| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2020-2022 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include "gaudi2P.h" |
| #include "gaudi2_masks.h" |
| #include "../include/gaudi2/gaudi2_special_blocks.h" |
| #include "../include/hw_ip/mmu/mmu_general.h" |
| #include "../include/hw_ip/mmu/mmu_v2_0.h" |
| #include "../include/gaudi2/gaudi2_packets.h" |
| #include "../include/gaudi2/gaudi2_reg_map.h" |
| #include "../include/gaudi2/gaudi2_async_ids_map_extended.h" |
| #include "../include/gaudi2/arc/gaudi2_arc_common_packets.h" |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/hwmon.h> |
| #include <linux/iommu.h> |
| |
| #define GAUDI2_DMA_POOL_BLK_SIZE SZ_256 /* 256 bytes */ |
| |
| #define GAUDI2_RESET_TIMEOUT_MSEC 2000 /* 2000ms */ |
| |
| #define GAUDI2_RESET_POLL_TIMEOUT_USEC 500000 /* 500ms */ |
| #define GAUDI2_PLDM_HRESET_TIMEOUT_MSEC 25000 /* 25s */ |
| #define GAUDI2_PLDM_SRESET_TIMEOUT_MSEC 25000 /* 25s */ |
| #define GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC 3000000 /* 3s */ |
| #define GAUDI2_RESET_POLL_CNT 3 |
| #define GAUDI2_RESET_WAIT_MSEC 1 /* 1ms */ |
| #define GAUDI2_CPU_RESET_WAIT_MSEC 100 /* 100ms */ |
| #define GAUDI2_PLDM_RESET_WAIT_MSEC 1000 /* 1s */ |
| #define GAUDI2_CB_POOL_CB_CNT 512 |
| #define GAUDI2_CB_POOL_CB_SIZE SZ_128K /* 128KB */ |
| #define GAUDI2_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */ |
| #define GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC 25000000 /* 25s */ |
| #define GAUDI2_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */ |
| #define GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC 1000000 /* 1s */ |
| |
| #define GAUDI2_ALLOC_CPU_MEM_RETRY_CNT 3 |
| |
| /* |
| * since the code already has built-in support for binning of up to MAX_FAULTY_TPCS TPCs |
| * and the code relies on that value (for array size etc..) we define another value |
| * for MAX faulty TPCs which reflects the cluster binning requirements |
| */ |
| #define MAX_CLUSTER_BINNING_FAULTY_TPCS 1 |
| #define MAX_FAULTY_XBARS 1 |
| #define MAX_FAULTY_EDMAS 1 |
| #define MAX_FAULTY_DECODERS 1 |
| |
| #define GAUDI2_TPC_FULL_MASK 0x1FFFFFF |
| #define GAUDI2_HIF_HMMU_FULL_MASK 0xFFFF |
| #define GAUDI2_DECODER_FULL_MASK 0x3FF |
| |
| #define GAUDI2_NA_EVENT_CAUSE 0xFF |
| #define GAUDI2_NUM_OF_QM_ERR_CAUSE 18 |
| #define GAUDI2_NUM_OF_LOWER_QM_ERR_CAUSE 25 |
| #define GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE 3 |
| #define GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE 14 |
| #define GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE 3 |
| #define GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE 2 |
| #define GAUDI2_NUM_OF_ROT_ERR_CAUSE 22 |
| #define GAUDI2_NUM_OF_TPC_INTR_CAUSE 31 |
| #define GAUDI2_NUM_OF_DEC_ERR_CAUSE 25 |
| #define GAUDI2_NUM_OF_MME_ERR_CAUSE 16 |
| #define GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE 7 |
| #define GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE 8 |
| #define GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE 19 |
| #define GAUDI2_NUM_OF_HBM_SEI_CAUSE 9 |
| #define GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE 3 |
| #define GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE 3 |
| #define GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE 2 |
| #define GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE 2 |
| #define GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE 2 |
| #define GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE 5 |
| |
| #define GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 10) |
| #define GAUDI2_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 200) |
| #define GAUDI2_ARB_WDT_TIMEOUT (0x1000000) |
| |
| #define GAUDI2_VDEC_TIMEOUT_USEC 10000 /* 10ms */ |
| #define GAUDI2_PLDM_VDEC_TIMEOUT_USEC (GAUDI2_VDEC_TIMEOUT_USEC * 100) |
| |
| #define KDMA_TIMEOUT_USEC USEC_PER_SEC |
| |
| #define IS_DMA_IDLE(dma_core_sts0) \ |
| (!((dma_core_sts0) & (DCORE0_EDMA0_CORE_STS0_BUSY_MASK))) |
| |
| #define IS_DMA_HALTED(dma_core_sts1) \ |
| ((dma_core_sts1) & (DCORE0_EDMA0_CORE_STS1_IS_HALT_MASK)) |
| |
| #define IS_MME_IDLE(mme_arch_sts) (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK) |
| |
| #define IS_TPC_IDLE(tpc_cfg_sts) (((tpc_cfg_sts) & (TPC_IDLE_MASK)) == (TPC_IDLE_MASK)) |
| |
| #define IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) \ |
| ((((qm_glbl_sts0) & (QM_IDLE_MASK)) == (QM_IDLE_MASK)) && \ |
| (((qm_glbl_sts1) & (QM_ARC_IDLE_MASK)) == (QM_ARC_IDLE_MASK)) && \ |
| (((qm_cgm_sts) & (CGM_IDLE_MASK)) == (CGM_IDLE_MASK))) |
| |
| #define PCIE_DEC_EN_MASK 0x300 |
| #define DEC_WORK_STATE_IDLE 0 |
| #define DEC_WORK_STATE_PEND 3 |
| #define IS_DEC_IDLE(dec_swreg15) \ |
| (((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_IDLE || \ |
| ((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_PEND) |
| |
| /* HBM MMU address scrambling parameters */ |
| #define GAUDI2_HBM_MMU_SCRM_MEM_SIZE SZ_8M |
| #define GAUDI2_HBM_MMU_SCRM_DIV_SHIFT 26 |
| #define GAUDI2_HBM_MMU_SCRM_MOD_SHIFT 0 |
| #define GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK DRAM_VA_HINT_MASK |
| #define GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR 16 |
| #define MMU_RANGE_INV_VA_LSB_SHIFT 12 |
| #define MMU_RANGE_INV_VA_MSB_SHIFT 44 |
| #define MMU_RANGE_INV_EN_SHIFT 0 |
| #define MMU_RANGE_INV_ASID_EN_SHIFT 1 |
| #define MMU_RANGE_INV_ASID_SHIFT 2 |
| |
| /* The last SPI_SEI cause bit, "burst_fifo_full", is expected to be triggered in PMMU because it has |
| * a 2 entries FIFO, and hence it is not enabled for it. |
| */ |
| #define GAUDI2_PMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 2, 0) |
| #define GAUDI2_HMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 1, 0) |
| |
| #define GAUDI2_MAX_STRING_LEN 64 |
| |
| #define GAUDI2_VDEC_MSIX_ENTRIES (GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM - \ |
| GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 1) |
| |
| #define ENGINE_ID_DCORE_OFFSET (GAUDI2_DCORE1_ENGINE_ID_EDMA_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0) |
| |
| /* RAZWI initiator coordinates */ |
| #define RAZWI_GET_AXUSER_XY(x) \ |
| ((x & 0xF8001FF0) >> 4) |
| |
| #define RAZWI_GET_AXUSER_LOW_XY(x) \ |
| ((x & 0x00001FF0) >> 4) |
| |
| #define RAZWI_INITIATOR_AXUER_L_X_SHIFT 0 |
| #define RAZWI_INITIATOR_AXUER_L_X_MASK 0x1F |
| #define RAZWI_INITIATOR_AXUER_L_Y_SHIFT 5 |
| #define RAZWI_INITIATOR_AXUER_L_Y_MASK 0xF |
| |
| #define RAZWI_INITIATOR_AXUER_H_X_SHIFT 23 |
| #define RAZWI_INITIATOR_AXUER_H_X_MASK 0x1F |
| |
| #define RAZWI_INITIATOR_ID_X_Y_LOW(x, y) \ |
| ((((y) & RAZWI_INITIATOR_AXUER_L_Y_MASK) << RAZWI_INITIATOR_AXUER_L_Y_SHIFT) | \ |
| (((x) & RAZWI_INITIATOR_AXUER_L_X_MASK) << RAZWI_INITIATOR_AXUER_L_X_SHIFT)) |
| |
| #define RAZWI_INITIATOR_ID_X_HIGH(x) \ |
| (((x) & RAZWI_INITIATOR_AXUER_H_X_MASK) << RAZWI_INITIATOR_AXUER_H_X_SHIFT) |
| |
| #define RAZWI_INITIATOR_ID_X_Y(xl, yl, xh) \ |
| (RAZWI_INITIATOR_ID_X_Y_LOW(xl, yl) | RAZWI_INITIATOR_ID_X_HIGH(xh)) |
| |
| #define PSOC_RAZWI_ENG_STR_SIZE 128 |
| #define PSOC_RAZWI_MAX_ENG_PER_RTR 5 |
| |
| /* HW scrambles only bits 0-25 */ |
| #define HW_UNSCRAMBLED_BITS_MASK GENMASK_ULL(63, 26) |
| |
| #define GAUDI2_GLBL_ERR_MAX_CAUSE_NUM 17 |
| |
| struct gaudi2_razwi_info { |
| u32 axuser_xy; |
| u32 rtr_ctrl; |
| u16 eng_id; |
| char *eng_name; |
| }; |
| |
| static struct gaudi2_razwi_info common_razwi_info[] = { |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 0), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_DEC_0, "DEC0"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 4), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_DEC_1, "DEC1"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 18), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_DEC_0, "DEC2"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 14), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_DEC_1, "DEC3"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 0), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_DEC_0, "DEC4"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 4), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_DEC_1, "DEC5"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 18), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_DEC_0, "DEC6"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 14), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_DEC_1, "DEC7"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 6), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_PCIE_ENGINE_ID_DEC_0, "DEC8"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 7), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_PCIE_ENGINE_ID_DEC_0, "DEC9"}, |
| {RAZWI_INITIATOR_ID_X_Y(3, 4, 2), mmDCORE0_RTR1_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_TPC_0, "TPC0"}, |
| {RAZWI_INITIATOR_ID_X_Y(3, 4, 4), mmDCORE0_RTR1_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_TPC_1, "TPC1"}, |
| {RAZWI_INITIATOR_ID_X_Y(4, 4, 2), mmDCORE0_RTR2_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_TPC_2, "TPC2"}, |
| {RAZWI_INITIATOR_ID_X_Y(4, 4, 4), mmDCORE0_RTR2_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_TPC_3, "TPC3"}, |
| {RAZWI_INITIATOR_ID_X_Y(5, 4, 2), mmDCORE0_RTR3_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_TPC_4, "TPC4"}, |
| {RAZWI_INITIATOR_ID_X_Y(5, 4, 4), mmDCORE0_RTR3_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_TPC_5, "TPC5"}, |
| {RAZWI_INITIATOR_ID_X_Y(16, 4, 14), mmDCORE1_RTR6_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_TPC_0, "TPC6"}, |
| {RAZWI_INITIATOR_ID_X_Y(16, 4, 16), mmDCORE1_RTR6_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_TPC_1, "TPC7"}, |
| {RAZWI_INITIATOR_ID_X_Y(15, 4, 14), mmDCORE1_RTR5_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_TPC_2, "TPC8"}, |
| {RAZWI_INITIATOR_ID_X_Y(15, 4, 16), mmDCORE1_RTR5_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_TPC_3, "TPC9"}, |
| {RAZWI_INITIATOR_ID_X_Y(14, 4, 14), mmDCORE1_RTR4_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_TPC_4, "TPC10"}, |
| {RAZWI_INITIATOR_ID_X_Y(14, 4, 16), mmDCORE1_RTR4_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_TPC_5, "TPC11"}, |
| {RAZWI_INITIATOR_ID_X_Y(5, 11, 2), mmDCORE2_RTR3_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_TPC_0, "TPC12"}, |
| {RAZWI_INITIATOR_ID_X_Y(5, 11, 4), mmDCORE2_RTR3_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_TPC_1, "TPC13"}, |
| {RAZWI_INITIATOR_ID_X_Y(4, 11, 2), mmDCORE2_RTR2_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_TPC_2, "TPC14"}, |
| {RAZWI_INITIATOR_ID_X_Y(4, 11, 4), mmDCORE2_RTR2_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_TPC_3, "TPC15"}, |
| {RAZWI_INITIATOR_ID_X_Y(3, 11, 2), mmDCORE2_RTR1_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_TPC_4, "TPC16"}, |
| {RAZWI_INITIATOR_ID_X_Y(3, 11, 4), mmDCORE2_RTR1_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_TPC_5, "TPC17"}, |
| {RAZWI_INITIATOR_ID_X_Y(14, 11, 14), mmDCORE3_RTR4_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_0, "TPC18"}, |
| {RAZWI_INITIATOR_ID_X_Y(14, 11, 16), mmDCORE3_RTR4_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_1, "TPC19"}, |
| {RAZWI_INITIATOR_ID_X_Y(15, 11, 14), mmDCORE3_RTR5_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_2, "TPC20"}, |
| {RAZWI_INITIATOR_ID_X_Y(15, 11, 16), mmDCORE3_RTR5_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_3, "TPC21"}, |
| {RAZWI_INITIATOR_ID_X_Y(16, 11, 14), mmDCORE3_RTR6_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_4, "TPC22"}, |
| {RAZWI_INITIATOR_ID_X_Y(16, 11, 16), mmDCORE3_RTR6_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_5, "TPC23"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 2), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_TPC_5, "TPC24"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 8), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC0_0, "NIC0"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 10), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC0_1, "NIC1"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 12), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC1_0, "NIC2"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 14), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC1_1, "NIC3"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 15), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC2_0, "NIC4"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 2), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC2_1, "NIC5"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 4), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC3_0, "NIC6"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 6), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC3_1, "NIC7"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 8), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC4_0, "NIC8"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 12), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC4_1, "NIC9"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 14), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC5_0, "NIC10"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 16), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_NIC5_1, "NIC11"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 2), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_PDMA_0, "PDMA0"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 3), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_PDMA_1, "PDMA1"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 4), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "PMMU"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 4, 5), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "PCIE"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 16), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_ARC_FARM, "ARC_FARM"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 4, 17), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_KDMA, "KDMA"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 5, 1), mmSFT0_HBW_RTR_IF1_RTR_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_EDMA_0, "EDMA0"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 5, 1), mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_EDMA_1, "EDMA1"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 5, 18), mmSFT1_HBW_RTR_IF1_RTR_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_EDMA_0, "EDMA2"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 5, 18), mmSFT1_HBW_RTR_IF0_RTR_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_EDMA_1, "EDMA3"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 10, 1), mmSFT2_HBW_RTR_IF0_RTR_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_EDMA_0, "EDMA4"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 10, 1), mmSFT2_HBW_RTR_IF1_RTR_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_EDMA_1, "EDMA5"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 10, 18), mmSFT2_HBW_RTR_IF0_RTR_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_EDMA_0, "EDMA6"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 10, 18), mmSFT2_HBW_RTR_IF1_RTR_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_EDMA_1, "EDMA7"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 5, 0), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU0"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 5, 19), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU1"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 5, 0), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU2"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 5, 19), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU3"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 5, 0), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU4"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 5, 19), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU5"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 5, 0), mmDCORE0_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU6"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 5, 19), mmDCORE1_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU7"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 10, 0), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU8"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 10, 19), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU9"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 10, 0), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU10"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 10, 19), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU11"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 10, 0), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU12"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 10, 19), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU13"}, |
| {RAZWI_INITIATOR_ID_X_Y(1, 10, 0), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU14"}, |
| {RAZWI_INITIATOR_ID_X_Y(18, 10, 19), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_SIZE, "HMMU15"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 2), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_ROT_0, "ROT0"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 16), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_ROT_1, "ROT1"}, |
| {RAZWI_INITIATOR_ID_X_Y(2, 11, 2), mmDCORE2_RTR0_CTRL_BASE, |
| GAUDI2_ENGINE_ID_PSOC, "CPU"}, |
| {RAZWI_INITIATOR_ID_X_Y(17, 11, 11), mmDCORE3_RTR7_CTRL_BASE, |
| GAUDI2_ENGINE_ID_PSOC, "PSOC"} |
| }; |
| |
| static struct gaudi2_razwi_info mme_razwi_info[] = { |
| /* MME X high coordinate is N/A, hence using only low coordinates */ |
| {RAZWI_INITIATOR_ID_X_Y_LOW(7, 4), mmDCORE0_RTR5_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_WAP0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(9, 4), mmDCORE0_RTR7_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_WAP1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(8, 4), mmDCORE0_RTR6_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_CTRL_WR"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(9, 4), mmDCORE0_RTR7_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_CTRL_RD"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(6, 4), mmDCORE0_RTR4_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_SBTE0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(6, 4), mmDCORE0_RTR4_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_SBTE1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(7, 4), mmDCORE0_RTR5_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_SBTE2"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(8, 4), mmDCORE0_RTR6_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_SBTE3"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(9, 4), mmDCORE0_RTR7_CTRL_BASE, |
| GAUDI2_DCORE0_ENGINE_ID_MME, "MME0_SBTE4"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(12, 4), mmDCORE1_RTR2_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_WAP0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(10, 4), mmDCORE1_RTR0_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_WAP1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(11, 4), mmDCORE1_RTR1_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_CTRL_WR"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(10, 4), mmDCORE1_RTR0_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_CTRL_RD"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(13, 4), mmDCORE1_RTR3_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_SBTE0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(13, 4), mmDCORE1_RTR3_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_SBTE1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(12, 4), mmDCORE1_RTR2_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_SBTE2"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(11, 4), mmDCORE1_RTR1_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_SBTE3"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(10, 4), mmDCORE1_RTR0_CTRL_BASE, |
| GAUDI2_DCORE1_ENGINE_ID_MME, "MME1_SBTE4"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(7, 11), mmDCORE2_RTR5_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_WAP0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(9, 11), mmDCORE2_RTR7_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_WAP1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(8, 11), mmDCORE2_RTR6_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_CTRL_WR"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(9, 11), mmDCORE2_RTR7_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_CTRL_RD"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(6, 11), mmDCORE2_RTR4_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_SBTE0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(6, 11), mmDCORE2_RTR4_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_SBTE1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(7, 11), mmDCORE2_RTR5_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_SBTE2"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(8, 11), mmDCORE2_RTR6_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_SBTE3"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(9, 11), mmDCORE2_RTR7_CTRL_BASE, |
| GAUDI2_DCORE2_ENGINE_ID_MME, "MME2_SBTE4"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(12, 11), mmDCORE3_RTR2_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_WAP0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(10, 11), mmDCORE3_RTR0_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_WAP1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(11, 11), mmDCORE3_RTR1_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_CTRL_WR"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(10, 11), mmDCORE3_RTR0_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_CTRL_RD"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(13, 11), mmDCORE3_RTR3_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_SBTE0"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(13, 11), mmDCORE3_RTR3_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_SBTE1"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(12, 11), mmDCORE3_RTR2_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_SBTE2"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(11, 11), mmDCORE3_RTR1_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_SBTE3"}, |
| {RAZWI_INITIATOR_ID_X_Y_LOW(10, 11), mmDCORE3_RTR0_CTRL_BASE, |
| GAUDI2_DCORE3_ENGINE_ID_MME, "MME3_SBTE4"} |
| }; |
| |
| enum hl_pmmu_fatal_cause { |
| LATENCY_RD_OUT_FIFO_OVERRUN, |
| LATENCY_WR_OUT_FIFO_OVERRUN, |
| }; |
| |
| enum hl_pcie_drain_ind_cause { |
| LBW_AXI_DRAIN_IND, |
| HBW_AXI_DRAIN_IND |
| }; |
| |
| static const u32 cluster_hmmu_hif_enabled_mask[GAUDI2_HBM_NUM] = { |
| [HBM_ID0] = 0xFFFC, |
| [HBM_ID1] = 0xFFCF, |
| [HBM_ID2] = 0xF7F7, |
| [HBM_ID3] = 0x7F7F, |
| [HBM_ID4] = 0xFCFF, |
| [HBM_ID5] = 0xCFFF, |
| }; |
| |
| static const u8 xbar_edge_to_hbm_cluster[EDMA_ID_SIZE] = { |
| [0] = HBM_ID0, |
| [1] = HBM_ID1, |
| [2] = HBM_ID4, |
| [3] = HBM_ID5, |
| }; |
| |
| static const u8 edma_to_hbm_cluster[EDMA_ID_SIZE] = { |
| [EDMA_ID_DCORE0_INSTANCE0] = HBM_ID0, |
| [EDMA_ID_DCORE0_INSTANCE1] = HBM_ID2, |
| [EDMA_ID_DCORE1_INSTANCE0] = HBM_ID1, |
| [EDMA_ID_DCORE1_INSTANCE1] = HBM_ID3, |
| [EDMA_ID_DCORE2_INSTANCE0] = HBM_ID2, |
| [EDMA_ID_DCORE2_INSTANCE1] = HBM_ID4, |
| [EDMA_ID_DCORE3_INSTANCE0] = HBM_ID3, |
| [EDMA_ID_DCORE3_INSTANCE1] = HBM_ID5, |
| }; |
| |
| static const int gaudi2_qman_async_event_id[] = { |
| [GAUDI2_QUEUE_ID_PDMA_0_0] = GAUDI2_EVENT_PDMA0_QM, |
| [GAUDI2_QUEUE_ID_PDMA_0_1] = GAUDI2_EVENT_PDMA0_QM, |
| [GAUDI2_QUEUE_ID_PDMA_0_2] = GAUDI2_EVENT_PDMA0_QM, |
| [GAUDI2_QUEUE_ID_PDMA_0_3] = GAUDI2_EVENT_PDMA0_QM, |
| [GAUDI2_QUEUE_ID_PDMA_1_0] = GAUDI2_EVENT_PDMA1_QM, |
| [GAUDI2_QUEUE_ID_PDMA_1_1] = GAUDI2_EVENT_PDMA1_QM, |
| [GAUDI2_QUEUE_ID_PDMA_1_2] = GAUDI2_EVENT_PDMA1_QM, |
| [GAUDI2_QUEUE_ID_PDMA_1_3] = GAUDI2_EVENT_PDMA1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = GAUDI2_EVENT_HDMA0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = GAUDI2_EVENT_HDMA0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = GAUDI2_EVENT_HDMA0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = GAUDI2_EVENT_HDMA0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = GAUDI2_EVENT_HDMA1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = GAUDI2_EVENT_HDMA1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = GAUDI2_EVENT_HDMA1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = GAUDI2_EVENT_HDMA1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = GAUDI2_EVENT_MME0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = GAUDI2_EVENT_MME0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = GAUDI2_EVENT_MME0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = GAUDI2_EVENT_MME0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = GAUDI2_EVENT_TPC0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = GAUDI2_EVENT_TPC0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = GAUDI2_EVENT_TPC0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = GAUDI2_EVENT_TPC0_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = GAUDI2_EVENT_TPC1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = GAUDI2_EVENT_TPC1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = GAUDI2_EVENT_TPC1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = GAUDI2_EVENT_TPC1_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = GAUDI2_EVENT_TPC2_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = GAUDI2_EVENT_TPC2_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = GAUDI2_EVENT_TPC2_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = GAUDI2_EVENT_TPC2_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = GAUDI2_EVENT_TPC3_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = GAUDI2_EVENT_TPC3_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = GAUDI2_EVENT_TPC3_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = GAUDI2_EVENT_TPC3_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = GAUDI2_EVENT_TPC4_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = GAUDI2_EVENT_TPC4_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = GAUDI2_EVENT_TPC4_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = GAUDI2_EVENT_TPC4_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = GAUDI2_EVENT_TPC5_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = GAUDI2_EVENT_TPC5_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = GAUDI2_EVENT_TPC5_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = GAUDI2_EVENT_TPC5_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = GAUDI2_EVENT_TPC24_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = GAUDI2_EVENT_TPC24_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = GAUDI2_EVENT_TPC24_QM, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = GAUDI2_EVENT_TPC24_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = GAUDI2_EVENT_HDMA2_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = GAUDI2_EVENT_HDMA2_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = GAUDI2_EVENT_HDMA2_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = GAUDI2_EVENT_HDMA2_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = GAUDI2_EVENT_HDMA3_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = GAUDI2_EVENT_HDMA3_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = GAUDI2_EVENT_HDMA3_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = GAUDI2_EVENT_HDMA3_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = GAUDI2_EVENT_MME1_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = GAUDI2_EVENT_MME1_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = GAUDI2_EVENT_MME1_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = GAUDI2_EVENT_MME1_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = GAUDI2_EVENT_TPC6_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = GAUDI2_EVENT_TPC6_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = GAUDI2_EVENT_TPC6_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = GAUDI2_EVENT_TPC6_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = GAUDI2_EVENT_TPC7_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = GAUDI2_EVENT_TPC7_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = GAUDI2_EVENT_TPC7_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = GAUDI2_EVENT_TPC7_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = GAUDI2_EVENT_TPC8_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = GAUDI2_EVENT_TPC8_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = GAUDI2_EVENT_TPC8_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = GAUDI2_EVENT_TPC8_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = GAUDI2_EVENT_TPC9_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = GAUDI2_EVENT_TPC9_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = GAUDI2_EVENT_TPC9_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = GAUDI2_EVENT_TPC9_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = GAUDI2_EVENT_TPC10_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = GAUDI2_EVENT_TPC10_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = GAUDI2_EVENT_TPC10_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = GAUDI2_EVENT_TPC10_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = GAUDI2_EVENT_TPC11_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = GAUDI2_EVENT_TPC11_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = GAUDI2_EVENT_TPC11_QM, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = GAUDI2_EVENT_TPC11_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = GAUDI2_EVENT_HDMA4_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = GAUDI2_EVENT_HDMA4_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = GAUDI2_EVENT_HDMA4_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = GAUDI2_EVENT_HDMA4_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = GAUDI2_EVENT_HDMA5_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = GAUDI2_EVENT_HDMA5_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = GAUDI2_EVENT_HDMA5_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = GAUDI2_EVENT_HDMA5_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = GAUDI2_EVENT_MME2_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = GAUDI2_EVENT_MME2_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = GAUDI2_EVENT_MME2_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = GAUDI2_EVENT_MME2_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = GAUDI2_EVENT_TPC12_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = GAUDI2_EVENT_TPC12_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = GAUDI2_EVENT_TPC12_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = GAUDI2_EVENT_TPC12_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = GAUDI2_EVENT_TPC13_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = GAUDI2_EVENT_TPC13_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = GAUDI2_EVENT_TPC13_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = GAUDI2_EVENT_TPC13_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = GAUDI2_EVENT_TPC14_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = GAUDI2_EVENT_TPC14_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = GAUDI2_EVENT_TPC14_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = GAUDI2_EVENT_TPC14_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = GAUDI2_EVENT_TPC15_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = GAUDI2_EVENT_TPC15_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = GAUDI2_EVENT_TPC15_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = GAUDI2_EVENT_TPC15_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = GAUDI2_EVENT_TPC16_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = GAUDI2_EVENT_TPC16_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = GAUDI2_EVENT_TPC16_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = GAUDI2_EVENT_TPC16_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = GAUDI2_EVENT_TPC17_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = GAUDI2_EVENT_TPC17_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = GAUDI2_EVENT_TPC17_QM, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = GAUDI2_EVENT_TPC17_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = GAUDI2_EVENT_HDMA6_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = GAUDI2_EVENT_HDMA6_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = GAUDI2_EVENT_HDMA6_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = GAUDI2_EVENT_HDMA6_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = GAUDI2_EVENT_HDMA7_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = GAUDI2_EVENT_HDMA7_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = GAUDI2_EVENT_HDMA7_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = GAUDI2_EVENT_HDMA7_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = GAUDI2_EVENT_MME3_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = GAUDI2_EVENT_MME3_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = GAUDI2_EVENT_MME3_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = GAUDI2_EVENT_MME3_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = GAUDI2_EVENT_TPC18_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = GAUDI2_EVENT_TPC18_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = GAUDI2_EVENT_TPC18_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = GAUDI2_EVENT_TPC18_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = GAUDI2_EVENT_TPC19_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = GAUDI2_EVENT_TPC19_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = GAUDI2_EVENT_TPC19_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = GAUDI2_EVENT_TPC19_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = GAUDI2_EVENT_TPC20_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = GAUDI2_EVENT_TPC20_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = GAUDI2_EVENT_TPC20_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = GAUDI2_EVENT_TPC20_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = GAUDI2_EVENT_TPC21_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = GAUDI2_EVENT_TPC21_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = GAUDI2_EVENT_TPC21_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = GAUDI2_EVENT_TPC21_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = GAUDI2_EVENT_TPC22_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = GAUDI2_EVENT_TPC22_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = GAUDI2_EVENT_TPC22_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = GAUDI2_EVENT_TPC22_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = GAUDI2_EVENT_TPC23_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = GAUDI2_EVENT_TPC23_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = GAUDI2_EVENT_TPC23_QM, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = GAUDI2_EVENT_TPC23_QM, |
| [GAUDI2_QUEUE_ID_NIC_0_0] = GAUDI2_EVENT_NIC0_QM0, |
| [GAUDI2_QUEUE_ID_NIC_0_1] = GAUDI2_EVENT_NIC0_QM0, |
| [GAUDI2_QUEUE_ID_NIC_0_2] = GAUDI2_EVENT_NIC0_QM0, |
| [GAUDI2_QUEUE_ID_NIC_0_3] = GAUDI2_EVENT_NIC0_QM0, |
| [GAUDI2_QUEUE_ID_NIC_1_0] = GAUDI2_EVENT_NIC0_QM1, |
| [GAUDI2_QUEUE_ID_NIC_1_1] = GAUDI2_EVENT_NIC0_QM1, |
| [GAUDI2_QUEUE_ID_NIC_1_2] = GAUDI2_EVENT_NIC0_QM1, |
| [GAUDI2_QUEUE_ID_NIC_1_3] = GAUDI2_EVENT_NIC0_QM1, |
| [GAUDI2_QUEUE_ID_NIC_2_0] = GAUDI2_EVENT_NIC1_QM0, |
| [GAUDI2_QUEUE_ID_NIC_2_1] = GAUDI2_EVENT_NIC1_QM0, |
| [GAUDI2_QUEUE_ID_NIC_2_2] = GAUDI2_EVENT_NIC1_QM0, |
| [GAUDI2_QUEUE_ID_NIC_2_3] = GAUDI2_EVENT_NIC1_QM0, |
| [GAUDI2_QUEUE_ID_NIC_3_0] = GAUDI2_EVENT_NIC1_QM1, |
| [GAUDI2_QUEUE_ID_NIC_3_1] = GAUDI2_EVENT_NIC1_QM1, |
| [GAUDI2_QUEUE_ID_NIC_3_2] = GAUDI2_EVENT_NIC1_QM1, |
| [GAUDI2_QUEUE_ID_NIC_3_3] = GAUDI2_EVENT_NIC1_QM1, |
| [GAUDI2_QUEUE_ID_NIC_4_0] = GAUDI2_EVENT_NIC2_QM0, |
| [GAUDI2_QUEUE_ID_NIC_4_1] = GAUDI2_EVENT_NIC2_QM0, |
| [GAUDI2_QUEUE_ID_NIC_4_2] = GAUDI2_EVENT_NIC2_QM0, |
| [GAUDI2_QUEUE_ID_NIC_4_3] = GAUDI2_EVENT_NIC2_QM0, |
| [GAUDI2_QUEUE_ID_NIC_5_0] = GAUDI2_EVENT_NIC2_QM1, |
| [GAUDI2_QUEUE_ID_NIC_5_1] = GAUDI2_EVENT_NIC2_QM1, |
| [GAUDI2_QUEUE_ID_NIC_5_2] = GAUDI2_EVENT_NIC2_QM1, |
| [GAUDI2_QUEUE_ID_NIC_5_3] = GAUDI2_EVENT_NIC2_QM1, |
| [GAUDI2_QUEUE_ID_NIC_6_0] = GAUDI2_EVENT_NIC3_QM0, |
| [GAUDI2_QUEUE_ID_NIC_6_1] = GAUDI2_EVENT_NIC3_QM0, |
| [GAUDI2_QUEUE_ID_NIC_6_2] = GAUDI2_EVENT_NIC3_QM0, |
| [GAUDI2_QUEUE_ID_NIC_6_3] = GAUDI2_EVENT_NIC3_QM0, |
| [GAUDI2_QUEUE_ID_NIC_7_0] = GAUDI2_EVENT_NIC3_QM1, |
| [GAUDI2_QUEUE_ID_NIC_7_1] = GAUDI2_EVENT_NIC3_QM1, |
| [GAUDI2_QUEUE_ID_NIC_7_2] = GAUDI2_EVENT_NIC3_QM1, |
| [GAUDI2_QUEUE_ID_NIC_7_3] = GAUDI2_EVENT_NIC3_QM1, |
| [GAUDI2_QUEUE_ID_NIC_8_0] = GAUDI2_EVENT_NIC4_QM0, |
| [GAUDI2_QUEUE_ID_NIC_8_1] = GAUDI2_EVENT_NIC4_QM0, |
| [GAUDI2_QUEUE_ID_NIC_8_2] = GAUDI2_EVENT_NIC4_QM0, |
| [GAUDI2_QUEUE_ID_NIC_8_3] = GAUDI2_EVENT_NIC4_QM0, |
| [GAUDI2_QUEUE_ID_NIC_9_0] = GAUDI2_EVENT_NIC4_QM1, |
| [GAUDI2_QUEUE_ID_NIC_9_1] = GAUDI2_EVENT_NIC4_QM1, |
| [GAUDI2_QUEUE_ID_NIC_9_2] = GAUDI2_EVENT_NIC4_QM1, |
| [GAUDI2_QUEUE_ID_NIC_9_3] = GAUDI2_EVENT_NIC4_QM1, |
| [GAUDI2_QUEUE_ID_NIC_10_0] = GAUDI2_EVENT_NIC5_QM0, |
| [GAUDI2_QUEUE_ID_NIC_10_1] = GAUDI2_EVENT_NIC5_QM0, |
| [GAUDI2_QUEUE_ID_NIC_10_2] = GAUDI2_EVENT_NIC5_QM0, |
| [GAUDI2_QUEUE_ID_NIC_10_3] = GAUDI2_EVENT_NIC5_QM0, |
| [GAUDI2_QUEUE_ID_NIC_11_0] = GAUDI2_EVENT_NIC5_QM1, |
| [GAUDI2_QUEUE_ID_NIC_11_1] = GAUDI2_EVENT_NIC5_QM1, |
| [GAUDI2_QUEUE_ID_NIC_11_2] = GAUDI2_EVENT_NIC5_QM1, |
| [GAUDI2_QUEUE_ID_NIC_11_3] = GAUDI2_EVENT_NIC5_QM1, |
| [GAUDI2_QUEUE_ID_NIC_12_0] = GAUDI2_EVENT_NIC6_QM0, |
| [GAUDI2_QUEUE_ID_NIC_12_1] = GAUDI2_EVENT_NIC6_QM0, |
| [GAUDI2_QUEUE_ID_NIC_12_2] = GAUDI2_EVENT_NIC6_QM0, |
| [GAUDI2_QUEUE_ID_NIC_12_3] = GAUDI2_EVENT_NIC6_QM0, |
| [GAUDI2_QUEUE_ID_NIC_13_0] = GAUDI2_EVENT_NIC6_QM1, |
| [GAUDI2_QUEUE_ID_NIC_13_1] = GAUDI2_EVENT_NIC6_QM1, |
| [GAUDI2_QUEUE_ID_NIC_13_2] = GAUDI2_EVENT_NIC6_QM1, |
| [GAUDI2_QUEUE_ID_NIC_13_3] = GAUDI2_EVENT_NIC6_QM1, |
| [GAUDI2_QUEUE_ID_NIC_14_0] = GAUDI2_EVENT_NIC7_QM0, |
| [GAUDI2_QUEUE_ID_NIC_14_1] = GAUDI2_EVENT_NIC7_QM0, |
| [GAUDI2_QUEUE_ID_NIC_14_2] = GAUDI2_EVENT_NIC7_QM0, |
| [GAUDI2_QUEUE_ID_NIC_14_3] = GAUDI2_EVENT_NIC7_QM0, |
| [GAUDI2_QUEUE_ID_NIC_15_0] = GAUDI2_EVENT_NIC7_QM1, |
| [GAUDI2_QUEUE_ID_NIC_15_1] = GAUDI2_EVENT_NIC7_QM1, |
| [GAUDI2_QUEUE_ID_NIC_15_2] = GAUDI2_EVENT_NIC7_QM1, |
| [GAUDI2_QUEUE_ID_NIC_15_3] = GAUDI2_EVENT_NIC7_QM1, |
| [GAUDI2_QUEUE_ID_NIC_16_0] = GAUDI2_EVENT_NIC8_QM0, |
| [GAUDI2_QUEUE_ID_NIC_16_1] = GAUDI2_EVENT_NIC8_QM0, |
| [GAUDI2_QUEUE_ID_NIC_16_2] = GAUDI2_EVENT_NIC8_QM0, |
| [GAUDI2_QUEUE_ID_NIC_16_3] = GAUDI2_EVENT_NIC8_QM0, |
| [GAUDI2_QUEUE_ID_NIC_17_0] = GAUDI2_EVENT_NIC8_QM1, |
| [GAUDI2_QUEUE_ID_NIC_17_1] = GAUDI2_EVENT_NIC8_QM1, |
| [GAUDI2_QUEUE_ID_NIC_17_2] = GAUDI2_EVENT_NIC8_QM1, |
| [GAUDI2_QUEUE_ID_NIC_17_3] = GAUDI2_EVENT_NIC8_QM1, |
| [GAUDI2_QUEUE_ID_NIC_18_0] = GAUDI2_EVENT_NIC9_QM0, |
| [GAUDI2_QUEUE_ID_NIC_18_1] = GAUDI2_EVENT_NIC9_QM0, |
| [GAUDI2_QUEUE_ID_NIC_18_2] = GAUDI2_EVENT_NIC9_QM0, |
| [GAUDI2_QUEUE_ID_NIC_18_3] = GAUDI2_EVENT_NIC9_QM0, |
| [GAUDI2_QUEUE_ID_NIC_19_0] = GAUDI2_EVENT_NIC9_QM1, |
| [GAUDI2_QUEUE_ID_NIC_19_1] = GAUDI2_EVENT_NIC9_QM1, |
| [GAUDI2_QUEUE_ID_NIC_19_2] = GAUDI2_EVENT_NIC9_QM1, |
| [GAUDI2_QUEUE_ID_NIC_19_3] = GAUDI2_EVENT_NIC9_QM1, |
| [GAUDI2_QUEUE_ID_NIC_20_0] = GAUDI2_EVENT_NIC10_QM0, |
| [GAUDI2_QUEUE_ID_NIC_20_1] = GAUDI2_EVENT_NIC10_QM0, |
| [GAUDI2_QUEUE_ID_NIC_20_2] = GAUDI2_EVENT_NIC10_QM0, |
| [GAUDI2_QUEUE_ID_NIC_20_3] = GAUDI2_EVENT_NIC10_QM0, |
| [GAUDI2_QUEUE_ID_NIC_21_0] = GAUDI2_EVENT_NIC10_QM1, |
| [GAUDI2_QUEUE_ID_NIC_21_1] = GAUDI2_EVENT_NIC10_QM1, |
| [GAUDI2_QUEUE_ID_NIC_21_2] = GAUDI2_EVENT_NIC10_QM1, |
| [GAUDI2_QUEUE_ID_NIC_21_3] = GAUDI2_EVENT_NIC10_QM1, |
| [GAUDI2_QUEUE_ID_NIC_22_0] = GAUDI2_EVENT_NIC11_QM0, |
| [GAUDI2_QUEUE_ID_NIC_22_1] = GAUDI2_EVENT_NIC11_QM0, |
| [GAUDI2_QUEUE_ID_NIC_22_2] = GAUDI2_EVENT_NIC11_QM0, |
| [GAUDI2_QUEUE_ID_NIC_22_3] = GAUDI2_EVENT_NIC11_QM0, |
| [GAUDI2_QUEUE_ID_NIC_23_0] = GAUDI2_EVENT_NIC11_QM1, |
| [GAUDI2_QUEUE_ID_NIC_23_1] = GAUDI2_EVENT_NIC11_QM1, |
| [GAUDI2_QUEUE_ID_NIC_23_2] = GAUDI2_EVENT_NIC11_QM1, |
| [GAUDI2_QUEUE_ID_NIC_23_3] = GAUDI2_EVENT_NIC11_QM1, |
| [GAUDI2_QUEUE_ID_ROT_0_0] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, |
| [GAUDI2_QUEUE_ID_ROT_0_1] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, |
| [GAUDI2_QUEUE_ID_ROT_0_2] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, |
| [GAUDI2_QUEUE_ID_ROT_0_3] = GAUDI2_EVENT_ROTATOR0_ROT0_QM, |
| [GAUDI2_QUEUE_ID_ROT_1_0] = GAUDI2_EVENT_ROTATOR1_ROT1_QM, |
| [GAUDI2_QUEUE_ID_ROT_1_1] = GAUDI2_EVENT_ROTATOR1_ROT1_QM, |
| [GAUDI2_QUEUE_ID_ROT_1_2] = GAUDI2_EVENT_ROTATOR1_ROT1_QM, |
| [GAUDI2_QUEUE_ID_ROT_1_3] = GAUDI2_EVENT_ROTATOR1_ROT1_QM |
| }; |
| |
| static const int gaudi2_dma_core_async_event_id[] = { |
| [DMA_CORE_ID_EDMA0] = GAUDI2_EVENT_HDMA0_CORE, |
| [DMA_CORE_ID_EDMA1] = GAUDI2_EVENT_HDMA1_CORE, |
| [DMA_CORE_ID_EDMA2] = GAUDI2_EVENT_HDMA2_CORE, |
| [DMA_CORE_ID_EDMA3] = GAUDI2_EVENT_HDMA3_CORE, |
| [DMA_CORE_ID_EDMA4] = GAUDI2_EVENT_HDMA4_CORE, |
| [DMA_CORE_ID_EDMA5] = GAUDI2_EVENT_HDMA5_CORE, |
| [DMA_CORE_ID_EDMA6] = GAUDI2_EVENT_HDMA6_CORE, |
| [DMA_CORE_ID_EDMA7] = GAUDI2_EVENT_HDMA7_CORE, |
| [DMA_CORE_ID_PDMA0] = GAUDI2_EVENT_PDMA0_CORE, |
| [DMA_CORE_ID_PDMA1] = GAUDI2_EVENT_PDMA1_CORE, |
| [DMA_CORE_ID_KDMA] = GAUDI2_EVENT_KDMA0_CORE, |
| }; |
| |
| static const char * const gaudi2_qm_sei_error_cause[GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE] = { |
| "qman sei intr", |
| "arc sei intr" |
| }; |
| |
| static const char * const gaudi2_cpu_sei_error_cause[GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE] = { |
| "AXI_TERMINATOR WR", |
| "AXI_TERMINATOR RD", |
| "AXI SPLIT SEI Status" |
| }; |
| |
| static const char * const gaudi2_arc_sei_error_cause[GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE] = { |
| "cbu_bresp_sei_intr_cause", |
| "cbu_rresp_sei_intr_cause", |
| "lbu_bresp_sei_intr_cause", |
| "lbu_rresp_sei_intr_cause", |
| "cbu_axi_split_intr_cause", |
| "lbu_axi_split_intr_cause", |
| "arc_ip_excptn_sei_intr_cause", |
| "dmi_bresp_sei_intr_cause", |
| "aux2apb_err_sei_intr_cause", |
| "cfg_lbw_wr_terminated_intr_cause", |
| "cfg_lbw_rd_terminated_intr_cause", |
| "cfg_dccm_wr_terminated_intr_cause", |
| "cfg_dccm_rd_terminated_intr_cause", |
| "cfg_hbw_rd_terminated_intr_cause" |
| }; |
| |
| static const char * const gaudi2_dec_error_cause[GAUDI2_NUM_OF_DEC_ERR_CAUSE] = { |
| "msix_vcd_hbw_sei", |
| "msix_l2c_hbw_sei", |
| "msix_nrm_hbw_sei", |
| "msix_abnrm_hbw_sei", |
| "msix_vcd_lbw_sei", |
| "msix_l2c_lbw_sei", |
| "msix_nrm_lbw_sei", |
| "msix_abnrm_lbw_sei", |
| "apb_vcd_lbw_sei", |
| "apb_l2c_lbw_sei", |
| "apb_nrm_lbw_sei", |
| "apb_abnrm_lbw_sei", |
| "dec_sei", |
| "dec_apb_sei", |
| "trc_apb_sei", |
| "lbw_mstr_if_sei", |
| "axi_split_bresp_err_sei", |
| "hbw_axi_wr_viol_sei", |
| "hbw_axi_rd_viol_sei", |
| "lbw_axi_wr_viol_sei", |
| "lbw_axi_rd_viol_sei", |
| "vcd_spi", |
| "l2c_spi", |
| "nrm_spi", |
| "abnrm_spi", |
| }; |
| |
| static const char * const gaudi2_qman_error_cause[GAUDI2_NUM_OF_QM_ERR_CAUSE] = { |
| "PQ AXI HBW error", |
| "CQ AXI HBW error", |
| "CP AXI HBW error", |
| "CP error due to undefined OPCODE", |
| "CP encountered STOP OPCODE", |
| "CP AXI LBW error", |
| "CP WRREG32 or WRBULK returned error", |
| "N/A", |
| "FENCE 0 inc over max value and clipped", |
| "FENCE 1 inc over max value and clipped", |
| "FENCE 2 inc over max value and clipped", |
| "FENCE 3 inc over max value and clipped", |
| "FENCE 0 dec under min value and clipped", |
| "FENCE 1 dec under min value and clipped", |
| "FENCE 2 dec under min value and clipped", |
| "FENCE 3 dec under min value and clipped", |
| "CPDMA Up overflow", |
| "PQC L2H error" |
| }; |
| |
| static const char * const gaudi2_lower_qman_error_cause[GAUDI2_NUM_OF_LOWER_QM_ERR_CAUSE] = { |
| "RSVD0", |
| "CQ AXI HBW error", |
| "CP AXI HBW error", |
| "CP error due to undefined OPCODE", |
| "CP encountered STOP OPCODE", |
| "CP AXI LBW error", |
| "CP WRREG32 or WRBULK returned error", |
| "N/A", |
| "FENCE 0 inc over max value and clipped", |
| "FENCE 1 inc over max value and clipped", |
| "FENCE 2 inc over max value and clipped", |
| "FENCE 3 inc over max value and clipped", |
| "FENCE 0 dec under min value and clipped", |
| "FENCE 1 dec under min value and clipped", |
| "FENCE 2 dec under min value and clipped", |
| "FENCE 3 dec under min value and clipped", |
| "CPDMA Up overflow", |
| "RSVD17", |
| "CQ_WR_IFIFO_CI_ERR", |
| "CQ_WR_CTL_CI_ERR", |
| "ARC_CQF_RD_ERR", |
| "ARC_CQ_WR_IFIFO_CI_ERR", |
| "ARC_CQ_WR_CTL_CI_ERR", |
| "ARC_AXI_ERR", |
| "CP_SWITCH_WDT_ERR" |
| }; |
| |
| static const char * const gaudi2_qman_arb_error_cause[GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE] = { |
| "Choice push while full error", |
| "Choice Q watchdog error", |
| "MSG AXI LBW returned with error" |
| }; |
| |
| static const char * const guadi2_rot_error_cause[GAUDI2_NUM_OF_ROT_ERR_CAUSE] = { |
| "qm_axi_err", |
| "qm_trace_fence_events", |
| "qm_sw_err", |
