| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include "../habanalabs.h" |
| #include "../../include/hw_ip/mmu/mmu_general.h" |
| |
| #include <linux/slab.h> |
| |
| #define MMU_V1_MAX_HOPS (MMU_HOP4 + 1) |
| |
| static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, |
| u64 *hop_addr_arr, u64 virt_addr, enum mmu_hop_num hop_idx) |
| { |
| u64 mask, shift; |
| |
| mask = mmu_prop->hop_masks[hop_idx]; |
| shift = mmu_prop->hop_shifts[hop_idx]; |
| return hop_addr_arr[hop_idx] + |
| ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); |
| } |
| |
| static int dram_default_mapping_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, |
| hop2_pte_addr, hop3_pte_addr, pte_val; |
| int rc, i, j, hop3_allocated = 0; |
| |
| if ((!prop->dram_supports_virtual_memory) || |
| (!hdev->dram_default_page_mapping) || |
| (ctx->asid == HL_KERNEL_ASID_ID)) |
| return 0; |
| |
| num_of_hop3 = prop->dram_size_for_default_page_mapping; |
| do_div(num_of_hop3, prop->dram_page_size); |
| do_div(num_of_hop3, HOP_PTE_ENTRIES_512); |
| |
| /* add hop1 and hop2 */ |
| total_hops = num_of_hop3 + 2; |
| |
| ctx->dram_default_hops = kcalloc(total_hops, HL_PTE_SIZE, GFP_KERNEL); |
| if (!ctx->dram_default_hops) |
| return -ENOMEM; |
| |
| hop0_addr = hl_mmu_dr_get_hop0_addr(ctx); |
| |
| hop1_addr = hl_mmu_dr_alloc_hop(ctx); |
| if (hop1_addr == ULLONG_MAX) { |
| dev_err(hdev->dev, "failed to alloc hop 1\n"); |
| rc = -ENOMEM; |
| goto hop1_err; |
| } |
| |
| ctx->dram_default_hops[total_hops - 1] = hop1_addr; |
| |
| hop2_addr = hl_mmu_dr_alloc_hop(ctx); |
| if (hop2_addr == ULLONG_MAX) { |
| dev_err(hdev->dev, "failed to alloc hop 2\n"); |
| rc = -ENOMEM; |
| goto hop2_err; |
| } |
| |
| ctx->dram_default_hops[total_hops - 2] = hop2_addr; |
| |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| ctx->dram_default_hops[i] = hl_mmu_dr_alloc_hop(ctx); |
| if (ctx->dram_default_hops[i] == ULLONG_MAX) { |
| dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); |
| rc = -ENOMEM; |
| goto hop3_err; |
| } |
| hop3_allocated++; |
| } |
| |
| /* need only pte 0 in hops 0 and 1 */ |
| pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| hl_mmu_dr_write_pte(ctx, hop0_addr, pte_val); |
| |
| pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| hl_mmu_dr_write_pte(ctx, hop1_addr, pte_val); |
| hl_mmu_dr_get_pte(ctx, hop1_addr); |
| |
| hop2_pte_addr = hop2_addr; |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | |
| PAGE_PRESENT_MASK; |
| hl_mmu_dr_write_pte(ctx, hop2_pte_addr, pte_val); |
| hl_mmu_dr_get_pte(ctx, hop2_addr); |
| hop2_pte_addr += HL_PTE_SIZE; |
| } |
| |
| pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | |
| LAST_MASK | PAGE_PRESENT_MASK; |
| |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| hop3_pte_addr = ctx->dram_default_hops[i]; |
| for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) { |
| hl_mmu_dr_write_final_pte(ctx, hop3_pte_addr, pte_val); |
| hl_mmu_dr_get_pte(ctx, ctx->dram_default_hops[i]); |
| hop3_pte_addr += HL_PTE_SIZE; |
| } |
| } |
| |
| hl_mmu_dr_flush(ctx); |
| |
| return 0; |
| |
| hop3_err: |
| for (i = 0 ; i < hop3_allocated ; i++) |
| hl_mmu_dr_free_hop(ctx, ctx->dram_default_hops[i]); |
| |
| hl_mmu_dr_free_hop(ctx, hop2_addr); |
| hop2_err: |
| hl_mmu_dr_free_hop(ctx, hop1_addr); |
| hop1_err: |
| kfree(ctx->dram_default_hops); |
| |
| return rc; |
| } |
| |
| static void dram_default_mapping_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, |
| hop2_pte_addr, hop3_pte_addr; |
| int i, j; |
| |
| if ((!prop->dram_supports_virtual_memory) || |
| (!hdev->dram_default_page_mapping) || |
| (ctx->asid == HL_KERNEL_ASID_ID)) |
| return; |
| |
| num_of_hop3 = prop->dram_size_for_default_page_mapping; |
| do_div(num_of_hop3, prop->dram_page_size); |
| do_div(num_of_hop3, HOP_PTE_ENTRIES_512); |
| |
| hop0_addr = hl_mmu_dr_get_hop0_addr(ctx); |
