |
| void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count); |
| void hl_enable_err_info_capture(struct hl_error_info *captured_err_info); |
| void hl_init_cpu_for_irq(struct hl_device *hdev); |
| void hl_set_irq_affinity(struct hl_device *hdev, int irq); |
| void hl_eq_heartbeat_event_handle(struct hl_device *hdev); |
| void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask); |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| int hl_debugfs_device_init(struct hl_device *hdev); |
| void hl_debugfs_device_fini(struct hl_device *hdev); |
| void hl_debugfs_add_device(struct hl_device *hdev); |
| void hl_debugfs_add_file(struct hl_fpriv *hpriv); |
| void hl_debugfs_remove_file(struct hl_fpriv *hpriv); |
| void hl_debugfs_add_cb(struct hl_cb *cb); |
| void hl_debugfs_remove_cb(struct hl_cb *cb); |
| void hl_debugfs_add_cs(struct hl_cs *cs); |
| void hl_debugfs_remove_cs(struct hl_cs *cs); |
| void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); |
| void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); |
| void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); |
| void hl_debugfs_remove_userptr(struct hl_device *hdev, |
| struct hl_userptr *userptr); |
| void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); |
| void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); |
| void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, |
| unsigned long length); |
| |
| #else |
| |
| static inline int hl_debugfs_device_init(struct hl_device *hdev) |
| { |
| return 0; |
| } |
| |
| static inline void hl_debugfs_device_fini(struct hl_device *hdev) |
| { |
| } |
| |
| static inline void hl_debugfs_add_device(struct hl_device *hdev) |
| { |
| } |
| |
| static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) |
| { |
| } |
| |
| static inline void hl_debugfs_add_cb(struct hl_cb *cb) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_cb(struct hl_cb *cb) |
| { |
| } |
| |
| static inline void hl_debugfs_add_cs(struct hl_cs *cs) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_cs(struct hl_cs *cs) |
| { |
| } |
| |
| static inline void hl_debugfs_add_job(struct hl_device *hdev, |
| struct hl_cs_job *job) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_job(struct hl_device *hdev, |
| struct hl_cs_job *job) |
| { |
| } |
| |
| static inline void hl_debugfs_add_userptr(struct hl_device *hdev, |
| struct hl_userptr *userptr) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, |
| struct hl_userptr *userptr) |
| { |
| } |
| |
| static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, |
| struct hl_ctx *ctx) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, |
| struct hl_ctx *ctx) |
| { |
| } |
| |
| static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, |
| char *data, unsigned long length) |
| { |
| } |
| |
| #endif |
| |
| /* Security */ |
| int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, |
| const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], |
| int array_size); |
| int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], |
| int mm_array_size, int offset, const u32 pb_blocks[], |
| struct hl_block_glbl_sec sgs_array[], int blocks_array_size); |
| void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], |
| struct hl_block_glbl_sec sgs_array[], u32 block_offset, |
| int array_size); |
| void hl_secure_block(struct hl_device *hdev, |
| struct hl_block_glbl_sec sgs_array[], int array_size); |
| int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, |
| u32 dcore_offset, u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, |
| const u32 *regs_array, u32 regs_array_size, u64 mask); |
| int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, |
| u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, |
| const u32 *regs_array, u32 regs_array_size); |
| int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, |
| u32 dcore_offset, u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, |
| const struct range *regs_range_array, u32 regs_range_array_size, |
| u64 mask); |
| int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, |
| u32 dcore_offset, u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, |
| const struct range *regs_range_array, |
| u32 regs_range_array_size); |
| int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, |
| u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, |
| const u32 *regs_array, u32 regs_array_size); |
| int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, |
| u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, |
| const struct range *regs_range_array, |
| u32 regs_range_array_size); |
| void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, |
| u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size); |
| void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, |
| u32 dcore_offset, u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size, u64 mask); |
| void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, |
| u32 num_instances, u32 instance_offset, |
| const u32 pb_blocks[], u32 blocks_array_size); |
| |
| /* IOCTLs */ |
| long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); |
| int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); |
| int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); |
| int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); |
| int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); |
| int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); |
| int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); |
| |
| #endif /* HABANALABSP_H_ */ |