| "qm_cp_sw_stop", |
| "lbw_mstr_rresp_err", |
| "lbw_mstr_bresp_err", |
| "lbw_msg_slverr", |
| "hbw_msg_slverr", |
| "wbc_slverr", |
| "hbw_mstr_rresp_err", |
| "hbw_mstr_bresp_err", |
| "sb_resp_intr", |
| "mrsb_resp_intr", |
| "core_dw_status_0", |
| "core_dw_status_1", |
| "core_dw_status_2", |
| "core_dw_status_3", |
| "core_dw_status_4", |
| "core_dw_status_5", |
| "core_dw_status_6", |
| "core_dw_status_7", |
| "async_arc2cpu_sei_intr", |
| }; |
| |
| static const char * const gaudi2_tpc_interrupts_cause[GAUDI2_NUM_OF_TPC_INTR_CAUSE] = { |
| "tpc_address_exceed_slm", |
| "tpc_div_by_0", |
| "tpc_spu_mac_overflow", |
| "tpc_spu_addsub_overflow", |
| "tpc_spu_abs_overflow", |
| "tpc_spu_fma_fp_dst_nan", |
| "tpc_spu_fma_fp_dst_inf", |
| "tpc_spu_convert_fp_dst_nan", |
| "tpc_spu_convert_fp_dst_inf", |
| "tpc_spu_fp_dst_denorm", |
| "tpc_vpu_mac_overflow", |
| "tpc_vpu_addsub_overflow", |
| "tpc_vpu_abs_overflow", |
| "tpc_vpu_convert_fp_dst_nan", |
| "tpc_vpu_convert_fp_dst_inf", |
| "tpc_vpu_fma_fp_dst_nan", |
| "tpc_vpu_fma_fp_dst_inf", |
| "tpc_vpu_fp_dst_denorm", |
| "tpc_assertions", |
| "tpc_illegal_instruction", |
| "tpc_pc_wrap_around", |
| "tpc_qm_sw_err", |
| "tpc_hbw_rresp_err", |
| "tpc_hbw_bresp_err", |
| "tpc_lbw_rresp_err", |
| "tpc_lbw_bresp_err", |
| "st_unlock_already_locked", |
| "invalid_lock_access", |
| "LD_L protection violation", |
| "ST_L protection violation", |
| "D$ L0CS mismatch", |
| }; |
| |
| static const char * const guadi2_mme_error_cause[GAUDI2_NUM_OF_MME_ERR_CAUSE] = { |
| "agu_resp_intr", |
| "qman_axi_err", |
| "wap sei (wbc axi err)", |
| "arc sei", |
| "cfg access error", |
| "qm_sw_err", |
| "sbte_dbg_intr_0", |
| "sbte_dbg_intr_1", |
| "sbte_dbg_intr_2", |
| "sbte_dbg_intr_3", |
| "sbte_dbg_intr_4", |
| "sbte_prtn_intr_0", |
| "sbte_prtn_intr_1", |
| "sbte_prtn_intr_2", |
| "sbte_prtn_intr_3", |
| "sbte_prtn_intr_4", |
| }; |
| |
| static const char * const guadi2_mme_wap_error_cause[GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE] = { |
| "WBC ERR RESP_0", |
| "WBC ERR RESP_1", |
| "AP SOURCE POS INF", |
| "AP SOURCE NEG INF", |
| "AP SOURCE NAN", |
| "AP RESULT POS INF", |
| "AP RESULT NEG INF", |
| }; |
| |
| static const char * const gaudi2_dma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = { |
| "HBW Read returned with error RRESP", |
| "HBW write returned with error BRESP", |
| "LBW write returned with error BRESP", |
| "descriptor_fifo_overflow", |
| "KDMA SB LBW Read returned with error", |
| "KDMA WBC LBW Write returned with error", |
| "TRANSPOSE ENGINE DESC FIFO OVERFLOW", |
| "WRONG CFG FOR COMMIT IN LIN DMA" |
| }; |
| |
| static const char * const gaudi2_kdma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = { |
| "HBW/LBW Read returned with error RRESP", |
| "HBW/LBW write returned with error BRESP", |
| "LBW write returned with error BRESP", |
| "descriptor_fifo_overflow", |
| "KDMA SB LBW Read returned with error", |
| "KDMA WBC LBW Write returned with error", |
| "TRANSPOSE ENGINE DESC FIFO OVERFLOW", |
| "WRONG CFG FOR COMMIT IN LIN DMA" |
| }; |
| |
| struct gaudi2_sm_sei_cause_data { |
| const char *cause_name; |
| const char *log_name; |
| }; |
| |
| static const struct gaudi2_sm_sei_cause_data |
| gaudi2_sm_sei_cause[GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE] = { |
| {"calculated SO value overflow/underflow", "SOB ID"}, |
| {"payload address of monitor is not aligned to 4B", "monitor addr"}, |
| {"armed monitor write got BRESP (SLVERR or DECERR)", "AXI id"}, |
| }; |
| |
| static const char * const |
| gaudi2_pmmu_fatal_interrupts_cause[GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE] = { |
| "LATENCY_RD_OUT_FIFO_OVERRUN", |
| "LATENCY_WR_OUT_FIFO_OVERRUN", |
| }; |
| |
| static const char * const |
| gaudi2_hif_fatal_interrupts_cause[GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE] = { |
| "LATENCY_RD_OUT_FIFO_OVERRUN", |
| "LATENCY_WR_OUT_FIFO_OVERRUN", |
| }; |
| |
| static const char * const |
| gaudi2_psoc_axi_drain_interrupts_cause[GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE] = { |
| "AXI drain HBW", |
| "AXI drain LBW", |
| }; |
| |
| static const char * const |
| gaudi2_pcie_addr_dec_error_cause[GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE] = { |
| "HBW error response", |
| "LBW error response", |
| "TLP is blocked by RR" |
| }; |
| |
| static const int gaudi2_queue_id_to_engine_id[] = { |
| [GAUDI2_QUEUE_ID_PDMA_0_0...GAUDI2_QUEUE_ID_PDMA_0_3] = GAUDI2_ENGINE_ID_PDMA_0, |
| [GAUDI2_QUEUE_ID_PDMA_1_0...GAUDI2_QUEUE_ID_PDMA_1_3] = GAUDI2_ENGINE_ID_PDMA_1, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = |
| GAUDI2_DCORE0_ENGINE_ID_EDMA_0, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = |
| GAUDI2_DCORE0_ENGINE_ID_EDMA_1, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = |
| GAUDI2_DCORE1_ENGINE_ID_EDMA_0, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = |
| GAUDI2_DCORE1_ENGINE_ID_EDMA_1, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = |
| GAUDI2_DCORE2_ENGINE_ID_EDMA_0, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = |
| GAUDI2_DCORE2_ENGINE_ID_EDMA_1, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = |
| GAUDI2_DCORE3_ENGINE_ID_EDMA_0, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = |
| GAUDI2_DCORE3_ENGINE_ID_EDMA_1, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_0...GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = |
| GAUDI2_DCORE0_ENGINE_ID_MME, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_0...GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = |
| GAUDI2_DCORE1_ENGINE_ID_MME, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_0...GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = |
| GAUDI2_DCORE2_ENGINE_ID_MME, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_0...GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = |
| GAUDI2_DCORE3_ENGINE_ID_MME, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0...GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_0, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0...GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_1, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0...GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_2, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0...GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_3, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0...GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_4, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0...GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_5, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0...GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = |
| GAUDI2_DCORE0_ENGINE_ID_TPC_6, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0...GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = |
| GAUDI2_DCORE1_ENGINE_ID_TPC_0, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0...GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = |
| GAUDI2_DCORE1_ENGINE_ID_TPC_1, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0...GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = |
| GAUDI2_DCORE1_ENGINE_ID_TPC_2, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0...GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = |
| GAUDI2_DCORE1_ENGINE_ID_TPC_3, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0...GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = |
| GAUDI2_DCORE1_ENGINE_ID_TPC_4, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0...GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = |
| GAUDI2_DCORE1_ENGINE_ID_TPC_5, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0...GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = |
| GAUDI2_DCORE2_ENGINE_ID_TPC_0, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0...GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = |
| GAUDI2_DCORE2_ENGINE_ID_TPC_1, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0...GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = |
| GAUDI2_DCORE2_ENGINE_ID_TPC_2, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0...GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = |
| GAUDI2_DCORE2_ENGINE_ID_TPC_3, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0...GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = |
| GAUDI2_DCORE2_ENGINE_ID_TPC_4, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0...GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = |
| GAUDI2_DCORE2_ENGINE_ID_TPC_5, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0...GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = |
| GAUDI2_DCORE3_ENGINE_ID_TPC_0, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0...GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = |
| GAUDI2_DCORE3_ENGINE_ID_TPC_1, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0...GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = |
| GAUDI2_DCORE3_ENGINE_ID_TPC_2, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0...GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = |
| GAUDI2_DCORE3_ENGINE_ID_TPC_3, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0...GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = |
| GAUDI2_DCORE3_ENGINE_ID_TPC_4, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0...GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = |
| GAUDI2_DCORE3_ENGINE_ID_TPC_5, |
| [GAUDI2_QUEUE_ID_NIC_0_0...GAUDI2_QUEUE_ID_NIC_0_3] = GAUDI2_ENGINE_ID_NIC0_0, |
| [GAUDI2_QUEUE_ID_NIC_1_0...GAUDI2_QUEUE_ID_NIC_1_3] = GAUDI2_ENGINE_ID_NIC0_1, |
| [GAUDI2_QUEUE_ID_NIC_2_0...GAUDI2_QUEUE_ID_NIC_2_3] = GAUDI2_ENGINE_ID_NIC1_0, |
| [GAUDI2_QUEUE_ID_NIC_3_0...GAUDI2_QUEUE_ID_NIC_3_3] = GAUDI2_ENGINE_ID_NIC1_1, |
| [GAUDI2_QUEUE_ID_NIC_4_0...GAUDI2_QUEUE_ID_NIC_4_3] = GAUDI2_ENGINE_ID_NIC2_0, |
| [GAUDI2_QUEUE_ID_NIC_5_0...GAUDI2_QUEUE_ID_NIC_5_3] = GAUDI2_ENGINE_ID_NIC2_1, |
| [GAUDI2_QUEUE_ID_NIC_6_0...GAUDI2_QUEUE_ID_NIC_6_3] = GAUDI2_ENGINE_ID_NIC3_0, |
| [GAUDI2_QUEUE_ID_NIC_7_0...GAUDI2_QUEUE_ID_NIC_7_3] = GAUDI2_ENGINE_ID_NIC3_1, |
| [GAUDI2_QUEUE_ID_NIC_8_0...GAUDI2_QUEUE_ID_NIC_8_3] = GAUDI2_ENGINE_ID_NIC4_0, |
| [GAUDI2_QUEUE_ID_NIC_9_0...GAUDI2_QUEUE_ID_NIC_9_3] = GAUDI2_ENGINE_ID_NIC4_1, |
| [GAUDI2_QUEUE_ID_NIC_10_0...GAUDI2_QUEUE_ID_NIC_10_3] = GAUDI2_ENGINE_ID_NIC5_0, |
| [GAUDI2_QUEUE_ID_NIC_11_0...GAUDI2_QUEUE_ID_NIC_11_3] = GAUDI2_ENGINE_ID_NIC5_1, |
| [GAUDI2_QUEUE_ID_NIC_12_0...GAUDI2_QUEUE_ID_NIC_12_3] = GAUDI2_ENGINE_ID_NIC6_0, |
| [GAUDI2_QUEUE_ID_NIC_13_0...GAUDI2_QUEUE_ID_NIC_13_3] = GAUDI2_ENGINE_ID_NIC6_1, |
| [GAUDI2_QUEUE_ID_NIC_14_0...GAUDI2_QUEUE_ID_NIC_14_3] = GAUDI2_ENGINE_ID_NIC7_0, |
| [GAUDI2_QUEUE_ID_NIC_15_0...GAUDI2_QUEUE_ID_NIC_15_3] = GAUDI2_ENGINE_ID_NIC7_1, |
| [GAUDI2_QUEUE_ID_NIC_16_0...GAUDI2_QUEUE_ID_NIC_16_3] = GAUDI2_ENGINE_ID_NIC8_0, |
| [GAUDI2_QUEUE_ID_NIC_17_0...GAUDI2_QUEUE_ID_NIC_17_3] = GAUDI2_ENGINE_ID_NIC8_1, |
| [GAUDI2_QUEUE_ID_NIC_18_0...GAUDI2_QUEUE_ID_NIC_18_3] = GAUDI2_ENGINE_ID_NIC9_0, |
| [GAUDI2_QUEUE_ID_NIC_19_0...GAUDI2_QUEUE_ID_NIC_19_3] = GAUDI2_ENGINE_ID_NIC9_1, |
| [GAUDI2_QUEUE_ID_NIC_20_0...GAUDI2_QUEUE_ID_NIC_20_3] = GAUDI2_ENGINE_ID_NIC10_0, |
| [GAUDI2_QUEUE_ID_NIC_21_0...GAUDI2_QUEUE_ID_NIC_21_3] = GAUDI2_ENGINE_ID_NIC10_1, |
| [GAUDI2_QUEUE_ID_NIC_22_0...GAUDI2_QUEUE_ID_NIC_22_3] = GAUDI2_ENGINE_ID_NIC11_0, |
| [GAUDI2_QUEUE_ID_NIC_23_0...GAUDI2_QUEUE_ID_NIC_23_3] = GAUDI2_ENGINE_ID_NIC11_1, |
| [GAUDI2_QUEUE_ID_ROT_0_0...GAUDI2_QUEUE_ID_ROT_0_3] = GAUDI2_ENGINE_ID_ROT_0, |
| [GAUDI2_QUEUE_ID_ROT_1_0...GAUDI2_QUEUE_ID_ROT_1_3] = GAUDI2_ENGINE_ID_ROT_1, |
| }; |
| |
| const u32 gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_SIZE] = { |
| [GAUDI2_QUEUE_ID_PDMA_0_0] = mmPDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_0_1] = mmPDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_0_2] = mmPDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_0_3] = mmPDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_1_0] = mmPDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_1_1] = mmPDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_1_2] = mmPDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_PDMA_1_3] = mmPDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = mmDCORE0_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = mmDCORE0_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = mmDCORE0_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = mmDCORE0_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = mmDCORE0_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = mmDCORE0_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = mmDCORE0_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = mmDCORE0_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = mmDCORE0_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = mmDCORE0_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = mmDCORE0_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = mmDCORE0_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = mmDCORE0_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = mmDCORE0_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = mmDCORE0_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = mmDCORE0_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = mmDCORE0_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = mmDCORE0_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = mmDCORE0_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = mmDCORE0_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = mmDCORE0_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = mmDCORE0_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = mmDCORE0_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = mmDCORE0_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = mmDCORE0_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = mmDCORE0_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = mmDCORE0_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = mmDCORE0_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = mmDCORE0_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = mmDCORE0_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = mmDCORE0_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = mmDCORE0_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = mmDCORE0_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = mmDCORE0_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = mmDCORE0_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = mmDCORE0_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = mmDCORE0_TPC6_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = mmDCORE0_TPC6_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = mmDCORE0_TPC6_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = mmDCORE0_TPC6_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = mmDCORE1_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = mmDCORE1_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = mmDCORE1_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = mmDCORE1_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = mmDCORE1_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = mmDCORE1_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = mmDCORE1_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = mmDCORE1_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = mmDCORE1_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = mmDCORE1_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = mmDCORE1_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = mmDCORE1_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = mmDCORE1_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = mmDCORE1_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = mmDCORE1_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = mmDCORE1_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = mmDCORE1_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = mmDCORE1_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = mmDCORE1_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = mmDCORE1_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = mmDCORE1_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = mmDCORE1_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = mmDCORE1_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = mmDCORE1_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = mmDCORE1_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = mmDCORE1_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = mmDCORE1_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = mmDCORE1_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = mmDCORE1_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = mmDCORE1_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = mmDCORE1_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = mmDCORE1_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = mmDCORE1_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = mmDCORE1_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = mmDCORE1_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = mmDCORE1_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = mmDCORE2_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = mmDCORE2_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = mmDCORE2_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = mmDCORE2_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = mmDCORE2_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = mmDCORE2_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = mmDCORE2_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = mmDCORE2_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = mmDCORE2_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = mmDCORE2_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = mmDCORE2_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = mmDCORE2_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = mmDCORE2_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = mmDCORE2_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = mmDCORE2_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = mmDCORE2_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = mmDCORE2_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = mmDCORE2_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = mmDCORE2_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = mmDCORE2_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = mmDCORE2_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = mmDCORE2_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = mmDCORE2_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = mmDCORE2_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = mmDCORE2_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = mmDCORE2_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = mmDCORE2_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = mmDCORE2_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = mmDCORE2_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = mmDCORE2_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = mmDCORE2_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = mmDCORE2_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = mmDCORE2_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = mmDCORE2_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = mmDCORE2_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = mmDCORE2_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = mmDCORE3_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = mmDCORE3_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = mmDCORE3_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = mmDCORE3_EDMA0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = mmDCORE3_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = mmDCORE3_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = mmDCORE3_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = mmDCORE3_EDMA1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = mmDCORE3_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = mmDCORE3_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = mmDCORE3_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = mmDCORE3_MME_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = mmDCORE3_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = mmDCORE3_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = mmDCORE3_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = mmDCORE3_TPC0_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = mmDCORE3_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = mmDCORE3_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = mmDCORE3_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = mmDCORE3_TPC1_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = mmDCORE3_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = mmDCORE3_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = mmDCORE3_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = mmDCORE3_TPC2_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = mmDCORE3_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = mmDCORE3_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = mmDCORE3_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = mmDCORE3_TPC3_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = mmDCORE3_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = mmDCORE3_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = mmDCORE3_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = mmDCORE3_TPC4_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = mmDCORE3_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = mmDCORE3_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = mmDCORE3_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = mmDCORE3_TPC5_QM_BASE, |
| [GAUDI2_QUEUE_ID_NIC_0_0] = mmNIC0_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_0_1] = mmNIC0_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_0_2] = mmNIC0_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_0_3] = mmNIC0_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_1_0] = mmNIC0_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_1_1] = mmNIC0_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_1_2] = mmNIC0_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_1_3] = mmNIC0_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_2_0] = mmNIC1_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_2_1] = mmNIC1_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_2_2] = mmNIC1_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_2_3] = mmNIC1_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_3_0] = mmNIC1_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_3_1] = mmNIC1_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_3_2] = mmNIC1_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_3_3] = mmNIC1_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_4_0] = mmNIC2_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_4_1] = mmNIC2_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_4_2] = mmNIC2_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_4_3] = mmNIC2_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_5_0] = mmNIC2_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_5_1] = mmNIC2_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_5_2] = mmNIC2_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_5_3] = mmNIC2_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_6_0] = mmNIC3_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_6_1] = mmNIC3_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_6_2] = mmNIC3_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_6_3] = mmNIC3_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_7_0] = mmNIC3_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_7_1] = mmNIC3_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_7_2] = mmNIC3_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_7_3] = mmNIC3_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_8_0] = mmNIC4_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_8_1] = mmNIC4_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_8_2] = mmNIC4_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_8_3] = mmNIC4_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_9_0] = mmNIC4_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_9_1] = mmNIC4_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_9_2] = mmNIC4_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_9_3] = mmNIC4_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_10_0] = mmNIC5_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_10_1] = mmNIC5_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_10_2] = mmNIC5_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_10_3] = mmNIC5_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_11_0] = mmNIC5_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_11_1] = mmNIC5_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_11_2] = mmNIC5_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_11_3] = mmNIC5_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_12_0] = mmNIC6_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_12_1] = mmNIC6_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_12_2] = mmNIC6_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_12_3] = mmNIC6_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_13_0] = mmNIC6_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_13_1] = mmNIC6_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_13_2] = mmNIC6_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_13_3] = mmNIC6_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_14_0] = mmNIC7_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_14_1] = mmNIC7_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_14_2] = mmNIC7_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_14_3] = mmNIC7_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_15_0] = mmNIC7_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_15_1] = mmNIC7_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_15_2] = mmNIC7_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_15_3] = mmNIC7_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_16_0] = mmNIC8_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_16_1] = mmNIC8_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_16_2] = mmNIC8_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_16_3] = mmNIC8_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_17_0] = mmNIC8_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_17_1] = mmNIC8_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_17_2] = mmNIC8_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_17_3] = mmNIC8_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_18_0] = mmNIC9_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_18_1] = mmNIC9_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_18_2] = mmNIC9_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_18_3] = mmNIC9_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_19_0] = mmNIC9_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_19_1] = mmNIC9_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_19_2] = mmNIC9_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_19_3] = mmNIC9_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_20_0] = mmNIC10_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_20_1] = mmNIC10_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_20_2] = mmNIC10_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_20_3] = mmNIC10_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_21_0] = mmNIC10_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_21_1] = mmNIC10_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_21_2] = mmNIC10_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_21_3] = mmNIC10_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_22_0] = mmNIC11_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_22_1] = mmNIC11_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_22_2] = mmNIC11_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_22_3] = mmNIC11_QM0_BASE, |
| [GAUDI2_QUEUE_ID_NIC_23_0] = mmNIC11_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_23_1] = mmNIC11_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_23_2] = mmNIC11_QM1_BASE, |
| [GAUDI2_QUEUE_ID_NIC_23_3] = mmNIC11_QM1_BASE, |
| [GAUDI2_QUEUE_ID_ROT_0_0] = mmROT0_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_0_1] = mmROT0_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_0_2] = mmROT0_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_0_3] = mmROT0_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_1_0] = mmROT1_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_1_1] = mmROT1_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_1_2] = mmROT1_QM_BASE, |
| [GAUDI2_QUEUE_ID_ROT_1_3] = mmROT1_QM_BASE |
| }; |
| |
| static const u32 gaudi2_arc_blocks_bases[NUM_ARC_CPUS] = { |
| [CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_AUX_BASE, |
| [CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_AUX_BASE, |
| [CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_AUX_BASE, |
| [CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_AUX_BASE, |
| [CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_AUX_BASE, |
| [CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_ARC_AUX_BASE, |
| [CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_ARC_AUX_BASE, |
| [CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_AUX_BASE, |
| [CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_ARC_AUX_BASE, |
| [CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_ARC_AUX_BASE, |
| [CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_AUX_BASE, |
| [CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_AUX_BASE, |
| [CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_AUX_BASE, |
| [CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_AUX_BASE, |
| [CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_ARC_AUX1_BASE, |
| [CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_ARC_AUX0_BASE, |
| [CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_ARC_AUX1_BASE, |
| }; |
| |
| static const u32 gaudi2_arc_dccm_bases[NUM_ARC_CPUS] = { |
| [CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_DCCM0_BASE, |
| [CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_DCCM0_BASE, |
| [CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_DCCM0_BASE, |
| [CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_DCCM0_BASE, |
| [CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_DCCM_BASE, |
| [CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_DCCM_BASE, |
| [CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_DCCM_BASE, |
| [CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_DCCM_BASE, |
| [CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_DCCM_BASE, |
| [CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_DCCM_BASE, |
| [CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_DCCM_BASE, |
| [CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_DCCM_BASE, |
| [CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_DCCM_BASE, |
| [CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_DCCM_BASE, |
| [CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_DCCM1_BASE, |
| [CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_DCCM0_BASE, |
| [CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_DCCM1_BASE, |
| }; |
| |
| const u32 gaudi2_mme_ctrl_lo_blocks_bases[MME_ID_SIZE] = { |
| [MME_ID_DCORE0] = mmDCORE0_MME_CTRL_LO_BASE, |
| [MME_ID_DCORE1] = mmDCORE1_MME_CTRL_LO_BASE, |
| [MME_ID_DCORE2] = mmDCORE2_MME_CTRL_LO_BASE, |
| [MME_ID_DCORE3] = mmDCORE3_MME_CTRL_LO_BASE, |
| }; |
| |
| static const u32 gaudi2_queue_id_to_arc_id[GAUDI2_QUEUE_ID_SIZE] = { |
| [GAUDI2_QUEUE_ID_PDMA_0_0] = CPU_ID_PDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_PDMA_0_1] = CPU_ID_PDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_PDMA_0_2] = CPU_ID_PDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_PDMA_0_3] = CPU_ID_PDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_PDMA_1_0] = CPU_ID_PDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_PDMA_1_1] = CPU_ID_PDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_PDMA_1_2] = CPU_ID_PDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_PDMA_1_3] = CPU_ID_PDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = CPU_ID_MME_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = CPU_ID_MME_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = CPU_ID_MME_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = CPU_ID_MME_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = CPU_ID_TPC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = CPU_ID_TPC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = CPU_ID_TPC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = CPU_ID_TPC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = CPU_ID_TPC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = CPU_ID_TPC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = CPU_ID_TPC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = CPU_ID_TPC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = CPU_ID_TPC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = CPU_ID_TPC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = CPU_ID_TPC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = CPU_ID_TPC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = CPU_ID_TPC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = CPU_ID_TPC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = CPU_ID_TPC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = CPU_ID_TPC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = CPU_ID_TPC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = CPU_ID_TPC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = CPU_ID_TPC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = CPU_ID_TPC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = CPU_ID_TPC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = CPU_ID_TPC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = CPU_ID_TPC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = CPU_ID_TPC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = CPU_ID_TPC_QMAN_ARC24, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = CPU_ID_TPC_QMAN_ARC24, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = CPU_ID_TPC_QMAN_ARC24, |
| [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = CPU_ID_TPC_QMAN_ARC24, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = CPU_ID_SCHED_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = CPU_ID_SCHED_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = CPU_ID_SCHED_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = CPU_ID_SCHED_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = CPU_ID_TPC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = CPU_ID_TPC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = CPU_ID_TPC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = CPU_ID_TPC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = CPU_ID_TPC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = CPU_ID_TPC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = CPU_ID_TPC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = CPU_ID_TPC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = CPU_ID_TPC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = CPU_ID_TPC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = CPU_ID_TPC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = CPU_ID_TPC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = CPU_ID_TPC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = CPU_ID_TPC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = CPU_ID_TPC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = CPU_ID_TPC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = CPU_ID_TPC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = CPU_ID_TPC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = CPU_ID_TPC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = CPU_ID_TPC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = CPU_ID_TPC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = CPU_ID_TPC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = CPU_ID_TPC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = CPU_ID_TPC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = CPU_ID_MME_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = CPU_ID_MME_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = CPU_ID_MME_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = CPU_ID_MME_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = CPU_ID_TPC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = CPU_ID_TPC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = CPU_ID_TPC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = CPU_ID_TPC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = CPU_ID_TPC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = CPU_ID_TPC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = CPU_ID_TPC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = CPU_ID_TPC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = CPU_ID_TPC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = CPU_ID_TPC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = CPU_ID_TPC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = CPU_ID_TPC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = CPU_ID_TPC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = CPU_ID_TPC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = CPU_ID_TPC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = CPU_ID_TPC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = CPU_ID_TPC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = CPU_ID_TPC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = CPU_ID_TPC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = CPU_ID_TPC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = CPU_ID_TPC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = CPU_ID_TPC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = CPU_ID_TPC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = CPU_ID_TPC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = CPU_ID_SCHED_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = CPU_ID_SCHED_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = CPU_ID_SCHED_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = CPU_ID_SCHED_ARC5, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = CPU_ID_TPC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = CPU_ID_TPC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = CPU_ID_TPC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = CPU_ID_TPC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = CPU_ID_TPC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = CPU_ID_TPC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = CPU_ID_TPC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = CPU_ID_TPC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = CPU_ID_TPC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = CPU_ID_TPC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = CPU_ID_TPC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = CPU_ID_TPC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = CPU_ID_TPC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = CPU_ID_TPC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = CPU_ID_TPC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = CPU_ID_TPC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = CPU_ID_TPC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = CPU_ID_TPC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = CPU_ID_TPC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = CPU_ID_TPC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = CPU_ID_TPC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = CPU_ID_TPC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = CPU_ID_TPC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = CPU_ID_TPC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_NIC_0_0] = CPU_ID_NIC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_NIC_0_1] = CPU_ID_NIC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_NIC_0_2] = CPU_ID_NIC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_NIC_0_3] = CPU_ID_NIC_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_NIC_1_0] = CPU_ID_NIC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_NIC_1_1] = CPU_ID_NIC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_NIC_1_2] = CPU_ID_NIC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_NIC_1_3] = CPU_ID_NIC_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_NIC_2_0] = CPU_ID_NIC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_NIC_2_1] = CPU_ID_NIC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_NIC_2_2] = CPU_ID_NIC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_NIC_2_3] = CPU_ID_NIC_QMAN_ARC2, |
| [GAUDI2_QUEUE_ID_NIC_3_0] = CPU_ID_NIC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_NIC_3_1] = CPU_ID_NIC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_NIC_3_2] = CPU_ID_NIC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_NIC_3_3] = CPU_ID_NIC_QMAN_ARC3, |
| [GAUDI2_QUEUE_ID_NIC_4_0] = CPU_ID_NIC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_NIC_4_1] = CPU_ID_NIC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_NIC_4_2] = CPU_ID_NIC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_NIC_4_3] = CPU_ID_NIC_QMAN_ARC4, |
| [GAUDI2_QUEUE_ID_NIC_5_0] = CPU_ID_NIC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_NIC_5_1] = CPU_ID_NIC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_NIC_5_2] = CPU_ID_NIC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_NIC_5_3] = CPU_ID_NIC_QMAN_ARC5, |
| [GAUDI2_QUEUE_ID_NIC_6_0] = CPU_ID_NIC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_NIC_6_1] = CPU_ID_NIC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_NIC_6_2] = CPU_ID_NIC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_NIC_6_3] = CPU_ID_NIC_QMAN_ARC6, |
| [GAUDI2_QUEUE_ID_NIC_7_0] = CPU_ID_NIC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_NIC_7_1] = CPU_ID_NIC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_NIC_7_2] = CPU_ID_NIC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_NIC_7_3] = CPU_ID_NIC_QMAN_ARC7, |
| [GAUDI2_QUEUE_ID_NIC_8_0] = CPU_ID_NIC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_NIC_8_1] = CPU_ID_NIC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_NIC_8_2] = CPU_ID_NIC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_NIC_8_3] = CPU_ID_NIC_QMAN_ARC8, |
| [GAUDI2_QUEUE_ID_NIC_9_0] = CPU_ID_NIC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_NIC_9_1] = CPU_ID_NIC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_NIC_9_2] = CPU_ID_NIC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_NIC_9_3] = CPU_ID_NIC_QMAN_ARC9, |
| [GAUDI2_QUEUE_ID_NIC_10_0] = CPU_ID_NIC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_NIC_10_1] = CPU_ID_NIC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_NIC_10_2] = CPU_ID_NIC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_NIC_10_3] = CPU_ID_NIC_QMAN_ARC10, |
| [GAUDI2_QUEUE_ID_NIC_11_0] = CPU_ID_NIC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_NIC_11_1] = CPU_ID_NIC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_NIC_11_2] = CPU_ID_NIC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_NIC_11_3] = CPU_ID_NIC_QMAN_ARC11, |
| [GAUDI2_QUEUE_ID_NIC_12_0] = CPU_ID_NIC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_NIC_12_1] = CPU_ID_NIC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_NIC_12_2] = CPU_ID_NIC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_NIC_12_3] = CPU_ID_NIC_QMAN_ARC12, |
| [GAUDI2_QUEUE_ID_NIC_13_0] = CPU_ID_NIC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_NIC_13_1] = CPU_ID_NIC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_NIC_13_2] = CPU_ID_NIC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_NIC_13_3] = CPU_ID_NIC_QMAN_ARC13, |
| [GAUDI2_QUEUE_ID_NIC_14_0] = CPU_ID_NIC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_NIC_14_1] = CPU_ID_NIC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_NIC_14_2] = CPU_ID_NIC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_NIC_14_3] = CPU_ID_NIC_QMAN_ARC14, |
| [GAUDI2_QUEUE_ID_NIC_15_0] = CPU_ID_NIC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_NIC_15_1] = CPU_ID_NIC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_NIC_15_2] = CPU_ID_NIC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_NIC_15_3] = CPU_ID_NIC_QMAN_ARC15, |
| [GAUDI2_QUEUE_ID_NIC_16_0] = CPU_ID_NIC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_NIC_16_1] = CPU_ID_NIC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_NIC_16_2] = CPU_ID_NIC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_NIC_16_3] = CPU_ID_NIC_QMAN_ARC16, |
| [GAUDI2_QUEUE_ID_NIC_17_0] = CPU_ID_NIC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_NIC_17_1] = CPU_ID_NIC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_NIC_17_2] = CPU_ID_NIC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_NIC_17_3] = CPU_ID_NIC_QMAN_ARC17, |