| /* add hop1 and hop2 */ |
| total_hops = num_of_hop3 + 2; |
| hop1_addr = ctx->dram_default_hops[total_hops - 1]; |
| hop2_addr = ctx->dram_default_hops[total_hops - 2]; |
| |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| hop3_pte_addr = ctx->dram_default_hops[i]; |
| for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) { |
| hl_mmu_dr_clear_pte(ctx, hop3_pte_addr); |
| hl_mmu_dr_put_pte(ctx, ctx->dram_default_hops[i]); |
| hop3_pte_addr += HL_PTE_SIZE; |
| } |
| } |
| |
| hop2_pte_addr = hop2_addr; |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| hl_mmu_dr_clear_pte(ctx, hop2_pte_addr); |
| hl_mmu_dr_put_pte(ctx, hop2_addr); |
| hop2_pte_addr += HL_PTE_SIZE; |
| } |
| |
| hl_mmu_dr_clear_pte(ctx, hop1_addr); |
| hl_mmu_dr_put_pte(ctx, hop1_addr); |
| hl_mmu_dr_clear_pte(ctx, hop0_addr); |
| |
| kfree(ctx->dram_default_hops); |
| |
| hl_mmu_dr_flush(ctx); |
| } |
| |
| /** |
| * hl_mmu_v1_ctx_init() - initialize a context for using the MMU module. |
| * @ctx: pointer to the context structure to initialize. |
| * |
| * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all |
| * page tables hops related to this context. |
| * Return: 0 on success, non-zero otherwise. |
| */ |
| static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx) |
| { |
| hash_init(ctx->mmu_shadow_hash); |
| return dram_default_mapping_init(ctx); |
| } |
| |
| /* |
| * hl_mmu_ctx_fini - disable a ctx from using the mmu module |
| * |
| * @ctx: pointer to the context structure |
| * |
| * This function does the following: |
| * - Free any pgts which were not freed yet |
| * - Free the mutex |
| * - Free DRAM default page mapping hops |
| */ |
| static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct pgt_info *pgt_info; |
| struct hlist_node *tmp; |
| int i; |
| |
| dram_default_mapping_fini(ctx); |
| |
| if (!hash_empty(ctx->mmu_shadow_hash)) |
| dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", |
| ctx->asid); |
| |
| hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { |
| dev_err_ratelimited(hdev->dev, |
| "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", |
| pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); |
| hl_mmu_dr_free_pgt_node(ctx, pgt_info); |
| } |
| } |
| |
| static int hl_mmu_v1_unmap(struct hl_ctx *ctx, |
| u64 virt_addr, bool is_dram_addr) |
| { |
| u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0; |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| bool is_huge, clear_hop3 = true; |
| int hop_idx; |
| |
| /* shifts and masks are the same in PMMU and HPMMU, use one of them */ |
| mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; |
| |
| for (hop_idx = MMU_HOP0; hop_idx < MMU_HOP4; hop_idx++) { |
| if (hop_idx == MMU_HOP0) { |
| hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx); |
| } else { |
| hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte); |
| if (hop_addr[hop_idx] == ULLONG_MAX) |
| goto not_mapped; |
| } |
| |
| hop_pte_addr[hop_idx] = |
| get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); |
| |
| curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; |
| } |
| |
| is_huge = curr_pte & mmu_prop->last_mask; |
| |
| if (is_dram_addr && !is_huge) { |
| dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); |
| return -EFAULT; |
| } |
| |
| if (!is_huge) { |
| hop_idx = MMU_HOP4; |
| hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte); |
| if (hop_addr[hop_idx] == ULLONG_MAX) |
| goto not_mapped; |
| |
| hop_pte_addr[hop_idx] = |
| get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); |
| curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; |
| clear_hop3 = false; |
| } |
| |
| if (hdev->dram_default_page_mapping && is_dram_addr) { |
| u64 default_pte = (prop->mmu_dram_default_page_addr & |
| HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | |
| PAGE_PRESENT_MASK; |