| [GAUDI2_QUEUE_ID_NIC_18_0] = CPU_ID_NIC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_NIC_18_1] = CPU_ID_NIC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_NIC_18_2] = CPU_ID_NIC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_NIC_18_3] = CPU_ID_NIC_QMAN_ARC18, |
| [GAUDI2_QUEUE_ID_NIC_19_0] = CPU_ID_NIC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_NIC_19_1] = CPU_ID_NIC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_NIC_19_2] = CPU_ID_NIC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_NIC_19_3] = CPU_ID_NIC_QMAN_ARC19, |
| [GAUDI2_QUEUE_ID_NIC_20_0] = CPU_ID_NIC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_NIC_20_1] = CPU_ID_NIC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_NIC_20_2] = CPU_ID_NIC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_NIC_20_3] = CPU_ID_NIC_QMAN_ARC20, |
| [GAUDI2_QUEUE_ID_NIC_21_0] = CPU_ID_NIC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_NIC_21_1] = CPU_ID_NIC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_NIC_21_2] = CPU_ID_NIC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_NIC_21_3] = CPU_ID_NIC_QMAN_ARC21, |
| [GAUDI2_QUEUE_ID_NIC_22_0] = CPU_ID_NIC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_NIC_22_1] = CPU_ID_NIC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_NIC_22_2] = CPU_ID_NIC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_NIC_22_3] = CPU_ID_NIC_QMAN_ARC22, |
| [GAUDI2_QUEUE_ID_NIC_23_0] = CPU_ID_NIC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_NIC_23_1] = CPU_ID_NIC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_NIC_23_2] = CPU_ID_NIC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_NIC_23_3] = CPU_ID_NIC_QMAN_ARC23, |
| [GAUDI2_QUEUE_ID_ROT_0_0] = CPU_ID_ROT_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_ROT_0_1] = CPU_ID_ROT_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_ROT_0_2] = CPU_ID_ROT_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_ROT_0_3] = CPU_ID_ROT_QMAN_ARC0, |
| [GAUDI2_QUEUE_ID_ROT_1_0] = CPU_ID_ROT_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_ROT_1_1] = CPU_ID_ROT_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_ROT_1_2] = CPU_ID_ROT_QMAN_ARC1, |
| [GAUDI2_QUEUE_ID_ROT_1_3] = CPU_ID_ROT_QMAN_ARC1 |
| }; |
| |
| const u32 gaudi2_dma_core_blocks_bases[DMA_CORE_ID_SIZE] = { |
| [DMA_CORE_ID_PDMA0] = mmPDMA0_CORE_BASE, |
| [DMA_CORE_ID_PDMA1] = mmPDMA1_CORE_BASE, |
| [DMA_CORE_ID_EDMA0] = mmDCORE0_EDMA0_CORE_BASE, |
| [DMA_CORE_ID_EDMA1] = mmDCORE0_EDMA1_CORE_BASE, |
| [DMA_CORE_ID_EDMA2] = mmDCORE1_EDMA0_CORE_BASE, |
| [DMA_CORE_ID_EDMA3] = mmDCORE1_EDMA1_CORE_BASE, |
| [DMA_CORE_ID_EDMA4] = mmDCORE2_EDMA0_CORE_BASE, |
| [DMA_CORE_ID_EDMA5] = mmDCORE2_EDMA1_CORE_BASE, |
| [DMA_CORE_ID_EDMA6] = mmDCORE3_EDMA0_CORE_BASE, |
| [DMA_CORE_ID_EDMA7] = mmDCORE3_EDMA1_CORE_BASE, |
| [DMA_CORE_ID_KDMA] = mmARC_FARM_KDMA_BASE |
| }; |
| |
| const u32 gaudi2_mme_acc_blocks_bases[MME_ID_SIZE] = { |
| [MME_ID_DCORE0] = mmDCORE0_MME_ACC_BASE, |
| [MME_ID_DCORE1] = mmDCORE1_MME_ACC_BASE, |
| [MME_ID_DCORE2] = mmDCORE2_MME_ACC_BASE, |
| [MME_ID_DCORE3] = mmDCORE3_MME_ACC_BASE |
| }; |
| |
| static const u32 gaudi2_tpc_cfg_blocks_bases[TPC_ID_SIZE] = { |
| [TPC_ID_DCORE0_TPC0] = mmDCORE0_TPC0_CFG_BASE, |
| [TPC_ID_DCORE0_TPC1] = mmDCORE0_TPC1_CFG_BASE, |
| [TPC_ID_DCORE0_TPC2] = mmDCORE0_TPC2_CFG_BASE, |
| [TPC_ID_DCORE0_TPC3] = mmDCORE0_TPC3_CFG_BASE, |
| [TPC_ID_DCORE0_TPC4] = mmDCORE0_TPC4_CFG_BASE, |
| [TPC_ID_DCORE0_TPC5] = mmDCORE0_TPC5_CFG_BASE, |
| [TPC_ID_DCORE1_TPC0] = mmDCORE1_TPC0_CFG_BASE, |
| [TPC_ID_DCORE1_TPC1] = mmDCORE1_TPC1_CFG_BASE, |
| [TPC_ID_DCORE1_TPC2] = mmDCORE1_TPC2_CFG_BASE, |
| [TPC_ID_DCORE1_TPC3] = mmDCORE1_TPC3_CFG_BASE, |
| [TPC_ID_DCORE1_TPC4] = mmDCORE1_TPC4_CFG_BASE, |
| [TPC_ID_DCORE1_TPC5] = mmDCORE1_TPC5_CFG_BASE, |
| [TPC_ID_DCORE2_TPC0] = mmDCORE2_TPC0_CFG_BASE, |
| [TPC_ID_DCORE2_TPC1] = mmDCORE2_TPC1_CFG_BASE, |
| [TPC_ID_DCORE2_TPC2] = mmDCORE2_TPC2_CFG_BASE, |
| [TPC_ID_DCORE2_TPC3] = mmDCORE2_TPC3_CFG_BASE, |
| [TPC_ID_DCORE2_TPC4] = mmDCORE2_TPC4_CFG_BASE, |
| [TPC_ID_DCORE2_TPC5] = mmDCORE2_TPC5_CFG_BASE, |
| [TPC_ID_DCORE3_TPC0] = mmDCORE3_TPC0_CFG_BASE, |
| [TPC_ID_DCORE3_TPC1] = mmDCORE3_TPC1_CFG_BASE, |
| [TPC_ID_DCORE3_TPC2] = mmDCORE3_TPC2_CFG_BASE, |
| [TPC_ID_DCORE3_TPC3] = mmDCORE3_TPC3_CFG_BASE, |
| [TPC_ID_DCORE3_TPC4] = mmDCORE3_TPC4_CFG_BASE, |
| [TPC_ID_DCORE3_TPC5] = mmDCORE3_TPC5_CFG_BASE, |
| [TPC_ID_DCORE0_TPC6] = mmDCORE0_TPC6_CFG_BASE, |
| }; |
| |
| static const u32 gaudi2_tpc_eml_cfg_blocks_bases[TPC_ID_SIZE] = { |
| [TPC_ID_DCORE0_TPC0] = mmDCORE0_TPC0_EML_CFG_BASE, |
| [TPC_ID_DCORE0_TPC1] = mmDCORE0_TPC1_EML_CFG_BASE, |
| [TPC_ID_DCORE0_TPC2] = mmDCORE0_TPC2_EML_CFG_BASE, |
| [TPC_ID_DCORE0_TPC3] = mmDCORE0_TPC3_EML_CFG_BASE, |
| [TPC_ID_DCORE0_TPC4] = mmDCORE0_TPC4_EML_CFG_BASE, |
| [TPC_ID_DCORE0_TPC5] = mmDCORE0_TPC5_EML_CFG_BASE, |
| [TPC_ID_DCORE1_TPC0] = mmDCORE1_TPC0_EML_CFG_BASE, |
| [TPC_ID_DCORE1_TPC1] = mmDCORE1_TPC1_EML_CFG_BASE, |
| [TPC_ID_DCORE1_TPC2] = mmDCORE1_TPC2_EML_CFG_BASE, |
| [TPC_ID_DCORE1_TPC3] = mmDCORE1_TPC3_EML_CFG_BASE, |
| [TPC_ID_DCORE1_TPC4] = mmDCORE1_TPC4_EML_CFG_BASE, |
| [TPC_ID_DCORE1_TPC5] = mmDCORE1_TPC5_EML_CFG_BASE, |
| [TPC_ID_DCORE2_TPC0] = mmDCORE2_TPC0_EML_CFG_BASE, |
| [TPC_ID_DCORE2_TPC1] = mmDCORE2_TPC1_EML_CFG_BASE, |
| [TPC_ID_DCORE2_TPC2] = mmDCORE2_TPC2_EML_CFG_BASE, |
| [TPC_ID_DCORE2_TPC3] = mmDCORE2_TPC3_EML_CFG_BASE, |
| [TPC_ID_DCORE2_TPC4] = mmDCORE2_TPC4_EML_CFG_BASE, |
| [TPC_ID_DCORE2_TPC5] = mmDCORE2_TPC5_EML_CFG_BASE, |
| [TPC_ID_DCORE3_TPC0] = mmDCORE3_TPC0_EML_CFG_BASE, |
| [TPC_ID_DCORE3_TPC1] = mmDCORE3_TPC1_EML_CFG_BASE, |
| [TPC_ID_DCORE3_TPC2] = mmDCORE3_TPC2_EML_CFG_BASE, |
| [TPC_ID_DCORE3_TPC3] = mmDCORE3_TPC3_EML_CFG_BASE, |
| [TPC_ID_DCORE3_TPC4] = mmDCORE3_TPC4_EML_CFG_BASE, |
| [TPC_ID_DCORE3_TPC5] = mmDCORE3_TPC5_EML_CFG_BASE, |
| [TPC_ID_DCORE0_TPC6] = mmDCORE0_TPC6_EML_CFG_BASE, |
| }; |
| |
| const u32 gaudi2_rot_blocks_bases[ROTATOR_ID_SIZE] = { |
| [ROTATOR_ID_0] = mmROT0_BASE, |
| [ROTATOR_ID_1] = mmROT1_BASE |
| }; |
| |
| static const u32 gaudi2_tpc_id_to_queue_id[TPC_ID_SIZE] = { |
| [TPC_ID_DCORE0_TPC0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0, |
| [TPC_ID_DCORE0_TPC1] = GAUDI2_QUEUE_ID_DCORE0_TPC_1_0, |
| [TPC_ID_DCORE0_TPC2] = GAUDI2_QUEUE_ID_DCORE0_TPC_2_0, |
| [TPC_ID_DCORE0_TPC3] = GAUDI2_QUEUE_ID_DCORE0_TPC_3_0, |
| [TPC_ID_DCORE0_TPC4] = GAUDI2_QUEUE_ID_DCORE0_TPC_4_0, |
| [TPC_ID_DCORE0_TPC5] = GAUDI2_QUEUE_ID_DCORE0_TPC_5_0, |
| [TPC_ID_DCORE1_TPC0] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0, |
| [TPC_ID_DCORE1_TPC1] = GAUDI2_QUEUE_ID_DCORE1_TPC_1_0, |
| [TPC_ID_DCORE1_TPC2] = GAUDI2_QUEUE_ID_DCORE1_TPC_2_0, |
| [TPC_ID_DCORE1_TPC3] = GAUDI2_QUEUE_ID_DCORE1_TPC_3_0, |
| [TPC_ID_DCORE1_TPC4] = GAUDI2_QUEUE_ID_DCORE1_TPC_4_0, |
| [TPC_ID_DCORE1_TPC5] = GAUDI2_QUEUE_ID_DCORE1_TPC_5_0, |
| [TPC_ID_DCORE2_TPC0] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0, |
| [TPC_ID_DCORE2_TPC1] = GAUDI2_QUEUE_ID_DCORE2_TPC_1_0, |
| [TPC_ID_DCORE2_TPC2] = GAUDI2_QUEUE_ID_DCORE2_TPC_2_0, |
| [TPC_ID_DCORE2_TPC3] = GAUDI2_QUEUE_ID_DCORE2_TPC_3_0, |
| [TPC_ID_DCORE2_TPC4] = GAUDI2_QUEUE_ID_DCORE2_TPC_4_0, |
| [TPC_ID_DCORE2_TPC5] = GAUDI2_QUEUE_ID_DCORE2_TPC_5_0, |
| [TPC_ID_DCORE3_TPC0] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0, |
| [TPC_ID_DCORE3_TPC1] = GAUDI2_QUEUE_ID_DCORE3_TPC_1_0, |
| [TPC_ID_DCORE3_TPC2] = GAUDI2_QUEUE_ID_DCORE3_TPC_2_0, |
| [TPC_ID_DCORE3_TPC3] = GAUDI2_QUEUE_ID_DCORE3_TPC_3_0, |
| [TPC_ID_DCORE3_TPC4] = GAUDI2_QUEUE_ID_DCORE3_TPC_4_0, |
| [TPC_ID_DCORE3_TPC5] = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0, |
| [TPC_ID_DCORE0_TPC6] = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0, |
| }; |
| |
| static const u32 gaudi2_rot_id_to_queue_id[ROTATOR_ID_SIZE] = { |
| [ROTATOR_ID_0] = GAUDI2_QUEUE_ID_ROT_0_0, |
| [ROTATOR_ID_1] = GAUDI2_QUEUE_ID_ROT_1_0, |
| }; |
| |
| static const u32 gaudi2_tpc_engine_id_to_tpc_id[] = { |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_0] = TPC_ID_DCORE0_TPC0, |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_1] = TPC_ID_DCORE0_TPC1, |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_2] = TPC_ID_DCORE0_TPC2, |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_3] = TPC_ID_DCORE0_TPC3, |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_4] = TPC_ID_DCORE0_TPC4, |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_5] = TPC_ID_DCORE0_TPC5, |
| [GAUDI2_DCORE1_ENGINE_ID_TPC_0] = TPC_ID_DCORE1_TPC0, |
| [GAUDI2_DCORE1_ENGINE_ID_TPC_1] = TPC_ID_DCORE1_TPC1, |
| [GAUDI2_DCORE1_ENGINE_ID_TPC_2] = TPC_ID_DCORE1_TPC2, |
| [GAUDI2_DCORE1_ENGINE_ID_TPC_3] = TPC_ID_DCORE1_TPC3, |
| [GAUDI2_DCORE1_ENGINE_ID_TPC_4] = TPC_ID_DCORE1_TPC4, |
| [GAUDI2_DCORE1_ENGINE_ID_TPC_5] = TPC_ID_DCORE1_TPC5, |
| [GAUDI2_DCORE2_ENGINE_ID_TPC_0] = TPC_ID_DCORE2_TPC0, |
| [GAUDI2_DCORE2_ENGINE_ID_TPC_1] = TPC_ID_DCORE2_TPC1, |
| [GAUDI2_DCORE2_ENGINE_ID_TPC_2] = TPC_ID_DCORE2_TPC2, |
| [GAUDI2_DCORE2_ENGINE_ID_TPC_3] = TPC_ID_DCORE2_TPC3, |
| [GAUDI2_DCORE2_ENGINE_ID_TPC_4] = TPC_ID_DCORE2_TPC4, |
| [GAUDI2_DCORE2_ENGINE_ID_TPC_5] = TPC_ID_DCORE2_TPC5, |
| [GAUDI2_DCORE3_ENGINE_ID_TPC_0] = TPC_ID_DCORE3_TPC0, |
| [GAUDI2_DCORE3_ENGINE_ID_TPC_1] = TPC_ID_DCORE3_TPC1, |
| [GAUDI2_DCORE3_ENGINE_ID_TPC_2] = TPC_ID_DCORE3_TPC2, |
| [GAUDI2_DCORE3_ENGINE_ID_TPC_3] = TPC_ID_DCORE3_TPC3, |
| [GAUDI2_DCORE3_ENGINE_ID_TPC_4] = TPC_ID_DCORE3_TPC4, |
| [GAUDI2_DCORE3_ENGINE_ID_TPC_5] = TPC_ID_DCORE3_TPC5, |
| /* the PCI TPC is placed last (mapped liked HW) */ |
| [GAUDI2_DCORE0_ENGINE_ID_TPC_6] = TPC_ID_DCORE0_TPC6, |
| }; |
| |
| static const u32 gaudi2_mme_engine_id_to_mme_id[] = { |
| [GAUDI2_DCORE0_ENGINE_ID_MME] = MME_ID_DCORE0, |
| [GAUDI2_DCORE1_ENGINE_ID_MME] = MME_ID_DCORE1, |
| [GAUDI2_DCORE2_ENGINE_ID_MME] = MME_ID_DCORE2, |
| [GAUDI2_DCORE3_ENGINE_ID_MME] = MME_ID_DCORE3, |
| }; |
| |
| static const u32 gaudi2_edma_engine_id_to_edma_id[] = { |
| [GAUDI2_ENGINE_ID_PDMA_0] = DMA_CORE_ID_PDMA0, |
| [GAUDI2_ENGINE_ID_PDMA_1] = DMA_CORE_ID_PDMA1, |
| [GAUDI2_DCORE0_ENGINE_ID_EDMA_0] = DMA_CORE_ID_EDMA0, |
| [GAUDI2_DCORE0_ENGINE_ID_EDMA_1] = DMA_CORE_ID_EDMA1, |
| [GAUDI2_DCORE1_ENGINE_ID_EDMA_0] = DMA_CORE_ID_EDMA2, |
| [GAUDI2_DCORE1_ENGINE_ID_EDMA_1] = DMA_CORE_ID_EDMA3, |
| [GAUDI2_DCORE2_ENGINE_ID_EDMA_0] = DMA_CORE_ID_EDMA4, |
| [GAUDI2_DCORE2_ENGINE_ID_EDMA_1] = DMA_CORE_ID_EDMA5, |
| [GAUDI2_DCORE3_ENGINE_ID_EDMA_0] = DMA_CORE_ID_EDMA6, |
| [GAUDI2_DCORE3_ENGINE_ID_EDMA_1] = DMA_CORE_ID_EDMA7, |
| [GAUDI2_ENGINE_ID_KDMA] = DMA_CORE_ID_KDMA, |
| }; |
| |
| const u32 edma_stream_base[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = { |
| GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0, |
| GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0, |
| GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0, |
| GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0, |
| }; |
| |
| static const char gaudi2_vdec_irq_name[GAUDI2_VDEC_MSIX_ENTRIES][GAUDI2_MAX_STRING_LEN] = { |
| "gaudi2 vdec 0_0", "gaudi2 vdec 0_0 abnormal", |
| "gaudi2 vdec 0_1", "gaudi2 vdec 0_1 abnormal", |
| "gaudi2 vdec 1_0", "gaudi2 vdec 1_0 abnormal", |
| "gaudi2 vdec 1_1", "gaudi2 vdec 1_1 abnormal", |
| "gaudi2 vdec 2_0", "gaudi2 vdec 2_0 abnormal", |
| "gaudi2 vdec 2_1", "gaudi2 vdec 2_1 abnormal", |
| "gaudi2 vdec 3_0", "gaudi2 vdec 3_0 abnormal", |
| "gaudi2 vdec 3_1", "gaudi2 vdec 3_1 abnormal", |
| "gaudi2 vdec s_0", "gaudi2 vdec s_0 abnormal", |
| "gaudi2 vdec s_1", "gaudi2 vdec s_1 abnormal" |
| }; |
| |
| enum rtr_id { |
| DCORE0_RTR0, |
| DCORE0_RTR1, |
| DCORE0_RTR2, |
| DCORE0_RTR3, |
| DCORE0_RTR4, |
| DCORE0_RTR5, |
| DCORE0_RTR6, |
| DCORE0_RTR7, |
| DCORE1_RTR0, |
| DCORE1_RTR1, |
| DCORE1_RTR2, |
| DCORE1_RTR3, |
| DCORE1_RTR4, |
| DCORE1_RTR5, |
| DCORE1_RTR6, |
| DCORE1_RTR7, |
| DCORE2_RTR0, |
| DCORE2_RTR1, |
| DCORE2_RTR2, |
| DCORE2_RTR3, |
| DCORE2_RTR4, |
| DCORE2_RTR5, |
| DCORE2_RTR6, |
| DCORE2_RTR7, |
| DCORE3_RTR0, |
| DCORE3_RTR1, |
| DCORE3_RTR2, |
| DCORE3_RTR3, |
| DCORE3_RTR4, |
| DCORE3_RTR5, |
| DCORE3_RTR6, |
| DCORE3_RTR7, |
| }; |
| |
| static const u32 gaudi2_tpc_initiator_hbw_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = { |
| DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2, DCORE0_RTR3, DCORE0_RTR3, |
| DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5, DCORE1_RTR4, DCORE1_RTR4, |
| DCORE2_RTR3, DCORE2_RTR3, DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1, |
| DCORE3_RTR4, DCORE3_RTR4, DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6, |
| DCORE0_RTR0 |
| }; |
| |
| static const u32 gaudi2_tpc_initiator_lbw_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = { |
| DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2, |
| DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5, |
| DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1, DCORE2_RTR0, DCORE2_RTR0, |
| DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6, DCORE3_RTR7, DCORE3_RTR7, |
| DCORE0_RTR0 |
| }; |
| |
| static const u32 gaudi2_dec_initiator_hbw_rtr_id[NUMBER_OF_DEC] = { |
| DCORE0_RTR0, DCORE0_RTR0, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, DCORE2_RTR0, |
| DCORE3_RTR7, DCORE3_RTR7, DCORE0_RTR0, DCORE0_RTR0 |
| }; |
| |
| static const u32 gaudi2_dec_initiator_lbw_rtr_id[NUMBER_OF_DEC] = { |
| DCORE0_RTR1, DCORE0_RTR1, DCORE1_RTR6, DCORE1_RTR6, DCORE2_RTR1, DCORE2_RTR1, |
| DCORE3_RTR6, DCORE3_RTR6, DCORE0_RTR0, DCORE0_RTR0 |
| }; |
| |
| static const u32 gaudi2_nic_initiator_hbw_rtr_id[NIC_NUMBER_OF_MACROS] = { |
| DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, |
| DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7 |
| }; |
| |
| static const u32 gaudi2_nic_initiator_lbw_rtr_id[NIC_NUMBER_OF_MACROS] = { |
| DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, |
| DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7 |
| }; |
| |
| static const u32 gaudi2_edma_initiator_hbw_sft[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = { |
| mmSFT0_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT0_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT1_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT1_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT2_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT2_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT3_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE, |
| mmSFT3_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE |
| }; |
| |
| static const u32 gaudi2_pdma_initiator_hbw_rtr_id[NUM_OF_PDMA] = { |
| DCORE0_RTR0, DCORE0_RTR0 |
| }; |
| |
| static const u32 gaudi2_pdma_initiator_lbw_rtr_id[NUM_OF_PDMA] = { |
| DCORE0_RTR2, DCORE0_RTR2 |
| }; |
| |
| static const u32 gaudi2_rot_initiator_hbw_rtr_id[NUM_OF_ROT] = { |
| DCORE2_RTR0, DCORE3_RTR7 |
| }; |
| |
| static const u32 gaudi2_rot_initiator_lbw_rtr_id[NUM_OF_ROT] = { |
| DCORE2_RTR2, DCORE3_RTR5 |
| }; |
| |
| struct mme_initiators_rtr_id { |
| u32 wap0; |
| u32 wap1; |
| u32 write; |
| u32 read; |
| u32 sbte0; |
| u32 sbte1; |
| u32 sbte2; |
| u32 sbte3; |
| u32 sbte4; |
| }; |
| |
| enum mme_initiators { |
| MME_WAP0 = 0, |
| MME_WAP1, |
| MME_WRITE, |
| MME_READ, |
| MME_SBTE0, |
| MME_SBTE1, |
| MME_SBTE2, |
| MME_SBTE3, |
| MME_SBTE4, |
| MME_INITIATORS_MAX |
| }; |
| |
| static const struct mme_initiators_rtr_id |
| gaudi2_mme_initiator_rtr_id[NUM_OF_MME_PER_DCORE * NUM_OF_DCORES] = { |
| { .wap0 = 5, .wap1 = 7, .write = 6, .read = 7, |
| .sbte0 = 7, .sbte1 = 4, .sbte2 = 4, .sbte3 = 5, .sbte4 = 6}, |
| { .wap0 = 10, .wap1 = 8, .write = 9, .read = 8, |
| .sbte0 = 11, .sbte1 = 11, .sbte2 = 10, .sbte3 = 9, .sbte4 = 8}, |
| { .wap0 = 21, .wap1 = 23, .write = 22, .read = 23, |
| .sbte0 = 20, .sbte1 = 20, .sbte2 = 21, .sbte3 = 22, .sbte4 = 23}, |
| { .wap0 = 30, .wap1 = 28, .write = 29, .read = 30, |
| .sbte0 = 31, .sbte1 = 31, .sbte2 = 30, .sbte3 = 29, .sbte4 = 28}, |
| }; |
| |
| enum razwi_event_sources { |
| RAZWI_TPC, |
| RAZWI_MME, |
| RAZWI_EDMA, |
| RAZWI_PDMA, |
| RAZWI_NIC, |
| RAZWI_DEC, |
| RAZWI_ROT, |
| RAZWI_ARC_FARM |
| }; |
| |
| struct hbm_mc_error_causes { |
| u32 mask; |
| char cause[50]; |
| }; |
| |
| static struct hl_special_block_info gaudi2_special_blocks[] = GAUDI2_SPECIAL_BLOCKS; |
| |
| /* Special blocks iterator is currently used to configure security protection bits, |
| * and read global errors. Most HW blocks are addressable and those who aren't (N/A)- |
| * must be skipped. Following configurations are commonly used for both PB config |
| * and global error reading, since currently they both share the same settings. |
| * Once it changes, we must remember to use separate configurations for either one. |
| */ |
| static int gaudi2_iterator_skip_block_types[] = { |
| GAUDI2_BLOCK_TYPE_PLL, |
| GAUDI2_BLOCK_TYPE_EU_BIST, |
| GAUDI2_BLOCK_TYPE_HBM, |
| GAUDI2_BLOCK_TYPE_XFT |
| }; |
| |
| static struct range gaudi2_iterator_skip_block_ranges[] = { |
| /* Skip all PSOC blocks except for PSOC_GLOBAL_CONF */ |
| {mmPSOC_I2C_M0_BASE, mmPSOC_EFUSE_BASE}, |
| {mmPSOC_BTL_BASE, mmPSOC_MSTR_IF_RR_SHRD_HBW_BASE}, |
| /* Skip all CPU blocks except for CPU_IF */ |
| {mmCPU_CA53_CFG_BASE, mmCPU_CA53_CFG_BASE}, |
| {mmCPU_TIMESTAMP_BASE, mmCPU_MSTR_IF_RR_SHRD_HBW_BASE} |
| }; |
| |
| static struct hbm_mc_error_causes hbm_mc_spi[GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE] = { |
| {HBM_MC_SPI_TEMP_PIN_CHG_MASK, "temperature pins changed"}, |
| {HBM_MC_SPI_THR_ENG_MASK, "temperature-based throttling engaged"}, |
| {HBM_MC_SPI_THR_DIS_ENG_MASK, "temperature-based throttling disengaged"}, |
| {HBM_MC_SPI_IEEE1500_COMP_MASK, "IEEE1500 op comp"}, |
| {HBM_MC_SPI_IEEE1500_PAUSED_MASK, "IEEE1500 op paused"}, |
| }; |
| |
| static const char * const hbm_mc_sei_cause[GAUDI2_NUM_OF_HBM_SEI_CAUSE] = { |
| [HBM_SEI_CMD_PARITY_EVEN] = "SEI C/A parity even", |
| [HBM_SEI_CMD_PARITY_ODD] = "SEI C/A parity odd", |
| [HBM_SEI_READ_ERR] = "SEI read data error", |
| [HBM_SEI_WRITE_DATA_PARITY_ERR] = "SEI write data parity error", |
| [HBM_SEI_CATTRIP] = "SEI CATTRIP asserted", |
| [HBM_SEI_MEM_BIST_FAIL] = "SEI memory BIST fail", |
| [HBM_SEI_DFI] = "SEI DFI error", |
| [HBM_SEI_INV_TEMP_READ_OUT] = "SEI invalid temp read", |
| [HBM_SEI_BIST_FAIL] = "SEI BIST fail" |
| }; |
| |
| struct mmu_spi_sei_cause { |
| char cause[50]; |
| int clear_bit; |
| }; |
| |
| static const struct mmu_spi_sei_cause gaudi2_mmu_spi_sei[GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE] = { |
| {"page fault", 1}, /* INTERRUPT_CLR[1] */ |
| {"page access", 1}, /* INTERRUPT_CLR[1] */ |
| {"bypass ddr", 2}, /* INTERRUPT_CLR[2] */ |
| {"multi hit", 2}, /* INTERRUPT_CLR[2] */ |
| {"mmu rei0", -1}, /* no clear register bit */ |
| {"mmu rei1", -1}, /* no clear register bit */ |
| {"stlb rei0", -1}, /* no clear register bit */ |
| {"stlb rei1", -1}, /* no clear register bit */ |
| {"rr privileged write hit", 2}, /* INTERRUPT_CLR[2] */ |
| {"rr privileged read hit", 2}, /* INTERRUPT_CLR[2] */ |
| {"rr secure write hit", 2}, /* INTERRUPT_CLR[2] */ |
| {"rr secure read hit", 2}, /* INTERRUPT_CLR[2] */ |
| {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ |
| {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ |
| {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ |
| {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */ |
| {"slave error", 16}, /* INTERRUPT_CLR[16] */ |
| {"dec error", 17}, /* INTERRUPT_CLR[17] */ |
| {"burst fifo full", 2} /* INTERRUPT_CLR[2] */ |
| }; |
| |
| struct gaudi2_cache_invld_params { |
| u64 start_va; |
| u64 end_va; |
| u32 inv_start_val; |
| u32 flags; |
| bool range_invalidation; |
| }; |
| |
| struct gaudi2_tpc_idle_data { |
| struct engines_data *e; |
| unsigned long *mask; |
| bool *is_idle; |
| const char *tpc_fmt; |
| }; |
| |
| struct gaudi2_tpc_mmu_data { |
| u32 rw_asid; |
| }; |
| |
| static s64 gaudi2_state_dump_specs_props[SP_MAX] = {0}; |
| |
| static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val); |
| static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id); |
| static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id); |
| static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id); |
| static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id); |
| static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val); |
| static int gaudi2_send_job_to_kdma(struct hl_device *hdev, u64 src_addr, u64 dst_addr, u32 size, |
| bool is_memset); |
| static bool gaudi2_get_tpc_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e); |
| static bool gaudi2_get_mme_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e); |
| static bool gaudi2_get_edma_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e); |
| static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr); |
| static u64 gaudi2_mmu_descramble_addr(struct hl_device *hdev, u64 scrambled_addr); |
| |
| static void gaudi2_init_scrambler_hbm(struct hl_device *hdev) |
| { |
| |
| } |
| |
| static u32 gaudi2_get_signal_cb_size(struct hl_device *hdev) |
| { |
| return sizeof(struct packet_msg_short); |
| } |
| |
| static u32 gaudi2_get_wait_cb_size(struct hl_device *hdev) |
| { |
| return sizeof(struct packet_msg_short) * 4 + sizeof(struct packet_fence); |
| } |
| |
| void gaudi2_iterate_tpcs(struct hl_device *hdev, struct iterate_module_ctx *ctx) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int dcore, inst, tpc_seq; |
| u32 offset; |
| |
| /* init the return code */ |
| ctx->rc = 0; |
| |
| for (dcore = 0; dcore < NUM_OF_DCORES; dcore++) { |
| for (inst = 0; inst < NUM_OF_TPC_PER_DCORE; inst++) { |
| tpc_seq = dcore * NUM_OF_TPC_PER_DCORE + inst; |
| |
| if (!(prop->tpc_enabled_mask & BIT(tpc_seq))) |
| continue; |
| |
| offset = (DCORE_OFFSET * dcore) + (DCORE_TPC_OFFSET * inst); |
| |
| ctx->fn(hdev, dcore, inst, offset, ctx); |
| if (ctx->rc) { |
| dev_err(hdev->dev, "TPC iterator failed for DCORE%d TPC%d\n", |
| dcore, inst); |
| return; |
| } |
| } |
| } |
| |
| if (!(prop->tpc_enabled_mask & BIT(TPC_ID_DCORE0_TPC6))) |
| return; |
| |
| /* special check for PCI TPC (DCORE0_TPC6) */ |
| offset = DCORE_TPC_OFFSET * (NUM_DCORE0_TPC - 1); |
| ctx->fn(hdev, 0, NUM_DCORE0_TPC - 1, offset, ctx); |
| if (ctx->rc) |
| dev_err(hdev->dev, "TPC iterator failed for DCORE0 TPC6\n"); |
| } |
| |
| static bool gaudi2_host_phys_addr_valid(u64 addr) |
| { |
| if ((addr < HOST_PHYS_BASE_0 + HOST_PHYS_SIZE_0) || (addr >= HOST_PHYS_BASE_1)) |
| return true; |
| |
| return false; |
| } |
| |
| static int set_number_of_functional_hbms(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u8 faulty_hbms = hweight64(hdev->dram_binning); |
| |
| /* check if all HBMs should be used */ |
| if (!faulty_hbms) { |
| dev_dbg(hdev->dev, "All HBM are in use (no binning)\n"); |
| prop->num_functional_hbms = GAUDI2_HBM_NUM; |
| return 0; |
| } |
| |
| /* |
| * check for error condition in which number of binning |
| * candidates is higher than the maximum supported by the |
| * driver (in which case binning mask shall be ignored and driver will |
| * set the default) |
| */ |
| if (faulty_hbms > MAX_FAULTY_HBMS) { |
| dev_err(hdev->dev, |
| "HBM binning supports max of %d faulty HBMs, supplied mask 0x%llx.\n", |
| MAX_FAULTY_HBMS, hdev->dram_binning); |
| return -EINVAL; |
| } |
| |
| /* |
| * by default, number of functional HBMs in Gaudi2 is always |
| * GAUDI2_HBM_NUM - 1. |
| */ |
| prop->num_functional_hbms = GAUDI2_HBM_NUM - faulty_hbms; |
| return 0; |
| } |
| |
| static bool gaudi2_is_edma_queue_id(u32 queue_id) |
| { |
| |
| switch (queue_id) { |
| case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3: |
| case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3: |
| case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3: |
| case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static int gaudi2_set_dram_properties(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 hbm_drv_base_offset = 0, edma_pq_base_addr; |
| u32 basic_hbm_page_size, edma_idx = 0; |
| int rc, i; |
| |
| rc = set_number_of_functional_hbms(hdev); |
| if (rc) |
| return -EINVAL; |
| |
| /* |
| * Due to HW bug in which TLB size is x16 smaller than expected we use a workaround |
| * in which we are using x16 bigger page size to be able to populate the entire |
| * HBM mappings in the TLB |
| */ |
| basic_hbm_page_size = prop->num_functional_hbms * SZ_8M; |
| prop->dram_page_size = GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR * basic_hbm_page_size; |
| prop->device_mem_alloc_default_page_size = prop->dram_page_size; |
| prop->dram_size = prop->num_functional_hbms * SZ_16G; |
| prop->dram_base_address = DRAM_PHYS_BASE; |
| prop->dram_end_address = prop->dram_base_address + prop->dram_size; |
| prop->dram_supports_virtual_memory = true; |
| |
| prop->dram_user_base_address = DRAM_PHYS_BASE + prop->dram_page_size; |
| prop->dram_hints_align_mask = ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK; |
| prop->hints_dram_reserved_va_range.start_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_START; |
| prop->hints_dram_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_END; |
| |
| /* since DRAM page size differs from DMMU page size we need to allocate |
| * DRAM memory in units of dram_page size and mapping this memory in |
| * units of DMMU page size. we overcome this size mismatch using a |
| * scrambling routine which takes a DRAM page and converts it to a DMMU |
| * page. |
| * We therefore: |
| * 1. partition the virtual address space to DRAM-page (whole) pages. |
| * (suppose we get n such pages) |
| * 2. limit the amount of virtual address space we got from 1 above to |
| * a multiple of 64M as we don't want the scrambled address to cross |
| * the DRAM virtual address space. |
| * ( m = (n * DRAM_page_size) / DMMU_page_size). |
| * 3. determine the and address accordingly |
| * end_addr = start_addr + m * 48M |
| * |
| * the DRAM address MSBs (63:48) are not part of the roundup calculation |
| */ |
| prop->dmmu.start_addr = prop->dram_base_address + |
| (prop->dram_page_size * |
| DIV_ROUND_UP_SECTOR_T(prop->dram_size, prop->dram_page_size)); |
| prop->dmmu.end_addr = prop->dmmu.start_addr + prop->dram_page_size * |
| div_u64((VA_HBM_SPACE_END - prop->dmmu.start_addr), prop->dmmu.page_size); |
| /* |
| * Driver can't share an (48MB) HBM page with the F/W in order to prevent FW to block |
| * the driver part by range register, so it must start at the next (48MB) page |
| */ |
| hbm_drv_base_offset = roundup(CPU_FW_IMAGE_SIZE, prop->num_functional_hbms * SZ_8M); |
| |
| /* |
| * The NIC driver section size and the HMMU page tables section in the HBM needs |
| * to be the remaining size in the first dram page after taking into |
| * account the F/W image size |
| */ |
| |
| /* Reserve region in HBM for HMMU page tables */ |
| prop->mmu_pgt_addr = DRAM_PHYS_BASE + hbm_drv_base_offset + |
| ((prop->dram_page_size - hbm_drv_base_offset) - |
| (HMMU_PAGE_TABLES_SIZE + EDMA_PQS_SIZE + EDMA_SCRATCHPAD_SIZE)); |
| |
| /* Set EDMA PQs HBM addresses */ |
| edma_pq_base_addr = prop->mmu_pgt_addr + HMMU_PAGE_TABLES_SIZE; |
| |
| for (i = 0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i++) { |
| if (gaudi2_is_edma_queue_id(i)) { |
| prop->hw_queues_props[i].q_dram_bd_address = edma_pq_base_addr + |
| (edma_idx * HL_QUEUE_SIZE_IN_BYTES); |
| edma_idx++; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_fixed_properties(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hw_queue_properties *q_props; |
| u32 num_sync_stream_queues = 0; |
| int i, rc; |
| |
| prop->max_queues = GAUDI2_QUEUE_ID_SIZE; |
| prop->hw_queues_props = kcalloc(prop->max_queues, sizeof(struct hw_queue_properties), |
| GFP_KERNEL); |
| |
| if (!prop->hw_queues_props) |
| return -ENOMEM; |
| |
| q_props = prop->hw_queues_props; |
| |
| for (i = 0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i++) { |
| q_props[i].type = QUEUE_TYPE_HW; |
| q_props[i].driver_only = 0; |
| |
| if (i >= GAUDI2_QUEUE_ID_NIC_0_0 && i <= GAUDI2_QUEUE_ID_NIC_23_3) { |
| q_props[i].supports_sync_stream = 0; |
| } else { |
| q_props[i].supports_sync_stream = 1; |
| num_sync_stream_queues++; |
| } |
| |
| q_props[i].cb_alloc_flags = CB_ALLOC_USER; |
| |
| if (gaudi2_is_edma_queue_id(i)) |
| q_props[i].dram_bd = 1; |
| } |
| |
| q_props[GAUDI2_QUEUE_ID_CPU_PQ].type = QUEUE_TYPE_CPU; |
| q_props[GAUDI2_QUEUE_ID_CPU_PQ].driver_only = 1; |
| q_props[GAUDI2_QUEUE_ID_CPU_PQ].cb_alloc_flags = CB_ALLOC_KERNEL; |
| |
| prop->cache_line_size = DEVICE_CACHE_LINE_SIZE; |
| prop->cfg_base_address = CFG_BASE; |
| prop->device_dma_offset_for_host_access = HOST_PHYS_BASE_0; |
| prop->host_base_address = HOST_PHYS_BASE_0; |
| prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE_0; |
| prop->max_pending_cs = GAUDI2_MAX_PENDING_CS; |
| prop->completion_queues_count = GAUDI2_RESERVED_CQ_NUMBER; |
| prop->user_dec_intr_count = NUMBER_OF_DEC; |
| prop->user_interrupt_count = GAUDI2_IRQ_NUM_USER_LAST - GAUDI2_IRQ_NUM_USER_FIRST + 1; |
| prop->completion_mode = HL_COMPLETION_MODE_CS; |
| prop->sync_stream_first_sob = GAUDI2_RESERVED_SOB_NUMBER; |
| prop->sync_stream_first_mon = GAUDI2_RESERVED_MON_NUMBER; |
| |
| prop->sram_base_address = SRAM_BASE_ADDR; |
| prop->sram_size = SRAM_SIZE; |
| prop->sram_end_address = prop->sram_base_address + prop->sram_size; |
| prop->sram_user_base_address = prop->sram_base_address + SRAM_USER_BASE_OFFSET; |
| |
| prop->hints_range_reservation = true; |
| |
| prop->rotator_enabled_mask = BIT(NUM_OF_ROT) - 1; |
| |
| prop->max_asid = 2; |
| |
| prop->dmmu.pgt_size = HMMU_PAGE_TABLES_SIZE; |
| prop->mmu_pte_size = HL_PTE_SIZE; |
| |
| prop->dmmu.hop_shifts[MMU_HOP0] = DHOP0_SHIFT; |
| prop->dmmu.hop_shifts[MMU_HOP1] = DHOP1_SHIFT; |
| prop->dmmu.hop_shifts[MMU_HOP2] = DHOP2_SHIFT; |
| prop->dmmu.hop_shifts[MMU_HOP3] = DHOP3_SHIFT; |
| prop->dmmu.hop_masks[MMU_HOP0] = DHOP0_MASK; |
| prop->dmmu.hop_masks[MMU_HOP1] = DHOP1_MASK; |
| prop->dmmu.hop_masks[MMU_HOP2] = DHOP2_MASK; |
| prop->dmmu.hop_masks[MMU_HOP3] = DHOP3_MASK; |
| prop->dmmu.page_size = PAGE_SIZE_1GB; |
| prop->dmmu.num_hops = MMU_ARCH_4_HOPS; |
| prop->dmmu.last_mask = LAST_MASK; |
| prop->dmmu.host_resident = 0; |
| prop->dmmu.hop_table_size = HOP_TABLE_SIZE_512_PTE; |
| prop->dmmu.hop0_tables_total_size = HOP_TABLE_SIZE_512_PTE * prop->max_asid; |
| |
| /* As we need to set the pgt address in dram for HMMU init so we cannot |
| * wait to the fw cpucp info to set the dram props as mmu init comes before |
| * hw init |
| */ |
| rc = hdev->asic_funcs->set_dram_properties(hdev); |
| if (rc) |
| goto free_qprops; |
| |
| prop->mmu_pgt_size = PMMU_PAGE_TABLES_SIZE; |
| |
| prop->pmmu.pgt_size = prop->mmu_pgt_size; |
| hdev->pmmu_huge_range = true; |
| prop->pmmu.host_resident = 1; |
| prop->pmmu.num_hops = MMU_ARCH_6_HOPS; |
| prop->pmmu.last_mask = LAST_MASK; |
| prop->pmmu.hop_table_size = HOP_TABLE_SIZE_512_PTE; |
| prop->pmmu.hop0_tables_total_size = HOP_TABLE_SIZE_512_PTE * prop->max_asid; |
| |
| prop->hints_host_reserved_va_range.start_addr = RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START; |
| prop->hints_host_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HOST_END; |
| prop->hints_host_hpage_reserved_va_range.start_addr = |
| RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_START; |
| prop->hints_host_hpage_reserved_va_range.end_addr = |
| RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_END; |
| |
| if (PAGE_SIZE == SZ_64K) { |
| prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_64K; |
| prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_64K; |
| prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_64K; |
| prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_64K; |
| prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_64K; |
| prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_64K; |
| prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_64K; |
| prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_64K; |
| prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_64K; |
| prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_64K; |
| prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_64K; |
| prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_64K; |
| prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START; |
| prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END; |
| prop->pmmu.page_size = PAGE_SIZE_64KB; |
| |
| /* shifts and masks are the same in PMMU and HPMMU */ |
| memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu)); |
| prop->pmmu_huge.page_size = PAGE_SIZE_16MB; |
| prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START; |
| prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END; |
| } else { |
| prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_4K; |
| prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_4K; |
| prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_4K; |
| prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_4K; |
| prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_4K; |
| prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_4K; |
| prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_4K; |
| prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_4K; |
| prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_4K; |
| prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_4K; |
| prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_4K; |
| prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_4K; |
| prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START; |
| prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END; |
| prop->pmmu.page_size = PAGE_SIZE_4KB; |
| |
| /* shifts and masks are the same in PMMU and HPMMU */ |
| memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu)); |
| prop->pmmu_huge.page_size = PAGE_SIZE_2MB; |
| prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START; |
| prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END; |
| } |
| |
| prop->max_num_of_engines = GAUDI2_ENGINE_ID_SIZE; |
| prop->num_engine_cores = CPU_ID_MAX; |
| prop->cfg_size = CFG_SIZE; |
| prop->num_of_events = GAUDI2_EVENT_SIZE; |
| |
| prop->supports_engine_modes = true; |
| |
| prop->dc_power_default = DC_POWER_DEFAULT; |
| |
| prop->cb_pool_cb_cnt = GAUDI2_CB_POOL_CB_CNT; |
| prop->cb_pool_cb_size = GAUDI2_CB_POOL_CB_SIZE; |
| prop->pcie_dbi_base_address = CFG_BASE + mmPCIE_DBI_BASE; |
| prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI; |
| |
| strscpy_pad(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN); |
| |
| prop->mme_master_slave_mode = 1; |
| |
| prop->first_available_user_sob[0] = GAUDI2_RESERVED_SOB_NUMBER + |
| (num_sync_stream_queues * HL_RSVD_SOBS); |
| |
| prop->first_available_user_mon[0] = GAUDI2_RESERVED_MON_NUMBER + |
| (num_sync_stream_queues * HL_RSVD_MONS); |
| |
| prop->first_available_user_interrupt = GAUDI2_IRQ_NUM_USER_FIRST; |
| prop->tpc_interrupt_id = GAUDI2_IRQ_NUM_TPC_ASSERT; |
| prop->eq_interrupt_id = GAUDI2_IRQ_NUM_EVENT_QUEUE; |
| |
| prop->first_available_cq[0] = GAUDI2_RESERVED_CQ_NUMBER; |
| |
| prop->fw_cpu_boot_dev_sts0_valid = false; |
| prop->fw_cpu_boot_dev_sts1_valid = false; |
| prop->hard_reset_done_by_fw = false; |
| prop->gic_interrupts_enable = true; |
| |
| prop->server_type = HL_SERVER_TYPE_UNKNOWN; |
| |
| prop->max_dec = NUMBER_OF_DEC; |
| |
| prop->clk_pll_index = HL_GAUDI2_MME_PLL; |
| |
| prop->dma_mask = 64; |
| |
| prop->hbw_flush_reg = mmPCIE_WRAP_SPECIAL_GLBL_SPARE_0; |
| |
| prop->supports_advanced_cpucp_rc = true; |
| |
| return 0; |
| |
| free_qprops: |
| kfree(prop->hw_queues_props); |
| return rc; |
| } |
| |
| static int gaudi2_pci_bars_map(struct hl_device *hdev) |
| { |
| static const char * const name[] = {"CFG_SRAM", "MSIX", "DRAM"}; |
| bool is_wc[3] = {false, false, true}; |
| int rc; |
| |
| rc = hl_pci_bars_map(hdev, name, is_wc); |
| if (rc) |
| return rc; |
| |
| hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] + (CFG_BASE - STM_FLASH_BASE_ADDR); |
| |
| return 0; |
| } |
| |
| static u64 gaudi2_set_hbm_bar_base(struct hl_device *hdev, u64 addr) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct hl_inbound_pci_region pci_region; |
| u64 old_addr = addr; |
| int rc; |
| |
| if ((gaudi2) && (gaudi2->dram_bar_cur_addr == addr)) |
| return old_addr; |
| |
| if (hdev->asic_prop.iatu_done_by_fw) |
| return U64_MAX; |
| |
| /* Inbound Region 2 - Bar 4 - Point to DRAM */ |
| pci_region.mode = PCI_BAR_MATCH_MODE; |
| pci_region.bar = DRAM_BAR_ID; |
| pci_region.addr = addr; |
| rc = hl_pci_set_inbound_region(hdev, 2, &pci_region); |
| if (rc) |
| return U64_MAX; |
| |
| if (gaudi2) { |
| old_addr = gaudi2->dram_bar_cur_addr; |
| gaudi2->dram_bar_cur_addr = addr; |
| } |
| |
| return old_addr; |
| } |
| |
| static int gaudi2_init_iatu(struct hl_device *hdev) |
| { |
| struct hl_inbound_pci_region inbound_region; |
| struct hl_outbound_pci_region outbound_region; |
| u32 bar_addr_low, bar_addr_high; |
| int rc; |
| |
| if (hdev->asic_prop.iatu_done_by_fw) |
| return 0; |
| |
| /* Temporary inbound Region 0 - Bar 0 - Point to CFG |
| * We must map this region in BAR match mode in order to |
| * fetch BAR physical base address |
| */ |
| inbound_region.mode = PCI_BAR_MATCH_MODE; |
| inbound_region.bar = SRAM_CFG_BAR_ID; |
| /* Base address must be aligned to Bar size which is 256 MB */ |
| inbound_region.addr = STM_FLASH_BASE_ADDR - STM_FLASH_ALIGNED_OFF; |
| rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region); |
| if (rc) |
| return rc; |
| |
| /* Fetch physical BAR address */ |
| bar_addr_high = RREG32(mmPCIE_DBI_BAR1_REG + STM_FLASH_ALIGNED_OFF); |
| bar_addr_low = RREG32(mmPCIE_DBI_BAR0_REG + STM_FLASH_ALIGNED_OFF) & ~0xF; |
| |
| hdev->pcie_bar_phys[SRAM_CFG_BAR_ID] = (u64)bar_addr_high << 32 | bar_addr_low; |
| |
| /* Inbound Region 0 - Bar 0 - Point to CFG */ |
| inbound_region.mode = PCI_ADDRESS_MATCH_MODE; |
| inbound_region.bar = SRAM_CFG_BAR_ID; |
| inbound_region.offset_in_bar = 0; |
| inbound_region.addr = STM_FLASH_BASE_ADDR; |
| inbound_region.size = CFG_REGION_SIZE; |
| rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region); |
| if (rc) |
| return rc; |
| |
| /* Inbound Region 1 - Bar 0 - Point to BAR0_RESERVED + SRAM */ |
| inbound_region.mode = PCI_ADDRESS_MATCH_MODE; |
| inbound_region.bar = SRAM_CFG_BAR_ID; |
| inbound_region.offset_in_bar = CFG_REGION_SIZE; |
| inbound_region.addr = BAR0_RSRVD_BASE_ADDR; |
| inbound_region.size = BAR0_RSRVD_SIZE + SRAM_SIZE; |
| rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region); |
| if (rc) |
| return rc; |
| |
| /* Inbound Region 2 - Bar 4 - Point to DRAM */ |
| inbound_region.mode = PCI_BAR_MATCH_MODE; |
| inbound_region.bar = DRAM_BAR_ID; |
| inbound_region.addr = DRAM_PHYS_BASE; |
| rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region); |
| if (rc) |
| return rc; |
| |
| /* Outbound Region 0 - Point to Host */ |
| outbound_region.addr = HOST_PHYS_BASE_0; |
| outbound_region.size = HOST_PHYS_SIZE_0; |
| rc = hl_pci_set_outbound_region(hdev, &outbound_region); |
| |
| return rc; |
| } |
| |
| static enum hl_device_hw_state gaudi2_get_hw_state(struct hl_device *hdev) |
| { |
| return RREG32(mmHW_STATE); |
| } |
| |
| static int gaudi2_tpc_binning_init_prop(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| /* |
| * check for error condition in which number of binning candidates |
| * is higher than the maximum supported by the driver |
| */ |
| if (hweight64(hdev->tpc_binning) > MAX_CLUSTER_BINNING_FAULTY_TPCS) { |
| dev_err(hdev->dev, "TPC binning is supported for max of %d faulty TPCs, provided mask 0x%llx\n", |
| MAX_CLUSTER_BINNING_FAULTY_TPCS, |
| hdev->tpc_binning); |
| return -EINVAL; |
| } |
| |
| prop->tpc_binning_mask = hdev->tpc_binning; |
| prop->tpc_enabled_mask = GAUDI2_TPC_FULL_MASK; |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_tpc_binning_masks(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hw_queue_properties *q_props = prop->hw_queues_props; |
| u64 tpc_binning_mask; |
| u8 subst_idx = 0; |
| int i, rc; |
| |
| rc = gaudi2_tpc_binning_init_prop(hdev); |
| if (rc) |
| return rc; |
| |
| tpc_binning_mask = prop->tpc_binning_mask; |
| |
| for (i = 0 ; i < MAX_FAULTY_TPCS ; i++) { |
| u8 subst_seq, binned, qid_base; |
| |
| if (tpc_binning_mask == 0) |
| break; |
| |
| if (subst_idx == 0) { |
| subst_seq = TPC_ID_DCORE0_TPC6; |
| qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0; |
| } else { |
| subst_seq = TPC_ID_DCORE3_TPC5; |
| qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0; |
| } |
| |
| |
| /* clear bit from mask */ |
| binned = __ffs(tpc_binning_mask); |
| /* |
| * Coverity complains about possible out-of-bound access in |
| * clear_bit |
| */ |
| if (binned >= TPC_ID_SIZE) { |
| dev_err(hdev->dev, |
| "Invalid binned TPC (binning mask: %llx)\n", |
| tpc_binning_mask); |
| return -EINVAL; |
| } |
| clear_bit(binned, (unsigned long *)&tpc_binning_mask); |
| |
| /* also clear replacing TPC bit from enabled mask */ |
| clear_bit(subst_seq, (unsigned long *)&prop->tpc_enabled_mask); |
| |
| /* bin substite TPC's Qs */ |
| q_props[qid_base].binned = 1; |
| q_props[qid_base + 1].binned = 1; |
| q_props[qid_base + 2].binned = 1; |
| q_props[qid_base + 3].binned = 1; |
| |
| subst_idx++; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_dec_binning_masks(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u8 num_faulty; |
| |
| num_faulty = hweight32(hdev->decoder_binning); |
| |
| /* |
| * check for error condition in which number of binning candidates |
| * is higher than the maximum supported by the driver |
| */ |
| if (num_faulty > MAX_FAULTY_DECODERS) { |
| dev_err(hdev->dev, "decoder binning is supported for max of single faulty decoder, provided mask 0x%x\n", |
| hdev->decoder_binning); |
| return -EINVAL; |
| } |
| |
| prop->decoder_binning_mask = (hdev->decoder_binning & GAUDI2_DECODER_FULL_MASK); |
| |
| if (prop->decoder_binning_mask) |
| prop->decoder_enabled_mask = (GAUDI2_DECODER_FULL_MASK & ~BIT(DEC_ID_PCIE_VDEC1)); |
| else |
| prop->decoder_enabled_mask = GAUDI2_DECODER_FULL_MASK; |
| |
| return 0; |
| } |
| |
| static void gaudi2_set_dram_binning_masks(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| /* check if we should override default binning */ |
| if (!hdev->dram_binning) { |
| prop->dram_binning_mask = 0; |
| prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK; |
| return; |
| } |
| |
| /* set DRAM binning constraints */ |
| prop->faulty_dram_cluster_map |= hdev->dram_binning; |
| prop->dram_binning_mask = hdev->dram_binning; |
| prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK & ~BIT(HBM_ID5); |
| } |
| |
| static int gaudi2_set_edma_binning_masks(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hw_queue_properties *q_props; |
| u8 seq, num_faulty; |
| |
| num_faulty = hweight32(hdev->edma_binning); |
| |
| /* |
| * check for error condition in which number of binning candidates |
| * is higher than the maximum supported by the driver |
| */ |
| if (num_faulty > MAX_FAULTY_EDMAS) { |
| dev_err(hdev->dev, |
| "EDMA binning is supported for max of single faulty EDMA, provided mask 0x%x\n", |
| hdev->edma_binning); |
| return -EINVAL; |
| } |
| |
| if (!hdev->edma_binning) { |
| prop->edma_binning_mask = 0; |
| prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK; |
| return 0; |
| } |
| |
| seq = __ffs((unsigned long)hdev->edma_binning); |
| |
| /* set binning constraints */ |
| prop->faulty_dram_cluster_map |= BIT(edma_to_hbm_cluster[seq]); |
| prop->edma_binning_mask = hdev->edma_binning; |
| prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK & ~BIT(EDMA_ID_DCORE3_INSTANCE1); |
| |
| /* bin substitute EDMA's queue */ |
| q_props = prop->hw_queues_props; |
| q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0].binned = 1; |
| q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1].binned = 1; |
| q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2].binned = 1; |
| q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3].binned = 1; |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_xbar_edge_enable_mask(struct hl_device *hdev, u32 xbar_edge_iso_mask) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u8 num_faulty, seq; |
| |
| /* check if we should override default binning */ |
| if (!xbar_edge_iso_mask) { |
| prop->xbar_edge_enabled_mask = GAUDI2_XBAR_EDGE_FULL_MASK; |
| return 0; |
| } |
| |
| /* |
| * note that it can be set to value other than 0 only after cpucp packet (i.e. |
| * only the FW can set a redundancy value). for user it'll always be 0. |
| */ |
| num_faulty = hweight32(xbar_edge_iso_mask); |
| |
| /* |
| * check for error condition in which number of binning candidates |
| * is higher than the maximum supported by the driver |
| */ |
| if (num_faulty > MAX_FAULTY_XBARS) { |
| dev_err(hdev->dev, "we cannot have more than %d faulty XBAR EDGE\n", |
| MAX_FAULTY_XBARS); |
| return -EINVAL; |
| } |
| |
| seq = __ffs((unsigned long)xbar_edge_iso_mask); |
| |
| /* set binning constraints */ |
| prop->faulty_dram_cluster_map |= BIT(xbar_edge_to_hbm_cluster[seq]); |
| prop->xbar_edge_enabled_mask = (~xbar_edge_iso_mask) & GAUDI2_XBAR_EDGE_FULL_MASK; |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_cluster_binning_masks_common(struct hl_device *hdev, u8 xbar_edge_iso_mask) |