| if (curr_pte == default_pte) { |
| dev_err(hdev->dev, |
| "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", |
| virt_addr); |
| goto not_mapped; |
| } |
| |
| if (!(curr_pte & PAGE_PRESENT_MASK)) { |
| dev_err(hdev->dev, |
| "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", |
| virt_addr); |
| goto not_mapped; |
| } |
| |
| hop_idx = MMU_HOP3; |
| hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[hop_idx], default_pte); |
| hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx]); |
| } else { |
| if (!(curr_pte & PAGE_PRESENT_MASK)) |
| goto not_mapped; |
| |
| if (hop_addr[MMU_HOP4]) |
| hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP4]); |
| else |
| hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP3]); |
| |
| if (hop_addr[MMU_HOP4] && !hl_mmu_dr_put_pte(ctx, hop_addr[MMU_HOP4])) |
| clear_hop3 = true; |
| |
| if (!clear_hop3) |
| goto mapped; |
| |
| for (hop_idx = MMU_HOP3; hop_idx >= 0; hop_idx--) { |
| hl_mmu_dr_clear_pte(ctx, hop_pte_addr[hop_idx]); |
| |
| if (hop_idx == MMU_HOP0) |
| break; |
| |
| if (hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx])) |
| goto mapped; |
| } |
| } |
| |
| mapped: |
| return 0; |
| |
| not_mapped: |
| dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", |
| virt_addr); |
| |
| return -EINVAL; |
| } |
| |
| static int hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, |
| u32 page_size, bool is_dram_addr) |
| { |
| u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0; |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| bool is_huge, hop_new[MMU_V1_MAX_HOPS] = {false}; |
| int num_hops, hop_idx, prev_hop, rc = -ENOMEM; |
| |
| /* |
| * This mapping function can map a page or a huge page. For huge page |
| * there are only 3 hops rather than 4. Currently the DRAM allocation |
| * uses huge pages only but user memory could have been allocated with |
| * one of the two page sizes. Since this is a common code for all the |
| * three cases, we need this hugs page check. |
| */ |
| if (is_dram_addr) { |
| mmu_prop = &prop->dmmu; |
| is_huge = true; |
| } else if (page_size == prop->pmmu_huge.page_size) { |
| mmu_prop = &prop->pmmu_huge; |
| is_huge = true; |
| } else { |
| mmu_prop = &prop->pmmu; |
| is_huge = false; |
| } |
| |
| num_hops = is_huge ? (MMU_V1_MAX_HOPS - 1) : MMU_V1_MAX_HOPS; |
| |
| for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) { |
| if (hop_idx == MMU_HOP0) { |
| hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx); |
| } else { |
| hop_addr[hop_idx] = |
| hl_mmu_dr_get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[hop_idx]); |
| if (hop_addr[hop_idx] == ULLONG_MAX) |
| goto err; |
| } |
| |
| hop_pte_addr[hop_idx] = |
| get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); |
| curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; |
| } |
| |
| if (hdev->dram_default_page_mapping && is_dram_addr) { |
| u64 default_pte = (prop->mmu_dram_default_page_addr & |
| HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | |
| PAGE_PRESENT_MASK; |
| |
| if (curr_pte != default_pte) { |
| dev_err(hdev->dev, |
| "DRAM: mapping already exists for virt_addr 0x%llx\n", |
| virt_addr); |
| rc = -EINVAL; |
| goto err; |
| } |
| |
| for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) { |
| if (hop_new[hop_idx]) { |
| dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n"); |
| rc = -EFAULT; |
| goto err; |
| } |
| } |
| } else if (curr_pte & PAGE_PRESENT_MASK) { |
| dev_err(hdev->dev, |
| "mapping already exists for virt_addr 0x%llx\n", |
| virt_addr); |
| |
| for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) |
| dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", hop_idx, |
| *(u64 *) (uintptr_t) hop_pte_addr[hop_idx], |
| hop_pte_addr[hop_idx]); |
| |
| rc = -EINVAL; |
| goto err; |
| } |
| |
| curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