| { |
| int rc; |
| |
| /* |
| * mark all clusters as good, each component will "fail" cluster |
| * based on eFuse/user values. |
| * If more than single cluster is faulty- the chip is unusable |
| */ |
| hdev->asic_prop.faulty_dram_cluster_map = 0; |
| |
| gaudi2_set_dram_binning_masks(hdev); |
| |
| rc = gaudi2_set_edma_binning_masks(hdev); |
| if (rc) |
| return rc; |
| |
| rc = gaudi2_set_xbar_edge_enable_mask(hdev, xbar_edge_iso_mask); |
| if (rc) |
| return rc; |
| |
| |
| /* always initially set to full mask */ |
| hdev->asic_prop.hmmu_hif_enabled_mask = GAUDI2_HIF_HMMU_FULL_MASK; |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_cluster_binning_masks(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| rc = gaudi2_set_cluster_binning_masks_common(hdev, prop->cpucp_info.xbar_binning_mask); |
| if (rc) |
| return rc; |
| |
| /* if we have DRAM binning reported by FW we should perform cluster config */ |
| if (prop->faulty_dram_cluster_map) { |
| u8 cluster_seq = __ffs((unsigned long)prop->faulty_dram_cluster_map); |
| |
| prop->hmmu_hif_enabled_mask = cluster_hmmu_hif_enabled_mask[cluster_seq]; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_binning_masks(struct hl_device *hdev) |
| { |
| int rc; |
| |
| rc = gaudi2_set_cluster_binning_masks(hdev); |
| if (rc) |
| return rc; |
| |
| rc = gaudi2_set_tpc_binning_masks(hdev); |
| if (rc) |
| return rc; |
| |
| rc = gaudi2_set_dec_binning_masks(hdev); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| static int gaudi2_cpucp_info_get(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| long max_power; |
| u64 dram_size; |
| int rc; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| /* No point of asking this information again when not doing hard reset, as the device |
| * CPU hasn't been reset |
| */ |
| if (hdev->reset_info.in_compute_reset) |
| return 0; |
| |
| rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0, |
| mmCPU_BOOT_ERR1); |
| if (rc) |
| return rc; |
| |
| dram_size = le64_to_cpu(prop->cpucp_info.dram_size); |
| if (dram_size) { |
| /* we can have wither 5 or 6 HBMs. other values are invalid */ |
| |
| if ((dram_size != ((GAUDI2_HBM_NUM - 1) * SZ_16G)) && |
| (dram_size != (GAUDI2_HBM_NUM * SZ_16G))) { |
| dev_err(hdev->dev, |
| "F/W reported invalid DRAM size %llu. Trying to use default size %llu\n", |
| dram_size, prop->dram_size); |
| dram_size = prop->dram_size; |
| } |
| |
| prop->dram_size = dram_size; |
| prop->dram_end_address = prop->dram_base_address + dram_size; |
| } |
| |
| if (!strlen(prop->cpucp_info.card_name)) |
| strscpy_pad(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, |
| CARD_NAME_MAX_LEN); |
| |
| /* Overwrite binning masks with the actual binning values from F/W */ |
| hdev->dram_binning = prop->cpucp_info.dram_binning_mask; |
| hdev->edma_binning = prop->cpucp_info.edma_binning_mask; |
| hdev->tpc_binning = le64_to_cpu(prop->cpucp_info.tpc_binning_mask); |
| hdev->decoder_binning = lower_32_bits(le64_to_cpu(prop->cpucp_info.decoder_binning_mask)); |
| |
| dev_dbg(hdev->dev, "Read binning masks: tpc: 0x%llx, dram: 0x%llx, edma: 0x%x, dec: 0x%x\n", |
| hdev->tpc_binning, hdev->dram_binning, hdev->edma_binning, |
| hdev->decoder_binning); |
| |
| /* |
| * at this point the DRAM parameters need to be updated according to data obtained |
| * from the FW |
| */ |
| rc = hdev->asic_funcs->set_dram_properties(hdev); |
| if (rc) |
| return rc; |
| |
| rc = hdev->asic_funcs->set_binning_masks(hdev); |
| if (rc) |
| return rc; |
| |
| max_power = hl_fw_get_max_power(hdev); |
| if (max_power < 0) |
| return max_power; |
| |
| prop->max_power_default = (u64) max_power; |
| |
| return 0; |
| } |
| |
| static int gaudi2_fetch_psoc_frequency(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS]; |
| int rc; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI2_CPU_PLL, pll_freq_arr); |
| if (rc) |
| return rc; |
| |
| hdev->asic_prop.psoc_timestamp_frequency = pll_freq_arr[3]; |
| |
| return 0; |
| } |
| |
| static int gaudi2_mmu_clear_pgt_range(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_MMU_MASK)) |
| return 0; |
| |
| if (prop->dmmu.host_resident) |
| return 0; |
| |
| rc = gaudi2_memset_device_memory(hdev, prop->mmu_pgt_addr, prop->dmmu.pgt_size, 0); |
| if (rc) |
| dev_err(hdev->dev, "Failed to clear mmu pgt"); |
| |
| return rc; |
| } |
| |
| static int gaudi2_early_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct pci_dev *pdev = hdev->pdev; |
| resource_size_t pci_bar_size; |
| int rc; |
| |
| rc = gaudi2_set_fixed_properties(hdev); |
| if (rc) |
| return rc; |
| |
| /* Check BAR sizes */ |
| pci_bar_size = pci_resource_len(pdev, SRAM_CFG_BAR_ID); |
| |
| if (pci_bar_size != CFG_BAR_SIZE) { |
| dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n", |
| SRAM_CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE); |
| rc = -ENODEV; |
| goto free_queue_props; |
| } |
| |
| pci_bar_size = pci_resource_len(pdev, MSIX_BAR_ID); |
| if (pci_bar_size != MSIX_BAR_SIZE) { |
| dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n", |
| MSIX_BAR_ID, &pci_bar_size, MSIX_BAR_SIZE); |
| rc = -ENODEV; |
| goto free_queue_props; |
| } |
| |
| prop->dram_pci_bar_size = pci_resource_len(pdev, DRAM_BAR_ID); |
| hdev->dram_pci_bar_start = pci_resource_start(pdev, DRAM_BAR_ID); |
| |
| /* |
| * Only in pldm driver config iATU |
| */ |
| if (hdev->pldm) |
| hdev->asic_prop.iatu_done_by_fw = false; |
| else |
| hdev->asic_prop.iatu_done_by_fw = true; |
| |
| rc = hl_pci_init(hdev); |
| if (rc) |
| goto free_queue_props; |
| |
| /* Before continuing in the initialization, we need to read the preboot |
| * version to determine whether we run with a security-enabled firmware |
| */ |
| rc = hl_fw_read_preboot_status(hdev); |
| if (rc) { |
| if (hdev->reset_on_preboot_fail) |
| /* we are already on failure flow, so don't check if hw_fini fails. */ |
| hdev->asic_funcs->hw_fini(hdev, true, false); |
| goto pci_fini; |
| } |
| |
| if (gaudi2_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) { |
| dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n"); |
| rc = hdev->asic_funcs->hw_fini(hdev, true, false); |
| if (rc) { |
| dev_err(hdev->dev, "failed to reset HW in dirty state (%d)\n", rc); |
| goto pci_fini; |
| } |
| } |
| |
| return 0; |
| |
| pci_fini: |
| hl_pci_fini(hdev); |
| free_queue_props: |
| kfree(hdev->asic_prop.hw_queues_props); |
| return rc; |
| } |
| |
| static int gaudi2_early_fini(struct hl_device *hdev) |
| { |
| kfree(hdev->asic_prop.hw_queues_props); |
| hl_pci_fini(hdev); |
| |
| return 0; |
| } |
| |
| static bool gaudi2_is_arc_nic_owned(u64 arc_id) |
| { |
| switch (arc_id) { |
| case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool gaudi2_is_arc_tpc_owned(u64 arc_id) |
| { |
| switch (arc_id) { |
| case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void gaudi2_init_arcs(struct hl_device *hdev) |
| { |
| struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 arc_id; |
| u32 i; |
| |
| for (i = CPU_ID_SCHED_ARC0 ; i <= CPU_ID_SCHED_ARC3 ; i++) { |
| if (gaudi2_is_arc_enabled(hdev, i)) |
| continue; |
| |
| gaudi2_set_arc_id_cap(hdev, i); |
| } |
| |
| for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) { |
| if (!gaudi2_is_queue_enabled(hdev, i)) |
| continue; |
| |
| arc_id = gaudi2_queue_id_to_arc_id[i]; |
| if (gaudi2_is_arc_enabled(hdev, arc_id)) |
| continue; |
| |
| if (gaudi2_is_arc_nic_owned(arc_id) && |
| !(hdev->nic_ports_mask & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0))) |
| continue; |
| |
| if (gaudi2_is_arc_tpc_owned(arc_id) && !(gaudi2->tpc_hw_cap_initialized & |
| BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0))) |
| continue; |
| |
| gaudi2_set_arc_id_cap(hdev, arc_id); |
| } |
| |
| /* Fetch ARC scratchpad address */ |
| hdev->asic_prop.engine_core_interrupt_reg_addr = |
| CFG_BASE + le32_to_cpu(dyn_regs->eng_arc_irq_ctrl); |
| } |
| |
| static int gaudi2_scrub_arc_dccm(struct hl_device *hdev, u32 cpu_id) |
| { |
| u32 reg_base, reg_val; |
| int rc; |
| |
| switch (cpu_id) { |
| case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC3: |
| /* Each ARC scheduler has 2 consecutive DCCM blocks */ |
| rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], |
| ARC_DCCM_BLOCK_SIZE * 2, true); |
| if (rc) |
| return rc; |
| break; |
| case CPU_ID_SCHED_ARC4: |
| case CPU_ID_SCHED_ARC5: |
| case CPU_ID_MME_QMAN_ARC0: |
| case CPU_ID_MME_QMAN_ARC1: |
| reg_base = gaudi2_arc_blocks_bases[cpu_id]; |
| |
| /* Scrub lower DCCM block */ |
| rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], |
| ARC_DCCM_BLOCK_SIZE, true); |
| if (rc) |
| return rc; |
| |
| /* Switch to upper DCCM block */ |
| reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 1); |
| WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val); |
| |
| /* Scrub upper DCCM block */ |
| rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], |
| ARC_DCCM_BLOCK_SIZE, true); |
| if (rc) |
| return rc; |
| |
| /* Switch to lower DCCM block */ |
| reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 0); |
| WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val); |
| break; |
| default: |
| rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id], |
| ARC_DCCM_BLOCK_SIZE, true); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_scrub_arcs_dccm(struct hl_device *hdev) |
| { |
| u16 arc_id; |
| int rc; |
| |
| for (arc_id = CPU_ID_SCHED_ARC0 ; arc_id < CPU_ID_MAX ; arc_id++) { |
| if (!gaudi2_is_arc_enabled(hdev, arc_id)) |
| continue; |
| |
| rc = gaudi2_scrub_arc_dccm(hdev, arc_id); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_late_init(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int rc; |
| |
| rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS, |
| gaudi2->virt_msix_db_dma_addr); |
| if (rc) |
| return rc; |
| |
| rc = gaudi2_fetch_psoc_frequency(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to fetch psoc frequency\n"); |
| goto disable_pci_access; |
| } |
| |
| rc = gaudi2_mmu_clear_pgt_range(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to clear MMU page tables range\n"); |
| goto disable_pci_access; |
| } |
| |
| gaudi2_init_arcs(hdev); |
| |
| rc = gaudi2_scrub_arcs_dccm(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to scrub arcs DCCM\n"); |
| goto disable_pci_access; |
| } |
| |
| gaudi2_init_security(hdev); |
| |
| return 0; |
| |
| disable_pci_access: |
| hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); |
| |
| return rc; |
| } |
| |
| static void gaudi2_late_fini(struct hl_device *hdev) |
| { |
| hl_hwmon_release_resources(hdev); |
| } |
| |
| static void gaudi2_user_mapped_dec_init(struct gaudi2_device *gaudi2, u32 start_idx) |
| { |
| struct user_mapped_block *blocks = gaudi2->mapped_blocks; |
| |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC0_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC1_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC0_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC1_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC0_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC1_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC0_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC1_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmPCIE_DEC0_CMD_BASE, HL_BLOCK_SIZE); |
| HL_USR_MAPPED_BLK_INIT(&blocks[start_idx], mmPCIE_DEC1_CMD_BASE, HL_BLOCK_SIZE); |
| } |
| |
| static void gaudi2_user_mapped_blocks_init(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct user_mapped_block *blocks = gaudi2->mapped_blocks; |
| u32 block_size, umr_start_idx, num_umr_blocks; |
| int i; |
| |
| for (i = 0 ; i < NUM_ARC_CPUS ; i++) { |
| if (i >= CPU_ID_SCHED_ARC0 && i <= CPU_ID_SCHED_ARC3) |
| block_size = ARC_DCCM_BLOCK_SIZE * 2; |
| else |
| block_size = ARC_DCCM_BLOCK_SIZE; |
| |
| blocks[i].address = gaudi2_arc_dccm_bases[i]; |
| blocks[i].size = block_size; |
| } |
| |
| blocks[NUM_ARC_CPUS].address = mmARC_FARM_ARC0_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 1].address = mmARC_FARM_ARC1_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 1].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 2].address = mmARC_FARM_ARC2_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 2].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 3].address = mmARC_FARM_ARC3_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 3].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 4].address = mmDCORE0_MME_QM_ARC_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 4].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 5].address = mmDCORE1_MME_QM_ARC_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 5].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 6].address = mmDCORE2_MME_QM_ARC_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 6].size = HL_BLOCK_SIZE; |
| |
| blocks[NUM_ARC_CPUS + 7].address = mmDCORE3_MME_QM_ARC_ACP_ENG_BASE; |
| blocks[NUM_ARC_CPUS + 7].size = HL_BLOCK_SIZE; |
| |
| umr_start_idx = NUM_ARC_CPUS + NUM_OF_USER_ACP_BLOCKS; |
| num_umr_blocks = NIC_NUMBER_OF_ENGINES * NUM_OF_USER_NIC_UMR_BLOCKS; |
| for (i = 0 ; i < num_umr_blocks ; i++) { |
| u8 nic_id, umr_block_id; |
| |
| nic_id = i / NUM_OF_USER_NIC_UMR_BLOCKS; |
| umr_block_id = i % NUM_OF_USER_NIC_UMR_BLOCKS; |
| |
| blocks[umr_start_idx + i].address = |
| mmNIC0_UMR0_0_UNSECURE_DOORBELL0_BASE + |
| (nic_id / NIC_NUMBER_OF_QM_PER_MACRO) * NIC_OFFSET + |
| (nic_id % NIC_NUMBER_OF_QM_PER_MACRO) * NIC_QM_OFFSET + |
| umr_block_id * NIC_UMR_OFFSET; |
| blocks[umr_start_idx + i].size = HL_BLOCK_SIZE; |
| } |
| |
| /* Expose decoder HW configuration block to user */ |
| gaudi2_user_mapped_dec_init(gaudi2, USR_MAPPED_BLK_DEC_START_IDX); |
| |
| for (i = 1; i < NUM_OF_DCORES; ++i) { |
| blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].size = SM_OBJS_BLOCK_SIZE; |
| blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].size = HL_BLOCK_SIZE; |
| |
| blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].address = |
| mmDCORE0_SYNC_MNGR_OBJS_BASE + i * DCORE_OFFSET; |
| |
| blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].address = |
| mmDCORE0_SYNC_MNGR_GLBL_BASE + i * DCORE_OFFSET; |
| } |
| } |
| |
| static int gaudi2_alloc_cpu_accessible_dma_mem(struct hl_device *hdev) |
| { |
| dma_addr_t dma_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr; |
| void *virt_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}; |
| int i, j, rc = 0; |
| |
| /* The device ARC works with 32-bits addresses, and because there is a single HW register |
| * that holds the extension bits (49..28), these bits must be identical in all the allocated |
| * range. |
| */ |
| |
| for (i = 0 ; i < GAUDI2_ALLOC_CPU_MEM_RETRY_CNT ; i++) { |
| virt_addr_arr[i] = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, |
| &dma_addr_arr[i], GFP_KERNEL | __GFP_ZERO); |
| if (!virt_addr_arr[i]) { |
| rc = -ENOMEM; |
| goto free_dma_mem_arr; |
| } |
| |
| end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1; |
| if (GAUDI2_ARC_PCI_MSB_ADDR(dma_addr_arr[i]) == GAUDI2_ARC_PCI_MSB_ADDR(end_addr)) |
| break; |
| } |
| |
| if (i == GAUDI2_ALLOC_CPU_MEM_RETRY_CNT) { |
| dev_err(hdev->dev, |
| "MSB of ARC accessible DMA memory are not identical in all range\n"); |
| rc = -EFAULT; |
| goto free_dma_mem_arr; |
| } |
| |
| hdev->cpu_accessible_dma_mem = virt_addr_arr[i]; |
| hdev->cpu_accessible_dma_address = dma_addr_arr[i]; |
| |
| free_dma_mem_arr: |
| for (j = 0 ; j < i ; j++) |
| hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, virt_addr_arr[j], |
| dma_addr_arr[j]); |
| |
| return rc; |
| } |
| |
| static void gaudi2_set_pci_memory_regions(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct pci_mem_region *region; |
| |
| /* CFG */ |
| region = &hdev->pci_mem_region[PCI_REGION_CFG]; |
| region->region_base = CFG_BASE; |
| region->region_size = CFG_SIZE; |
| region->offset_in_bar = CFG_BASE - STM_FLASH_BASE_ADDR; |
| region->bar_size = CFG_BAR_SIZE; |
| region->bar_id = SRAM_CFG_BAR_ID; |
| region->used = 1; |
| |
| /* SRAM */ |
| region = &hdev->pci_mem_region[PCI_REGION_SRAM]; |
| region->region_base = SRAM_BASE_ADDR; |
| region->region_size = SRAM_SIZE; |
| region->offset_in_bar = CFG_REGION_SIZE + BAR0_RSRVD_SIZE; |
| region->bar_size = CFG_BAR_SIZE; |
| region->bar_id = SRAM_CFG_BAR_ID; |
| region->used = 1; |
| |
| /* DRAM */ |
| region = &hdev->pci_mem_region[PCI_REGION_DRAM]; |
| region->region_base = DRAM_PHYS_BASE; |
| region->region_size = hdev->asic_prop.dram_size; |
| region->offset_in_bar = 0; |
| region->bar_size = prop->dram_pci_bar_size; |
| region->bar_id = DRAM_BAR_ID; |
| region->used = 1; |
| } |
| |
| static void gaudi2_user_interrupt_setup(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int i, j, k; |
| |
| /* Initialize TPC interrupt */ |
| HL_USR_INTR_STRUCT_INIT(hdev->tpc_interrupt, hdev, 0, HL_USR_INTERRUPT_TPC); |
| |
| /* Initialize unexpected error interrupt */ |
| HL_USR_INTR_STRUCT_INIT(hdev->unexpected_error_interrupt, hdev, 0, |
| HL_USR_INTERRUPT_UNEXPECTED); |
| |
| /* Initialize common user CQ interrupt */ |
| HL_USR_INTR_STRUCT_INIT(hdev->common_user_cq_interrupt, hdev, |
| HL_COMMON_USER_CQ_INTERRUPT_ID, HL_USR_INTERRUPT_CQ); |
| |
| /* Initialize common decoder interrupt */ |
| HL_USR_INTR_STRUCT_INIT(hdev->common_decoder_interrupt, hdev, |
| HL_COMMON_DEC_INTERRUPT_ID, HL_USR_INTERRUPT_DECODER); |
| |
| /* User interrupts structure holds both decoder and user interrupts from various engines. |
| * We first initialize the decoder interrupts and then we add the user interrupts. |
| * The only limitation is that the last decoder interrupt id must be smaller |
| * then GAUDI2_IRQ_NUM_USER_FIRST. This is checked at compilation time. |
| */ |
| |
| /* Initialize decoder interrupts, expose only normal interrupts, |
| * error interrupts to be handled by driver |
| */ |
| for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, j = 0 ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_NRM; |
| i += 2, j++) |
| HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, |
| HL_USR_INTERRUPT_DECODER); |
| |
| for (i = GAUDI2_IRQ_NUM_USER_FIRST, k = 0 ; k < prop->user_interrupt_count; i++, j++, k++) |
| HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, HL_USR_INTERRUPT_CQ); |
| } |
| |
| static inline int gaudi2_get_non_zero_random_int(void) |
| { |
| int rand = get_random_u32(); |
| |
| return rand ? rand : 1; |
| } |
| |
| static void gaudi2_special_blocks_free(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_skip_blocks_cfg *skip_special_blocks_cfg = |
| &prop->skip_special_blocks_cfg; |
| |
| kfree(prop->special_blocks); |
| kfree(skip_special_blocks_cfg->block_types); |
| kfree(skip_special_blocks_cfg->block_ranges); |
| } |
| |
| static void gaudi2_special_blocks_iterator_free(struct hl_device *hdev) |
| { |
| gaudi2_special_blocks_free(hdev); |
| } |
| |
| static bool gaudi2_special_block_skip(struct hl_device *hdev, |
| struct hl_special_blocks_cfg *special_blocks_cfg, |
| u32 blk_idx, u32 major, u32 minor, u32 sub_minor) |
| { |
| return false; |
| } |
| |
| static int gaudi2_special_blocks_config(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int i, rc; |
| |
| /* Configure Special blocks */ |
| prop->glbl_err_max_cause_num = GAUDI2_GLBL_ERR_MAX_CAUSE_NUM; |
| prop->num_of_special_blocks = ARRAY_SIZE(gaudi2_special_blocks); |
| prop->special_blocks = kmalloc_array(prop->num_of_special_blocks, |
| sizeof(*prop->special_blocks), GFP_KERNEL); |
| if (!prop->special_blocks) |
| return -ENOMEM; |
| |
| for (i = 0 ; i < prop->num_of_special_blocks ; i++) |
| memcpy(&prop->special_blocks[i], &gaudi2_special_blocks[i], |
| sizeof(*prop->special_blocks)); |
| |
| /* Configure when to skip Special blocks */ |
| memset(&prop->skip_special_blocks_cfg, 0, sizeof(prop->skip_special_blocks_cfg)); |
| prop->skip_special_blocks_cfg.skip_block_hook = gaudi2_special_block_skip; |
| |
| if (ARRAY_SIZE(gaudi2_iterator_skip_block_types)) { |
| prop->skip_special_blocks_cfg.block_types = |
| kmalloc_array(ARRAY_SIZE(gaudi2_iterator_skip_block_types), |
| sizeof(gaudi2_iterator_skip_block_types[0]), GFP_KERNEL); |
| if (!prop->skip_special_blocks_cfg.block_types) { |
| rc = -ENOMEM; |
| goto free_special_blocks; |
| } |
| |
| memcpy(prop->skip_special_blocks_cfg.block_types, gaudi2_iterator_skip_block_types, |
| sizeof(gaudi2_iterator_skip_block_types)); |
| |
| prop->skip_special_blocks_cfg.block_types_len = |
| ARRAY_SIZE(gaudi2_iterator_skip_block_types); |
| } |
| |
| if (ARRAY_SIZE(gaudi2_iterator_skip_block_ranges)) { |
| prop->skip_special_blocks_cfg.block_ranges = |
| kmalloc_array(ARRAY_SIZE(gaudi2_iterator_skip_block_ranges), |
| sizeof(gaudi2_iterator_skip_block_ranges[0]), GFP_KERNEL); |
| if (!prop->skip_special_blocks_cfg.block_ranges) { |
| rc = -ENOMEM; |
| goto free_skip_special_blocks_types; |
| } |
| |
| for (i = 0 ; i < ARRAY_SIZE(gaudi2_iterator_skip_block_ranges) ; i++) |
| memcpy(&prop->skip_special_blocks_cfg.block_ranges[i], |
| &gaudi2_iterator_skip_block_ranges[i], |
| sizeof(struct range)); |
| |
| prop->skip_special_blocks_cfg.block_ranges_len = |
| ARRAY_SIZE(gaudi2_iterator_skip_block_ranges); |
| } |
| |
| return 0; |
| |
| free_skip_special_blocks_types: |
| kfree(prop->skip_special_blocks_cfg.block_types); |
| free_special_blocks: |
| kfree(prop->special_blocks); |
| |
| return rc; |
| } |
| |
| static int gaudi2_special_blocks_iterator_config(struct hl_device *hdev) |
| { |
| return gaudi2_special_blocks_config(hdev); |
| } |
| |
| static void gaudi2_test_queues_msgs_free(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_queues_test_info *msg_info = gaudi2->queues_test_info; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_TESTED_QS ; i++) { |
| /* bail-out if this is an allocation failure point */ |
| if (!msg_info[i].kern_addr) |
| break; |
| |
| hl_asic_dma_pool_free(hdev, msg_info[i].kern_addr, msg_info[i].dma_addr); |
| msg_info[i].kern_addr = NULL; |
| } |
| } |
| |
| static int gaudi2_test_queues_msgs_alloc(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_queues_test_info *msg_info = gaudi2->queues_test_info; |
| int i, rc; |
| |
| /* allocate a message-short buf for each Q we intend to test */ |
| for (i = 0 ; i < GAUDI2_NUM_TESTED_QS ; i++) { |
| msg_info[i].kern_addr = |
| (void *)hl_asic_dma_pool_zalloc(hdev, sizeof(struct packet_msg_short), |
| GFP_KERNEL, &msg_info[i].dma_addr); |
| if (!msg_info[i].kern_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate dma memory for H/W queue %d testing\n", i); |
| rc = -ENOMEM; |
| goto err_exit; |
| } |
| } |
| |
| return 0; |
| |
| err_exit: |
| gaudi2_test_queues_msgs_free(hdev); |
| return rc; |
| } |
| |
| static int gaudi2_sw_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2; |
| int i, rc; |
| |
| /* Allocate device structure */ |
| gaudi2 = kzalloc(sizeof(*gaudi2), GFP_KERNEL); |
| if (!gaudi2) |
| return -ENOMEM; |
| |
| for (i = 0 ; i < ARRAY_SIZE(gaudi2_irq_map_table) ; i++) { |
| if (gaudi2_irq_map_table[i].msg || !gaudi2_irq_map_table[i].valid) |
| continue; |
| |
| if (gaudi2->num_of_valid_hw_events == GAUDI2_EVENT_SIZE) { |
| dev_err(hdev->dev, "H/W events array exceeds the limit of %u events\n", |
| GAUDI2_EVENT_SIZE); |
| rc = -EINVAL; |
| goto free_gaudi2_device; |
| } |
| |
| gaudi2->hw_events[gaudi2->num_of_valid_hw_events++] = gaudi2_irq_map_table[i].fc_id; |
| } |
| |
| for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) |
| gaudi2->lfsr_rand_seeds[i] = gaudi2_get_non_zero_random_int(); |
| |
| gaudi2->cpucp_info_get = gaudi2_cpucp_info_get; |
| |
| hdev->asic_specific = gaudi2; |
| |
| /* Create DMA pool for small allocations. |
| * Use DEVICE_CACHE_LINE_SIZE for alignment since the NIC memory-mapped |
| * PI/CI registers allocated from this pool have this restriction |
| */ |
| hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), &hdev->pdev->dev, |
| GAUDI2_DMA_POOL_BLK_SIZE, DEVICE_CACHE_LINE_SIZE, 0); |
| if (!hdev->dma_pool) { |
| dev_err(hdev->dev, "failed to create DMA pool\n"); |
| rc = -ENOMEM; |
| goto free_gaudi2_device; |
| } |
| |
| rc = gaudi2_alloc_cpu_accessible_dma_mem(hdev); |
| if (rc) |
| goto free_dma_pool; |
| |
| hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1); |
| if (!hdev->cpu_accessible_dma_pool) { |
| dev_err(hdev->dev, "Failed to create CPU accessible DMA pool\n"); |
| rc = -ENOMEM; |
| goto free_cpu_dma_mem; |
| } |
| |
| rc = gen_pool_add(hdev->cpu_accessible_dma_pool, (uintptr_t) hdev->cpu_accessible_dma_mem, |
| HL_CPU_ACCESSIBLE_MEM_SIZE, -1); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to add memory to CPU accessible DMA pool\n"); |
| rc = -EFAULT; |
| goto free_cpu_accessible_dma_pool; |
| } |
| |
| gaudi2->virt_msix_db_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, prop->pmmu.page_size, |
| &gaudi2->virt_msix_db_dma_addr); |
| if (!gaudi2->virt_msix_db_cpu_addr) { |
| dev_err(hdev->dev, "Failed to allocate DMA memory for virtual MSI-X doorbell\n"); |
| rc = -ENOMEM; |
| goto free_cpu_accessible_dma_pool; |
| } |
| |
| spin_lock_init(&gaudi2->hw_queues_lock); |
| |
| gaudi2->scratchpad_bus_address = prop->mmu_pgt_addr + HMMU_PAGE_TABLES_SIZE + EDMA_PQS_SIZE; |
| |
| gaudi2_user_mapped_blocks_init(hdev); |
| |
| /* Initialize user interrupts */ |
| gaudi2_user_interrupt_setup(hdev); |
| |
| hdev->supports_coresight = true; |
| hdev->supports_sync_stream = true; |
| hdev->supports_cb_mapping = true; |
| hdev->supports_wait_for_multi_cs = false; |
| |
| prop->supports_compute_reset = true; |
| |
| /* Event queue sanity check added in FW version 1.11 */ |
| if (hl_fw_version_cmp(hdev, 1, 11, 0) < 0) |
| hdev->event_queue.check_eqe_index = false; |
| else |
| hdev->event_queue.check_eqe_index = true; |
| |
| hdev->asic_funcs->set_pci_memory_regions(hdev); |
| |
| rc = gaudi2_special_blocks_iterator_config(hdev); |
| if (rc) |
| goto free_virt_msix_db_mem; |
| |
| rc = gaudi2_test_queues_msgs_alloc(hdev); |
| if (rc) |
| goto special_blocks_free; |
| |
| hdev->heartbeat_debug_info.cpu_queue_id = GAUDI2_QUEUE_ID_CPU_PQ; |
| |
| return 0; |
| |
| special_blocks_free: |
| gaudi2_special_blocks_iterator_free(hdev); |
| free_virt_msix_db_mem: |
| hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr); |
| free_cpu_accessible_dma_pool: |
| gen_pool_destroy(hdev->cpu_accessible_dma_pool); |
| free_cpu_dma_mem: |
| hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem, |
| hdev->cpu_accessible_dma_address); |
| free_dma_pool: |
| dma_pool_destroy(hdev->dma_pool); |
| free_gaudi2_device: |
| kfree(gaudi2); |
| return rc; |
| } |
| |
| static int gaudi2_sw_fini(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| gaudi2_test_queues_msgs_free(hdev); |
| |
| gaudi2_special_blocks_iterator_free(hdev); |
| |
| hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr); |
| |
| gen_pool_destroy(hdev->cpu_accessible_dma_pool); |
| |
| hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem, |
| hdev->cpu_accessible_dma_address); |
| |
| dma_pool_destroy(hdev->dma_pool); |
| |
| kfree(gaudi2); |
| |
| return 0; |
| } |
| |
| static void gaudi2_stop_qman_common(struct hl_device *hdev, u32 reg_base) |
| { |
| WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_STOP | |
| QM_GLBL_CFG1_CQF_STOP | |
| QM_GLBL_CFG1_CP_STOP); |
| |
| /* stop also the ARC */ |
| WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_STOP); |
| } |
| |
| static void gaudi2_flush_qman_common(struct hl_device *hdev, u32 reg_base) |
| { |
| WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_FLUSH | |
| QM_GLBL_CFG1_CQF_FLUSH | |
| QM_GLBL_CFG1_CP_FLUSH); |
| } |
| |
| static void gaudi2_flush_qman_arc_common(struct hl_device *hdev, u32 reg_base) |
| { |
| WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_FLUSH); |
| } |
| |
| /** |
| * gaudi2_clear_qm_fence_counters_common - clear QM's fence counters |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @queue_id: queue to clear fence counters to |
| * @skip_fence: if true set maximum fence value to all fence counters to avoid |
| * getting stuck on any fence value. otherwise set all fence |
| * counters to 0 (standard clear of fence counters) |
| */ |
| static void gaudi2_clear_qm_fence_counters_common(struct hl_device *hdev, u32 queue_id, |
| bool skip_fence) |
| { |
| u32 size, reg_base; |
| u32 addr, val; |
| |
| reg_base = gaudi2_qm_blocks_bases[queue_id]; |
| |
| addr = reg_base + QM_CP_FENCE0_CNT_0_OFFSET; |
| size = mmPDMA0_QM_CP_BARRIER_CFG - mmPDMA0_QM_CP_FENCE0_CNT_0; |
| |
| /* |
| * in case we want to make sure that QM that is stuck on a fence will |
| * be released we should set the fence counter to a higher value that |
| * the value the QM waiting for. to comply with any fence counter of |
| * any value we set maximum fence value to all counters |
| */ |
| val = skip_fence ? U32_MAX : 0; |
| gaudi2_memset_device_lbw(hdev, addr, size, val); |
| } |
| |
| static void gaudi2_qman_manual_flush_common(struct hl_device *hdev, u32 queue_id) |
| { |
| u32 reg_base = gaudi2_qm_blocks_bases[queue_id]; |
| |
| gaudi2_clear_qm_fence_counters_common(hdev, queue_id, true); |
| gaudi2_flush_qman_common(hdev, reg_base); |
| gaudi2_flush_qman_arc_common(hdev, reg_base); |
| } |
| |
| static void gaudi2_stop_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int dcore, inst; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK)) |
| goto stop_edma_qmans; |
| |
| /* Stop CPs of PDMA QMANs */ |
| gaudi2_stop_qman_common(hdev, mmPDMA0_QM_BASE); |
| gaudi2_stop_qman_common(hdev, mmPDMA1_QM_BASE); |
| |
| stop_edma_qmans: |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) |
| return; |
| |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { |
| u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; |
| u32 qm_base; |
| |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq))) |
| continue; |
| |
| qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET + |
| inst * DCORE_EDMA_OFFSET; |
| |
| /* Stop CPs of EDMA QMANs */ |
| gaudi2_stop_qman_common(hdev, qm_base); |
| } |
| } |
| } |
| |
| static void gaudi2_stop_mme_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 offset, i; |
| |
| offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE; |
| |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) { |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))) |
| continue; |
| |
| gaudi2_stop_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset)); |
| } |
| } |
| |
| static void gaudi2_stop_tpc_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| int i; |
| |
| if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return; |
| |
| for (i = 0 ; i < TPC_ID_SIZE ; i++) { |
| if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i))) |
| continue; |
| |
| reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]]; |
| gaudi2_stop_qman_common(hdev, reg_base); |
| } |
| } |
| |
| static void gaudi2_stop_rot_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| int i; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK)) |
| return; |
| |
| for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) { |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i))) |
| continue; |
| |
| reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]]; |
| gaudi2_stop_qman_common(hdev, reg_base); |
| } |
| } |
| |
| static void gaudi2_stop_nic_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base, queue_id; |
| int i; |
| |
| if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK)) |
| return; |
| |
| queue_id = GAUDI2_QUEUE_ID_NIC_0_0; |
| |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { |
| if (!(hdev->nic_ports_mask & BIT(i))) |
| continue; |
| |
| reg_base = gaudi2_qm_blocks_bases[queue_id]; |
| gaudi2_stop_qman_common(hdev, reg_base); |
| } |
| } |
| |
| static void gaudi2_stall_dma_common(struct hl_device *hdev, u32 reg_base) |
| { |
| u32 reg_val; |
| |
| reg_val = FIELD_PREP(PDMA0_CORE_CFG_1_HALT_MASK, 0x1); |
| WREG32(reg_base + DMA_CORE_CFG_1_OFFSET, reg_val); |
| } |
| |
| static void gaudi2_dma_stall(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int dcore, inst; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK)) |
| goto stall_edma; |
| |
| gaudi2_stall_dma_common(hdev, mmPDMA0_CORE_BASE); |
| gaudi2_stall_dma_common(hdev, mmPDMA1_CORE_BASE); |
| |
| stall_edma: |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) |
| return; |
| |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { |
| u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; |
| u32 core_base; |
| |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq))) |
| continue; |
| |
| core_base = mmDCORE0_EDMA0_CORE_BASE + dcore * DCORE_OFFSET + |
| inst * DCORE_EDMA_OFFSET; |
| |
| /* Stall CPs of EDMA QMANs */ |
| gaudi2_stall_dma_common(hdev, core_base); |
| } |
| } |
| } |
| |
| static void gaudi2_mme_stall(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 offset, i; |
| |
| offset = mmDCORE1_MME_CTRL_LO_QM_STALL - mmDCORE0_MME_CTRL_LO_QM_STALL; |
| |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) |
| if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)) |
| WREG32(mmDCORE0_MME_CTRL_LO_QM_STALL + (i * offset), 1); |
| } |
| |
| static void gaudi2_tpc_stall(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| int i; |
| |
| if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return; |
| |
| for (i = 0 ; i < TPC_ID_SIZE ; i++) { |
| if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i))) |
| continue; |
| |
| reg_base = gaudi2_tpc_cfg_blocks_bases[i]; |
| WREG32(reg_base + TPC_CFG_STALL_OFFSET, 1); |
| } |
| } |
| |
| static void gaudi2_rotator_stall(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_val; |
| int i; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK)) |
| return; |
| |
| reg_val = FIELD_PREP(ROT_MSS_HALT_WBC_MASK, 0x1) | |
| FIELD_PREP(ROT_MSS_HALT_RSB_MASK, 0x1) | |
| FIELD_PREP(ROT_MSS_HALT_MRSB_MASK, 0x1); |
| |
| for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) { |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i))) |
| continue; |
| |
| WREG32(mmROT0_MSS_HALT + i * ROT_OFFSET, reg_val); |
| } |
| } |
| |
| static void gaudi2_disable_qman_common(struct hl_device *hdev, u32 reg_base) |
| { |
| WREG32(reg_base + QM_GLBL_CFG0_OFFSET, 0); |
| } |
| |
| static void gaudi2_disable_dma_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int dcore, inst; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK)) |
| goto stop_edma_qmans; |
| |
| gaudi2_disable_qman_common(hdev, mmPDMA0_QM_BASE); |
| gaudi2_disable_qman_common(hdev, mmPDMA1_QM_BASE); |
| |
| stop_edma_qmans: |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) |
| return; |
| |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { |
| u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; |
| u32 qm_base; |
| |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq))) |
| continue; |
| |
| qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET + |
| inst * DCORE_EDMA_OFFSET; |
| |
| /* Disable CPs of EDMA QMANs */ |
| gaudi2_disable_qman_common(hdev, qm_base); |
| } |
| } |
| } |
| |
| static void gaudi2_disable_mme_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 offset, i; |
| |
| offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE; |
| |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) |
| if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)) |
| gaudi2_disable_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset)); |
| } |
| |
| static void gaudi2_disable_tpc_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| int i; |
| |
| if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return; |
| |
| for (i = 0 ; i < TPC_ID_SIZE ; i++) { |
| if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i))) |
| continue; |
| |
| reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]]; |
| gaudi2_disable_qman_common(hdev, reg_base); |
| } |
| } |
| |
| static void gaudi2_disable_rot_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| int i; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK)) |
| return; |
| |
| for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) { |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i))) |
| continue; |
| |
| reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]]; |
| gaudi2_disable_qman_common(hdev, reg_base); |
| } |
| } |
| |
| static void gaudi2_disable_nic_qmans(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base, queue_id; |
| int i; |
| |
| if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK)) |
| return; |
| |
| queue_id = GAUDI2_QUEUE_ID_NIC_0_0; |
| |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { |
| if (!(hdev->nic_ports_mask & BIT(i))) |
| continue; |
| |
| reg_base = gaudi2_qm_blocks_bases[queue_id]; |
| gaudi2_disable_qman_common(hdev, reg_base); |
| } |
| } |
| |
| static void gaudi2_enable_timestamp(struct hl_device *hdev) |
| { |
| /* Disable the timestamp counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE, 0); |
| |
| /* Zero the lower/upper parts of the 64-bit counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE + 0xC, 0); |
| WREG32(mmPSOC_TIMESTAMP_BASE + 0x8, 0); |
| |
| /* Enable the counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE, 1); |
| } |
| |
| static void gaudi2_disable_timestamp(struct hl_device *hdev) |
| { |
| /* Disable the timestamp counter */ |
| WREG32(mmPSOC_TIMESTAMP_BASE, 0); |
| } |
| |
| static const char *gaudi2_irq_name(u16 irq_number) |
| { |
| switch (irq_number) { |
| case GAUDI2_IRQ_NUM_EVENT_QUEUE: |
| return "gaudi2 cpu eq"; |
| case GAUDI2_IRQ_NUM_COMPLETION: |
| return "gaudi2 completion"; |
| case GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ... GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM: |
| return gaudi2_vdec_irq_name[irq_number - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM]; |
| case GAUDI2_IRQ_NUM_TPC_ASSERT: |
| return "gaudi2 tpc assert"; |
| case GAUDI2_IRQ_NUM_UNEXPECTED_ERROR: |
| return "gaudi2 unexpected error"; |
| case GAUDI2_IRQ_NUM_USER_FIRST ... GAUDI2_IRQ_NUM_USER_LAST: |
| return "gaudi2 user completion"; |
| case GAUDI2_IRQ_NUM_EQ_ERROR: |
| return "gaudi2 eq error"; |
| default: |
| return "invalid"; |
| } |
| } |
| |
| static void gaudi2_dec_disable_msix(struct hl_device *hdev, u32 max_irq_num) |
| { |
| int i, irq, relative_idx; |
| struct hl_dec *dec; |
| |
| for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i < max_irq_num ; i++) { |
| irq = pci_irq_vector(hdev->pdev, i); |
| relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM; |
| |
| dec = hdev->dec + relative_idx / 2; |
| |
| /* We pass different structures depending on the irq handler. For the abnormal |
| * interrupt we pass hl_dec and for the regular interrupt we pass the relevant |
| * user_interrupt entry |
| */ |
| free_irq(irq, ((relative_idx % 2) ? |
| (void *) dec : |
| (void *) &hdev->user_interrupt[dec->core_id])); |
| } |
| } |
| |
| static int gaudi2_dec_enable_msix(struct hl_device *hdev) |
| { |
| int rc, i, irq_init_cnt, irq, relative_idx; |
| struct hl_dec *dec; |
| |
| for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, irq_init_cnt = 0; |
| i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM; |
| i++, irq_init_cnt++) { |
| |
| irq = pci_irq_vector(hdev->pdev, i); |
| relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM; |
| |
| /* We pass different structures depending on the irq handler. For the abnormal |
| * interrupt we pass hl_dec and for the regular interrupt we pass the relevant |
| * user_interrupt entry |
| * |
| * TODO: change the dec abnrm to threaded irq |
| */ |
| |
| dec = hdev->dec + relative_idx / 2; |
| if (relative_idx % 2) { |
| rc = request_irq(irq, hl_irq_handler_dec_abnrm, 0, |
| gaudi2_irq_name(i), (void *) dec); |
| } else { |
| rc = request_irq(irq, hl_irq_user_interrupt_handler, 0, gaudi2_irq_name(i), |
| (void *) &hdev->user_interrupt[dec->core_id]); |
| } |
| |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_dec_irqs; |
| } |
| } |
| |
| return 0; |
| |
| free_dec_irqs: |
| gaudi2_dec_disable_msix(hdev, (GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + irq_init_cnt)); |
| return rc; |
| } |
| |
| static int gaudi2_enable_msix(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int rc, irq, i, j, user_irq_init_cnt; |
| struct hl_cq *cq; |
| |
| if (gaudi2->hw_cap_initialized & HW_CAP_MSIX) |
| return 0; |
| |
| hl_init_cpu_for_irq(hdev); |
| |
| rc = pci_alloc_irq_vectors(hdev->pdev, GAUDI2_MSIX_ENTRIES, GAUDI2_MSIX_ENTRIES, |
| PCI_IRQ_MSIX); |
| if (rc < 0) { |
| dev_err(hdev->dev, "MSI-X: Failed to enable support -- %d/%d\n", |
| GAUDI2_MSIX_ENTRIES, rc); |
| return rc; |
| } |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION); |
| cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION]; |
| rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_COMPLETION), cq); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_irq_vectors; |
| } |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE); |
| rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_EVENT_QUEUE), |
| &hdev->event_queue); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_completion_irq; |
| } |
| |
| rc = gaudi2_dec_enable_msix(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to enable decoder IRQ"); |
| goto free_event_irq; |
| } |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_TPC_ASSERT); |
| rc = request_threaded_irq(irq, NULL, hl_irq_user_interrupt_thread_handler, IRQF_ONESHOT, |
| gaudi2_irq_name(GAUDI2_IRQ_NUM_TPC_ASSERT), |
| &hdev->tpc_interrupt); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_dec_irq; |
| } |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_UNEXPECTED_ERROR); |
| rc = request_threaded_irq(irq, NULL, hl_irq_user_interrupt_thread_handler, IRQF_ONESHOT, |
| gaudi2_irq_name(GAUDI2_IRQ_NUM_UNEXPECTED_ERROR), |
| &hdev->unexpected_error_interrupt); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_tpc_irq; |
| } |
| |
| for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, user_irq_init_cnt = 0; |
| user_irq_init_cnt < prop->user_interrupt_count; |
| i++, j++, user_irq_init_cnt++) { |
| |
| irq = pci_irq_vector(hdev->pdev, i); |
| hl_set_irq_affinity(hdev, irq); |
| rc = request_irq(irq, hl_irq_user_interrupt_handler, 0, gaudi2_irq_name(i), |
| &hdev->user_interrupt[j]); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_user_irq; |
| } |
| } |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EQ_ERROR); |
| rc = request_threaded_irq(irq, NULL, hl_irq_eq_error_interrupt_thread_handler, |
| IRQF_ONESHOT, gaudi2_irq_name(GAUDI2_IRQ_NUM_EQ_ERROR), |
| hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to request IRQ %d", irq); |
| goto free_user_irq; |
| } |
| |
| gaudi2->hw_cap_initialized |= HW_CAP_MSIX; |
| |
| return 0; |
| |
| free_user_irq: |
| for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count; |
| i < GAUDI2_IRQ_NUM_USER_FIRST + user_irq_init_cnt ; i++, j++) { |
| |
| irq = pci_irq_vector(hdev->pdev, i); |
| irq_set_affinity_and_hint(irq, NULL); |
| free_irq(irq, &hdev->user_interrupt[j]); |
| } |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_UNEXPECTED_ERROR); |
| free_irq(irq, &hdev->unexpected_error_interrupt); |
| free_tpc_irq: |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_TPC_ASSERT); |
| free_irq(irq, &hdev->tpc_interrupt); |
| free_dec_irq: |
| gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_DEC_LAST + 1); |
| free_event_irq: |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE); |
| free_irq(irq, cq); |
| |
| free_completion_irq: |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION); |
| free_irq(irq, cq); |
| |
| free_irq_vectors: |
| pci_free_irq_vectors(hdev->pdev); |
| |
| return rc; |
| } |
| |
| static void gaudi2_sync_irqs(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int i, j; |
| int irq; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX)) |
| return; |
| |
| /* Wait for all pending IRQs to be finished */ |
| synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION)); |
| |
| for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM ; i++) { |
| irq = pci_irq_vector(hdev->pdev, i); |
| synchronize_irq(irq); |
| } |
| |
| synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_TPC_ASSERT)); |
| synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_UNEXPECTED_ERROR)); |
| |
| for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = 0 ; j < hdev->asic_prop.user_interrupt_count; |
| i++, j++) { |
| irq = pci_irq_vector(hdev->pdev, i); |
| synchronize_irq(irq); |
| } |
| |
| synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE)); |
| synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EQ_ERROR)); |
| } |
| |
| static void gaudi2_disable_msix(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct hl_cq *cq; |
| int irq, i, j, k; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX)) |
| return; |
| |
| gaudi2_sync_irqs(hdev); |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE); |
| free_irq(irq, &hdev->event_queue); |
| |
| gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1); |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_TPC_ASSERT); |
| free_irq(irq, &hdev->tpc_interrupt); |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_UNEXPECTED_ERROR); |
| free_irq(irq, &hdev->unexpected_error_interrupt); |
| |
| for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, k = 0; |
| k < hdev->asic_prop.user_interrupt_count ; i++, j++, k++) { |
| |
| irq = pci_irq_vector(hdev->pdev, i); |
| irq_set_affinity_and_hint(irq, NULL); |
| free_irq(irq, &hdev->user_interrupt[j]); |
| } |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION); |
| cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION]; |
| free_irq(irq, cq); |
| |
| irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EQ_ERROR); |
| free_irq(irq, hdev); |
| |
| pci_free_irq_vectors(hdev->pdev); |
| |
| gaudi2->hw_cap_initialized &= ~HW_CAP_MSIX; |
| } |
| |
| static void gaudi2_stop_dcore_dec(struct hl_device *hdev, int dcore_id) |
| { |
| u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1); |
| u32 graceful_pend_mask = DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK; |
| u32 timeout_usec, dec_id, dec_bit, offset, graceful; |
| int rc; |
| |
| if (hdev->pldm) |
| timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC; |
| else |
| timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC; |
| |
| for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) { |
| dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id; |
| if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) |
| continue; |
| |
| offset = dcore_id * DCORE_OFFSET + dec_id * DCORE_VDEC_OFFSET; |
| |
| WREG32(mmDCORE0_DEC0_CMD_SWREG16 + offset, 0); |
| |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val); |
| |
| /* Wait till all traffic from decoder stops |
| * before apply core reset. |
| */ |
| rc = hl_poll_timeout( |
| hdev, |
| mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, |
| graceful, |
| (graceful & graceful_pend_mask), |
| 100, |
| timeout_usec); |
| if (rc) |
| dev_err(hdev->dev, |
| "Failed to stop traffic from DCORE%d Decoder %d\n", |
| dcore_id, dec_id); |
| } |
| } |
| |
| static void gaudi2_stop_pcie_dec(struct hl_device *hdev) |
| { |
| u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1); |
| u32 graceful_pend_mask = PCIE_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK; |
| u32 timeout_usec, dec_id, dec_bit, offset, graceful; |
| int rc; |
| |
| if (hdev->pldm) |
| timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC; |
| else |
| timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC; |
| |
| for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) { |
| dec_bit = PCIE_DEC_SHIFT + dec_id; |
| if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) |
| continue; |
| |
| offset = dec_id * PCIE_VDEC_OFFSET; |
| |
| WREG32(mmPCIE_DEC0_CMD_SWREG16 + offset, 0); |
| |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val); |
| |
| /* Wait till all traffic from decoder stops |
| * before apply core reset. |
| */ |
| rc = hl_poll_timeout( |
| hdev, |
| mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, |
| graceful, |
| (graceful & graceful_pend_mask), |
| 100, |
| timeout_usec); |
| if (rc) |
| dev_err(hdev->dev, |
| "Failed to stop traffic from PCIe Decoder %d\n", |
| dec_id); |
| } |
| } |
| |
| static void gaudi2_stop_dec(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int dcore_id; |
| |
| if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == 0) |
| return; |
| |
| for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) |
| gaudi2_stop_dcore_dec(hdev, dcore_id); |
| |
| gaudi2_stop_pcie_dec(hdev); |
| } |
| |
| static void gaudi2_set_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode) |
| { |
| u32 reg_base, reg_val; |
| |
| reg_base = gaudi2_arc_blocks_bases[cpu_id]; |
| if (run_mode == HL_ENGINE_CORE_RUN) |
| reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 1); |
| else |
| reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_HALT_REQ_MASK, 1); |
| |
| WREG32(reg_base + ARC_HALT_REQ_OFFSET, reg_val); |
| } |
| |
| static void gaudi2_halt_arcs(struct hl_device *hdev) |
| { |
| u16 arc_id; |
| |
| for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) { |
| if (gaudi2_is_arc_enabled(hdev, arc_id)) |
| gaudi2_set_arc_running_mode(hdev, arc_id, HL_ENGINE_CORE_HALT); |
| } |
| } |
| |
| static int gaudi2_verify_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode) |
| { |
| int rc; |
| u32 reg_base, val, ack_mask, timeout_usec = 100000; |
| |
| if (hdev->pldm) |
| timeout_usec *= 100; |
| |
| reg_base = gaudi2_arc_blocks_bases[cpu_id]; |
| if (run_mode == HL_ENGINE_CORE_RUN) |
| ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_RUN_ACK_MASK; |
| else |
| ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_HALT_ACK_MASK; |
| |
| rc = hl_poll_timeout(hdev, reg_base + ARC_HALT_ACK_OFFSET, |
| val, ((val & ack_mask) == ack_mask), |
| 1000, timeout_usec); |
| |
| if (!rc) { |
| /* Clear */ |
| val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 0); |
| WREG32(reg_base + ARC_HALT_REQ_OFFSET, val); |
| } |
| |
| return rc; |
| } |
| |
| static void gaudi2_reset_arcs(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u16 arc_id; |
| |
| if (!gaudi2) |
| return; |
| |
| for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) |
| if (gaudi2_is_arc_enabled(hdev, arc_id)) |
| gaudi2_clr_arc_id_cap(hdev, arc_id); |
| } |
| |
| static void gaudi2_nic_qmans_manual_flush(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 queue_id; |
| int i; |
| |
| if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK)) |
| return; |
| |
| queue_id = GAUDI2_QUEUE_ID_NIC_0_0; |
| |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { |
| if (!(hdev->nic_ports_mask & BIT(i))) |
| continue; |
| |
| gaudi2_qman_manual_flush_common(hdev, queue_id); |
| } |
| } |
| |
| static int gaudi2_set_engine_cores(struct hl_device *hdev, u32 *core_ids, |
| u32 num_cores, u32 core_command) |
| { |
| int i, rc; |
| |
| for (i = 0 ; i < num_cores ; i++) { |
| if (gaudi2_is_arc_enabled(hdev, core_ids[i])) |
| gaudi2_set_arc_running_mode(hdev, core_ids[i], core_command); |
| } |
| |
| for (i = 0 ; i < num_cores ; i++) { |
| if (gaudi2_is_arc_enabled(hdev, core_ids[i])) { |
| rc = gaudi2_verify_arc_running_mode(hdev, core_ids[i], core_command); |
| |
| if (rc) { |
| dev_err(hdev->dev, "failed to %s arc: %d\n", |
| (core_command == HL_ENGINE_CORE_HALT) ? |
| "HALT" : "RUN", core_ids[i]); |
| return -1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_tpc_engine_mode(struct hl_device *hdev, u32 engine_id, u32 engine_command) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base, reg_addr, reg_val, tpc_id; |
| |
| if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK)) |
| return 0; |
| |
| tpc_id = gaudi2_tpc_engine_id_to_tpc_id[engine_id]; |
| if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + tpc_id))) |
| return 0; |
| |
| reg_base = gaudi2_tpc_cfg_blocks_bases[tpc_id]; |
| reg_addr = reg_base + TPC_CFG_STALL_OFFSET; |
| reg_val = FIELD_PREP(DCORE0_TPC0_CFG_TPC_STALL_V_MASK, |
| (engine_command == HL_ENGINE_STALL) ? 1 : 0); |
| WREG32(reg_addr, reg_val); |
| |
| if (engine_command == HL_ENGINE_RESUME) { |
| reg_base = gaudi2_tpc_eml_cfg_blocks_bases[tpc_id]; |
| reg_addr = reg_base + TPC_EML_CFG_DBG_CNT_OFFSET; |
| RMWREG32(reg_addr, 0x1, DCORE0_TPC0_EML_CFG_DBG_CNT_DBG_EXIT_MASK); |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_mme_engine_mode(struct hl_device *hdev, u32 engine_id, u32 engine_command) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base, reg_addr, reg_val, mme_id; |
| |
| mme_id = gaudi2_mme_engine_id_to_mme_id[engine_id]; |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + mme_id))) |
| return 0; |
| |
| reg_base = gaudi2_mme_ctrl_lo_blocks_bases[mme_id]; |
| reg_addr = reg_base + MME_CTRL_LO_QM_STALL_OFFSET; |
| reg_val = FIELD_PREP(DCORE0_MME_CTRL_LO_QM_STALL_V_MASK, |
| (engine_command == HL_ENGINE_STALL) ? 1 : 0); |
| WREG32(reg_addr, reg_val); |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_edma_engine_mode(struct hl_device *hdev, u32 engine_id, u32 engine_command) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base, reg_addr, reg_val, edma_id; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK)) |
| return 0; |
| |
| edma_id = gaudi2_edma_engine_id_to_edma_id[engine_id]; |
| if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + edma_id))) |
| return 0; |
| |
| reg_base = gaudi2_dma_core_blocks_bases[edma_id]; |
| reg_addr = reg_base + EDMA_CORE_CFG_STALL_OFFSET; |
| reg_val = FIELD_PREP(DCORE0_EDMA0_CORE_CFG_1_HALT_MASK, |
| (engine_command == HL_ENGINE_STALL) ? 1 : 0); |
| WREG32(reg_addr, reg_val); |
| |
| if (engine_command == HL_ENGINE_STALL) { |
| reg_val = FIELD_PREP(DCORE0_EDMA0_CORE_CFG_1_HALT_MASK, 0x1) | |
| FIELD_PREP(DCORE0_EDMA0_CORE_CFG_1_FLUSH_MASK, 0x1); |
| WREG32(reg_addr, reg_val); |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_engine_modes(struct hl_device *hdev, |
| u32 *engine_ids, u32 num_engines, u32 engine_command) |
| { |
| int i, rc; |
| |
| for (i = 0 ; i < num_engines ; ++i) { |
| switch (engine_ids[i]) { |
| case GAUDI2_DCORE0_ENGINE_ID_TPC_0 ... GAUDI2_DCORE0_ENGINE_ID_TPC_5: |
| case GAUDI2_DCORE1_ENGINE_ID_TPC_0 ... GAUDI2_DCORE1_ENGINE_ID_TPC_5: |
| case GAUDI2_DCORE2_ENGINE_ID_TPC_0 ... GAUDI2_DCORE2_ENGINE_ID_TPC_5: |
| case GAUDI2_DCORE3_ENGINE_ID_TPC_0 ... GAUDI2_DCORE3_ENGINE_ID_TPC_5: |
| rc = gaudi2_set_tpc_engine_mode(hdev, engine_ids[i], engine_command); |
| if (rc) |
| return rc; |
| |
| break; |
| case GAUDI2_DCORE0_ENGINE_ID_MME: |
| case GAUDI2_DCORE1_ENGINE_ID_MME: |
| case GAUDI2_DCORE2_ENGINE_ID_MME: |
| case GAUDI2_DCORE3_ENGINE_ID_MME: |
| rc = gaudi2_set_mme_engine_mode(hdev, engine_ids[i], engine_command); |
| if (rc) |
| return rc; |
| |
| break; |
| case GAUDI2_DCORE0_ENGINE_ID_EDMA_0 ... GAUDI2_DCORE0_ENGINE_ID_EDMA_1: |
| case GAUDI2_DCORE1_ENGINE_ID_EDMA_0 ... GAUDI2_DCORE1_ENGINE_ID_EDMA_1: |
| case GAUDI2_DCORE2_ENGINE_ID_EDMA_0 ... GAUDI2_DCORE2_ENGINE_ID_EDMA_1: |
| case GAUDI2_DCORE3_ENGINE_ID_EDMA_0 ... GAUDI2_DCORE3_ENGINE_ID_EDMA_1: |
| rc = gaudi2_set_edma_engine_mode(hdev, engine_ids[i], engine_command); |
| if (rc) |
| return rc; |
| |
| break; |
| default: |
| dev_err(hdev->dev, "Invalid engine ID %u\n", engine_ids[i]); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_set_engines(struct hl_device *hdev, u32 *engine_ids, |
| u32 num_engines, u32 engine_command) |
| { |
| switch (engine_command) { |
| case HL_ENGINE_CORE_HALT: |
| case HL_ENGINE_CORE_RUN: |
| return gaudi2_set_engine_cores(hdev, engine_ids, num_engines, engine_command); |
| |
| case HL_ENGINE_STALL: |
| case HL_ENGINE_RESUME: |
| return gaudi2_set_engine_modes(hdev, engine_ids, num_engines, engine_command); |
| |
| default: |
| dev_err(hdev->dev, "failed to execute command id %u\n", engine_command); |
| return -EINVAL; |
| } |
| } |
| |
| static void gaudi2_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset) |
| { |
| u32 wait_timeout_ms; |
| |
| if (hdev->pldm) |
| wait_timeout_ms = GAUDI2_PLDM_RESET_WAIT_MSEC; |
| else |
| wait_timeout_ms = GAUDI2_RESET_WAIT_MSEC; |
| |
| if (fw_reset) |
| goto skip_engines; |
| |
| gaudi2_stop_dma_qmans(hdev); |
| gaudi2_stop_mme_qmans(hdev); |
| gaudi2_stop_tpc_qmans(hdev); |
| gaudi2_stop_rot_qmans(hdev); |
| gaudi2_stop_nic_qmans(hdev); |
| msleep(wait_timeout_ms); |
| |
| gaudi2_halt_arcs(hdev); |
| gaudi2_dma_stall(hdev); |
| gaudi2_mme_stall(hdev); |
| gaudi2_tpc_stall(hdev); |
| gaudi2_rotator_stall(hdev); |
| |
| msleep(wait_timeout_ms); |
| |
| gaudi2_stop_dec(hdev); |
| |
| /* |
| * in case of soft reset do a manual flush for QMANs (currently called |
| * only for NIC QMANs |
| */ |
| if (!hard_reset) |
| gaudi2_nic_qmans_manual_flush(hdev); |
| |
| gaudi2_disable_dma_qmans(hdev); |
| gaudi2_disable_mme_qmans(hdev); |
| gaudi2_disable_tpc_qmans(hdev); |
| gaudi2_disable_rot_qmans(hdev); |
| gaudi2_disable_nic_qmans(hdev); |
| gaudi2_disable_timestamp(hdev); |
| |
| skip_engines: |
| if (hard_reset) { |
| gaudi2_disable_msix(hdev); |
| return; |
| } |
| |
| gaudi2_sync_irqs(hdev); |
| } |
| |
| static void gaudi2_init_firmware_preload_params(struct hl_device *hdev) |
| { |
| struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load; |
| |
| pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS; |
| pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0; |
| pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1; |
| pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0; |
| pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1; |
| pre_fw_load->wait_for_preboot_timeout = GAUDI2_PREBOOT_REQ_TIMEOUT_USEC; |
| pre_fw_load->wait_for_preboot_extended_timeout = |
| GAUDI2_PREBOOT_EXTENDED_REQ_TIMEOUT_USEC; |
| } |
| |
| static void gaudi2_init_firmware_loader(struct hl_device *hdev) |
| { |
| struct fw_load_mgr *fw_loader = &hdev->fw_loader; |
| struct dynamic_fw_load_mgr *dynamic_loader; |
| struct cpu_dyn_regs *dyn_regs; |
| |
| /* fill common fields */ |
| fw_loader->fw_comp_loaded = FW_TYPE_NONE; |
| fw_loader->boot_fit_img.image_name = GAUDI2_BOOT_FIT_FILE; |
| fw_loader->linux_img.image_name = GAUDI2_LINUX_FW_FILE; |
| fw_loader->boot_fit_timeout = GAUDI2_BOOT_FIT_REQ_TIMEOUT_USEC; |
| fw_loader->skip_bmc = false; |
| fw_loader->sram_bar_id = SRAM_CFG_BAR_ID; |
| fw_loader->dram_bar_id = DRAM_BAR_ID; |
| fw_loader->cpu_timeout = GAUDI2_CPU_TIMEOUT_USEC; |
| |
| /* here we update initial values for few specific dynamic regs (as |
| * before reading the first descriptor from FW those value has to be |
| * hard-coded). in later stages of the protocol those values will be |
| * updated automatically by reading the FW descriptor so data there |
| * will always be up-to-date |
| */ |
| dynamic_loader = &hdev->fw_loader.dynamic_loader; |
| dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs; |
| dyn_regs->kmd_msg_to_cpu = cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU); |
| dyn_regs->cpu_cmd_status_to_host = cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST); |
| dynamic_loader->wait_for_bl_timeout = GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC; |
| } |
| |
| static int gaudi2_init_cpu(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int rc; |
| |
| if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) |
| return 0; |
| |
| if (gaudi2->hw_cap_initialized & HW_CAP_CPU) |
| return 0; |
| |
| rc = hl_fw_init_cpu(hdev); |
| if (rc) |
| return rc; |
| |
| gaudi2->hw_cap_initialized |= HW_CAP_CPU; |
| |
| return 0; |
| } |
| |
| static int gaudi2_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout) |
| { |
| struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ]; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct cpu_dyn_regs *dyn_regs; |
| struct hl_eq *eq; |
| u32 status; |
| int err; |
| |
| if (!hdev->cpu_queues_enable) |
| return 0; |
| |
| if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q) |
| return 0; |
| |
| eq = &hdev->event_queue; |
| |
| dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| |
| WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address)); |
| WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address)); |
| |
| WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address)); |
| WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address)); |
| |
| WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW, lower_32_bits(hdev->cpu_accessible_dma_address)); |
| WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH, upper_32_bits(hdev->cpu_accessible_dma_address)); |
| |
| WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES); |
| WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES); |
| WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE); |
| |
| /* Used for EQ CI */ |
| WREG32(mmCPU_IF_EQ_RD_OFFS, 0); |
| |
| WREG32(mmCPU_IF_PF_PQ_PI, 0); |
| |
| WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP); |
| |
| /* Let the ARC know we are ready as it is now handling those queues */ |
| |
| WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq), |
| gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id); |
| |
| err = hl_poll_timeout( |
| hdev, |
| mmCPU_IF_QUEUE_INIT, |
| status, |
| (status == PQ_INIT_STATUS_READY_FOR_HOST), |
| 1000, |
| cpu_timeout); |
| |
| if (err) { |
| dev_err(hdev->dev, "Failed to communicate with device CPU (timeout)\n"); |
| return -EIO; |
| } |
| |
| /* update FW application security bits */ |
| if (prop->fw_cpu_boot_dev_sts0_valid) |
| prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0); |
| |
| if (prop->fw_cpu_boot_dev_sts1_valid) |
| prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1); |
| |
| gaudi2->hw_cap_initialized |= HW_CAP_CPU_Q; |
| return 0; |
| } |
| |
| static void gaudi2_init_qman_pq(struct hl_device *hdev, u32 reg_base, |
| u32 queue_id_base) |
| { |
| struct hl_hw_queue *q; |
| u32 pq_id, pq_offset; |
| |
| for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) { |
| q = &hdev->kernel_queues[queue_id_base + pq_id]; |
| pq_offset = pq_id * 4; |
| |
| if (q->dram_bd) { |
| WREG32(reg_base + QM_PQ_BASE_LO_0_OFFSET + pq_offset, |
| lower_32_bits(q->pq_dram_address)); |
| WREG32(reg_base + QM_PQ_BASE_HI_0_OFFSET + pq_offset, |
| upper_32_bits(q->pq_dram_address)); |
| } else { |
| WREG32(reg_base + QM_PQ_BASE_LO_0_OFFSET + pq_offset, |
| lower_32_bits(q->bus_address)); |
| WREG32(reg_base + QM_PQ_BASE_HI_0_OFFSET + pq_offset, |
| upper_32_bits(q->bus_address)); |
| } |
| WREG32(reg_base + QM_PQ_SIZE_0_OFFSET + pq_offset, ilog2(HL_QUEUE_LENGTH)); |
| WREG32(reg_base + QM_PQ_PI_0_OFFSET + pq_offset, 0); |
| WREG32(reg_base + QM_PQ_CI_0_OFFSET + pq_offset, 0); |
| } |
| } |
| |
| static void gaudi2_init_qman_cp(struct hl_device *hdev, u32 reg_base) |
| { |
| u32 cp_id, cp_offset, mtr_base_lo, mtr_base_hi, so_base_lo, so_base_hi; |
| |
| mtr_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| mtr_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0); |
| so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| for (cp_id = 0 ; cp_id < NUM_OF_CP_PER_QMAN; cp_id++) { |
| cp_offset = cp_id * 4; |
| |
| WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_LO_0_OFFSET + cp_offset, mtr_base_lo); |
| WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_HI_0_OFFSET + cp_offset, mtr_base_hi); |
| WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_LO_0_OFFSET + cp_offset, so_base_lo); |
| WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_HI_0_OFFSET + cp_offset, so_base_hi); |
| } |
| |
| /* allow QMANs to accept work from ARC CQF */ |
| WREG32(reg_base + QM_CP_CFG_OFFSET, FIELD_PREP(PDMA0_QM_CP_CFG_SWITCH_EN_MASK, 0x1)); |
| } |
| |
| static void gaudi2_init_qman_pqc(struct hl_device *hdev, u32 reg_base, |
| u32 queue_id_base) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 pq_id, pq_offset, so_base_lo, so_base_hi; |
| |
| so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0); |
| |
| for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) { |
| pq_offset = pq_id * 4; |
| |
| /* Configure QMAN HBW to scratchpad as it is not needed */ |
| WREG32(reg_base + QM_PQC_HBW_BASE_LO_0_OFFSET + pq_offset, |
| lower_32_bits(gaudi2->scratchpad_bus_address)); |
| WREG32(reg_base + QM_PQC_HBW_BASE_HI_0_OFFSET + pq_offset, |
| upper_32_bits(gaudi2->scratchpad_bus_address)); |
| WREG32(reg_base + QM_PQC_SIZE_0_OFFSET + pq_offset, |
| ilog2(PAGE_SIZE / sizeof(struct hl_cq_entry))); |
| |
| WREG32(reg_base + QM_PQC_PI_0_OFFSET + pq_offset, 0); |
| WREG32(reg_base + QM_PQC_LBW_WDATA_0_OFFSET + pq_offset, QM_PQC_LBW_WDATA); |
| WREG32(reg_base + QM_PQC_LBW_BASE_LO_0_OFFSET + pq_offset, so_base_lo); |
| WREG32(reg_base + QM_PQC_LBW_BASE_HI_0_OFFSET + pq_offset, so_base_hi); |
| } |
| |
| /* Enable QMAN H/W completion */ |
| WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT); |
| } |
| |
| static u32 gaudi2_get_dyn_sp_reg(struct hl_device *hdev, u32 queue_id_base) |
| { |
| struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 sp_reg_addr; |
| |
| switch (queue_id_base) { |
| case GAUDI2_QUEUE_ID_PDMA_0_0...GAUDI2_QUEUE_ID_PDMA_1_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3: |
| sp_reg_addr = le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl); |
| break; |
| case GAUDI2_QUEUE_ID_DCORE0_MME_0_0...GAUDI2_QUEUE_ID_DCORE0_MME_0_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE1_MME_0_0...GAUDI2_QUEUE_ID_DCORE1_MME_0_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE2_MME_0_0...GAUDI2_QUEUE_ID_DCORE2_MME_0_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE3_MME_0_0...GAUDI2_QUEUE_ID_DCORE3_MME_0_3: |
| sp_reg_addr = le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl); |
| break; |
| case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3: |
| fallthrough; |
| case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3: |
| sp_reg_addr = le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl); |
| break; |
| case GAUDI2_QUEUE_ID_ROT_0_0...GAUDI2_QUEUE_ID_ROT_1_3: |
| sp_reg_addr = le32_to_cpu(dyn_regs->gic_rot_qm_irq_ctrl); |
| break; |
| case GAUDI2_QUEUE_ID_NIC_0_0...GAUDI2_QUEUE_ID_NIC_23_3: |
| sp_reg_addr = le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl); |
| break; |
| default: |
| dev_err(hdev->dev, "Unexpected h/w queue %d\n", queue_id_base); |
| return 0; |
| } |
| |
| return sp_reg_addr; |
| } |
| |
| static void gaudi2_init_qman_common(struct hl_device *hdev, u32 reg_base, |
| u32 queue_id_base) |
| { |
| u32 glbl_prot = QMAN_MAKE_TRUSTED, irq_handler_offset; |
| int map_table_entry; |
| |
| WREG32(reg_base + QM_GLBL_PROT_OFFSET, glbl_prot); |
| |
| irq_handler_offset = gaudi2_get_dyn_sp_reg(hdev, queue_id_base); |
| WREG32(reg_base + QM_GLBL_ERR_ADDR_LO_OFFSET, lower_32_bits(CFG_BASE + irq_handler_offset)); |
| WREG32(reg_base + QM_GLBL_ERR_ADDR_HI_OFFSET, upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| map_table_entry = gaudi2_qman_async_event_id[queue_id_base]; |
| WREG32(reg_base + QM_GLBL_ERR_WDATA_OFFSET, |
| gaudi2_irq_map_table[map_table_entry].cpu_id); |
| |
| WREG32(reg_base + QM_ARB_ERR_MSG_EN_OFFSET, QM_ARB_ERR_MSG_EN_MASK); |
| |
| WREG32(reg_base + QM_ARB_SLV_CHOISE_WDT_OFFSET, GAUDI2_ARB_WDT_TIMEOUT); |
| WREG32(reg_base + QM_GLBL_CFG1_OFFSET, 0); |
| WREG32(reg_base + QM_GLBL_CFG2_OFFSET, 0); |
| |
| /* Enable the QMAN channel. |
| * PDMA QMAN configuration is different, as we do not allow user to |
| * access some of the CPs. |
| * PDMA0: CP2/3 are reserved for the ARC usage. |
| * PDMA1: CP1/2/3 are reserved for the ARC usage. |
| */ |
| if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0]) |
| WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA1_QMAN_ENABLE); |
| else if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0]) |
| WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA0_QMAN_ENABLE); |
| else |
| WREG32(reg_base + QM_GLBL_CFG0_OFFSET, QMAN_ENABLE); |
| } |
| |
| static void gaudi2_init_qman(struct hl_device *hdev, u32 reg_base, |
| u32 queue_id_base) |
| { |
| u32 pq_id; |
| |
| for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) |
| hdev->kernel_queues[queue_id_base + pq_id].cq_id = GAUDI2_RESERVED_CQ_CS_COMPLETION; |
| |
| gaudi2_init_qman_pq(hdev, reg_base, queue_id_base); |
| gaudi2_init_qman_cp(hdev, reg_base); |
| gaudi2_init_qman_pqc(hdev, reg_base, queue_id_base); |
| gaudi2_init_qman_common(hdev, reg_base, queue_id_base); |
| } |
| |
| static void gaudi2_init_dma_core(struct hl_device *hdev, u32 reg_base, |
| u32 dma_core_id, bool is_secure) |
| { |
| u32 prot, irq_handler_offset; |
| struct cpu_dyn_regs *dyn_regs; |
| int map_table_entry; |
| |
| prot = 1 << ARC_FARM_KDMA_PROT_ERR_VAL_SHIFT; |
| if (is_secure) |
| prot |= 1 << ARC_FARM_KDMA_PROT_VAL_SHIFT; |
| |
| WREG32(reg_base + DMA_CORE_PROT_OFFSET, prot); |
| |
| dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| irq_handler_offset = le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl); |
| |
| WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_LO_OFFSET, |
| lower_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_HI_OFFSET, |
| upper_32_bits(CFG_BASE + irq_handler_offset)); |
| |
| map_table_entry = gaudi2_dma_core_async_event_id[dma_core_id]; |
| WREG32(reg_base + DMA_CORE_ERRMSG_WDATA_OFFSET, |
| gaudi2_irq_map_table[map_table_entry].cpu_id); |
| |
| /* Enable the DMA channel */ |
| WREG32(reg_base + DMA_CORE_CFG_0_OFFSET, 1 << ARC_FARM_KDMA_CFG_0_EN_SHIFT); |
| } |
| |
| static void gaudi2_init_kdma(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| |
| if ((gaudi2->hw_cap_initialized & HW_CAP_KDMA) == HW_CAP_KDMA) |
| return; |
| |
| reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_KDMA]; |
| |
| gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_KDMA, true); |
| |
| gaudi2->hw_cap_initialized |= HW_CAP_KDMA; |
| } |
| |
| static void gaudi2_init_pdma(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_base; |
| |
| if ((gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK) == HW_CAP_PDMA_MASK) |
| return; |
| |
| reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA0]; |
| gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA0, false); |
| |
| reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0]; |
| gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_0_0); |
| |
| reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA1]; |
| gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA1, false); |
| |
| reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0]; |
| gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_1_0); |
| |
| gaudi2->hw_cap_initialized |= HW_CAP_PDMA_MASK; |
| } |
| |
| static void gaudi2_init_edma_instance(struct hl_device *hdev, u8 seq) |
| { |
| u32 reg_base, base_edma_core_id, base_edma_qman_id; |
| |
| base_edma_core_id = DMA_CORE_ID_EDMA0 + seq; |
| base_edma_qman_id = edma_stream_base[seq]; |
| |
| reg_base = gaudi2_dma_core_blocks_bases[base_edma_core_id]; |
| gaudi2_init_dma_core(hdev, reg_base, base_edma_core_id, false); |
| |
| reg_base = gaudi2_qm_blocks_bases[base_edma_qman_id]; |
| gaudi2_init_qman(hdev, reg_base, base_edma_qman_id); |
| } |
| |
| static void gaudi2_init_edma(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int dcore, inst; |
| |
| if ((gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK) == HW_CAP_EDMA_MASK) |
| return; |
| |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) { |
| u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst; |
| |
| if (!(prop->edma_enabled_mask & BIT(seq))) |
| continue; |
| |
| gaudi2_init_edma_instance(hdev, seq); |
| |
| gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_EDMA_SHIFT + seq); |
| } |
| } |
| } |
| |
| /* |
| * gaudi2_arm_monitors_for_virt_msix_db() - Arm monitors for writing to the virtual MSI-X doorbell. |
| * @hdev: pointer to habanalabs device structure. |
| * @sob_id: sync object ID. |
| * @first_mon_id: ID of first monitor out of 3 consecutive monitors. |
| * @interrupt_id: interrupt ID. |
| * |
| * Some initiators cannot have HBW address in their completion address registers, and thus cannot |
| * write directly to the HBW host memory of the virtual MSI-X doorbell. |
| * Instead, they are configured to LBW write to a sync object, and a monitor will do the HBW write. |
| * |
| * The mechanism in the sync manager block is composed of a master monitor with 3 messages. |
| * In addition to the HBW write, the other 2 messages are for preparing the monitor to next |
| * completion, by decrementing the sync object value and re-arming the monitor. |
| */ |
| static void gaudi2_arm_monitors_for_virt_msix_db(struct hl_device *hdev, u32 sob_id, |
| u32 first_mon_id, u32 interrupt_id) |
| { |
| u32 sob_offset, first_mon_offset, mon_offset, payload, sob_group, mode, arm, config; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 addr; |
| u8 mask; |
| |
| /* Reset the SOB value */ |
| sob_offset = sob_id * sizeof(u32); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0); |
| |
| /* Configure 3 monitors: |
| * 1. Write interrupt ID to the virtual MSI-X doorbell (master monitor) |
| * 2. Decrement SOB value by 1. |
| * 3. Re-arm the master monitor. |
| */ |
| |
| first_mon_offset = first_mon_id * sizeof(u32); |
| |
| /* 2nd monitor: Decrement SOB value by 1 */ |
| mon_offset = first_mon_offset + sizeof(u32); |
| |
| addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr)); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr)); |
| |
| payload = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 0x7FFF) | /* "-1" */ |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_SIGN_MASK, 1) | |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload); |
| |
| /* 3rd monitor: Re-arm the master monitor */ |
| mon_offset = first_mon_offset + 2 * sizeof(u32); |
| |
| addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + first_mon_offset; |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr)); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr)); |
| |
| sob_group = sob_id / 8; |
| mask = ~BIT(sob_id & 0x7); |
| mode = 0; /* comparison mode is "greater than or equal to" */ |
| arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sob_group) | |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask) | |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode) | |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, 1); |
| |
| payload = arm; |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload); |
| |
| /* 1st monitor (master): Write interrupt ID to the virtual MSI-X doorbell */ |
| mon_offset = first_mon_offset; |
| |
| config = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_WR_NUM_MASK, 2); /* "2": 3 writes */ |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + mon_offset, config); |
| |
| addr = gaudi2->virt_msix_db_dma_addr; |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr)); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr)); |
| |
| payload = interrupt_id; |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload); |
| |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, arm); |
| } |
| |
| static void gaudi2_prepare_sm_for_virt_msix_db(struct hl_device *hdev) |
| { |
| u32 decoder_id, sob_id, first_mon_id, interrupt_id; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| /* Decoder normal/abnormal interrupts */ |
| for (decoder_id = 0 ; decoder_id < NUMBER_OF_DEC ; ++decoder_id) { |
| if (!(prop->decoder_enabled_mask & BIT(decoder_id))) |
| continue; |
| |
| sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id; |
| first_mon_id = GAUDI2_RESERVED_MON_DEC_NRM_FIRST + 3 * decoder_id; |
| interrupt_id = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 2 * decoder_id; |
| gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id); |
| |
| sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id; |
| first_mon_id = GAUDI2_RESERVED_MON_DEC_ABNRM_FIRST + 3 * decoder_id; |
| interrupt_id += 1; |
| gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id); |
| } |
| } |
| |
| static void gaudi2_init_sm(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 cq_address; |
| u32 reg_val; |
| int i; |
| |
| /* Enable HBW/LBW CQ for completion monitors */ |
| reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1); |
| reg_val |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_LBW_EN_MASK, 1); |
| |
| for (i = 0 ; i < GAUDI2_MAX_PENDING_CS ; i++) |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val); |
| |
| /* Enable only HBW CQ for KDMA completion monitor */ |
| reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val); |
| |
| /* Init CQ0 DB - configure the monitor to trigger MSI-X interrupt */ |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0, lower_32_bits(gaudi2->virt_msix_db_dma_addr)); |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0, upper_32_bits(gaudi2->virt_msix_db_dma_addr)); |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0, GAUDI2_IRQ_NUM_COMPLETION); |
| |
| for (i = 0 ; i < GAUDI2_RESERVED_CQ_NUMBER ; i++) { |
| cq_address = |
| hdev->completion_queue[i].bus_address; |
| |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + (4 * i), |
| lower_32_bits(cq_address)); |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + (4 * i), |
| upper_32_bits(cq_address)); |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + (4 * i), |
| ilog2(HL_CQ_SIZE_IN_BYTES)); |
| } |
| |
| /* Configure kernel ASID and MMU BP*/ |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_SEC, 0x10000); |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV, 0); |
| |
| /* Initialize sync objects and monitors which are used for the virtual MSI-X doorbell */ |
| gaudi2_prepare_sm_for_virt_msix_db(hdev); |
| } |
| |
| static void gaudi2_init_mme_acc(struct hl_device *hdev, u32 reg_base) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 reg_val; |
| int i; |
| |
| reg_val = FIELD_PREP(MME_ACC_INTR_MASK_WBC_ERR_RESP_MASK, 0); |
| reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_POS_INF_MASK, 1); |
| reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NEG_INF_MASK, 1); |
| reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NAN_MASK, 1); |
| reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_POS_INF_MASK, 1); |
| reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_NEG_INF_MASK, 1); |
| |
| WREG32(reg_base + MME_ACC_INTR_MASK_OFFSET, reg_val); |
| WREG32(reg_base + MME_ACC_AP_LFSR_POLY_OFFSET, 0x80DEADAF); |
| |
| for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) { |
| WREG32(reg_base + MME_ACC_AP_LFSR_SEED_SEL_OFFSET, i); |
| WREG32(reg_base + MME_ACC_AP_LFSR_SEED_WDATA_OFFSET, gaudi2->lfsr_rand_seeds[i]); |
| } |
| } |
| |
| static void gaudi2_init_dcore_mme(struct hl_device *hdev, int dcore_id, |
| bool config_qman_only) |
| { |
| u32 queue_id_base, reg_base; |
| |
| switch (dcore_id) { |
| case 0: |
| queue_id_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0; |
| break; |
| case 1: |
| queue_id_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0; |
| break; |
| case 2: |
| queue_id_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0; |
| break; |
| case 3: |
| queue_id_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0; |
| break; |
| default: |
| dev_err(hdev->dev, "Invalid dcore id %u\n", dcore_id); |
| return; |
| } |
| |
| if (!config_qman_only) { |
| reg_base = gaudi2_mme_acc_blocks_bases[dcore_id]; |
| gaudi2_init_mme_acc(hdev, reg_base); |
| } |
| |
| reg_base = gaudi2_qm_blocks_bases[queue_id_base]; |
| gaudi2_init_qman(hdev, reg_base, queue_id_base); |
| } |
| |
| static void gaudi2_init_mme(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int i; |
| |
| if ((gaudi2->hw_cap_initialized & HW_CAP_MME_MASK) == HW_CAP_MME_MASK) |
| return; |
| |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) { |
| gaudi2_init_dcore_mme(hdev, i, false); |
| |
| gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_MME_SHIFT + i); |
| } |
| } |
| |
| static void gaudi2_init_tpc_cfg(struct hl_device *hdev, u32 reg_base) |
| { |
| /* Mask arithmetic and QM interrupts in TPC */ |
| WREG32(reg_base + TPC_CFG_TPC_INTR_MASK_OFFSET, 0x23FFFE); |
| |
| /* Set 16 cache lines */ |
| WREG32(reg_base + TPC_CFG_MSS_CONFIG_OFFSET, |
| 2 << DCORE0_TPC0_CFG_MSS_CONFIG_ICACHE_FETCH_LINE_NUM_SHIFT); |
| } |
| |
| struct gaudi2_tpc_init_cfg_data { |
| enum gaudi2_queue_id dcore_tpc_qid_base[NUM_OF_DCORES]; |
| }; |
| |
| static void gaudi2_init_tpc_config(struct hl_device *hdev, int dcore, int inst, |
| u32 offset, struct iterate_module_ctx *ctx) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_tpc_init_cfg_data *cfg_data = ctx->data; |
| u32 queue_id_base; |
| u8 seq; |
| |
| queue_id_base = cfg_data->dcore_tpc_qid_base[dcore] + (inst * NUM_OF_PQ_PER_QMAN); |
| |
| if (dcore == 0 && inst == (NUM_DCORE0_TPC - 1)) |
| /* gets last sequence number */ |
| seq = NUM_OF_DCORES * NUM_OF_TPC_PER_DCORE; |
| else |
| seq = dcore * NUM_OF_TPC_PER_DCORE + inst; |
| |
| gaudi2_init_tpc_cfg(hdev, mmDCORE0_TPC0_CFG_BASE + offset); |
| gaudi2_init_qman(hdev, mmDCORE0_TPC0_QM_BASE + offset, queue_id_base); |
| |
| gaudi2->tpc_hw_cap_initialized |= BIT_ULL(HW_CAP_TPC_SHIFT + seq); |
| } |
| |
| static void gaudi2_init_tpc(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_tpc_init_cfg_data init_cfg_data; |
| struct iterate_module_ctx tpc_iter; |
| |
| if (!hdev->asic_prop.tpc_enabled_mask) |
| return; |
| |
| if ((gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK) == HW_CAP_TPC_MASK) |
| return; |
| |
| init_cfg_data.dcore_tpc_qid_base[0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0; |
| init_cfg_data.dcore_tpc_qid_base[1] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0; |
| init_cfg_data.dcore_tpc_qid_base[2] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0; |
| init_cfg_data.dcore_tpc_qid_base[3] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0; |
| tpc_iter.fn = &gaudi2_init_tpc_config; |
| tpc_iter.data = &init_cfg_data; |
| gaudi2_iterate_tpcs(hdev, &tpc_iter); |
| } |
| |
| static void gaudi2_init_rotator(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 i, reg_base, queue_id; |
| |
| queue_id = GAUDI2_QUEUE_ID_ROT_0_0; |
| |
| for (i = 0 ; i < NUM_OF_ROT ; i++, queue_id += NUM_OF_PQ_PER_QMAN) { |
| reg_base = gaudi2_qm_blocks_bases[queue_id]; |
| gaudi2_init_qman(hdev, reg_base, queue_id); |
| |
| gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_ROT_SHIFT + i); |
| } |
| } |
| |
| static void gaudi2_init_vdec_brdg_ctrl(struct hl_device *hdev, u64 base_addr, u32 decoder_id) |
| { |
| u32 sob_id; |
| |
| /* VCMD normal interrupt */ |
| sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id; |
| WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_AWADDR, |
| mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32)); |
| WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE); |
| |
| /* VCMD abnormal interrupt */ |
| sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id; |
| WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_AWADDR, |
| mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32)); |
| WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE); |
| } |
| |
| static void gaudi2_init_dec(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 dcore_id, dec_id, dec_bit; |
| u64 base_addr; |
| |
| if (!hdev->asic_prop.decoder_enabled_mask) |
| return; |
| |
| if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == HW_CAP_DEC_MASK) |
| return; |
| |
| for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) |
| for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) { |
| dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id; |
| |
| if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) |
| continue; |
| |
| base_addr = mmDCORE0_DEC0_CMD_BASE + |
| BRDG_CTRL_BLOCK_OFFSET + |
| dcore_id * DCORE_OFFSET + |
| dec_id * DCORE_VDEC_OFFSET; |
| |
| gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit); |
| |
| gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit); |
| } |
| |
| for (dec_id = 0 ; dec_id < NUM_OF_PCIE_VDEC ; dec_id++) { |
| dec_bit = PCIE_DEC_SHIFT + dec_id; |
| if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit))) |
| continue; |
| |
| base_addr = mmPCIE_DEC0_CMD_BASE + BRDG_CTRL_BLOCK_OFFSET + |
| dec_id * DCORE_VDEC_OFFSET; |
| |
| gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit); |
| |
| gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit); |
| } |
| } |
| |
| static int gaudi2_mmu_update_asid_hop0_addr(struct hl_device *hdev, |
| u32 stlb_base, u32 asid, u64 phys_addr) |
| { |
| u32 status, timeout_usec; |
| int rc; |
| |
| if (hdev->pldm || !hdev->pdev) |
| timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC; |
| else |
| timeout_usec = MMU_CONFIG_TIMEOUT_USEC; |
| |
| WREG32(stlb_base + STLB_ASID_OFFSET, asid); |
| WREG32(stlb_base + STLB_HOP0_PA43_12_OFFSET, phys_addr >> MMU_HOP0_PA43_12_SHIFT); |
| WREG32(stlb_base + STLB_HOP0_PA63_44_OFFSET, phys_addr >> MMU_HOP0_PA63_44_SHIFT); |
| WREG32(stlb_base + STLB_BUSY_OFFSET, 0x80000000); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| stlb_base + STLB_BUSY_OFFSET, |
| status, |
| !(status & 0x80000000), |
| 1000, |
| timeout_usec); |
| |
| if (rc) { |
| dev_err(hdev->dev, "Timeout during MMU hop0 config of asid %d\n", asid); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static void gaudi2_mmu_send_invalidate_cache_cmd(struct hl_device *hdev, u32 stlb_base, |
| u32 start_offset, u32 inv_start_val, |
| u32 flags) |
| { |
| /* clear PMMU mem line cache (only needed in mmu range invalidation) */ |
| if (flags & MMU_OP_CLEAR_MEMCACHE) |
| WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INVALIDATION, 0x1); |
| |
| if (flags & MMU_OP_SKIP_LOW_CACHE_INV) |
| return; |
| |
| WREG32(stlb_base + start_offset, inv_start_val); |
| } |
| |
| static int gaudi2_mmu_invalidate_cache_status_poll(struct hl_device *hdev, u32 stlb_base, |
| struct gaudi2_cache_invld_params *inv_params) |
| { |
| u32 status, timeout_usec, start_offset; |
| int rc; |
| |
| timeout_usec = (hdev->pldm) ? GAUDI2_PLDM_MMU_TIMEOUT_USEC : |
| GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC; |
| |
| /* poll PMMU mem line cache (only needed in mmu range invalidation) */ |
| if (inv_params->flags & MMU_OP_CLEAR_MEMCACHE) { |
| rc = hl_poll_timeout( |
| hdev, |
| mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, |
| status, |
| status & 0x1, |
| 1000, |
| timeout_usec); |
| |
| if (rc) |
| return rc; |
| |
| /* Need to manually reset the status to 0 */ |
| WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, 0x0); |
| } |
| |
| /* Lower cache does not work with cache lines, hence we can skip its |
| * invalidation upon map and invalidate only upon unmap |
| */ |
| if (inv_params->flags & MMU_OP_SKIP_LOW_CACHE_INV) |
| return 0; |
| |
| start_offset = inv_params->range_invalidation ? |
| STLB_RANGE_CACHE_INVALIDATION_OFFSET : STLB_INV_ALL_START_OFFSET; |
| |
| rc = hl_poll_timeout( |
| hdev, |
| stlb_base + start_offset, |
| status, |
| !(status & 0x1), |
| 1000, |
| timeout_usec); |
| |
| return rc; |
| } |
| |
| bool gaudi2_is_hmmu_enabled(struct hl_device *hdev, int dcore_id, int hmmu_id) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 hw_cap; |
| |
| hw_cap = HW_CAP_DCORE0_DMMU0 << (NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id); |
| |
| if (gaudi2->hw_cap_initialized & hw_cap) |
| return true; |
| |
| return false; |
| } |
| |
| /* this function shall be called only for HMMUs for which capability bit is set */ |
| static inline u32 get_hmmu_stlb_base(int dcore_id, int hmmu_id) |
| { |
| u32 offset; |
| |
| offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET); |
| return (u32)(mmDCORE0_HMMU0_STLB_BASE + offset); |
| } |
| |
| static void gaudi2_mmu_invalidate_cache_trigger(struct hl_device *hdev, u32 stlb_base, |
| struct gaudi2_cache_invld_params *inv_params) |
| { |
| u32 start_offset; |
| |
| if (inv_params->range_invalidation) { |
| /* Set the addresses range |
| * Note: that the start address we set in register, is not included in |
| * the range of the invalidation, by design. |
| * that's why we need to set lower address than the one we actually |
| * want to be included in the range invalidation. |
| */ |
| u64 start = inv_params->start_va - 1; |
| |
| start_offset = STLB_RANGE_CACHE_INVALIDATION_OFFSET; |
| |
| WREG32(stlb_base + STLB_RANGE_INV_START_LSB_OFFSET, |
| start >> MMU_RANGE_INV_VA_LSB_SHIFT); |
| |
| WREG32(stlb_base + STLB_RANGE_INV_START_MSB_OFFSET, |
| start >> MMU_RANGE_INV_VA_MSB_SHIFT); |
| |
| WREG32(stlb_base + STLB_RANGE_INV_END_LSB_OFFSET, |
| inv_params->end_va >> MMU_RANGE_INV_VA_LSB_SHIFT); |
| |
| WREG32(stlb_base + STLB_RANGE_INV_END_MSB_OFFSET, |
| inv_params->end_va >> MMU_RANGE_INV_VA_MSB_SHIFT); |
| } else { |
| start_offset = STLB_INV_ALL_START_OFFSET; |
| } |
| |
| gaudi2_mmu_send_invalidate_cache_cmd(hdev, stlb_base, start_offset, |
| inv_params->inv_start_val, inv_params->flags); |
| } |
| |
| static inline void gaudi2_hmmu_invalidate_cache_trigger(struct hl_device *hdev, |
| int dcore_id, int hmmu_id, |
| struct gaudi2_cache_invld_params *inv_params) |
| { |
| u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id); |
| |
| gaudi2_mmu_invalidate_cache_trigger(hdev, stlb_base, inv_params); |
| } |
| |
| static inline int gaudi2_hmmu_invalidate_cache_status_poll(struct hl_device *hdev, |
| int dcore_id, int hmmu_id, |
| struct gaudi2_cache_invld_params *inv_params) |
| { |
| u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id); |
| |
| return gaudi2_mmu_invalidate_cache_status_poll(hdev, stlb_base, inv_params); |
| } |
| |
| static int gaudi2_hmmus_invalidate_cache(struct hl_device *hdev, |
| struct gaudi2_cache_invld_params *inv_params) |
| { |
| int dcore_id, hmmu_id; |
| |
| /* first send all invalidation commands */ |
| for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { |
| for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) { |
| if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id)) |
| continue; |
| |
| gaudi2_hmmu_invalidate_cache_trigger(hdev, dcore_id, hmmu_id, inv_params); |
| } |
| } |
| |
| /* next, poll all invalidations status */ |
| for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { |
| for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) { |
| int rc; |
| |
| if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id)) |