| | PAGE_PRESENT_MASK; |
| |
| hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[num_hops - 1], curr_pte); |
| |
| for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) { |
| prev_hop = hop_idx - 1; |
| |
| if (hop_new[hop_idx]) { |
| curr_pte = (hop_addr[hop_idx] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| hl_mmu_dr_write_pte(ctx, hop_pte_addr[prev_hop], curr_pte); |
| if (hop_idx != MMU_HOP1) |
| hl_mmu_dr_get_pte(ctx, hop_addr[prev_hop]); |
| } |
| } |
| |
| hl_mmu_dr_get_pte(ctx, hop_addr[num_hops - 1]); |
| |
| return 0; |
| |
| err: |
| for (hop_idx = num_hops; hop_idx > MMU_HOP0; hop_idx--) { |
| if (hop_new[hop_idx]) |
| hl_mmu_dr_free_hop(ctx, hop_addr[hop_idx]); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out |
| * |
| * @ctx: pointer to the context structure |
| * |
| */ |
| static void hl_mmu_v1_swap_out(struct hl_ctx *ctx) |
| { |
| |
| } |
| |
| /* |
| * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in |
| * |
| * @ctx: pointer to the context structure |
| * |
| */ |
| static void hl_mmu_v1_swap_in(struct hl_ctx *ctx) |
| { |
| |
| } |
| |
| static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, |
| struct hl_mmu_hop_info *hops) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge; |
| int i, used_hops; |
| |
| is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, |
| prop->dmmu.start_addr, |
| prop->dmmu.end_addr); |
| is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size, |
| prop->pmmu.start_addr, |
| prop->pmmu.end_addr); |
| is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr, |
| prop->pmmu_huge.page_size, |
| prop->pmmu_huge.start_addr, |
| prop->pmmu_huge.end_addr); |
| if (is_dram_addr) { |
| mmu_prop = &prop->dmmu; |
| is_huge = true; |
| } else if (is_pmmu_addr) { |
| mmu_prop = &prop->pmmu; |
| is_huge = false; |
| } else if (is_pmmu_h_addr) { |
| mmu_prop = &prop->pmmu_huge; |
| is_huge = true; |
| } else { |
| return -EINVAL; |
| } |
| |
| used_hops = mmu_prop->num_hops; |
| |
| /* huge pages use lesser hops */ |
| if (is_huge) |
| used_hops--; |
| |
| hops->hop_info[0].hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); |
| hops->hop_info[0].hop_pte_addr = |
| hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, |
| hops->hop_info[0].hop_addr, virt_addr); |
| hops->hop_info[0].hop_pte_val = |
| hdev->asic_funcs->read_pte(hdev, |
| hops->hop_info[0].hop_pte_addr); |
| |
| for (i = 1 ; i < used_hops ; i++) { |
| hops->hop_info[i].hop_addr = |
| hl_mmu_get_next_hop_addr(ctx, |
| hops->hop_info[i - 1].hop_pte_val); |
| if (hops->hop_info[i].hop_addr == ULLONG_MAX) |
| return -EFAULT; |
| |
| hops->hop_info[i].hop_pte_addr = |
| hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, |
| hops->hop_info[i].hop_addr, |
| virt_addr); |
| hops->hop_info[i].hop_pte_val = |
| hdev->asic_funcs->read_pte(hdev, |
| hops->hop_info[i].hop_pte_addr); |
| |
| if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) |
| return -EFAULT; |
| |
| if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) |
| break; |
| } |
| |
| /* if passed over all hops then no last hop was found */ |
| if (i == mmu_prop->num_hops) |
| return -EFAULT; |
| |
| if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) |
| return -EFAULT; |
| |
| hops->used_hops = i + 1; |
| |
| return 0; |
| } |
| |
| /* |
| * hl_mmu_v1_prepare - prepare mmu for working with mmu v1 |
| * |
| * @hdev: pointer to the device structure |
| */ |
| void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) |
| { |
| mmu->init = hl_mmu_dr_init; |
| mmu->fini = hl_mmu_dr_fini; |
| mmu->ctx_init = hl_mmu_v1_ctx_init; |
| mmu->ctx_fini = hl_mmu_v1_ctx_fini; |
| mmu->map = hl_mmu_v1_map; |
| mmu->unmap = hl_mmu_v1_unmap; |
| mmu->flush = hl_mmu_dr_flush; |
| mmu->swap_out = hl_mmu_v1_swap_out; |
| mmu->swap_in = hl_mmu_v1_swap_in; |
| mmu->get_tlb_info = hl_mmu_v1_get_tlb_info; |
| } |