| continue; |
| |
| rc = gaudi2_hmmu_invalidate_cache_status_poll(hdev, dcore_id, hmmu_id, |
| inv_params); |
| if (rc) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_cache_invld_params invld_params; |
| int rc = 0; |
| |
| if (hdev->reset_info.hard_reset_pending) |
| return rc; |
| |
| invld_params.range_invalidation = false; |
| invld_params.inv_start_val = 1; |
| |
| if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) { |
| invld_params.flags = flags; |
| gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params); |
| rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE, |
| &invld_params); |
| } else if (flags & MMU_OP_PHYS_PACK) { |
| invld_params.flags = 0; |
| rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params); |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi2_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, |
| u32 flags, u32 asid, u64 va, u64 size) |
| { |
| struct gaudi2_cache_invld_params invld_params = {0}; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 start_va, end_va; |
| u32 inv_start_val; |
| int rc = 0; |
| |
| if (hdev->reset_info.hard_reset_pending) |
| return 0; |
| |
| inv_start_val = (1 << MMU_RANGE_INV_EN_SHIFT | |
| 1 << MMU_RANGE_INV_ASID_EN_SHIFT | |
| asid << MMU_RANGE_INV_ASID_SHIFT); |
| start_va = va; |
| end_va = start_va + size; |
| |
| if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) { |
| /* As range invalidation does not support zero address we will |
| * do full invalidation in this case |
| */ |
| if (start_va) { |
| invld_params.range_invalidation = true; |
| invld_params.start_va = start_va; |
| invld_params.end_va = end_va; |
| invld_params.inv_start_val = inv_start_val; |
| invld_params.flags = flags | MMU_OP_CLEAR_MEMCACHE; |
| } else { |
| invld_params.range_invalidation = false; |
| invld_params.inv_start_val = 1; |
| invld_params.flags = flags; |
| } |
| |
| |
| gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params); |
| rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE, |
| &invld_params); |
| if (rc) |
| return rc; |
| |
| } else if (flags & MMU_OP_PHYS_PACK) { |
| invld_params.start_va = gaudi2_mmu_scramble_addr(hdev, start_va); |
| invld_params.end_va = gaudi2_mmu_scramble_addr(hdev, end_va); |
| invld_params.inv_start_val = inv_start_val; |
| invld_params.flags = flags; |
| rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params); |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi2_mmu_update_hop0_addr(struct hl_device *hdev, u32 stlb_base, |
| bool host_resident_pgt) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 hop0_addr; |
| u32 asid, max_asid = prop->max_asid; |
| int rc; |
| |
| /* it takes too much time to init all of the ASIDs on palladium */ |
| if (hdev->pldm) |
| max_asid = min((u32) 8, max_asid); |
| |
| for (asid = 0 ; asid < max_asid ; asid++) { |
| if (host_resident_pgt) |
| hop0_addr = hdev->mmu_priv.hr.mmu_asid_hop0[asid].phys_addr; |
| else |
| hop0_addr = prop->mmu_pgt_addr + (asid * prop->dmmu.hop_table_size); |
| |
| rc = gaudi2_mmu_update_asid_hop0_addr(hdev, stlb_base, asid, hop0_addr); |
| if (rc) { |
| dev_err(hdev->dev, "failed to set hop0 addr for asid %d\n", asid); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_mmu_init_common(struct hl_device *hdev, u32 mmu_base, u32 stlb_base, |
| bool host_resident_pgt) |
| { |
| u32 status, timeout_usec; |
| int rc; |
| |
| if (hdev->pldm || !hdev->pdev) |
| timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC; |
| else |
| timeout_usec = GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC; |
| |
| WREG32(stlb_base + STLB_INV_ALL_START_OFFSET, 1); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| stlb_base + STLB_SRAM_INIT_OFFSET, |
| status, |
| !status, |
| 1000, |
| timeout_usec); |
| |
| if (rc) |
| dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU SRAM init\n"); |
| |
| rc = gaudi2_mmu_update_hop0_addr(hdev, stlb_base, host_resident_pgt); |
| if (rc) |
| return rc; |
| |
| WREG32(mmu_base + MMU_BYPASS_OFFSET, 0); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| stlb_base + STLB_INV_ALL_START_OFFSET, |
| status, |
| !status, |
| 1000, |
| timeout_usec); |
| |
| if (rc) |
| dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU invalidate all\n"); |
| |
| WREG32(mmu_base + MMU_ENABLE_OFFSET, 1); |
| |
| return rc; |
| } |
| |
| static int gaudi2_pci_mmu_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 mmu_base, stlb_base; |
| int rc; |
| |
| if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) |
| return 0; |
| |
| mmu_base = mmPMMU_HBW_MMU_BASE; |
| stlb_base = mmPMMU_HBW_STLB_BASE; |
| |
| RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, |
| (0 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_SHIFT) | |
| (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_SHIFT) | |
| (4 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_SHIFT) | |
| (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_SHIFT) | |
| (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_SHIFT), |
| PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK | |
| PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK | |
| PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK | |
| PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_MASK | |
| PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK); |
| |
| WREG32(stlb_base + STLB_LL_LOOKUP_MASK_63_32_OFFSET, 0); |
| |
| if (PAGE_SIZE == SZ_64K) { |
| /* Set page sizes to 64K on hop5 and 16M on hop4 + enable 8 bit hops */ |
| RMWREG32_SHIFTED(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, |
| FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK, 4) | |
| FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK, 3) | |
| FIELD_PREP( |
| DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK, |
| 1), |
| DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK | |
| DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK | |
| DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK); |
| } |
| |
| WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_PMMU_SPI_SEI_ENABLE_MASK); |
| |
| rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base, prop->pmmu.host_resident); |
| if (rc) |
| return rc; |
| |
| gaudi2->hw_cap_initialized |= HW_CAP_PMMU; |
| |
| return 0; |
| } |
| |
| static int gaudi2_dcore_hmmu_init(struct hl_device *hdev, int dcore_id, |
| int hmmu_id) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 offset, mmu_base, stlb_base, hw_cap; |
| u8 dmmu_seq; |
| int rc; |
| |
| dmmu_seq = NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id; |
| hw_cap = HW_CAP_DCORE0_DMMU0 << dmmu_seq; |
| |
| /* |
| * return if DMMU is already initialized or if it's not out of |
| * isolation (due to cluster binning) |
| */ |
| if ((gaudi2->hw_cap_initialized & hw_cap) || !(prop->hmmu_hif_enabled_mask & BIT(dmmu_seq))) |
| return 0; |
| |
| offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET); |
| mmu_base = mmDCORE0_HMMU0_MMU_BASE + offset; |
| stlb_base = mmDCORE0_HMMU0_STLB_BASE + offset; |
| |
| RMWREG32(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, 5 /* 64MB */, |
| MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK); |
| |
| RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, |
| FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK, 0) | |
| FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK, 3) | |
| FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK, 3) | |
| FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK, 3) | |
| FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK, 3), |
| DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK | |
| DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK | |
| DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK | |
| DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK | |
| DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK); |
| |
| RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, 1, |
| STLB_HOP_CONFIGURATION_ONLY_LARGE_PAGE_MASK); |
| |
| WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_HMMU_SPI_SEI_ENABLE_MASK); |
| |
| rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base, prop->dmmu.host_resident); |
| if (rc) |
| return rc; |
| |
| gaudi2->hw_cap_initialized |= hw_cap; |
| |
| return 0; |
| } |
| |
| static int gaudi2_hbm_mmu_init(struct hl_device *hdev) |
| { |
| int rc, dcore_id, hmmu_id; |
| |
| for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) |
| for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE; hmmu_id++) { |
| rc = gaudi2_dcore_hmmu_init(hdev, dcore_id, hmmu_id); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_mmu_init(struct hl_device *hdev) |
| { |
| int rc; |
| |
| rc = gaudi2_pci_mmu_init(hdev); |
| if (rc) |
| return rc; |
| |
| rc = gaudi2_hbm_mmu_init(hdev); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| static int gaudi2_hw_init(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int rc; |
| |
| /* Let's mark in the H/W that we have reached this point. We check |
| * this value in the reset_before_init function to understand whether |
| * we need to reset the chip before doing H/W init. This register is |
| * cleared by the H/W upon H/W reset |
| */ |
| WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY); |
| |
| /* Perform read from the device to make sure device is up */ |
| RREG32(mmHW_STATE); |
| |
| /* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE. |
| * So we set it here and if anyone tries to move it later to |
| * a different address, there will be an error |
| */ |
| if (hdev->asic_prop.iatu_done_by_fw) |
| gaudi2->dram_bar_cur_addr = DRAM_PHYS_BASE; |
| |
| /* |
| * Before pushing u-boot/linux to device, need to set the hbm bar to |
| * base address of dram |
| */ |
| if (gaudi2_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) { |
| dev_err(hdev->dev, "failed to map HBM bar to DRAM base address\n"); |
| return -EIO; |
| } |
| |
| rc = gaudi2_init_cpu(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize CPU\n"); |
| return rc; |
| } |
| |
| gaudi2_init_scrambler_hbm(hdev); |
| gaudi2_init_kdma(hdev); |
| |
| rc = gaudi2_init_cpu_queues(hdev, GAUDI2_CPU_TIMEOUT_USEC); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n", rc); |
| return rc; |
| } |
| |
| rc = gaudi2->cpucp_info_get(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to get cpucp info\n"); |
| return rc; |
| } |
| |
| rc = gaudi2_mmu_init(hdev); |
| if (rc) |
| return rc; |
| |
| gaudi2_init_pdma(hdev); |
| gaudi2_init_edma(hdev); |
| gaudi2_init_sm(hdev); |
| gaudi2_init_tpc(hdev); |
| gaudi2_init_mme(hdev); |
| gaudi2_init_rotator(hdev); |
| gaudi2_init_dec(hdev); |
| gaudi2_enable_timestamp(hdev); |
| |
| rc = gaudi2_coresight_init(hdev); |
| if (rc) |
| goto disable_queues; |
| |
| rc = gaudi2_enable_msix(hdev); |
| if (rc) |
| goto disable_queues; |
| |
| /* Perform read from the device to flush all configuration */ |
| RREG32(mmHW_STATE); |
| |
| return 0; |
| |
| disable_queues: |
| gaudi2_disable_dma_qmans(hdev); |
| gaudi2_disable_mme_qmans(hdev); |
| gaudi2_disable_tpc_qmans(hdev); |
| gaudi2_disable_rot_qmans(hdev); |
| gaudi2_disable_nic_qmans(hdev); |
| |
| gaudi2_disable_timestamp(hdev); |
| |
| return rc; |
| } |
| |
| /** |
| * gaudi2_send_hard_reset_cmd - common function to handle reset |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * |
| * This function handles the various possible scenarios for reset. |
| * It considers if reset is handled by driver\FW and what FW components are loaded |
| */ |
| static void gaudi2_send_hard_reset_cmd(struct hl_device *hdev) |
| { |
| struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| bool heartbeat_reset, preboot_only, cpu_initialized = false; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 cpu_boot_status; |
| |
| preboot_only = (hdev->fw_loader.fw_comp_loaded == FW_TYPE_PREBOOT_CPU); |
| heartbeat_reset = (hdev->reset_info.curr_reset_cause == HL_RESET_CAUSE_HEARTBEAT); |
| |
| /* |
| * Handle corner case where failure was at cpu management app load, |
| * and driver didn't detect any failure while loading the FW, |
| * then at such scenario driver will send only HALT_MACHINE |
| * and no one will respond to this request since FW already back to preboot |
| * and it cannot handle such cmd. |
| * In this case next time the management app loads it'll check on events register |
| * which will still have the halt indication, and will reboot the device. |
| * The solution is to let preboot clear all relevant registers before next boot |
| * once driver send COMMS_RST_DEV. |
| */ |
| cpu_boot_status = RREG32(mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS); |
| |
| if (gaudi2 && (gaudi2->hw_cap_initialized & HW_CAP_CPU) && |
| (cpu_boot_status == CPU_BOOT_STATUS_SRAM_AVAIL)) |
| cpu_initialized = true; |
| |
| /* |
| * when Linux/Bootfit exist this write to the SP can be interpreted in 2 ways: |
| * 1. FW reset: FW initiate the reset sequence |
| * 2. driver reset: FW will start HALT sequence (the preparations for the |
| * reset but not the reset itself as it is not implemented |
| * on their part) and LKD will wait to let FW complete the |
| * sequence before issuing the reset |
| */ |
| if (!preboot_only && cpu_initialized) { |
| WREG32(le32_to_cpu(dyn_regs->gic_host_halt_irq), |
| gaudi2_irq_map_table[GAUDI2_EVENT_CPU_HALT_MACHINE].cpu_id); |
| |
| msleep(GAUDI2_CPU_RESET_WAIT_MSEC); |
| } |
| |
| /* |
| * When working with preboot (without Linux/Boot fit) we can |
| * communicate only using the COMMS commands to issue halt/reset. |
| * |
| * For the case in which we are working with Linux/Bootfit this is a hail-mary |
| * attempt to revive the card in the small chance that the f/w has |
| * experienced a watchdog event, which caused it to return back to preboot. |
| * In that case, triggering reset through GIC won't help. We need to |
| * trigger the reset as if Linux wasn't loaded. |
| * |
| * We do it only if the reset cause was HB, because that would be the |
| * indication of such an event. |
| * |
| * In case watchdog hasn't expired but we still got HB, then this won't |
| * do any damage. |
| */ |
| |
| if (heartbeat_reset || preboot_only || !cpu_initialized) { |
| if (hdev->asic_prop.hard_reset_done_by_fw) |
| hl_fw_ask_hard_reset_without_linux(hdev); |
| else |
| hl_fw_ask_halt_machine_without_linux(hdev); |
| } |
| } |
| |
| /** |
| * gaudi2_execute_hard_reset - execute hard reset by driver/FW |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * |
| * This function executes hard reset based on if driver/FW should do the reset |
| */ |
| static void gaudi2_execute_hard_reset(struct hl_device *hdev) |
| { |
| if (hdev->asic_prop.hard_reset_done_by_fw) { |
| gaudi2_send_hard_reset_cmd(hdev); |
| return; |
| } |
| |
| /* Set device to handle FLR by H/W as we will put the device |
| * CPU to halt mode |
| */ |
| WREG32(mmPCIE_AUX_FLR_CTRL, |
| (PCIE_AUX_FLR_CTRL_HW_CTRL_MASK | PCIE_AUX_FLR_CTRL_INT_MASK_MASK)); |
| |
| gaudi2_send_hard_reset_cmd(hdev); |
| |
| WREG32(mmPSOC_RESET_CONF_SW_ALL_RST, 1); |
| } |
| |
| /** |
| * gaudi2_execute_soft_reset - execute soft reset by driver/FW |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @driver_performs_reset: true if driver should perform reset instead of f/w. |
| * @poll_timeout_us: time to wait for response from f/w. |
| * |
| * This function executes soft reset based on if driver/FW should do the reset |
| */ |
| static int gaudi2_execute_soft_reset(struct hl_device *hdev, bool driver_performs_reset, |
| u32 poll_timeout_us) |
| { |
| if (!driver_performs_reset) |
| return hl_fw_send_soft_reset(hdev); |
| |
| /* Block access to engines, QMANs and SM during reset, these |
| * RRs will be reconfigured after soft reset. |
| * PCIE_MSIX is left unsecured to allow NIC packets processing during the reset. |
| */ |
| gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 1, |
| mmDCORE0_TPC0_QM_DCCM_BASE, mmPCIE_MSIX_BASE); |
| |
| gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 2, |
| mmPCIE_MSIX_BASE + HL_BLOCK_SIZE, |
| mmPCIE_VDEC1_MSTR_IF_RR_SHRD_HBW_BASE + HL_BLOCK_SIZE); |
| |
| WREG32(mmPSOC_RESET_CONF_SOFT_RST, 1); |
| return 0; |
| } |
| |
| static void gaudi2_poll_btm_indication(struct hl_device *hdev, u32 poll_timeout_us) |
| { |
| int i, rc = 0; |
| u32 reg_val; |
| |
| /* We poll the BTM done indication multiple times after reset due to |
| * a HW errata 'GAUDI2_0300' |
| */ |
| for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++) |
| rc = hl_poll_timeout( |
| hdev, |
| mmPSOC_GLOBAL_CONF_BTM_FSM, |
| reg_val, |
| reg_val == 0, |
| 1000, |
| poll_timeout_us); |
| |
| if (rc) |
| dev_err(hdev->dev, "Timeout while waiting for device to reset 0x%x\n", reg_val); |
| } |
| |
| static int gaudi2_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 poll_timeout_us, reset_sleep_ms; |
| bool driver_performs_reset = false; |
| int rc; |
| |
| if (hdev->pldm) { |
| reset_sleep_ms = hard_reset ? GAUDI2_PLDM_HRESET_TIMEOUT_MSEC : |
| GAUDI2_PLDM_SRESET_TIMEOUT_MSEC; |
| poll_timeout_us = GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC; |
| } else { |
| reset_sleep_ms = GAUDI2_RESET_TIMEOUT_MSEC; |
| poll_timeout_us = GAUDI2_RESET_POLL_TIMEOUT_USEC; |
| } |
| |
| if (fw_reset) |
| goto skip_reset; |
| |
| gaudi2_reset_arcs(hdev); |
| |
| if (hard_reset) { |
| driver_performs_reset = !hdev->asic_prop.hard_reset_done_by_fw; |
| gaudi2_execute_hard_reset(hdev); |
| } else { |
| /* |
| * As we have to support also work with preboot only (which does not supports |
| * soft reset) we have to make sure that security is disabled before letting driver |
| * do the reset. user shall control the BFE flags to avoid asking soft reset in |
| * secured device with preboot only. |
| */ |
| driver_performs_reset = (hdev->fw_components == FW_TYPE_PREBOOT_CPU && |
| !hdev->asic_prop.fw_security_enabled); |
| rc = gaudi2_execute_soft_reset(hdev, driver_performs_reset, poll_timeout_us); |
| if (rc) |
| return rc; |
| } |
| |
| skip_reset: |
| if (driver_performs_reset || hard_reset) { |
| /* |
| * Instead of waiting for BTM indication we should wait for preboot ready: |
| * Consider the below scenario: |
| * 1. FW update is being triggered |
| * - setting the dirty bit |
| * 2. hard reset will be triggered due to the dirty bit |
| * 3. FW initiates the reset: |
| * - dirty bit cleared |
| * - BTM indication cleared |
| * - preboot ready indication cleared |
| * 4. during hard reset: |
| * - BTM indication will be set |
| * - BIST test performed and another reset triggered |
| * 5. only after this reset the preboot will set the preboot ready |
| * |
| * when polling on BTM indication alone we can lose sync with FW while trying to |
| * communicate with FW that is during reset. |
| * to overcome this we will always wait to preboot ready indication |
| */ |
| |
| /* without this sleep reset will not work */ |
| msleep(reset_sleep_ms); |
| |
| if (hdev->fw_components & FW_TYPE_PREBOOT_CPU) |
| hl_fw_wait_preboot_ready(hdev); |
| else |
| gaudi2_poll_btm_indication(hdev, poll_timeout_us); |
| } |
| |
| if (!gaudi2) |
| return 0; |
| |
| gaudi2->dec_hw_cap_initialized &= ~(HW_CAP_DEC_MASK); |
| gaudi2->tpc_hw_cap_initialized &= ~(HW_CAP_TPC_MASK); |
| |
| /* |
| * Clear NIC capability mask in order for driver to re-configure |
| * NIC QMANs. NIC ports will not be re-configured during soft |
| * reset as we call gaudi2_nic_init only during hard reset |
| */ |
| gaudi2->nic_hw_cap_initialized &= ~(HW_CAP_NIC_MASK); |
| |
| if (hard_reset) { |
| gaudi2->hw_cap_initialized &= |
| ~(HW_CAP_DRAM | HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_MASK | |
| HW_CAP_PMMU | HW_CAP_CPU | HW_CAP_CPU_Q | |
| HW_CAP_SRAM_SCRAMBLER | HW_CAP_DMMU_MASK | |
| HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_KDMA | |
| HW_CAP_MME_MASK | HW_CAP_ROT_MASK); |
| |
| memset(gaudi2->events_stat, 0, sizeof(gaudi2->events_stat)); |
| } else { |
| gaudi2->hw_cap_initialized &= |
| ~(HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_SW_RESET | |
| HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_MME_MASK | |
| HW_CAP_ROT_MASK); |
| } |
| return 0; |
| } |
| |
| static int gaudi2_suspend(struct hl_device *hdev) |
| { |
| return hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); |
| } |
| |
| static int gaudi2_resume(struct hl_device *hdev) |
| { |
| return gaudi2_init_iatu(hdev); |
| } |
| |
| static int gaudi2_mmap(struct hl_device *hdev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size) |
| { |
| int rc; |
| |
| vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | |
| VM_DONTCOPY | VM_NORESERVE); |
| |
| #ifdef _HAS_DMA_MMAP_COHERENT |
| |
| rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, dma_addr, size); |
| if (rc) |
| dev_err(hdev->dev, "dma_mmap_coherent error %d", rc); |
| |
| #else |
| |
| rc = remap_pfn_range(vma, vma->vm_start, |
| virt_to_phys(cpu_addr) >> PAGE_SHIFT, |
| size, vma->vm_page_prot); |
| if (rc) |
| dev_err(hdev->dev, "remap_pfn_range error %d", rc); |
| |
| #endif |
| |
| return rc; |
| } |
| |
| static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 hw_cap_mask = 0; |
| u64 hw_tpc_cap_bit = 0; |
| u64 hw_nic_cap_bit = 0; |
| u64 hw_test_cap_bit = 0; |
| |
| switch (hw_queue_id) { |
| case GAUDI2_QUEUE_ID_PDMA_0_0: |
| case GAUDI2_QUEUE_ID_PDMA_0_1: |
| case GAUDI2_QUEUE_ID_PDMA_1_0: |
| hw_cap_mask = HW_CAP_PDMA_MASK; |
| break; |
| case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3: |
| hw_test_cap_bit = HW_CAP_EDMA_SHIFT + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0) >> 2); |
| break; |
| case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3: |
| hw_test_cap_bit = HW_CAP_EDMA_SHIFT + NUM_OF_EDMA_PER_DCORE + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0) >> 2); |
| break; |
| case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3: |
| hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 2 * NUM_OF_EDMA_PER_DCORE + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0) >> 2); |
| break; |
| case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3: |
| hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 3 * NUM_OF_EDMA_PER_DCORE + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0) >> 2); |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE0_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE0_MME_0_3: |
| hw_test_cap_bit = HW_CAP_MME_SHIFT; |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE1_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE1_MME_0_3: |
| hw_test_cap_bit = HW_CAP_MME_SHIFT + 1; |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE2_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE2_MME_0_3: |
| hw_test_cap_bit = HW_CAP_MME_SHIFT + 2; |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE3_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE3_MME_0_3: |
| hw_test_cap_bit = HW_CAP_MME_SHIFT + 3; |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_5_3: |
| hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_TPC_0_0) >> 2); |
| |
| /* special case where cap bit refers to the first queue id */ |
| if (!hw_tpc_cap_bit) |
| return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(0)); |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3: |
| hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + NUM_OF_TPC_PER_DCORE + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_TPC_0_0) >> 2); |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3: |
| hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (2 * NUM_OF_TPC_PER_DCORE) + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_TPC_0_0) >> 2); |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3: |
| hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (3 * NUM_OF_TPC_PER_DCORE) + |
| ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_TPC_0_0) >> 2); |
| break; |
| |
| case GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3: |
| hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (4 * NUM_OF_TPC_PER_DCORE); |
| break; |
| |
| case GAUDI2_QUEUE_ID_ROT_0_0 ... GAUDI2_QUEUE_ID_ROT_1_3: |
| hw_test_cap_bit = HW_CAP_ROT_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_ROT_0_0) >> 2); |
| break; |
| |
| case GAUDI2_QUEUE_ID_NIC_0_0 ... GAUDI2_QUEUE_ID_NIC_23_3: |
| hw_nic_cap_bit = HW_CAP_NIC_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_NIC_0_0) >> 2); |
| |
| /* special case where cap bit refers to the first queue id */ |
| if (!hw_nic_cap_bit) |
| return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(0)); |
| break; |
| |
| case GAUDI2_QUEUE_ID_CPU_PQ: |
| return !!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q); |
| |
| default: |
| return false; |
| } |
| |
| if (hw_tpc_cap_bit) |
| return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(hw_tpc_cap_bit)); |
| |
| if (hw_nic_cap_bit) |
| return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(hw_nic_cap_bit)); |
| |
| if (hw_test_cap_bit) |
| hw_cap_mask = BIT_ULL(hw_test_cap_bit); |
| |
| return !!(gaudi2->hw_cap_initialized & hw_cap_mask); |
| } |
| |
| static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| switch (arc_id) { |
| case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5: |
| case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1: |
| return !!(gaudi2->active_hw_arc & BIT_ULL(arc_id)); |
| |
| case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: |
| return !!(gaudi2->active_tpc_arc & BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)); |
| |
| case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: |
| return !!(gaudi2->active_nic_arc & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)); |
| |
| default: |
| return false; |
| } |
| } |
| |
| static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| switch (arc_id) { |
| case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5: |
| case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1: |
| gaudi2->active_hw_arc &= ~(BIT_ULL(arc_id)); |
| break; |
| |
| case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: |
| gaudi2->active_tpc_arc &= ~(BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)); |
| break; |
| |
| case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: |
| gaudi2->active_nic_arc &= ~(BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)); |
| break; |
| |
| default: |
| return; |
| } |
| } |
| |
| static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| switch (arc_id) { |
| case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5: |
| case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1: |
| gaudi2->active_hw_arc |= BIT_ULL(arc_id); |
| break; |
| |
| case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24: |
| gaudi2->active_tpc_arc |= BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0); |
| break; |
| |
| case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23: |
| gaudi2->active_nic_arc |= BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0); |
| break; |
| |
| default: |
| return; |
| } |
| } |
| |
| static void gaudi2_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi) |
| { |
| struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 pq_offset, reg_base, db_reg_offset, db_value; |
| |
| if (hw_queue_id != GAUDI2_QUEUE_ID_CPU_PQ) { |
| /* |
| * QMAN has 4 successive PQ_PI registers, 1 for each of the QMAN PQs. |
| * Masking the H/W queue ID with 0x3 extracts the QMAN internal PQ |
| * number. |
| */ |
| pq_offset = (hw_queue_id & 0x3) * 4; |
| reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; |
| db_reg_offset = reg_base + QM_PQ_PI_0_OFFSET + pq_offset; |
| } else { |
| db_reg_offset = mmCPU_IF_PF_PQ_PI; |
| } |
| |
| db_value = pi; |
| |
| /* ring the doorbell */ |
| WREG32(db_reg_offset, db_value); |
| |
| if (hw_queue_id == GAUDI2_QUEUE_ID_CPU_PQ) { |
| /* make sure device CPU will read latest data from host */ |
| mb(); |
| WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq), |
| gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id); |
| } |
| } |
| |
| static void gaudi2_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd) |
| { |
| __le64 *pbd = (__le64 *) bd; |
| |
| /* The QMANs are on the host memory so a simple copy suffice */ |
| pqe[0] = pbd[0]; |
| pqe[1] = pbd[1]; |
| } |
| |
| static void *gaudi2_dma_alloc_coherent(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flags) |
| { |
| return dma_alloc_coherent(&hdev->pdev->dev, size, dma_handle, flags); |
| } |
| |
| static void gaudi2_dma_free_coherent(struct hl_device *hdev, size_t size, |
| void *cpu_addr, dma_addr_t dma_handle) |
| { |
| dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, dma_handle); |
| } |
| |
| static int gaudi2_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len, |
| u32 timeout, u64 *result) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) { |
| if (result) |
| *result = 0; |
| return 0; |
| } |
| |
| if (!timeout) |
| timeout = GAUDI2_MSG_TO_CPU_TIMEOUT_USEC; |
| |
| return hl_fw_send_cpu_message(hdev, GAUDI2_QUEUE_ID_CPU_PQ, msg, len, timeout, result); |
| } |
| |
| static void *gaudi2_dma_pool_zalloc(struct hl_device *hdev, size_t size, |
| gfp_t mem_flags, dma_addr_t *dma_handle) |
| { |
| if (size > GAUDI2_DMA_POOL_BLK_SIZE) |
| return NULL; |
| |
| return dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle); |
| } |
| |
| static void gaudi2_dma_pool_free(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr) |
| { |
| dma_pool_free(hdev->dma_pool, vaddr, dma_addr); |
| } |
| |
| static void *gaudi2_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle) |
| { |
| return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); |
| } |
| |
| static void gaudi2_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) |
| { |
| hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr); |
| } |
| |
| static int gaudi2_validate_cb_address(struct hl_device *hdev, struct hl_cs_parser *parser) |
| { |
| struct asic_fixed_properties *asic_prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!gaudi2_is_queue_enabled(hdev, parser->hw_queue_id)) { |
| dev_err(hdev->dev, "h/w queue %d is disabled\n", parser->hw_queue_id); |
| return -EINVAL; |
| } |
| |
| /* Just check if CB address is valid */ |
| |
| if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->sram_user_base_address, |
| asic_prop->sram_end_address)) |
| return 0; |
| |
| if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->dram_user_base_address, |
| asic_prop->dram_end_address)) |
| return 0; |
| |
| if ((gaudi2->hw_cap_initialized & HW_CAP_DMMU_MASK) && |
| hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->dmmu.start_addr, |
| asic_prop->dmmu.end_addr)) |
| return 0; |
| |
| if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) { |
| if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->pmmu.start_addr, |
| asic_prop->pmmu.end_addr) || |
| hl_mem_area_inside_range( |
| (u64) (uintptr_t) parser->user_cb, |
| parser->user_cb_size, |
| asic_prop->pmmu_huge.start_addr, |
| asic_prop->pmmu_huge.end_addr)) |
| return 0; |
| |
| } else if (gaudi2_host_phys_addr_valid((u64) (uintptr_t) parser->user_cb)) { |
| if (!hdev->pdev) |
| return 0; |
| |
| if (!device_iommu_mapped(&hdev->pdev->dev)) |
| return 0; |
| } |
| |
| dev_err(hdev->dev, "CB address %p + 0x%x for internal QMAN is not valid\n", |
| parser->user_cb, parser->user_cb_size); |
| |
| return -EFAULT; |
| } |
| |
| static int gaudi2_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!parser->is_kernel_allocated_cb) |
| return gaudi2_validate_cb_address(hdev, parser); |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) { |
| dev_err(hdev->dev, "PMMU not initialized - Unsupported mode in Gaudi2\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_send_heartbeat(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_send_heartbeat(hdev); |
| } |
| |
| /* This is an internal helper function, used to update the KDMA mmu props. |
| * Should be called with a proper kdma lock. |
| */ |
| static void gaudi2_kdma_set_mmbp_asid(struct hl_device *hdev, |
| bool mmu_bypass, u32 asid) |
| { |
| u32 rw_asid, rw_mmu_bp; |
| |
| rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) | |
| (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT); |
| |
| rw_mmu_bp = (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_SHIFT) | |
| (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_SHIFT); |
| |
| WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_ASID, rw_asid); |
| WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP, rw_mmu_bp); |
| } |
| |
| static void gaudi2_arm_cq_monitor(struct hl_device *hdev, u32 sob_id, u32 mon_id, u32 cq_id, |
| u32 mon_payload, u32 sync_value) |
| { |
| u32 sob_offset, mon_offset, sync_group_id, mode, mon_arm; |
| u8 mask; |
| |
| sob_offset = sob_id * 4; |
| mon_offset = mon_id * 4; |
| |
| /* Reset the SOB value */ |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0); |
| |
| /* Configure this address with CQ_ID 0 because CQ_EN is set */ |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, cq_id); |
| |
| /* Configure this address with CS index because CQ_EN is set */ |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, mon_payload); |
| |
| sync_group_id = sob_id / 8; |
| mask = ~(1 << (sob_id & 0x7)); |
| mode = 1; /* comparison mode is "equal to" */ |
| |
| mon_arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, sync_value); |
| mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode); |
| mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask); |
| mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sync_group_id); |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, mon_arm); |
| } |
| |
| /* This is an internal helper function used by gaudi2_send_job_to_kdma only */ |
| static int gaudi2_send_job_to_kdma(struct hl_device *hdev, |
| u64 src_addr, u64 dst_addr, |
| u32 size, bool is_memset) |
| { |
| u32 comp_val, commit_mask, *polling_addr, timeout, status = 0; |
| struct hl_cq_entry *cq_base; |
| struct hl_cq *cq; |
| u64 comp_addr; |
| int rc; |
| |
| gaudi2_arm_cq_monitor(hdev, GAUDI2_RESERVED_SOB_KDMA_COMPLETION, |
| GAUDI2_RESERVED_MON_KDMA_COMPLETION, |
| GAUDI2_RESERVED_CQ_KDMA_COMPLETION, 1, 1); |
| |
| comp_addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + |
| (GAUDI2_RESERVED_SOB_KDMA_COMPLETION * sizeof(u32)); |
| |
| comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) | |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1); |
| |
| WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_LO, lower_32_bits(src_addr)); |
| WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_HI, upper_32_bits(src_addr)); |
| WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_LO, lower_32_bits(dst_addr)); |
| WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_HI, upper_32_bits(dst_addr)); |
| WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_LO, lower_32_bits(comp_addr)); |
| WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_HI, upper_32_bits(comp_addr)); |
| WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_WDATA, comp_val); |
| WREG32(mmARC_FARM_KDMA_CTX_DST_TSIZE_0, size); |
| |
| commit_mask = FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_LIN_MASK, 1) | |
| FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_WR_COMP_EN_MASK, 1); |
| |
| if (is_memset) |
| commit_mask |= FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_MEM_SET_MASK, 1); |
| |
| WREG32(mmARC_FARM_KDMA_CTX_COMMIT, commit_mask); |
| |
| /* Wait for completion */ |
| cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_KDMA_COMPLETION]; |
| cq_base = cq->kernel_address; |
| polling_addr = (u32 *)&cq_base[cq->ci]; |
| |
| if (hdev->pldm) |
| /* for each 1MB 20 second of timeout */ |
| timeout = ((size / SZ_1M) + 1) * USEC_PER_SEC * 20; |
| else |
| timeout = KDMA_TIMEOUT_USEC; |
| |
| /* Polling */ |
| rc = hl_poll_timeout_memory( |
| hdev, |
| polling_addr, |
| status, |
| (status == 1), |
| 1000, |
| timeout, |
| true); |
| |
| *polling_addr = 0; |
| |
| if (rc) { |
| dev_err(hdev->dev, "Timeout while waiting for KDMA to be idle\n"); |
| WREG32(mmARC_FARM_KDMA_CFG_1, 1 << ARC_FARM_KDMA_CFG_1_HALT_SHIFT); |
| return rc; |
| } |
| |
| cq->ci = hl_cq_inc_ptr(cq->ci); |
| |
| return 0; |
| } |
| |
| static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val) |
| { |
| u32 i; |
| |
| for (i = 0 ; i < size ; i += sizeof(u32)) |
| WREG32(addr + i, val); |
| } |
| |
| static void gaudi2_qman_set_test_mode(struct hl_device *hdev, u32 hw_queue_id, bool enable) |
| { |
| u32 reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; |
| |
| if (enable) { |
| WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED_TEST_MODE); |
| WREG32(reg_base + QM_PQC_CFG_OFFSET, 0); |
| } else { |
| WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED); |
| WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT); |
| } |
| } |
| |
| static inline u32 gaudi2_test_queue_hw_queue_id_to_sob_id(struct hl_device *hdev, u32 hw_queue_id) |
| { |
| return hdev->asic_prop.first_available_user_sob[0] + |
| hw_queue_id - GAUDI2_QUEUE_ID_PDMA_0_0; |
| } |
| |
| static void gaudi2_test_queue_clear(struct hl_device *hdev, u32 hw_queue_id) |
| { |
| u32 sob_offset = gaudi2_test_queue_hw_queue_id_to_sob_id(hdev, hw_queue_id) * 4; |
| u32 sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; |
| |
| /* Reset the SOB value */ |
| WREG32(sob_addr, 0); |
| } |
| |
| static int gaudi2_test_queue_send_msg_short(struct hl_device *hdev, u32 hw_queue_id, u32 sob_val, |
| struct gaudi2_queues_test_info *msg_info) |
| { |
| u32 sob_offset = gaudi2_test_queue_hw_queue_id_to_sob_id(hdev, hw_queue_id) * 4; |
| u32 tmp, sob_base = 1; |
| struct packet_msg_short *msg_short_pkt = msg_info->kern_addr; |
| size_t pkt_size = sizeof(struct packet_msg_short); |
| int rc; |
| |
| tmp = (PACKET_MSG_SHORT << GAUDI2_PKT_CTL_OPCODE_SHIFT) | |
| (1 << GAUDI2_PKT_CTL_EB_SHIFT) | |
| (1 << GAUDI2_PKT_CTL_MB_SHIFT) | |
| (sob_base << GAUDI2_PKT_SHORT_CTL_BASE_SHIFT) | |
| (sob_offset << GAUDI2_PKT_SHORT_CTL_ADDR_SHIFT); |
| |
| msg_short_pkt->value = cpu_to_le32(sob_val); |
| msg_short_pkt->ctl = cpu_to_le32(tmp); |
| |
| rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, msg_info->dma_addr); |
| if (rc) |
| dev_err(hdev->dev, |
| "Failed to send msg_short packet to H/W queue %d\n", hw_queue_id); |
| |
| return rc; |
| } |
| |
| static int gaudi2_test_queue_wait_completion(struct hl_device *hdev, u32 hw_queue_id, u32 sob_val) |
| { |
| u32 sob_offset = gaudi2_test_queue_hw_queue_id_to_sob_id(hdev, hw_queue_id) * 4; |
| u32 sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; |
| u32 timeout_usec, tmp; |
| int rc; |
| |
| if (hdev->pldm) |
| timeout_usec = GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC; |
| else |
| timeout_usec = GAUDI2_TEST_QUEUE_WAIT_USEC; |
| |
| rc = hl_poll_timeout( |
| hdev, |
| sob_addr, |
| tmp, |
| (tmp == sob_val), |
| 1000, |
| timeout_usec); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, "H/W queue %d test failed (SOB_OBJ_0 == 0x%x)\n", |
| hw_queue_id, tmp); |
| rc = -EIO; |
| } |
| |
| return rc; |
| } |
| |
| static int gaudi2_test_cpu_queue(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| /* |
| * check capability here as send_cpu_message() won't update the result |
| * value if no capability |
| */ |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_test_cpu_queue(hdev); |
| } |
| |
| static int gaudi2_test_queues(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_queues_test_info *msg_info; |
| u32 sob_val = 0x5a5a; |
| int i, rc; |
| |
| /* send test message on all enabled Qs */ |
| for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ; i++) { |
| if (!gaudi2_is_queue_enabled(hdev, i) || gaudi2_is_edma_queue_id(i)) |
| continue; |
| |
| msg_info = &gaudi2->queues_test_info[i - GAUDI2_QUEUE_ID_PDMA_0_0]; |
| gaudi2_qman_set_test_mode(hdev, i, true); |
| gaudi2_test_queue_clear(hdev, i); |
| rc = gaudi2_test_queue_send_msg_short(hdev, i, sob_val, msg_info); |
| if (rc) |
| goto done; |
| } |
| |
| rc = gaudi2_test_cpu_queue(hdev); |
| if (rc) |
| goto done; |
| |
| /* verify that all messages were processed */ |
| for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ; i++) { |
| if (!gaudi2_is_queue_enabled(hdev, i) || gaudi2_is_edma_queue_id(i)) |
| continue; |
| |
| rc = gaudi2_test_queue_wait_completion(hdev, i, sob_val); |
| if (rc) |
| /* chip is not usable, no need for cleanups, just bail-out with error */ |
| goto done; |
| |
| gaudi2_test_queue_clear(hdev, i); |
| gaudi2_qman_set_test_mode(hdev, i, false); |
| } |
| |
| done: |
| return rc; |
| } |
| |
| static int gaudi2_compute_reset_late_init(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| size_t irq_arr_size; |
| int rc; |
| |
| gaudi2_init_arcs(hdev); |
| |
| rc = gaudi2_scrub_arcs_dccm(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to scrub arcs DCCM\n"); |
| return rc; |
| } |
| |
| gaudi2_init_security(hdev); |
| |
| /* Unmask all IRQs since some could have been received during the soft reset */ |
| irq_arr_size = gaudi2->num_of_valid_hw_events * sizeof(gaudi2->hw_events[0]); |
| return hl_fw_unmask_irq_arr(hdev, gaudi2->hw_events, irq_arr_size); |
| } |
| |
| static bool gaudi2_get_edma_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, dma_core_sts0, dma_core_sts1; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| unsigned long *mask = (unsigned long *) mask_arr; |
| const char *edma_fmt = "%-6d%-6d%-9s%#-14x%#-15x%#x\n"; |
| bool is_idle = true, is_eng_idle; |
| int engine_idx, i, j; |
| u64 offset; |
| |
| if (e) |
| hl_engine_data_sprintf(e, |
| "\nCORE EDMA is_idle QM_GLBL_STS0 DMA_CORE_STS0 DMA_CORE_STS1\n" |
| "---- ---- ------- ------------ ------------- -------------\n"); |
| |
| for (i = 0; i < NUM_OF_DCORES; i++) { |
| for (j = 0 ; j < NUM_OF_EDMA_PER_DCORE ; j++) { |
| int seq = i * NUM_OF_EDMA_PER_DCORE + j; |
| |
| if (!(prop->edma_enabled_mask & BIT(seq))) |
| continue; |
| |
| engine_idx = GAUDI2_DCORE0_ENGINE_ID_EDMA_0 + |
| i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j; |
| offset = i * DCORE_OFFSET + j * DCORE_EDMA_OFFSET; |
| |
| dma_core_sts0 = RREG32(mmDCORE0_EDMA0_CORE_STS0 + offset); |
| dma_core_sts1 = RREG32(mmDCORE0_EDMA0_CORE_STS1 + offset); |
| |
| qm_glbl_sts0 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS0 + offset); |
| qm_glbl_sts1 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS1 + offset); |
| qm_cgm_sts = RREG32(mmDCORE0_EDMA0_QM_CGM_STS + offset); |
| |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) && |
| IS_DMA_IDLE(dma_core_sts0) && !IS_DMA_HALTED(dma_core_sts1); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| |
| if (e) |
| hl_engine_data_sprintf(e, edma_fmt, i, j, is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, dma_core_sts0, dma_core_sts1); |
| } |
| } |
| |
| return is_idle; |
| } |
| |
| static bool gaudi2_get_pdma_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, dma_core_sts0, dma_core_sts1; |
| unsigned long *mask = (unsigned long *) mask_arr; |
| const char *pdma_fmt = "%-6d%-9s%#-14x%#-15x%#x\n"; |
| bool is_idle = true, is_eng_idle; |
| int engine_idx, i; |
| u64 offset; |
| |
| if (e) |
| hl_engine_data_sprintf(e, |
| "\nPDMA is_idle QM_GLBL_STS0 DMA_CORE_STS0 DMA_CORE_STS1\n" |
| "---- ------- ------------ ------------- -------------\n"); |
| |
| for (i = 0 ; i < NUM_OF_PDMA ; i++) { |
| engine_idx = GAUDI2_ENGINE_ID_PDMA_0 + i; |
| offset = i * PDMA_OFFSET; |
| dma_core_sts0 = RREG32(mmPDMA0_CORE_STS0 + offset); |
| dma_core_sts1 = RREG32(mmPDMA0_CORE_STS1 + offset); |
| |
| qm_glbl_sts0 = RREG32(mmPDMA0_QM_GLBL_STS0 + offset); |
| qm_glbl_sts1 = RREG32(mmPDMA0_QM_GLBL_STS1 + offset); |
| qm_cgm_sts = RREG32(mmPDMA0_QM_CGM_STS + offset); |
| |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) && |
| IS_DMA_IDLE(dma_core_sts0) && !IS_DMA_HALTED(dma_core_sts1); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| |
| if (e) |
| hl_engine_data_sprintf(e, pdma_fmt, i, is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, dma_core_sts0, dma_core_sts1); |
| } |
| |
| return is_idle; |
| } |
| |
| static bool gaudi2_get_nic_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| unsigned long *mask = (unsigned long *) mask_arr; |
| const char *nic_fmt = "%-5d%-9s%#-14x%#-12x\n"; |
| u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts; |
| bool is_idle = true, is_eng_idle; |
| int engine_idx, i; |
| u64 offset = 0; |
| |
| /* NIC, twelve macros in Full chip */ |
| if (e && hdev->nic_ports_mask) |
| hl_engine_data_sprintf(e, |
| "\nNIC is_idle QM_GLBL_STS0 QM_CGM_STS\n" |
| "--- ------- ------------ ----------\n"); |
| |
| for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) { |
| if (!(i & 1)) |
| offset = i / 2 * NIC_OFFSET; |
| else |
| offset += NIC_QM_OFFSET; |
| |
| if (!(hdev->nic_ports_mask & BIT(i))) |
| continue; |
| |
| engine_idx = GAUDI2_ENGINE_ID_NIC0_0 + i; |
| |
| |
| qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset); |
| qm_glbl_sts1 = RREG32(mmNIC0_QM0_GLBL_STS1 + offset); |
| qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset); |
| |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| |
| if (e) |
| hl_engine_data_sprintf(e, nic_fmt, i, is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_cgm_sts); |
| } |
| |
| return is_idle; |
| } |
| |
| static bool gaudi2_get_mme_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, mme_arch_sts; |
| unsigned long *mask = (unsigned long *) mask_arr; |
| const char *mme_fmt = "%-5d%-6s%-9s%#-14x%#x\n"; |
| bool is_idle = true, is_eng_idle; |
| int engine_idx, i; |
| u64 offset; |
| |
| if (e) |
| hl_engine_data_sprintf(e, |
| "\nMME Stub is_idle QM_GLBL_STS0 MME_ARCH_STATUS\n" |
| "--- ---- ------- ------------ ---------------\n"); |
| /* MME, one per Dcore */ |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) { |
| engine_idx = GAUDI2_DCORE0_ENGINE_ID_MME + i * GAUDI2_ENGINE_ID_DCORE_OFFSET; |
| offset = i * DCORE_OFFSET; |
| |
| qm_glbl_sts0 = RREG32(mmDCORE0_MME_QM_GLBL_STS0 + offset); |
| qm_glbl_sts1 = RREG32(mmDCORE0_MME_QM_GLBL_STS1 + offset); |
| qm_cgm_sts = RREG32(mmDCORE0_MME_QM_CGM_STS + offset); |
| |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); |
| is_idle &= is_eng_idle; |
| |
| mme_arch_sts = RREG32(mmDCORE0_MME_CTRL_LO_ARCH_STATUS + offset); |
| is_eng_idle &= IS_MME_IDLE(mme_arch_sts); |
| is_idle &= is_eng_idle; |
| |
| if (e) |
| hl_engine_data_sprintf(e, mme_fmt, i, "N", |
| is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, |
| mme_arch_sts); |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| } |
| |
| return is_idle; |
| } |
| |
| static void gaudi2_is_tpc_engine_idle(struct hl_device *hdev, int dcore, int inst, u32 offset, |
| struct iterate_module_ctx *ctx) |
| { |
| struct gaudi2_tpc_idle_data *idle_data = ctx->data; |
| u32 tpc_cfg_sts, qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts; |
| bool is_eng_idle; |
| int engine_idx; |
| |
| if ((dcore == 0) && (inst == (NUM_DCORE0_TPC - 1))) |
| engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_6; |
| else |
| engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_0 + |
| dcore * GAUDI2_ENGINE_ID_DCORE_OFFSET + inst; |
| |
| tpc_cfg_sts = RREG32(mmDCORE0_TPC0_CFG_STATUS + offset); |
| qm_glbl_sts0 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS0 + offset); |
| qm_glbl_sts1 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS1 + offset); |
| qm_cgm_sts = RREG32(mmDCORE0_TPC0_QM_CGM_STS + offset); |
| |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) && |
| IS_TPC_IDLE(tpc_cfg_sts); |
| *(idle_data->is_idle) &= is_eng_idle; |
| |
| if (idle_data->mask && !is_eng_idle) |
| set_bit(engine_idx, idle_data->mask); |
| |
| if (idle_data->e) |
| hl_engine_data_sprintf(idle_data->e, |
| idle_data->tpc_fmt, dcore, inst, |
| is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts); |
| } |
| |
| static bool gaudi2_get_tpc_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| unsigned long *mask = (unsigned long *) mask_arr; |
| bool is_idle = true; |
| |
| struct gaudi2_tpc_idle_data tpc_idle_data = { |
| .tpc_fmt = "%-6d%-5d%-9s%#-14x%#-12x%#x\n", |
| .e = e, |
| .mask = mask, |
| .is_idle = &is_idle, |
| }; |
| struct iterate_module_ctx tpc_iter = { |
| .fn = &gaudi2_is_tpc_engine_idle, |
| .data = &tpc_idle_data, |
| }; |
| |
| if (e && prop->tpc_enabled_mask) |
| hl_engine_data_sprintf(e, |
| "\nCORE TPC is_idle QM_GLBL_STS0 QM_CGM_STS STATUS\n" |
| "---- --- ------- ------------ ---------- ------\n"); |
| |
| gaudi2_iterate_tpcs(hdev, &tpc_iter); |
| |
| return *tpc_idle_data.is_idle; |
| } |
| |
| static bool gaudi2_get_decoder_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| unsigned long *mask = (unsigned long *) mask_arr; |
| const char *pcie_dec_fmt = "%-10d%-9s%#x\n"; |
| const char *dec_fmt = "%-6d%-5d%-9s%#x\n"; |
| bool is_idle = true, is_eng_idle; |
| u32 dec_swreg15, dec_enabled_bit; |
| int engine_idx, i, j; |
| u64 offset; |
| |
| /* Decoders, two each Dcore and two shared PCIe decoders */ |
| if (e && (prop->decoder_enabled_mask & (~PCIE_DEC_EN_MASK))) |
| hl_engine_data_sprintf(e, |
| "\nCORE DEC is_idle VSI_CMD_SWREG15\n" |
| "---- --- ------- ---------------\n"); |
| |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) { |
| for (j = 0 ; j < NUM_OF_DEC_PER_DCORE ; j++) { |
| dec_enabled_bit = 1 << (i * NUM_OF_DEC_PER_DCORE + j); |
| if (!(prop->decoder_enabled_mask & dec_enabled_bit)) |
| continue; |
| |
| engine_idx = GAUDI2_DCORE0_ENGINE_ID_DEC_0 + |
| i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j; |
| offset = i * DCORE_OFFSET + j * DCORE_DEC_OFFSET; |
| |
| dec_swreg15 = RREG32(mmDCORE0_DEC0_CMD_SWREG15 + offset); |
| is_eng_idle = IS_DEC_IDLE(dec_swreg15); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| |
| if (e) |
| hl_engine_data_sprintf(e, dec_fmt, i, j, |
| is_eng_idle ? "Y" : "N", dec_swreg15); |
| } |
| } |
| |
| if (e && (prop->decoder_enabled_mask & PCIE_DEC_EN_MASK)) |
| hl_engine_data_sprintf(e, |
| "\nPCIe DEC is_idle VSI_CMD_SWREG15\n" |
| "-------- ------- ---------------\n"); |
| |
| /* Check shared(PCIe) decoders */ |
| for (i = 0 ; i < NUM_OF_DEC_PER_DCORE ; i++) { |
| dec_enabled_bit = PCIE_DEC_SHIFT + i; |
| if (!(prop->decoder_enabled_mask & BIT(dec_enabled_bit))) |
| continue; |
| |
| engine_idx = GAUDI2_PCIE_ENGINE_ID_DEC_0 + i; |
| offset = i * DCORE_DEC_OFFSET; |
| dec_swreg15 = RREG32(mmPCIE_DEC0_CMD_SWREG15 + offset); |
| is_eng_idle = IS_DEC_IDLE(dec_swreg15); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| |
| if (e) |
| hl_engine_data_sprintf(e, pcie_dec_fmt, i, |
| is_eng_idle ? "Y" : "N", dec_swreg15); |
| } |
| |
| return is_idle; |
| } |
| |
| static bool gaudi2_get_rotator_idle_status(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| const char *rot_fmt = "%-6d%-5d%-9s%#-14x%#-14x%#x\n"; |
| unsigned long *mask = (unsigned long *) mask_arr; |
| u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts; |
| bool is_idle = true, is_eng_idle; |
| int engine_idx, i; |
| u64 offset; |
| |
| if (e) |
| hl_engine_data_sprintf(e, |
| "\nCORE ROT is_idle QM_GLBL_STS0 QM_GLBL_STS1 QM_CGM_STS\n" |
| "---- --- ------- ------------ ------------ ----------\n"); |
| |
| for (i = 0 ; i < NUM_OF_ROT ; i++) { |
| engine_idx = GAUDI2_ENGINE_ID_ROT_0 + i; |
| |
| offset = i * ROT_OFFSET; |
| |
| qm_glbl_sts0 = RREG32(mmROT0_QM_GLBL_STS0 + offset); |
| qm_glbl_sts1 = RREG32(mmROT0_QM_GLBL_STS1 + offset); |
| qm_cgm_sts = RREG32(mmROT0_QM_CGM_STS + offset); |
| |
| is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); |
| is_idle &= is_eng_idle; |
| |
| if (mask && !is_eng_idle) |
| set_bit(engine_idx, mask); |
| |
| if (e) |
| hl_engine_data_sprintf(e, rot_fmt, i, 0, is_eng_idle ? "Y" : "N", |
| qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts); |
| } |
| |
| return is_idle; |
| } |
| |
| static bool gaudi2_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, |
| struct engines_data *e) |
| { |
| bool is_idle = true; |
| |
| is_idle &= gaudi2_get_edma_idle_status(hdev, mask_arr, mask_len, e); |
| is_idle &= gaudi2_get_pdma_idle_status(hdev, mask_arr, mask_len, e); |
| is_idle &= gaudi2_get_nic_idle_status(hdev, mask_arr, mask_len, e); |
| is_idle &= gaudi2_get_mme_idle_status(hdev, mask_arr, mask_len, e); |
| is_idle &= gaudi2_get_tpc_idle_status(hdev, mask_arr, mask_len, e); |
| is_idle &= gaudi2_get_decoder_idle_status(hdev, mask_arr, mask_len, e); |
| is_idle &= gaudi2_get_rotator_idle_status(hdev, mask_arr, mask_len, e); |
| |
| return is_idle; |
| } |
| |
| static void gaudi2_hw_queues_lock(struct hl_device *hdev) |
| __acquires(&gaudi2->hw_queues_lock) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| spin_lock(&gaudi2->hw_queues_lock); |
| } |
| |
| static void gaudi2_hw_queues_unlock(struct hl_device *hdev) |
| __releases(&gaudi2->hw_queues_lock) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| spin_unlock(&gaudi2->hw_queues_lock); |
| } |
| |
| static u32 gaudi2_get_pci_id(struct hl_device *hdev) |
| { |
| return hdev->pdev->device; |
| } |
| |
| static int gaudi2_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_get_eeprom_data(hdev, data, max_size); |
| } |
| |
| static void gaudi2_update_eq_ci(struct hl_device *hdev, u32 val) |
| { |
| WREG32(mmCPU_IF_EQ_RD_OFFS, val); |
| } |
| |
| static void *gaudi2_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (aggregate) { |
| *size = (u32) sizeof(gaudi2->events_stat_aggregate); |
| return gaudi2->events_stat_aggregate; |
| } |
| |
| *size = (u32) sizeof(gaudi2->events_stat); |
| return gaudi2->events_stat; |
| } |
| |
| static void gaudi2_mmu_vdec_dcore_prepare(struct hl_device *hdev, int dcore_id, |
| int dcore_vdec_id, u32 rw_asid, u32 rw_mmu_bp) |
| { |
| u32 offset = (mmDCORE0_VDEC1_BRDG_CTRL_BASE - mmDCORE0_VDEC0_BRDG_CTRL_BASE) * |
| dcore_vdec_id + DCORE_OFFSET * dcore_id; |
| |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid); |
| } |
| |
| static void gaudi2_mmu_dcore_prepare(struct hl_device *hdev, int dcore_id, u32 asid) |
| { |
| u32 rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) | |
| (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT); |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 dcore_offset = dcore_id * DCORE_OFFSET; |
| u32 vdec_id, i, ports_offset, reg_val; |
| u8 edma_seq_base; |
| |
| /* EDMA */ |
| edma_seq_base = dcore_id * NUM_OF_EDMA_PER_DCORE; |
| if (prop->edma_enabled_mask & BIT(edma_seq_base)) { |
| WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0); |
| WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid); |
| } |
| |
| if (prop->edma_enabled_mask & BIT(edma_seq_base + 1)) { |
| WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0); |
| WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid); |
| WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid); |
| WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0); |
| } |
| |
| /* Sync Mngr */ |
| WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV + dcore_offset, asid); |
| /* |
| * Sync Mngrs on dcores 1 - 3 are exposed to user, so must use user ASID |
| * for any access type |
| */ |
| if (dcore_id > 0) { |
| reg_val = (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_RD_SHIFT) | |
| (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_WR_SHIFT); |
| WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID + dcore_offset, reg_val); |
| WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_MMU_BP + dcore_offset, 0); |
| } |
| |
| WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_MMU_BP + dcore_offset, 0); |
| WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_ASID + dcore_offset, rw_asid); |
| |
| for (i = 0 ; i < NUM_OF_MME_SBTE_PORTS ; i++) { |
| ports_offset = i * DCORE_MME_SBTE_OFFSET; |
| WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_MMU_BP + |
| dcore_offset + ports_offset, 0); |
| WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_ASID + |
| dcore_offset + ports_offset, rw_asid); |
| } |
| |
| for (i = 0 ; i < NUM_OF_MME_WB_PORTS ; i++) { |
| ports_offset = i * DCORE_MME_WB_OFFSET; |
| WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_MMU_BP + |
| dcore_offset + ports_offset, 0); |
| WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_ASID + |
| dcore_offset + ports_offset, rw_asid); |
| } |
| |
| WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0); |
| WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid); |
| |
| /* |
| * Decoders |
| */ |
| for (vdec_id = 0 ; vdec_id < NUM_OF_DEC_PER_DCORE ; vdec_id++) { |
| if (prop->decoder_enabled_mask & BIT(dcore_id * NUM_OF_DEC_PER_DCORE + vdec_id)) |
| gaudi2_mmu_vdec_dcore_prepare(hdev, dcore_id, vdec_id, rw_asid, 0); |
| } |
| } |
| |
| static void gudi2_mmu_vdec_shared_prepare(struct hl_device *hdev, |
| int shared_vdec_id, u32 rw_asid, u32 rw_mmu_bp) |
| { |
| u32 offset = (mmPCIE_VDEC1_BRDG_CTRL_BASE - mmPCIE_VDEC0_BRDG_CTRL_BASE) * shared_vdec_id; |
| |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid); |
| |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid); |
| } |
| |
| static void gudi2_mmu_arc_farm_arc_dup_eng_prepare(struct hl_device *hdev, int arc_farm_id, |
| u32 rw_asid, u32 rw_mmu_bp) |
| { |
| u32 offset = (mmARC_FARM_ARC1_DUP_ENG_BASE - mmARC_FARM_ARC0_DUP_ENG_BASE) * arc_farm_id; |
| |
| WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_MMU_BP + offset, rw_mmu_bp); |
| WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_ASID + offset, rw_asid); |
| } |
| |
| static void gaudi2_arc_mmu_prepare(struct hl_device *hdev, u32 cpu_id, u32 asid) |
| { |
| u32 reg_base, reg_offset, reg_val = 0; |
| |
| reg_base = gaudi2_arc_blocks_bases[cpu_id]; |
| |
| /* Enable MMU and configure asid for all relevant ARC regions */ |
| reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_MMU_BP_MASK, 0); |
| reg_val |= FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_0_ASID_MASK, asid); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION3_GENERAL); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION4_HBM0_FW); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION5_HBM1_GC_DATA); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION6_HBM2_GC_DATA); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION7_HBM3_GC_DATA); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION9_PCIE); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION10_GENERAL); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION11_GENERAL); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION12_GENERAL); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION13_GENERAL); |
| WREG32(reg_base + reg_offset, reg_val); |
| |
| reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION14_GENERAL); |
| WREG32(reg_base + reg_offset, reg_val); |
| } |
| |
| static int gaudi2_arc_mmu_prepare_all(struct hl_device *hdev, u32 asid) |
| { |
| int i; |
| |
| if (hdev->fw_components & FW_TYPE_BOOT_CPU) |
| return hl_fw_cpucp_engine_core_asid_set(hdev, asid); |
| |
| for (i = CPU_ID_SCHED_ARC0 ; i < NUM_OF_ARC_FARMS_ARC ; i++) |
| gaudi2_arc_mmu_prepare(hdev, i, asid); |
| |
| for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) { |
| if (!gaudi2_is_queue_enabled(hdev, i)) |
| continue; |
| |
| gaudi2_arc_mmu_prepare(hdev, gaudi2_queue_id_to_arc_id[i], asid); |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_mmu_shared_prepare(struct hl_device *hdev, u32 asid) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 rw_asid, offset; |
| int rc, i; |
| |
| rw_asid = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_MASK, asid) | |
| FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_MASK, asid); |
| |
| WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_ASID, rw_asid); |
| WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP, 0); |
| WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_ASID, rw_asid); |
| WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_MMU_BP, 0); |
| |
| WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_ASID, rw_asid); |
| WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP, 0); |
| WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_ASID, rw_asid); |
| WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_MMU_BP, 0); |
| |
| /* ROT */ |
| for (i = 0 ; i < NUM_OF_ROT ; i++) { |
| offset = i * ROT_OFFSET; |
| WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_ASID + offset, rw_asid); |
| WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0); |
| RMWREG32(mmROT0_CPL_QUEUE_AWUSER + offset, asid, MMUBP_ASID_MASK); |
| RMWREG32(mmROT0_DESC_HBW_ARUSER_LO + offset, asid, MMUBP_ASID_MASK); |
| RMWREG32(mmROT0_DESC_HBW_AWUSER_LO + offset, asid, MMUBP_ASID_MASK); |
| } |
| |
| /* Shared Decoders are the last bits in the decoders mask */ |
| if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 0)) |
| gudi2_mmu_vdec_shared_prepare(hdev, 0, rw_asid, 0); |
| |
| if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 1)) |
| gudi2_mmu_vdec_shared_prepare(hdev, 1, rw_asid, 0); |
| |
| /* arc farm arc dup eng */ |
| for (i = 0 ; i < NUM_OF_ARC_FARMS_ARC ; i++) |
| gudi2_mmu_arc_farm_arc_dup_eng_prepare(hdev, i, rw_asid, 0); |
| |
| rc = gaudi2_arc_mmu_prepare_all(hdev, asid); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| static void gaudi2_tpc_mmu_prepare(struct hl_device *hdev, int dcore, int inst, u32 offset, |
| struct iterate_module_ctx *ctx) |
| { |
| struct gaudi2_tpc_mmu_data *mmu_data = ctx->data; |
| |
| WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_MMU_BP + offset, 0); |
| WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_ASID + offset, mmu_data->rw_asid); |
| WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0); |
| WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_ASID + offset, mmu_data->rw_asid); |
| } |
| |
| /* zero the MMUBP and set the ASID */ |
| static int gaudi2_mmu_prepare(struct hl_device *hdev, u32 asid) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| struct gaudi2_tpc_mmu_data tpc_mmu_data; |
| struct iterate_module_ctx tpc_iter = { |
| .fn = &gaudi2_tpc_mmu_prepare, |
| .data = &tpc_mmu_data, |
| }; |
| int rc, i; |
| |
| if (asid & ~DCORE0_HMMU0_STLB_ASID_ASID_MASK) { |
| dev_crit(hdev->dev, "asid %u is too big\n", asid); |
| return -EINVAL; |
| } |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_MMU_MASK)) |
| return 0; |
| |
| rc = gaudi2_mmu_shared_prepare(hdev, asid); |
| if (rc) |
| return rc; |
| |
| /* configure DCORE MMUs */ |
| tpc_mmu_data.rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) | |
| (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT); |
| gaudi2_iterate_tpcs(hdev, &tpc_iter); |
| for (i = 0 ; i < NUM_OF_DCORES ; i++) |
| gaudi2_mmu_dcore_prepare(hdev, i, asid); |
| |
| return 0; |
| } |
| |
| static inline bool is_info_event(u32 event) |
| { |
| switch (event) { |
| case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE: |
| case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S ... GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E: |
| case GAUDI2_EVENT_ARC_PWR_BRK_ENTRY ... GAUDI2_EVENT_ARC_PWR_RD_MODE3: |
| |
| /* return in case of NIC status event - these events are received periodically and not as |
| * an indication to an error. |
| */ |
| case GAUDI2_EVENT_CPU0_STATUS_NIC0_ENG0 ... GAUDI2_EVENT_CPU11_STATUS_NIC11_ENG1: |
| case GAUDI2_EVENT_ARC_EQ_HEARTBEAT: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void gaudi2_print_event(struct hl_device *hdev, u16 event_type, |
| bool ratelimited, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| if (ratelimited) |
| dev_err_ratelimited(hdev->dev, "%s: %pV\n", |
| gaudi2_irq_map_table[event_type].valid ? |
| gaudi2_irq_map_table[event_type].name : "N/A Event", &vaf); |
| else |
| dev_err(hdev->dev, "%s: %pV\n", |
| gaudi2_irq_map_table[event_type].valid ? |
| gaudi2_irq_map_table[event_type].name : "N/A Event", &vaf); |
| |
| va_end(args); |
| } |
| |
| static bool gaudi2_handle_ecc_event(struct hl_device *hdev, u16 event_type, |
| struct hl_eq_ecc_data *ecc_data) |
| { |
| u64 ecc_address = 0, ecc_syndrome = 0; |
| u8 memory_wrapper_idx = 0; |
| bool has_block_id = false; |
| u16 block_id; |
| |
| if (hl_fw_version_cmp(hdev, 1, 12, 0) >= 0) |
| has_block_id = true; |
| |
| ecc_address = le64_to_cpu(ecc_data->ecc_address); |
| ecc_syndrome = le64_to_cpu(ecc_data->ecc_syndrom); |
| memory_wrapper_idx = ecc_data->memory_wrapper_idx; |
| |
| if (has_block_id) { |
| block_id = le16_to_cpu(ecc_data->block_id); |
| gaudi2_print_event(hdev, event_type, !ecc_data->is_critical, |
| "ECC error detected. address: %#llx. Syndrome: %#llx. wrapper id %u. block id %#x. critical %u.", |
| ecc_address, ecc_syndrome, memory_wrapper_idx, block_id, |
| ecc_data->is_critical); |
| } else { |
| gaudi2_print_event(hdev, event_type, !ecc_data->is_critical, |
| "ECC error detected. address: %#llx. Syndrome: %#llx. wrapper id %u. critical %u.", |
| ecc_address, ecc_syndrome, memory_wrapper_idx, ecc_data->is_critical); |
| } |
| |
| return !!ecc_data->is_critical; |
| } |
| |
| static void handle_lower_qman_data_on_err(struct hl_device *hdev, u64 qman_base, u32 engine_id) |
| { |
| struct undefined_opcode_info *undef_opcode = &hdev->captured_err_info.undef_opcode; |
| u64 cq_ptr, cp_current_inst; |
| u32 lo, hi, cq_size, cp_sts; |
| bool is_arc_cq; |
| |
| cp_sts = RREG32(qman_base + QM_CP_STS_4_OFFSET); |
| is_arc_cq = FIELD_GET(PDMA0_QM_CP_STS_CUR_CQ_MASK, cp_sts); /* 0 - legacy CQ, 1 - ARC_CQ */ |
| |
| if (is_arc_cq) { |
| lo = RREG32(qman_base + QM_ARC_CQ_PTR_LO_STS_OFFSET); |
| hi = RREG32(qman_base + QM_ARC_CQ_PTR_HI_STS_OFFSET); |
| cq_ptr = ((u64) hi) << 32 | lo; |
| cq_size = RREG32(qman_base + QM_ARC_CQ_TSIZE_STS_OFFSET); |
| } else { |
| lo = RREG32(qman_base + QM_CQ_PTR_LO_STS_4_OFFSET); |
| hi = RREG32(qman_base + QM_CQ_PTR_HI_STS_4_OFFSET); |
| cq_ptr = ((u64) hi) << 32 | lo; |
| cq_size = RREG32(qman_base + QM_CQ_TSIZE_STS_4_OFFSET); |
| } |
| |
| lo = RREG32(qman_base + QM_CP_CURRENT_INST_LO_4_OFFSET); |
| hi = RREG32(qman_base + QM_CP_CURRENT_INST_HI_4_OFFSET); |
| cp_current_inst = ((u64) hi) << 32 | lo; |
| |
| dev_info(hdev->dev, |
| "LowerQM. %sCQ: {ptr %#llx, size %u}, CP: {instruction %#018llx}\n", |
| is_arc_cq ? "ARC_" : "", cq_ptr, cq_size, cp_current_inst); |
| |
| if (undef_opcode->write_enable) { |
| memset(undef_opcode, 0, sizeof(*undef_opcode)); |
| undef_opcode->timestamp = ktime_get(); |
| undef_opcode->cq_addr = cq_ptr; |
| undef_opcode->cq_size = cq_size; |
| undef_opcode->engine_id = engine_id; |
| undef_opcode->stream_id = QMAN_STREAMS; |
| undef_opcode->write_enable = 0; |
| } |
| } |
| |
| static int gaudi2_handle_qman_err_generic(struct hl_device *hdev, u16 event_type, |
| u64 qman_base, u32 qid_base, u64 *event_mask) |
| { |
| u32 i, j, glbl_sts_val, arb_err_val, num_error_causes, error_count = 0; |
| u64 glbl_sts_addr, arb_err_addr; |
| char reg_desc[32]; |
| |
| glbl_sts_addr = qman_base + (mmDCORE0_TPC0_QM_GLBL_ERR_STS_0 - mmDCORE0_TPC0_QM_BASE); |
| arb_err_addr = qman_base + (mmDCORE0_TPC0_QM_ARB_ERR_CAUSE - mmDCORE0_TPC0_QM_BASE); |
| |
| /* Iterate through all stream GLBL_ERR_STS registers + Lower CP */ |
| for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) { |
| glbl_sts_val = RREG32(glbl_sts_addr + 4 * i); |
| |
| if (!glbl_sts_val) |
| continue; |
| |
| if (i == QMAN_STREAMS) { |
| snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerQM"); |
| num_error_causes = GAUDI2_NUM_OF_LOWER_QM_ERR_CAUSE; |
| } else { |
| snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i); |
| num_error_causes = GAUDI2_NUM_OF_QM_ERR_CAUSE; |
| } |
| |
| for (j = 0 ; j < num_error_causes ; j++) |
| if (glbl_sts_val & BIT(j)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "%s. err cause: %s", reg_desc, |
| i == QMAN_STREAMS ? |
| gaudi2_lower_qman_error_cause[j] : |
| gaudi2_qman_error_cause[j]); |
| error_count++; |
| } |
| |
| /* Check for undefined opcode error in lower QM */ |
| if ((i == QMAN_STREAMS) && |
| (glbl_sts_val & PDMA0_QM_GLBL_ERR_STS_CP_UNDEF_CMD_ERR_MASK)) { |
| handle_lower_qman_data_on_err(hdev, qman_base, |
| gaudi2_queue_id_to_engine_id[qid_base]); |
| *event_mask |= HL_NOTIFIER_EVENT_UNDEFINED_OPCODE; |
| } |
| } |
| |
| arb_err_val = RREG32(arb_err_addr); |
| |
| if (!arb_err_val) |
| goto out; |
| |
| for (j = 0 ; j < GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE ; j++) { |
| if (arb_err_val & BIT(j)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "ARB_ERR. err cause: %s", |
| gaudi2_qman_arb_error_cause[j]); |
| error_count++; |
| } |
| } |
| |
| out: |
| return error_count; |
| } |
| |
| static void gaudi2_razwi_rr_hbw_shared_printf_info(struct hl_device *hdev, |
| u64 rtr_mstr_if_base_addr, bool is_write, char *name, |
| enum gaudi2_engine_id id, u64 *event_mask) |
| { |
| u32 razwi_hi, razwi_lo, razwi_xy; |
| u16 eng_id = id; |
| u8 rd_wr_flag; |
| |
| if (is_write) { |
| razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HI); |
| razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_LO); |
| razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_XY); |
| rd_wr_flag = HL_RAZWI_WRITE; |
| } else { |
| razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HI); |
| razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_LO); |
| razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_XY); |
| rd_wr_flag = HL_RAZWI_READ; |
| } |
| |
| hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &eng_id, 1, |
| rd_wr_flag | HL_RAZWI_HBW, event_mask); |
| |
| dev_err_ratelimited(hdev->dev, |
| "%s-RAZWI SHARED RR HBW %s error, address %#llx, Initiator coordinates 0x%x\n", |
| name, is_write ? "WR" : "RD", (u64)razwi_hi << 32 | razwi_lo, razwi_xy); |
| } |
| |
| static void gaudi2_razwi_rr_lbw_shared_printf_info(struct hl_device *hdev, |
| u64 rtr_mstr_if_base_addr, bool is_write, char *name, |
| enum gaudi2_engine_id id, u64 *event_mask) |
| { |
| u64 razwi_addr = CFG_BASE; |
| u32 razwi_xy; |
| u16 eng_id = id; |
| u8 rd_wr_flag; |
| |
| if (is_write) { |
| razwi_addr += RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI); |
| razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_XY); |
| rd_wr_flag = HL_RAZWI_WRITE; |
| } else { |
| razwi_addr += RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI); |
| razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_XY); |
| rd_wr_flag = HL_RAZWI_READ; |
| } |
| |
| hl_handle_razwi(hdev, razwi_addr, &eng_id, 1, rd_wr_flag | HL_RAZWI_LBW, event_mask); |
| dev_err_ratelimited(hdev->dev, |
| "%s-RAZWI SHARED RR LBW %s error, mstr_if 0x%llx, captured address 0x%llX Initiator coordinates 0x%x\n", |
| name, is_write ? "WR" : "RD", rtr_mstr_if_base_addr, razwi_addr, |
| razwi_xy); |
| } |
| |
| static enum gaudi2_engine_id gaudi2_razwi_calc_engine_id(struct hl_device *hdev, |
| enum razwi_event_sources module, u8 module_idx) |
| { |
| switch (module) { |
| case RAZWI_TPC: |
| if (module_idx == (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES)) |
| return GAUDI2_DCORE0_ENGINE_ID_TPC_6; |
| return (((module_idx / NUM_OF_TPC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) + |
| (module_idx % NUM_OF_TPC_PER_DCORE) + |
| (GAUDI2_DCORE0_ENGINE_ID_TPC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0)); |
| |
| case RAZWI_MME: |
| return ((GAUDI2_DCORE0_ENGINE_ID_MME - GAUDI2_DCORE0_ENGINE_ID_EDMA_0) + |
| (module_idx * ENGINE_ID_DCORE_OFFSET)); |
| |
| case RAZWI_EDMA: |
| return (((module_idx / NUM_OF_EDMA_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) + |
| (module_idx % NUM_OF_EDMA_PER_DCORE)); |
| |
| case RAZWI_PDMA: |
| return (GAUDI2_ENGINE_ID_PDMA_0 + module_idx); |
| |
| case RAZWI_NIC: |
| return (GAUDI2_ENGINE_ID_NIC0_0 + (NIC_NUMBER_OF_QM_PER_MACRO * module_idx)); |
| |
| case RAZWI_DEC: |
| if (module_idx == 8) |
| return GAUDI2_PCIE_ENGINE_ID_DEC_0; |
| |
| if (module_idx == 9) |
| return GAUDI2_PCIE_ENGINE_ID_DEC_1; |
| ; |
| return (((module_idx / NUM_OF_DEC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) + |
| (module_idx % NUM_OF_DEC_PER_DCORE) + |
| (GAUDI2_DCORE0_ENGINE_ID_DEC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0)); |
| |
| case RAZWI_ROT: |
| return GAUDI2_ENGINE_ID_ROT_0 + module_idx; |
| |
| case RAZWI_ARC_FARM: |
| return GAUDI2_ENGINE_ID_ARC_FARM; |
| |
| default: |
| return GAUDI2_ENGINE_ID_SIZE; |
| } |
| } |
| |
| /* |
| * This function handles RR(Range register) hit events. |
| * raised be initiators not PSOC RAZWI. |
| */ |
| static void gaudi2_ack_module_razwi_event_handler(struct hl_device *hdev, |
| enum razwi_event_sources module, u8 module_idx, |
| u8 module_sub_idx, u64 *event_mask) |
| { |
| bool via_sft = false; |
| u32 hbw_rtr_id, lbw_rtr_id, dcore_id, dcore_rtr_id, eng_id, binned_idx; |
| u64 hbw_rtr_mstr_if_base_addr, lbw_rtr_mstr_if_base_addr; |
| u32 hbw_shrd_aw = 0, hbw_shrd_ar = 0; |
| u32 lbw_shrd_aw = 0, lbw_shrd_ar = 0; |
| char initiator_name[64]; |
| |
| switch (module) { |
| case RAZWI_TPC: |
| sprintf(initiator_name, "TPC_%u", module_idx); |
| if (hdev->tpc_binning) { |
| binned_idx = __ffs(hdev->tpc_binning); |
| if (binned_idx == module_idx) |
| module_idx = TPC_ID_DCORE0_TPC6; |
| } |
| |
| hbw_rtr_id = gaudi2_tpc_initiator_hbw_rtr_id[module_idx]; |
| lbw_rtr_id = gaudi2_tpc_initiator_lbw_rtr_id[module_idx]; |
| break; |
| case RAZWI_MME: |
| sprintf(initiator_name, "MME_%u", module_idx); |
| switch (module_sub_idx) { |
| case MME_WAP0: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap0; |
| break; |
| case MME_WAP1: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap1; |
| break; |
| case MME_WRITE: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].write; |
| break; |
| case MME_READ: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].read; |
| break; |
| case MME_SBTE0: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte0; |
| break; |
| case MME_SBTE1: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte1; |
| break; |
| case MME_SBTE2: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte2; |
| break; |
| case MME_SBTE3: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte3; |
| break; |
| case MME_SBTE4: |
| hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte4; |
| break; |
| default: |
| return; |
| } |
| lbw_rtr_id = hbw_rtr_id; |
| break; |
| case RAZWI_EDMA: |
| hbw_rtr_mstr_if_base_addr = gaudi2_edma_initiator_hbw_sft[module_idx]; |
| dcore_id = module_idx / NUM_OF_EDMA_PER_DCORE; |
| /* SFT has separate MSTR_IF for LBW, only there we can |
| * read the LBW razwi related registers |
| */ |
| lbw_rtr_mstr_if_base_addr = mmSFT0_LBW_RTR_IF_MSTR_IF_RR_SHRD_HBW_BASE + |
| dcore_id * SFT_DCORE_OFFSET; |
| via_sft = true; |
| sprintf(initiator_name, "EDMA_%u", module_idx); |
| break; |
| case RAZWI_PDMA: |
| hbw_rtr_id = gaudi2_pdma_initiator_hbw_rtr_id[module_idx]; |
| lbw_rtr_id = gaudi2_pdma_initiator_lbw_rtr_id[module_idx]; |
| sprintf(initiator_name, "PDMA_%u", module_idx); |
| break; |
| case RAZWI_NIC: |
| hbw_rtr_id = gaudi2_nic_initiator_hbw_rtr_id[module_idx]; |
| lbw_rtr_id = gaudi2_nic_initiator_lbw_rtr_id[module_idx]; |
| sprintf(initiator_name, "NIC_%u", module_idx); |
| break; |
| case RAZWI_DEC: |
| sprintf(initiator_name, "DEC_%u", module_idx); |
| if (hdev->decoder_binning) { |
| binned_idx = __ffs(hdev->decoder_binning); |
| if (binned_idx == module_idx) |
| module_idx = DEC_ID_PCIE_VDEC1; |
| } |
| hbw_rtr_id = gaudi2_dec_initiator_hbw_rtr_id[module_idx]; |
| lbw_rtr_id = gaudi2_dec_initiator_lbw_rtr_id[module_idx]; |
| break; |
| case RAZWI_ROT: |
| hbw_rtr_id = gaudi2_rot_initiator_hbw_rtr_id[module_idx]; |
| lbw_rtr_id = gaudi2_rot_initiator_lbw_rtr_id[module_idx]; |
| sprintf(initiator_name, "ROT_%u", module_idx); |
| break; |
| case RAZWI_ARC_FARM: |
| lbw_rtr_id = DCORE1_RTR5; |
| hbw_rtr_id = DCORE1_RTR7; |
| sprintf(initiator_name, "ARC_FARM_%u", module_idx); |
| break; |
| default: |
| return; |
| } |
| |
| /* Find router mstr_if register base */ |
| if (!via_sft) { |
| dcore_id = hbw_rtr_id / NUM_OF_RTR_PER_DCORE; |
| dcore_rtr_id = hbw_rtr_id % NUM_OF_RTR_PER_DCORE; |
| hbw_rtr_mstr_if_base_addr = mmDCORE0_RTR0_CTRL_BASE + |
| dcore_id * DCORE_OFFSET + |
| dcore_rtr_id * DCORE_RTR_OFFSET + |
| RTR_MSTR_IF_OFFSET; |
| lbw_rtr_mstr_if_base_addr = hbw_rtr_mstr_if_base_addr + |
| (((s32)lbw_rtr_id - hbw_rtr_id) * DCORE_RTR_OFFSET); |
| } |
| |
| /* Find out event cause by reading "RAZWI_HAPPENED" registers */ |
| hbw_shrd_aw = RREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED); |
| hbw_shrd_ar = RREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED); |
| lbw_shrd_aw = RREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED); |
| lbw_shrd_ar = RREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED); |
| |
| eng_id = gaudi2_razwi_calc_engine_id(hdev, module, module_idx); |
| if (hbw_shrd_aw) { |
| gaudi2_razwi_rr_hbw_shared_printf_info(hdev, hbw_rtr_mstr_if_base_addr, true, |
| initiator_name, eng_id, event_mask); |
| |
| /* Clear event indication */ |
| WREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED, hbw_shrd_aw); |
| } |
| |
| if (hbw_shrd_ar) { |
| gaudi2_razwi_rr_hbw_shared_printf_info(hdev, hbw_rtr_mstr_if_base_addr, false, |
| initiator_name, eng_id, event_mask); |
| |
| /* Clear event indication */ |
| WREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED, hbw_shrd_ar); |
| } |
| |
| if (lbw_shrd_aw) { |
| gaudi2_razwi_rr_lbw_shared_printf_info(hdev, lbw_rtr_mstr_if_base_addr, true, |
| initiator_name, eng_id, event_mask); |
| |
| /* Clear event indication */ |
| WREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED, lbw_shrd_aw); |
| } |
| |
| if (lbw_shrd_ar) { |
| gaudi2_razwi_rr_lbw_shared_printf_info(hdev, lbw_rtr_mstr_if_base_addr, false, |
| initiator_name, eng_id, event_mask); |
| |
| /* Clear event indication */ |
| WREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED, lbw_shrd_ar); |
| } |
| } |
| |
| static void gaudi2_check_if_razwi_happened(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u8 mod_idx, sub_mod; |
| |
| /* check all TPCs */ |
| for (mod_idx = 0 ; mod_idx < (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1) ; mod_idx++) { |
| if (prop->tpc_enabled_mask & BIT(mod_idx)) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, mod_idx, 0, NULL); |
| } |
| |
| /* check all MMEs */ |
| for (mod_idx = 0 ; mod_idx < (NUM_OF_MME_PER_DCORE * NUM_OF_DCORES) ; mod_idx++) |
| for (sub_mod = MME_WAP0 ; sub_mod < MME_INITIATORS_MAX ; sub_mod++) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mod_idx, |
| sub_mod, NULL); |
| |
| /* check all EDMAs */ |
| for (mod_idx = 0 ; mod_idx < (NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES) ; mod_idx++) |
| if (prop->edma_enabled_mask & BIT(mod_idx)) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, mod_idx, 0, NULL); |
| |
| /* check all PDMAs */ |
| for (mod_idx = 0 ; mod_idx < NUM_OF_PDMA ; mod_idx++) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_PDMA, mod_idx, 0, NULL); |
| |
| /* check all NICs */ |
| for (mod_idx = 0 ; mod_idx < NIC_NUMBER_OF_PORTS ; mod_idx++) |
| if (hdev->nic_ports_mask & BIT(mod_idx)) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_NIC, mod_idx >> 1, 0, |
| NULL); |
| |
| /* check all DECs */ |
| for (mod_idx = 0 ; mod_idx < NUMBER_OF_DEC ; mod_idx++) |
| if (prop->decoder_enabled_mask & BIT(mod_idx)) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, mod_idx, 0, NULL); |
| |
| /* check all ROTs */ |
| for (mod_idx = 0 ; mod_idx < NUM_OF_ROT ; mod_idx++) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, mod_idx, 0, NULL); |
| } |
| |
| static int gaudi2_psoc_razwi_get_engines(struct gaudi2_razwi_info *razwi_info, u32 array_size, |
| u32 axuser_xy, u32 *base, u16 *eng_id, |
| char *eng_name) |
| { |
| |
| int i, num_of_eng = 0; |
| u16 str_size = 0; |
| |
| for (i = 0 ; i < array_size ; i++) { |
| if (axuser_xy != razwi_info[i].axuser_xy) |
| continue; |
| |
| eng_id[num_of_eng] = razwi_info[i].eng_id; |
| base[num_of_eng] = razwi_info[i].rtr_ctrl; |
| if (!num_of_eng) |
| str_size += scnprintf(eng_name + str_size, |
| PSOC_RAZWI_ENG_STR_SIZE - str_size, "%s", |
| razwi_info[i].eng_name); |
| else |
| str_size += scnprintf(eng_name + str_size, |
| PSOC_RAZWI_ENG_STR_SIZE - str_size, " or %s", |
| razwi_info[i].eng_name); |
| num_of_eng++; |
| } |
| |
| return num_of_eng; |
| } |
| |
| static bool gaudi2_handle_psoc_razwi_happened(struct hl_device *hdev, u32 razwi_reg, |
| u64 *event_mask) |
| { |
| u32 axuser_xy = RAZWI_GET_AXUSER_XY(razwi_reg), addr_hi = 0, addr_lo = 0; |
| u32 base[PSOC_RAZWI_MAX_ENG_PER_RTR]; |
| u16 num_of_eng, eng_id[PSOC_RAZWI_MAX_ENG_PER_RTR]; |
| char eng_name_str[PSOC_RAZWI_ENG_STR_SIZE]; |
| bool razwi_happened = false; |
| u64 addr; |
| int i; |
| |
| num_of_eng = gaudi2_psoc_razwi_get_engines(common_razwi_info, ARRAY_SIZE(common_razwi_info), |
| axuser_xy, base, eng_id, eng_name_str); |
| |
| /* If no match for XY coordinates, try to find it in MME razwi table */ |
| if (!num_of_eng) { |
| axuser_xy = RAZWI_GET_AXUSER_LOW_XY(razwi_reg); |
| num_of_eng = gaudi2_psoc_razwi_get_engines(mme_razwi_info, |
| ARRAY_SIZE(mme_razwi_info), |
| axuser_xy, base, eng_id, |
| eng_name_str); |
| } |
| |
| for (i = 0 ; i < num_of_eng ; i++) { |
| if (RREG32(base[i] + DEC_RAZWI_HBW_AW_SET)) { |
| addr_hi = RREG32(base[i] + DEC_RAZWI_HBW_AW_ADDR_HI); |
| addr_lo = RREG32(base[i] + DEC_RAZWI_HBW_AW_ADDR_LO); |
| addr = ((u64)addr_hi << 32) + addr_lo; |
| if (addr) { |
| dev_err(hdev->dev, |
| "PSOC HBW AW RAZWI: %s, address (aligned to 128 byte): 0x%llX\n", |
| eng_name_str, addr); |
| hl_handle_razwi(hdev, addr, &eng_id[0], |
| num_of_eng, HL_RAZWI_HBW | HL_RAZWI_WRITE, event_mask); |
| razwi_happened = true; |
| } |
| } |
| |
| if (RREG32(base[i] + DEC_RAZWI_HBW_AR_SET)) { |
| addr_hi = RREG32(base[i] + DEC_RAZWI_HBW_AR_ADDR_HI); |
| addr_lo = RREG32(base[i] + DEC_RAZWI_HBW_AR_ADDR_LO); |
| addr = ((u64)addr_hi << 32) + addr_lo; |
| if (addr) { |
| dev_err(hdev->dev, |
| "PSOC HBW AR RAZWI: %s, address (aligned to 128 byte): 0x%llX\n", |
| eng_name_str, addr); |
| hl_handle_razwi(hdev, addr, &eng_id[0], |
| num_of_eng, HL_RAZWI_HBW | HL_RAZWI_READ, event_mask); |
| razwi_happened = true; |
| } |
| } |
| |
| if (RREG32(base[i] + DEC_RAZWI_LBW_AW_SET)) { |
| addr_lo = RREG32(base[i] + DEC_RAZWI_LBW_AW_ADDR); |
| if (addr_lo) { |
| dev_err(hdev->dev, |
| "PSOC LBW AW RAZWI: %s, address (aligned to 128 byte): 0x%X\n", |
| eng_name_str, addr_lo); |
| hl_handle_razwi(hdev, addr_lo, &eng_id[0], |
| num_of_eng, HL_RAZWI_LBW | HL_RAZWI_WRITE, event_mask); |
| razwi_happened = true; |
| } |
| } |
| |
| if (RREG32(base[i] + DEC_RAZWI_LBW_AR_SET)) { |
| addr_lo = RREG32(base[i] + DEC_RAZWI_LBW_AR_ADDR); |
| if (addr_lo) { |
| dev_err(hdev->dev, |
| "PSOC LBW AR RAZWI: %s, address (aligned to 128 byte): 0x%X\n", |
| eng_name_str, addr_lo); |
| hl_handle_razwi(hdev, addr_lo, &eng_id[0], |
| num_of_eng, HL_RAZWI_LBW | HL_RAZWI_READ, event_mask); |
| razwi_happened = true; |
| } |
| } |
| /* In common case the loop will break, when there is only one engine id, or |
| * several engines with the same router. The exceptional case is with psoc razwi |
| * from EDMA, where it's possible to get axuser id which fits 2 routers (2 |
| * interfaces of sft router). In this case, maybe the first router won't hold info |
| * and we will need to iterate on the other router. |
| */ |
| if (razwi_happened) |
| break; |
| } |
| |
| return razwi_happened; |
| } |
| |
| /* PSOC RAZWI interrupt occurs only when trying to access a bad address */ |
| static int gaudi2_ack_psoc_razwi_event_handler(struct hl_device *hdev, u64 *event_mask) |
| { |
| u32 razwi_mask_info, razwi_intr = 0, error_count = 0; |
| |
| if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) { |
| razwi_intr = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT); |
| if (!razwi_intr) |
| return 0; |
| } |
| |
| razwi_mask_info = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_MASK_INFO); |
| |
| dev_err_ratelimited(hdev->dev, |
| "PSOC RAZWI interrupt: Mask %d, AR %d, AW %d, AXUSER_L 0x%x AXUSER_H 0x%x\n", |
| FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_MASK_MASK, razwi_mask_info), |
| FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AR_MASK, razwi_mask_info), |
| FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AW_MASK, razwi_mask_info), |
| FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_L_MASK, razwi_mask_info), |
| FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_H_MASK, razwi_mask_info)); |
| |
| if (gaudi2_handle_psoc_razwi_happened(hdev, razwi_mask_info, event_mask)) |
| error_count++; |
| else |
| dev_err_ratelimited(hdev->dev, |
| "PSOC RAZWI interrupt: invalid razwi info (0x%x)\n", |
| razwi_mask_info); |
| |
| /* Clear Interrupts only on pldm or if f/w doesn't handle interrupts */ |
| if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) |
| WREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT, razwi_intr); |
| |
| return error_count; |
| } |
| |
| static int _gaudi2_handle_qm_sei_err(struct hl_device *hdev, u64 qman_base, u16 event_type) |
| { |
| u32 i, sts_val, sts_clr_val = 0, error_count = 0; |
| |
| sts_val = RREG32(qman_base + QM_SEI_STATUS_OFFSET); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE ; i++) { |
| if (sts_val & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_qm_sei_error_cause[i]); |
| sts_clr_val |= BIT(i); |
| error_count++; |
| } |
| } |
| |
| WREG32(qman_base + QM_SEI_STATUS_OFFSET, sts_clr_val); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_qm_sei_err(struct hl_device *hdev, u16 event_type, |
| bool extended_err_check, u64 *event_mask) |
| { |
| enum razwi_event_sources module; |
| u32 error_count = 0; |
| u64 qman_base; |
| u8 index; |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC23_AXI_ERR_RSP: |
| index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP; |
| qman_base = mmDCORE0_TPC0_QM_BASE + |
| (index / NUM_OF_TPC_PER_DCORE) * DCORE_OFFSET + |
| (index % NUM_OF_TPC_PER_DCORE) * DCORE_TPC_OFFSET; |
| module = RAZWI_TPC; |
| break; |
| case GAUDI2_EVENT_TPC24_AXI_ERR_RSP: |
| qman_base = mmDCORE0_TPC6_QM_BASE; |
| module = RAZWI_TPC; |
| break; |
| case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE: |
| index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) / |
| (GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE - |
| GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE); |
| qman_base = mmDCORE0_MME_QM_BASE + index * DCORE_OFFSET; |
| module = RAZWI_MME; |
| break; |
| case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP: |
| case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP: |
| index = event_type - GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP; |
| qman_base = mmPDMA0_QM_BASE + index * PDMA_OFFSET; |
| module = RAZWI_PDMA; |
| break; |
| case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE: |
| index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE; |
| qman_base = mmROT0_QM_BASE + index * ROT_OFFSET; |
| module = RAZWI_ROT; |
| break; |
| default: |
| return 0; |
| } |
| |
| error_count = _gaudi2_handle_qm_sei_err(hdev, qman_base, event_type); |
| |
| /* There is a single event per NIC macro, so should check its both QMAN blocks */ |
| if (event_type >= GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE && |
| event_type <= GAUDI2_EVENT_NIC11_AXI_ERROR_RESPONSE) |
| error_count += _gaudi2_handle_qm_sei_err(hdev, |
| qman_base + NIC_QM_OFFSET, event_type); |
| |
| if (extended_err_check) { |
| /* check if RAZWI happened */ |
| gaudi2_ack_module_razwi_event_handler(hdev, module, 0, 0, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| } |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_qman_err(struct hl_device *hdev, u16 event_type, u64 *event_mask) |
| { |
| u32 qid_base, error_count = 0; |
| u64 qman_base; |
| u8 index = 0; |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_TPC5_QM: |
| index = event_type - GAUDI2_EVENT_TPC0_QM; |
| qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 + index * QMAN_STREAMS; |
| qman_base = mmDCORE0_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; |
| break; |
| case GAUDI2_EVENT_TPC6_QM ... GAUDI2_EVENT_TPC11_QM: |
| index = event_type - GAUDI2_EVENT_TPC6_QM; |
| qid_base = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 + index * QMAN_STREAMS; |
| qman_base = mmDCORE1_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; |
| break; |
| case GAUDI2_EVENT_TPC12_QM ... GAUDI2_EVENT_TPC17_QM: |
| index = event_type - GAUDI2_EVENT_TPC12_QM; |
| qid_base = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 + index * QMAN_STREAMS; |
| qman_base = mmDCORE2_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; |
| break; |
| case GAUDI2_EVENT_TPC18_QM ... GAUDI2_EVENT_TPC23_QM: |
| index = event_type - GAUDI2_EVENT_TPC18_QM; |
| qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 + index * QMAN_STREAMS; |
| qman_base = mmDCORE3_TPC0_QM_BASE + index * DCORE_TPC_OFFSET; |
| break; |
| case GAUDI2_EVENT_TPC24_QM: |
| qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0; |
| qman_base = mmDCORE0_TPC6_QM_BASE; |
| break; |
| case GAUDI2_EVENT_MME0_QM: |
| qid_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0; |
| qman_base = mmDCORE0_MME_QM_BASE; |
| break; |
| case GAUDI2_EVENT_MME1_QM: |
| qid_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0; |
| qman_base = mmDCORE1_MME_QM_BASE; |
| break; |
| case GAUDI2_EVENT_MME2_QM: |
| qid_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0; |
| qman_base = mmDCORE2_MME_QM_BASE; |
| break; |
| case GAUDI2_EVENT_MME3_QM: |
| qid_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0; |
| qman_base = mmDCORE3_MME_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA0_QM: |
| index = 0; |
| qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0; |
| qman_base = mmDCORE0_EDMA0_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA1_QM: |
| index = 1; |
| qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0; |
| qman_base = mmDCORE0_EDMA1_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA2_QM: |
| index = 2; |
| qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0; |
| qman_base = mmDCORE1_EDMA0_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA3_QM: |
| index = 3; |
| qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0; |
| qman_base = mmDCORE1_EDMA1_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA4_QM: |
| index = 4; |
| qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0; |
| qman_base = mmDCORE2_EDMA0_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA5_QM: |
| index = 5; |
| qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0; |
| qman_base = mmDCORE2_EDMA1_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA6_QM: |
| index = 6; |
| qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0; |
| qman_base = mmDCORE3_EDMA0_QM_BASE; |
| break; |
| case GAUDI2_EVENT_HDMA7_QM: |
| index = 7; |
| qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0; |
| qman_base = mmDCORE3_EDMA1_QM_BASE; |
| break; |
| case GAUDI2_EVENT_PDMA0_QM: |
| qid_base = GAUDI2_QUEUE_ID_PDMA_0_0; |
| qman_base = mmPDMA0_QM_BASE; |
| break; |
| case GAUDI2_EVENT_PDMA1_QM: |
| qid_base = GAUDI2_QUEUE_ID_PDMA_1_0; |
| qman_base = mmPDMA1_QM_BASE; |
| break; |
| case GAUDI2_EVENT_ROTATOR0_ROT0_QM: |
| qid_base = GAUDI2_QUEUE_ID_ROT_0_0; |
| qman_base = mmROT0_QM_BASE; |
| break; |
| case GAUDI2_EVENT_ROTATOR1_ROT1_QM: |
| qid_base = GAUDI2_QUEUE_ID_ROT_1_0; |
| qman_base = mmROT1_QM_BASE; |
| break; |
| default: |
| return 0; |
| } |
| |
| error_count = gaudi2_handle_qman_err_generic(hdev, event_type, qman_base, |
| qid_base, event_mask); |
| |
| /* Handle EDMA QM SEI here because there is no AXI error response event for EDMA */ |
| if (event_type >= GAUDI2_EVENT_HDMA2_QM && event_type <= GAUDI2_EVENT_HDMA5_QM) { |
| error_count += _gaudi2_handle_qm_sei_err(hdev, qman_base, event_type); |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, index, 0, event_mask); |
| } |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_arc_farm_sei_err(struct hl_device *hdev, u16 event_type, u64 *event_mask) |
| { |
| u32 i, sts_val, sts_clr_val, error_count = 0, arc_farm; |
| |
| for (arc_farm = 0 ; arc_farm < NUM_OF_ARC_FARMS_ARC ; arc_farm++) { |
| sts_clr_val = 0; |
| sts_val = RREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_STS + |
| (arc_farm * ARC_FARM_OFFSET)); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE ; i++) { |
| if (sts_val & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "ARC FARM ARC %u err cause: %s", |
| arc_farm, gaudi2_arc_sei_error_cause[i]); |
| sts_clr_val |= BIT(i); |
| error_count++; |
| } |
| } |
| WREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_CLR + (arc_farm * ARC_FARM_OFFSET), |
| sts_clr_val); |
| } |
| |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ARC_FARM, 0, 0, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_cpu_sei_err(struct hl_device *hdev, u16 event_type) |
| { |
| u32 i, sts_val, sts_clr_val = 0, error_count = 0; |
| |
| sts_val = RREG32(mmCPU_IF_CPU_SEI_INTR_STS); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE ; i++) { |
| if (sts_val & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_cpu_sei_error_cause[i]); |
| sts_clr_val |= BIT(i); |
| error_count++; |
| } |
| } |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| WREG32(mmCPU_IF_CPU_SEI_INTR_CLR, sts_clr_val); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_rot_err(struct hl_device *hdev, u8 rot_index, u16 event_type, |
| struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause, |
| u64 *event_mask) |
| { |
| u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data); |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_ROT_ERR_CAUSE ; i++) |
| if (intr_cause_data & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", guadi2_rot_error_cause[i]); |
| error_count++; |
| } |
| |
| /* check if RAZWI happened */ |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, rot_index, 0, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_tpc_ack_interrupts(struct hl_device *hdev, u8 tpc_index, u16 event_type, |
| struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause, |
| u64 *event_mask) |
| { |
| u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data); |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_TPC_INTR_CAUSE ; i++) |
| if (intr_cause_data & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "interrupt cause: %s", gaudi2_tpc_interrupts_cause[i]); |
| error_count++; |
| } |
| |
| /* check if RAZWI happened */ |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, tpc_index, 0, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_dec_err(struct hl_device *hdev, u8 dec_index, u16 event_type, |
| u64 *event_mask) |
| { |
| u32 sts_addr, sts_val, sts_clr_val = 0, error_count = 0; |
| int i; |
| |
| if (dec_index < NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES) |
| /* DCORE DEC */ |
| sts_addr = mmDCORE0_VDEC0_BRDG_CTRL_CAUSE_INTR + |
| DCORE_OFFSET * (dec_index / NUM_OF_DEC_PER_DCORE) + |
| DCORE_VDEC_OFFSET * (dec_index % NUM_OF_DEC_PER_DCORE); |
| else |
| /* PCIE DEC */ |
| sts_addr = mmPCIE_VDEC0_BRDG_CTRL_CAUSE_INTR + PCIE_VDEC_OFFSET * |
| (dec_index - NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES); |
| |
| sts_val = RREG32(sts_addr); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_DEC_ERR_CAUSE ; i++) { |
| if (sts_val & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_dec_error_cause[i]); |
| sts_clr_val |= BIT(i); |
| error_count++; |
| } |
| } |
| |
| /* check if RAZWI happened */ |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, dec_index, 0, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| |
| /* Write 1 clear errors */ |
| WREG32(sts_addr, sts_clr_val); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_mme_err(struct hl_device *hdev, u8 mme_index, u16 event_type, |
| u64 *event_mask) |
| { |
| u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0, error_count = 0; |
| int i; |
| |
| sts_addr = mmDCORE0_MME_CTRL_LO_INTR_CAUSE + DCORE_OFFSET * mme_index; |
| sts_clr_addr = mmDCORE0_MME_CTRL_LO_INTR_CLEAR + DCORE_OFFSET * mme_index; |
| |
| sts_val = RREG32(sts_addr); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_MME_ERR_CAUSE ; i++) { |
| if (sts_val & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", guadi2_mme_error_cause[i]); |
| sts_clr_val |= BIT(i); |
| error_count++; |
| } |
| } |
| |
| /* check if RAZWI happened */ |
| for (i = MME_WRITE ; i < MME_INITIATORS_MAX ; i++) |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, i, event_mask); |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| WREG32(sts_clr_addr, sts_clr_val); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_mme_sbte_err(struct hl_device *hdev, u16 event_type) |
| { |
| /* |
| * We have a single error cause here but the report mechanism is |
| * buggy. Hence there is no good reason to fetch the cause so we |
| * just check for glbl_errors and exit. |
| */ |
| hl_check_for_glbl_errors(hdev); |
| |
| return GAUDI2_NA_EVENT_CAUSE; |
| } |
| |
| static int gaudi2_handle_mme_wap_err(struct hl_device *hdev, u8 mme_index, u16 event_type, |
| u64 *event_mask) |
| { |
| u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0, error_count = 0; |
| int i; |
| |
| sts_addr = mmDCORE0_MME_ACC_INTR_CAUSE + DCORE_OFFSET * mme_index; |
| sts_clr_addr = mmDCORE0_MME_ACC_INTR_CLEAR + DCORE_OFFSET * mme_index; |
| |
| sts_val = RREG32(sts_addr); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE ; i++) { |
| if (sts_val & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", guadi2_mme_wap_error_cause[i]); |
| sts_clr_val |= BIT(i); |
| error_count++; |
| } |
| } |
| |
| /* check if RAZWI happened on WAP0/1 */ |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP0, event_mask); |
| gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP1, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| |
| WREG32(sts_clr_addr, sts_clr_val); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_kdma_core_event(struct hl_device *hdev, u16 event_type, |
| u64 intr_cause_data) |
| { |
| u32 error_count = 0; |
| int i; |
| |
| /* If an AXI read or write error is received, an error is reported and |
| * interrupt message is sent. Due to an HW errata, when reading the cause |
| * register of the KDMA engine, the reported error is always HBW even if |
| * the actual error caused by a LBW KDMA transaction. |
| */ |
| for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++) |
| if (intr_cause_data & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_kdma_core_interrupts_cause[i]); |
| error_count++; |
| } |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_dma_core_event(struct hl_device *hdev, u16 event_type, u64 intr_cause) |
| { |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++) |
| if (intr_cause & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_dma_core_interrupts_cause[i]); |
| error_count++; |
| } |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static void gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(struct hl_device *hdev, u64 *event_mask) |
| { |
| u32 mstr_if_base_addr = mmPCIE_MSTR_RR_MSTR_IF_RR_SHRD_HBW_BASE, razwi_happened_addr; |
| |
| razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED; |
| if (RREG32(razwi_happened_addr)) { |
| gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", |
| GAUDI2_ENGINE_ID_PCIE, event_mask); |
| WREG32(razwi_happened_addr, 0x1); |
| } |
| |
| razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED; |
| if (RREG32(razwi_happened_addr)) { |
| gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", |
| GAUDI2_ENGINE_ID_PCIE, event_mask); |
| WREG32(razwi_happened_addr, 0x1); |
| } |
| |
| razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED; |
| if (RREG32(razwi_happened_addr)) { |
| gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", |
| GAUDI2_ENGINE_ID_PCIE, event_mask); |
| WREG32(razwi_happened_addr, 0x1); |
| } |
| |
| razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED; |
| if (RREG32(razwi_happened_addr)) { |
| gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", |
| GAUDI2_ENGINE_ID_PCIE, event_mask); |
| WREG32(razwi_happened_addr, 0x1); |
| } |
| } |
| |
| static int gaudi2_print_pcie_addr_dec_info(struct hl_device *hdev, u16 event_type, |
| u64 intr_cause_data, u64 *event_mask) |
| { |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE ; i++) { |
| if (!(intr_cause_data & BIT_ULL(i))) |
| continue; |
| |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_pcie_addr_dec_error_cause[i]); |
| error_count++; |
| |
| switch (intr_cause_data & BIT_ULL(i)) { |
| case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_AXI_LBW_ERR_INTR_MASK: |
| hl_check_for_glbl_errors(hdev); |
| break; |
| case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_BAD_ACCESS_INTR_MASK: |
| gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(hdev, event_mask); |
| break; |
| } |
| } |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_pif_fatal(struct hl_device *hdev, u16 event_type, |
| u64 intr_cause_data) |
| |
| { |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE ; i++) { |
| if (intr_cause_data & BIT_ULL(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_pmmu_fatal_interrupts_cause[i]); |
| error_count++; |
| } |
| } |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_hif_fatal(struct hl_device *hdev, u16 event_type, u64 intr_cause_data) |
| { |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE ; i++) { |
| if (intr_cause_data & BIT_ULL(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_hif_fatal_interrupts_cause[i]); |
| error_count++; |
| } |
| } |
| |
| return error_count; |
| } |
| |
| static void gaudi2_handle_page_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu, |
| u64 *event_mask) |
| { |
| u32 valid, val; |
| u64 addr; |
| |
| valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID)); |
| |
| if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_PAGE_ERR_VALID_ENTRY_MASK)) |
| return; |
| |
| val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE)); |
| addr = val & DCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA_63_32_MASK; |
| addr <<= 32; |
| addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA)); |
| |
| if (is_pmmu) { |
| dev_err_ratelimited(hdev->dev, "PMMU page fault on va 0x%llx\n", addr); |
| } else { |
| addr = gaudi2_mmu_descramble_addr(hdev, addr); |
| addr &= HW_UNSCRAMBLED_BITS_MASK; |
| dev_err_ratelimited(hdev->dev, "HMMU page fault on va range 0x%llx - 0x%llx\n", |
| addr, addr + ~HW_UNSCRAMBLED_BITS_MASK); |
| } |
| |
| hl_handle_page_fault(hdev, addr, 0, is_pmmu, event_mask); |
| |
| WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID), 0); |
| } |
| |
| static void gaudi2_handle_access_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu) |
| { |
| u32 valid, val; |
| u64 addr; |
| |
| valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID)); |
| |
| if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_ACCESS_ERR_VALID_ENTRY_MASK)) |
| return; |
| |
| val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE)); |
| addr = val & DCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA_63_32_MASK; |
| addr <<= 32; |
| addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA)); |
| |
| if (!is_pmmu) |
| addr = gaudi2_mmu_descramble_addr(hdev, addr); |
| |
| dev_err_ratelimited(hdev->dev, "%s access error on va 0x%llx\n", |
| is_pmmu ? "PMMU" : "HMMU", addr); |
| WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID), 0); |
| } |
| |
| static int gaudi2_handle_mmu_spi_sei_generic(struct hl_device *hdev, u16 event_type, |
| u64 mmu_base, bool is_pmmu, u64 *event_mask) |
| { |
| u32 spi_sei_cause, interrupt_clr = 0x0, error_count = 0; |
| int i; |
| |
| spi_sei_cause = RREG32(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE ; i++) { |
| if (spi_sei_cause & BIT(i)) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", gaudi2_mmu_spi_sei[i].cause); |
| |
| if (i == 0) |
| gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, event_mask); |
| else if (i == 1) |
| gaudi2_handle_access_error(hdev, mmu_base, is_pmmu); |
| |
| if (gaudi2_mmu_spi_sei[i].clear_bit >= 0) |
| interrupt_clr |= BIT(gaudi2_mmu_spi_sei[i].clear_bit); |
| |
| error_count++; |
| } |
| } |
| |
| /* Clear cause */ |
| WREG32_AND(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET, ~spi_sei_cause); |
| |
| /* Clear interrupt */ |
| WREG32(mmu_base + MMU_INTERRUPT_CLR_OFFSET, interrupt_clr); |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_sm_err(struct hl_device *hdev, u16 event_type, u8 sm_index) |
| { |
| u32 sei_cause_addr, sei_cause_val, sei_cause_cause, sei_cause_log, |
| cq_intr_addr, cq_intr_val, cq_intr_queue_index, error_count = 0; |
| int i; |
| |
| sei_cause_addr = mmDCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE + DCORE_OFFSET * sm_index; |
| cq_intr_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_INTR + DCORE_OFFSET * sm_index; |
| |
| sei_cause_val = RREG32(sei_cause_addr); |
| sei_cause_cause = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_CAUSE_MASK, sei_cause_val); |
| cq_intr_val = RREG32(cq_intr_addr); |
| |
| /* SEI interrupt */ |
| if (sei_cause_cause) { |
| /* There are corresponding SEI_CAUSE_log bits for every SEI_CAUSE_cause bit */ |
| sei_cause_log = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_LOG_MASK, |
| sei_cause_val); |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE ; i++) { |
| if (!(sei_cause_cause & BIT(i))) |
| continue; |
| |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s. %s: 0x%X", |
| gaudi2_sm_sei_cause[i].cause_name, |
| gaudi2_sm_sei_cause[i].log_name, |
| sei_cause_log); |
| error_count++; |
| break; |
| } |
| |
| /* Clear SM_SEI_CAUSE */ |
| WREG32(sei_cause_addr, 0); |
| } |
| |
| /* CQ interrupt */ |
| if (cq_intr_val & DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_SEC_INTR_MASK) { |
| cq_intr_queue_index = |
| FIELD_GET(DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_INTR_QUEUE_INDEX_MASK, |
| cq_intr_val); |
| |
| dev_err_ratelimited(hdev->dev, "SM%u err. err cause: CQ_INTR. queue index: %u\n", |
| sm_index, cq_intr_queue_index); |
| error_count++; |
| |
| /* Clear CQ_INTR */ |
| WREG32(cq_intr_addr, 0); |
| } |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static u64 get_hmmu_base(u16 event_type) |
| { |
| u8 dcore, index_in_dcore; |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU0_SPI_BASE ... GAUDI2_EVENT_HMMU0_SECURITY_ERROR: |
| dcore = 0; |
| index_in_dcore = 0; |
| break; |
| case GAUDI2_EVENT_HMMU_1_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU1_SPI_BASE ... GAUDI2_EVENT_HMMU1_SECURITY_ERROR: |
| dcore = 1; |
| index_in_dcore = 0; |
| break; |
| case GAUDI2_EVENT_HMMU_2_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU2_SPI_BASE ... GAUDI2_EVENT_HMMU2_SECURITY_ERROR: |
| dcore = 0; |
| index_in_dcore = 1; |
| break; |
| case GAUDI2_EVENT_HMMU_3_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU3_SPI_BASE ... GAUDI2_EVENT_HMMU3_SECURITY_ERROR: |
| dcore = 1; |
| index_in_dcore = 1; |
| break; |
| case GAUDI2_EVENT_HMMU_4_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU4_SPI_BASE ... GAUDI2_EVENT_HMMU4_SECURITY_ERROR: |
| dcore = 3; |
| index_in_dcore = 2; |
| break; |
| case GAUDI2_EVENT_HMMU_5_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU5_SPI_BASE ... GAUDI2_EVENT_HMMU5_SECURITY_ERROR: |
| dcore = 2; |
| index_in_dcore = 2; |
| break; |
| case GAUDI2_EVENT_HMMU_6_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU6_SPI_BASE ... GAUDI2_EVENT_HMMU6_SECURITY_ERROR: |
| dcore = 3; |
| index_in_dcore = 3; |
| break; |
| case GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU7_SPI_BASE ... GAUDI2_EVENT_HMMU7_SECURITY_ERROR: |
| dcore = 2; |
| index_in_dcore = 3; |
| break; |
| case GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU8_SPI_BASE ... GAUDI2_EVENT_HMMU8_SECURITY_ERROR: |
| dcore = 0; |
| index_in_dcore = 2; |
| break; |
| case GAUDI2_EVENT_HMMU_9_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU9_SPI_BASE ... GAUDI2_EVENT_HMMU9_SECURITY_ERROR: |
| dcore = 1; |
| index_in_dcore = 2; |
| break; |
| case GAUDI2_EVENT_HMMU_10_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU10_SPI_BASE ... GAUDI2_EVENT_HMMU10_SECURITY_ERROR: |
| dcore = 0; |
| index_in_dcore = 3; |
| break; |
| case GAUDI2_EVENT_HMMU_11_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU11_SPI_BASE ... GAUDI2_EVENT_HMMU11_SECURITY_ERROR: |
| dcore = 1; |
| index_in_dcore = 3; |
| break; |
| case GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU12_SPI_BASE ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR: |
| dcore = 3; |
| index_in_dcore = 0; |
| break; |
| case GAUDI2_EVENT_HMMU_13_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU13_SPI_BASE ... GAUDI2_EVENT_HMMU13_SECURITY_ERROR: |
| dcore = 2; |
| index_in_dcore = 0; |
| break; |
| case GAUDI2_EVENT_HMMU_14_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU14_SPI_BASE ... GAUDI2_EVENT_HMMU14_SECURITY_ERROR: |
| dcore = 3; |
| index_in_dcore = 1; |
| break; |
| case GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU15_SPI_BASE ... GAUDI2_EVENT_HMMU15_SECURITY_ERROR: |
| dcore = 2; |
| index_in_dcore = 1; |
| break; |
| default: |
| return ULONG_MAX; |
| } |
| |
| return mmDCORE0_HMMU0_MMU_BASE + dcore * DCORE_OFFSET + index_in_dcore * DCORE_HMMU_OFFSET; |
| } |
| |
| static int gaudi2_handle_mmu_spi_sei_err(struct hl_device *hdev, u16 event_type, u64 *event_mask) |
| { |
| bool is_pmmu = false; |
| u32 error_count = 0; |
| u64 mmu_base; |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP: |
| case GAUDI2_EVENT_HMMU0_SPI_BASE ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR: |
| mmu_base = get_hmmu_base(event_type); |
| break; |
| |
| case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR: |
| case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0: |
| is_pmmu = true; |
| mmu_base = mmPMMU_HBW_MMU_BASE; |
| break; |
| default: |
| return 0; |
| } |
| |
| if (mmu_base == ULONG_MAX) |
| return 0; |
| |
| error_count = gaudi2_handle_mmu_spi_sei_generic(hdev, event_type, mmu_base, |
| is_pmmu, event_mask); |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| |
| /* returns true if hard reset is required (ECC DERR or Read parity), false otherwise (ECC SERR) */ |
| static bool gaudi2_hbm_sei_handle_read_err(struct hl_device *hdev, |
| struct hl_eq_hbm_sei_read_err_intr_info *rd_err_data, u32 err_cnt) |
| { |
| bool require_hard_reset = false; |
| u32 addr, beat, beat_shift; |
| |
| dev_err_ratelimited(hdev->dev, |
| "READ ERROR count: ECC SERR: %d, ECC DERR: %d, RD_PARITY: %d\n", |
| FIELD_GET(HBM_ECC_SERR_CNTR_MASK, err_cnt), |
| FIELD_GET(HBM_ECC_DERR_CNTR_MASK, err_cnt), |
| FIELD_GET(HBM_RD_PARITY_CNTR_MASK, err_cnt)); |
| |
| addr = le32_to_cpu(rd_err_data->dbg_rd_err_addr.rd_addr_val); |
| dev_err_ratelimited(hdev->dev, |
| "READ ERROR address: sid(%u), bg(%u), ba(%u), col(%u), row(%u)\n", |
| FIELD_GET(HBM_RD_ADDR_SID_MASK, addr), |
| FIELD_GET(HBM_RD_ADDR_BG_MASK, addr), |
| FIELD_GET(HBM_RD_ADDR_BA_MASK, addr), |
| FIELD_GET(HBM_RD_ADDR_COL_MASK, addr), |
| FIELD_GET(HBM_RD_ADDR_ROW_MASK, addr)); |
| |
| /* For each beat (RDQS edge), look for possible errors and print relevant info */ |
| for (beat = 0 ; beat < 4 ; beat++) { |
| if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & |
| (HBM_RD_ERR_SERR_BEAT0_MASK << beat)) |
| dev_err_ratelimited(hdev->dev, "Beat%d ECC SERR: DM: %#x, Syndrome: %#x\n", |
| beat, |
| le32_to_cpu(rd_err_data->dbg_rd_err_dm), |
| le32_to_cpu(rd_err_data->dbg_rd_err_syndrome)); |
| |
| if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & |
| (HBM_RD_ERR_DERR_BEAT0_MASK << beat)) { |
| dev_err_ratelimited(hdev->dev, "Beat%d ECC DERR: DM: %#x, Syndrome: %#x\n", |
| beat, |
| le32_to_cpu(rd_err_data->dbg_rd_err_dm), |
| le32_to_cpu(rd_err_data->dbg_rd_err_syndrome)); |
| require_hard_reset = true; |
| } |
| |
| beat_shift = beat * HBM_RD_ERR_BEAT_SHIFT; |
| if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & |
| (HBM_RD_ERR_PAR_ERR_BEAT0_MASK << beat_shift)) { |
| dev_err_ratelimited(hdev->dev, |
| "Beat%d read PARITY: DM: %#x, PAR data: %#x\n", |
| beat, |
| le32_to_cpu(rd_err_data->dbg_rd_err_dm), |
| (le32_to_cpu(rd_err_data->dbg_rd_err_misc) & |
| (HBM_RD_ERR_PAR_DATA_BEAT0_MASK << beat_shift)) >> |
| (HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT + beat_shift)); |
| require_hard_reset = true; |
| } |
| |
| dev_err_ratelimited(hdev->dev, "Beat%d DQ data:\n", beat); |
| dev_err_ratelimited(hdev->dev, "\t0x%08x\n", |
| le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2])); |
| dev_err_ratelimited(hdev->dev, "\t0x%08x\n", |
| le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2 + 1])); |
| } |
| |
| return require_hard_reset; |
| } |
| |
| static void gaudi2_hbm_sei_print_wr_par_info(struct hl_device *hdev, |
| struct hl_eq_hbm_sei_wr_par_intr_info *wr_par_err_data, u32 err_cnt) |
| { |
| struct hbm_sei_wr_cmd_address *wr_cmd_addr = wr_par_err_data->dbg_last_wr_cmds; |
| u32 i, curr_addr, derr = wr_par_err_data->dbg_derr; |
| |
| dev_err_ratelimited(hdev->dev, "WRITE PARITY ERROR count: %d\n", err_cnt); |
| |
| dev_err_ratelimited(hdev->dev, "CK-0 DERR: 0x%02x, CK-1 DERR: 0x%02x\n", |
| derr & 0x3, derr & 0xc); |
| |
| /* JIRA H6-3286 - the following prints may not be valid */ |
| dev_err_ratelimited(hdev->dev, "Last latched write commands addresses:\n"); |
| for (i = 0 ; i < HBM_WR_PAR_CMD_LIFO_LEN ; i++) { |
| curr_addr = le32_to_cpu(wr_cmd_addr[i].dbg_wr_cmd_addr); |
| dev_err_ratelimited(hdev->dev, |
| "\twrite cmd[%u]: Address: SID(%u) BG(%u) BA(%u) COL(%u).\n", |
| i, |
| FIELD_GET(WR_PAR_LAST_CMD_SID_MASK, curr_addr), |
| FIELD_GET(WR_PAR_LAST_CMD_BG_MASK, curr_addr), |
| FIELD_GET(WR_PAR_LAST_CMD_BA_MASK, curr_addr), |
| FIELD_GET(WR_PAR_LAST_CMD_COL_MASK, curr_addr)); |
| } |
| } |
| |
| static void gaudi2_hbm_sei_print_ca_par_info(struct hl_device *hdev, |
| struct hl_eq_hbm_sei_ca_par_intr_info *ca_par_err_data, u32 err_cnt) |
| { |
| __le32 *col_cmd = ca_par_err_data->dbg_col; |
| __le16 *row_cmd = ca_par_err_data->dbg_row; |
| u32 i; |
| |
| dev_err_ratelimited(hdev->dev, "CA ERROR count: %d\n", err_cnt); |
| |
| dev_err_ratelimited(hdev->dev, "Last latched C&R bus commands:\n"); |
| for (i = 0 ; i < HBM_CA_ERR_CMD_LIFO_LEN ; i++) |
| dev_err_ratelimited(hdev->dev, "cmd%u: ROW(0x%04x) COL(0x%05x)\n", i, |
| le16_to_cpu(row_cmd[i]) & (u16)GENMASK(13, 0), |
| le32_to_cpu(col_cmd[i]) & (u32)GENMASK(17, 0)); |
| } |
| |
| /* Returns true if hard reset is needed or false otherwise */ |
| static bool gaudi2_handle_hbm_mc_sei_err(struct hl_device *hdev, u16 event_type, |
| struct hl_eq_hbm_sei_data *sei_data) |
| { |
| bool require_hard_reset = false; |
| u32 hbm_id, mc_id, cause_idx; |
| |
| hbm_id = (event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 4; |
| mc_id = ((event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 2) % 2; |
| |
| cause_idx = sei_data->hdr.sei_cause; |
| if (cause_idx > GAUDI2_NUM_OF_HBM_SEI_CAUSE - 1) { |
| gaudi2_print_event(hdev, event_type, true, |
| "err cause: %s", |
| "Invalid HBM SEI event cause (%d) provided by FW", cause_idx); |
| return true; |
| } |
| |
| gaudi2_print_event(hdev, event_type, !sei_data->hdr.is_critical, |
| "System %s Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s", |
| sei_data->hdr.is_critical ? "Critical" : "Non-critical", |
| hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel, |
| hbm_mc_sei_cause[cause_idx]); |
| |
| /* Print error-specific info */ |
| switch (cause_idx) { |
| case HBM_SEI_CATTRIP: |
| require_hard_reset = true; |
| break; |
| |
| case HBM_SEI_CMD_PARITY_EVEN: |
| gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_even_info, |
| le32_to_cpu(sei_data->hdr.cnt)); |
| require_hard_reset = true; |
| break; |
| |
| case HBM_SEI_CMD_PARITY_ODD: |
| gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_odd_info, |
| le32_to_cpu(sei_data->hdr.cnt)); |
| require_hard_reset = true; |
| break; |
| |
| case HBM_SEI_WRITE_DATA_PARITY_ERR: |
| gaudi2_hbm_sei_print_wr_par_info(hdev, &sei_data->wr_parity_info, |
| le32_to_cpu(sei_data->hdr.cnt)); |
| require_hard_reset = true; |
| break; |
| |
| case HBM_SEI_READ_ERR: |
| /* Unlike other SEI events, read error requires further processing of the |
| * raw data in order to determine the root cause. |
| */ |
| require_hard_reset = gaudi2_hbm_sei_handle_read_err(hdev, |
| &sei_data->read_err_info, |
| le32_to_cpu(sei_data->hdr.cnt)); |
| break; |
| |
| default: |
| break; |
| } |
| |
| require_hard_reset |= !!sei_data->hdr.is_critical; |
| |
| return require_hard_reset; |
| } |
| |
| static int gaudi2_handle_hbm_cattrip(struct hl_device *hdev, u16 event_type, |
| u64 intr_cause_data) |
| { |
| if (intr_cause_data) { |
| gaudi2_print_event(hdev, event_type, true, |
| "temperature error cause: %#llx", intr_cause_data); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int gaudi2_handle_hbm_mc_spi(struct hl_device *hdev, u64 intr_cause_data) |
| { |
| u32 i, error_count = 0; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE ; i++) |
| if (intr_cause_data & hbm_mc_spi[i].mask) { |
| dev_dbg(hdev->dev, "HBM spi event: notification cause(%s)\n", |
| hbm_mc_spi[i].cause); |
| error_count++; |
| } |
| |
| return error_count; |
| } |
| |
| static void gaudi2_print_clk_change_info(struct hl_device *hdev, u16 event_type, u64 *event_mask) |
| { |
| ktime_t zero_time = ktime_set(0, 0); |
| |
| mutex_lock(&hdev->clk_throttling.lock); |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S: |
| hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER; |
| hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER; |
| hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get(); |
| hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time; |
| dev_dbg_ratelimited(hdev->dev, "Clock throttling due to power consumption\n"); |
| break; |
| |
| case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E: |
| hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER; |
| hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get(); |
| dev_dbg_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n"); |
| break; |
| |
| case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S: |
| hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL; |
| hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL; |
| hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get(); |
| hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time; |
| *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n"); |
| break; |
| |
| case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E: |
| hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL; |
| hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get(); |
| *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n"); |
| break; |
| |
| default: |
| dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type); |
| break; |
| } |
| |
| mutex_unlock(&hdev->clk_throttling.lock); |
| } |
| |
| static void gaudi2_print_out_of_sync_info(struct hl_device *hdev, u16 event_type, |
| struct cpucp_pkt_sync_err *sync_err) |
| { |
| struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ]; |
| |
| gaudi2_print_event(hdev, event_type, false, |
| "FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d", |
| le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), |
| q->pi, atomic_read(&q->ci)); |
| } |
| |
| static int gaudi2_handle_pcie_p2p_msix(struct hl_device *hdev, u16 event_type) |
| { |
| u32 p2p_intr, msix_gw_intr, error_count = 0; |
| |
| p2p_intr = RREG32(mmPCIE_WRAP_P2P_INTR); |
| msix_gw_intr = RREG32(mmPCIE_WRAP_MSIX_GW_INTR); |
| |
| if (p2p_intr) { |
| gaudi2_print_event(hdev, event_type, true, |
| "pcie p2p transaction terminated due to security, req_id(0x%x)", |
| RREG32(mmPCIE_WRAP_P2P_REQ_ID)); |
| |
| WREG32(mmPCIE_WRAP_P2P_INTR, 0x1); |
| error_count++; |
| } |
| |
| if (msix_gw_intr) { |
| gaudi2_print_event(hdev, event_type, true, |
| "pcie msi-x gen denied due to vector num check failure, vec(0x%X)", |
| RREG32(mmPCIE_WRAP_MSIX_GW_VEC)); |
| |
| WREG32(mmPCIE_WRAP_MSIX_GW_INTR, 0x1); |
| error_count++; |
| } |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_pcie_drain(struct hl_device *hdev, |
| struct hl_eq_pcie_drain_ind_data *drain_data) |
| { |
| u64 cause, error_count = 0; |
| |
| cause = le64_to_cpu(drain_data->intr_cause.intr_cause_data); |
| |
| if (cause & BIT_ULL(0)) { |
| dev_err_ratelimited(hdev->dev, "PCIE AXI drain LBW completed\n"); |
| error_count++; |
| } |
| |
| if (cause & BIT_ULL(1)) { |
| dev_err_ratelimited(hdev->dev, "PCIE AXI drain HBW completed\n"); |
| error_count++; |
| } |
| |
| return error_count; |
| } |
| |
| static int gaudi2_handle_psoc_drain(struct hl_device *hdev, u64 intr_cause_data) |
| { |
| u32 error_count = 0; |
| int i; |
| |
| for (i = 0 ; i < GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE ; i++) { |
| if (intr_cause_data & BIT_ULL(i)) { |
| dev_err_ratelimited(hdev->dev, "PSOC %s completed\n", |
| gaudi2_psoc_axi_drain_interrupts_cause[i]); |
| error_count++; |
| } |
| } |
| |
| hl_check_for_glbl_errors(hdev); |
| |
| return error_count; |
| } |
| |
| static void gaudi2_print_cpu_pkt_failure_info(struct hl_device *hdev, u16 event_type, |
| struct cpucp_pkt_sync_err *sync_err) |
| { |
| struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ]; |
| |
| gaudi2_print_event(hdev, event_type, false, |
| "FW reported sanity check failure, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d", |
| le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci)); |
| } |
| |
| static int hl_arc_event_handle(struct hl_device *hdev, u16 event_type, |
| struct hl_eq_engine_arc_intr_data *data) |
| { |
| struct hl_engine_arc_dccm_queue_full_irq *q; |
| u32 intr_type, engine_id; |
| u64 payload; |
| |
| intr_type = le32_to_cpu(data->intr_type); |
| engine_id = le32_to_cpu(data->engine_id); |
| payload = le64_to_cpu(data->payload); |
| |
| switch (intr_type) { |
| case ENGINE_ARC_DCCM_QUEUE_FULL_IRQ: |
| q = (struct hl_engine_arc_dccm_queue_full_irq *) &payload; |
| |
| gaudi2_print_event(hdev, event_type, true, |
| "ARC DCCM Full event: EngId: %u, Intr_type: %u, Qidx: %u", |
| engine_id, intr_type, q->queue_index); |
| return 1; |
| default: |
| gaudi2_print_event(hdev, event_type, true, "Unknown ARC event type"); |
| return 0; |
| } |
| } |
| |
| static u16 event_id_to_engine_id(struct hl_device *hdev, u16 event_type) |
| { |
| enum gaudi2_block_types type = GAUDI2_BLOCK_TYPE_MAX; |
| u16 index; |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC24_AXI_ERR_RSP: |
| index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP; |
| type = GAUDI2_BLOCK_TYPE_TPC; |
| break; |
| case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_TPC24_QM: |
| index = event_type - GAUDI2_EVENT_TPC0_QM; |
| type = GAUDI2_BLOCK_TYPE_TPC; |
| break; |
| case GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME0_SPI_BASE ... GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME0_QM: |
| index = 0; |
| type = GAUDI2_BLOCK_TYPE_MME; |
| break; |
| case GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME1_SPI_BASE ... GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME1_QM: |
| index = 1; |
| type = GAUDI2_BLOCK_TYPE_MME; |
| break; |
| case GAUDI2_EVENT_MME2_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME2_SPI_BASE ... GAUDI2_EVENT_MME2_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME2_QM: |
| index = 2; |
| type = GAUDI2_BLOCK_TYPE_MME; |
| break; |
| case GAUDI2_EVENT_MME3_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME3_SPI_BASE ... GAUDI2_EVENT_MME3_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME3_QM: |
| index = 3; |
| type = GAUDI2_BLOCK_TYPE_MME; |
| break; |
| case GAUDI2_EVENT_KDMA_CH0_AXI_ERR_RSP: |
| case GAUDI2_EVENT_KDMA_BM_SPMU: |
| case GAUDI2_EVENT_KDMA0_CORE: |
| return GAUDI2_ENGINE_ID_KDMA; |
| case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP: |
| case GAUDI2_EVENT_PDMA0_CORE: |
| case GAUDI2_EVENT_PDMA0_BM_SPMU: |
| case GAUDI2_EVENT_PDMA0_QM: |
| return GAUDI2_ENGINE_ID_PDMA_0; |
| case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP: |
| case GAUDI2_EVENT_PDMA1_CORE: |
| case GAUDI2_EVENT_PDMA1_BM_SPMU: |
| case GAUDI2_EVENT_PDMA1_QM: |
| return GAUDI2_ENGINE_ID_PDMA_1; |
| case GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE ... GAUDI2_EVENT_DEC9_AXI_ERR_RSPONSE: |
| index = event_type - GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE; |
| type = GAUDI2_BLOCK_TYPE_DEC; |
| break; |
| case GAUDI2_EVENT_DEC0_SPI ... GAUDI2_EVENT_DEC9_BMON_SPMU: |
| index = (event_type - GAUDI2_EVENT_DEC0_SPI) >> 1; |
| type = GAUDI2_BLOCK_TYPE_DEC; |
| break; |
| case GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE ... GAUDI2_EVENT_NIC11_AXI_ERROR_RESPONSE: |
| index = event_type - GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE; |
| return GAUDI2_ENGINE_ID_NIC0_0 + (index * 2); |
| case GAUDI2_EVENT_NIC0_QM0 ... GAUDI2_EVENT_NIC11_QM1: |
| index = event_type - GAUDI2_EVENT_NIC0_QM0; |
| return GAUDI2_ENGINE_ID_NIC0_0 + index; |
| case GAUDI2_EVENT_NIC0_BMON_SPMU ... GAUDI2_EVENT_NIC11_SW_ERROR: |
| index = event_type - GAUDI2_EVENT_NIC0_BMON_SPMU; |
| return GAUDI2_ENGINE_ID_NIC0_0 + (index * 2); |
| case GAUDI2_EVENT_TPC0_BMON_SPMU ... GAUDI2_EVENT_TPC24_KERNEL_ERR: |
| index = (event_type - GAUDI2_EVENT_TPC0_BMON_SPMU) >> 1; |
| type = GAUDI2_BLOCK_TYPE_TPC; |
| break; |
| case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_ROTATOR0_BMON_SPMU: |
| case GAUDI2_EVENT_ROTATOR0_ROT0_QM: |
| return GAUDI2_ENGINE_ID_ROT_0; |
| case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_ROTATOR1_BMON_SPMU: |
| case GAUDI2_EVENT_ROTATOR1_ROT1_QM: |
| return GAUDI2_ENGINE_ID_ROT_1; |
| case GAUDI2_EVENT_HDMA0_BM_SPMU: |
| case GAUDI2_EVENT_HDMA0_QM: |
| case GAUDI2_EVENT_HDMA0_CORE: |
| return GAUDI2_DCORE0_ENGINE_ID_EDMA_0; |
| case GAUDI2_EVENT_HDMA1_BM_SPMU: |
| case GAUDI2_EVENT_HDMA1_QM: |
| case GAUDI2_EVENT_HDMA1_CORE: |
| return GAUDI2_DCORE0_ENGINE_ID_EDMA_1; |
| case GAUDI2_EVENT_HDMA2_BM_SPMU: |
| case GAUDI2_EVENT_HDMA2_QM: |
| case GAUDI2_EVENT_HDMA2_CORE: |
| return GAUDI2_DCORE1_ENGINE_ID_EDMA_0; |
| case GAUDI2_EVENT_HDMA3_BM_SPMU: |
| case GAUDI2_EVENT_HDMA3_QM: |
| case GAUDI2_EVENT_HDMA3_CORE: |
| return GAUDI2_DCORE1_ENGINE_ID_EDMA_1; |
| case GAUDI2_EVENT_HDMA4_BM_SPMU: |
| case GAUDI2_EVENT_HDMA4_QM: |
| case GAUDI2_EVENT_HDMA4_CORE: |
| return GAUDI2_DCORE2_ENGINE_ID_EDMA_0; |
| case GAUDI2_EVENT_HDMA5_BM_SPMU: |
| case GAUDI2_EVENT_HDMA5_QM: |
| case GAUDI2_EVENT_HDMA5_CORE: |
| return GAUDI2_DCORE2_ENGINE_ID_EDMA_1; |
| case GAUDI2_EVENT_HDMA6_BM_SPMU: |
| case GAUDI2_EVENT_HDMA6_QM: |
| case GAUDI2_EVENT_HDMA6_CORE: |
| return GAUDI2_DCORE3_ENGINE_ID_EDMA_0; |
| case GAUDI2_EVENT_HDMA7_BM_SPMU: |
| case GAUDI2_EVENT_HDMA7_QM: |
| case GAUDI2_EVENT_HDMA7_CORE: |
| return GAUDI2_DCORE3_ENGINE_ID_EDMA_1; |
| default: |
| break; |
| } |
| |
| switch (type) { |
| case GAUDI2_BLOCK_TYPE_TPC: |
| switch (index) { |
| case TPC_ID_DCORE0_TPC0 ... TPC_ID_DCORE0_TPC5: |
| return GAUDI2_DCORE0_ENGINE_ID_TPC_0 + index; |
| case TPC_ID_DCORE1_TPC0 ... TPC_ID_DCORE1_TPC5: |
| return GAUDI2_DCORE1_ENGINE_ID_TPC_0 + index - TPC_ID_DCORE1_TPC0; |
| case TPC_ID_DCORE2_TPC0 ... TPC_ID_DCORE2_TPC5: |
| return GAUDI2_DCORE2_ENGINE_ID_TPC_0 + index - TPC_ID_DCORE2_TPC0; |
| case TPC_ID_DCORE3_TPC0 ... TPC_ID_DCORE3_TPC5: |
| return GAUDI2_DCORE3_ENGINE_ID_TPC_0 + index - TPC_ID_DCORE3_TPC0; |
| default: |
| break; |
| } |
| break; |
| case GAUDI2_BLOCK_TYPE_MME: |
| switch (index) { |
| case MME_ID_DCORE0: return GAUDI2_DCORE0_ENGINE_ID_MME; |
| case MME_ID_DCORE1: return GAUDI2_DCORE1_ENGINE_ID_MME; |
| case MME_ID_DCORE2: return GAUDI2_DCORE2_ENGINE_ID_MME; |
| case MME_ID_DCORE3: return GAUDI2_DCORE3_ENGINE_ID_MME; |
| default: |
| break; |
| } |
| break; |
| case GAUDI2_BLOCK_TYPE_DEC: |
| switch (index) { |
| case DEC_ID_DCORE0_DEC0: return GAUDI2_DCORE0_ENGINE_ID_DEC_0; |
| case DEC_ID_DCORE0_DEC1: return GAUDI2_DCORE0_ENGINE_ID_DEC_1; |
| case DEC_ID_DCORE1_DEC0: return GAUDI2_DCORE1_ENGINE_ID_DEC_0; |
| case DEC_ID_DCORE1_DEC1: return GAUDI2_DCORE1_ENGINE_ID_DEC_1; |
| case DEC_ID_DCORE2_DEC0: return GAUDI2_DCORE2_ENGINE_ID_DEC_0; |
| case DEC_ID_DCORE2_DEC1: return GAUDI2_DCORE2_ENGINE_ID_DEC_1; |
| case DEC_ID_DCORE3_DEC0: return GAUDI2_DCORE3_ENGINE_ID_DEC_0; |
| case DEC_ID_DCORE3_DEC1: return GAUDI2_DCORE3_ENGINE_ID_DEC_1; |
| case DEC_ID_PCIE_VDEC0: return GAUDI2_PCIE_ENGINE_ID_DEC_0; |
| case DEC_ID_PCIE_VDEC1: return GAUDI2_PCIE_ENGINE_ID_DEC_1; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return U16_MAX; |
| } |
| |
| static void gaudi2_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| bool reset_required = false, is_critical = false; |
| u32 index, ctl, reset_flags = 0, error_count = 0; |
| u64 event_mask = 0; |
| u16 event_type; |
| |
| ctl = le32_to_cpu(eq_entry->hdr.ctl); |
| event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT); |
| |
| if (event_type >= GAUDI2_EVENT_SIZE) { |
| dev_err(hdev->dev, "Event type %u exceeds maximum of %u", |
| event_type, GAUDI2_EVENT_SIZE - 1); |
| return; |
| } |
| |
| gaudi2->events_stat[event_type]++; |
| gaudi2->events_stat_aggregate[event_type]++; |
| |
| switch (event_type) { |
| case GAUDI2_EVENT_PCIE_CORE_SERR ... GAUDI2_EVENT_ARC0_ECC_DERR: |
| fallthrough; |
| case GAUDI2_EVENT_ROTATOR0_SERR ... GAUDI2_EVENT_ROTATOR1_DERR: |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| reset_required = gaudi2_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data); |
| is_critical = eq_entry->ecc_data.is_critical; |
| error_count++; |
| break; |
| |
| case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_PDMA1_QM: |
| fallthrough; |
| case GAUDI2_EVENT_ROTATOR0_ROT0_QM ... GAUDI2_EVENT_ROTATOR1_ROT1_QM: |
| fallthrough; |
| case GAUDI2_EVENT_NIC0_QM0 ... GAUDI2_EVENT_NIC11_QM1: |
| error_count = gaudi2_handle_qman_err(hdev, event_type, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_ARC_AXI_ERROR_RESPONSE_0: |
| error_count = gaudi2_handle_arc_farm_sei_err(hdev, event_type, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_CPU_AXI_ERR_RSP: |
| error_count = gaudi2_handle_cpu_sei_err(hdev, event_type); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP: |
| case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP: |
| error_count = gaudi2_handle_qm_sei_err(hdev, event_type, true, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE: |
| index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE; |
| error_count = gaudi2_handle_rot_err(hdev, index, event_type, |
| &eq_entry->razwi_with_intr_cause, &event_mask); |
| error_count += gaudi2_handle_qm_sei_err(hdev, event_type, false, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC24_AXI_ERR_RSP: |
| index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP; |
| error_count = gaudi2_tpc_ack_interrupts(hdev, index, event_type, |
| &eq_entry->razwi_with_intr_cause, &event_mask); |
| error_count += gaudi2_handle_qm_sei_err(hdev, event_type, false, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE ... GAUDI2_EVENT_DEC9_AXI_ERR_RSPONSE: |
| index = event_type - GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE; |
| error_count = gaudi2_handle_dec_err(hdev, index, event_type, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_TPC0_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC1_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC2_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC3_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC4_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC5_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC6_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC7_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC8_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC9_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC10_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC11_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC12_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC13_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC14_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC15_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC16_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC17_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC18_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC19_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC20_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC21_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC22_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC23_KERNEL_ERR: |
| case GAUDI2_EVENT_TPC24_KERNEL_ERR: |
| index = (event_type - GAUDI2_EVENT_TPC0_KERNEL_ERR) / |
| (GAUDI2_EVENT_TPC1_KERNEL_ERR - GAUDI2_EVENT_TPC0_KERNEL_ERR); |
| error_count = gaudi2_tpc_ack_interrupts(hdev, index, event_type, |
| &eq_entry->razwi_with_intr_cause, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_DEC0_SPI: |
| case GAUDI2_EVENT_DEC1_SPI: |
| case GAUDI2_EVENT_DEC2_SPI: |
| case GAUDI2_EVENT_DEC3_SPI: |
| case GAUDI2_EVENT_DEC4_SPI: |
| case GAUDI2_EVENT_DEC5_SPI: |
| case GAUDI2_EVENT_DEC6_SPI: |
| case GAUDI2_EVENT_DEC7_SPI: |
| case GAUDI2_EVENT_DEC8_SPI: |
| case GAUDI2_EVENT_DEC9_SPI: |
| index = (event_type - GAUDI2_EVENT_DEC0_SPI) / |
| (GAUDI2_EVENT_DEC1_SPI - GAUDI2_EVENT_DEC0_SPI); |
| error_count = gaudi2_handle_dec_err(hdev, index, event_type, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE: |
| case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE: |
| index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) / |
| (GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE - |
| GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE); |
| error_count = gaudi2_handle_mme_err(hdev, index, event_type, &event_mask); |
| error_count += gaudi2_handle_qm_sei_err(hdev, event_type, false, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_MME0_QMAN_SW_ERROR: |
| case GAUDI2_EVENT_MME1_QMAN_SW_ERROR: |
| case GAUDI2_EVENT_MME2_QMAN_SW_ERROR: |
| case GAUDI2_EVENT_MME3_QMAN_SW_ERROR: |
| index = (event_type - GAUDI2_EVENT_MME0_QMAN_SW_ERROR) / |
| (GAUDI2_EVENT_MME1_QMAN_SW_ERROR - |
| GAUDI2_EVENT_MME0_QMAN_SW_ERROR); |
| error_count = gaudi2_handle_mme_err(hdev, index, event_type, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME2_WAP_SOURCE_RESULT_INVALID: |
| case GAUDI2_EVENT_MME3_WAP_SOURCE_RESULT_INVALID: |
| index = (event_type - GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID) / |
| (GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID - |
| GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID); |
| error_count = gaudi2_handle_mme_wap_err(hdev, index, event_type, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_KDMA_CH0_AXI_ERR_RSP: |
| case GAUDI2_EVENT_KDMA0_CORE: |
| error_count = gaudi2_handle_kdma_core_event(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_HDMA2_CORE ... GAUDI2_EVENT_HDMA5_CORE: |
| error_count = gaudi2_handle_dma_core_event(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PDMA0_CORE ... GAUDI2_EVENT_PDMA1_CORE: |
| error_count = gaudi2_handle_dma_core_event(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PCIE_ADDR_DEC_ERR: |
| error_count = gaudi2_print_pcie_addr_dec_info(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data), &event_mask); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR: |
| case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP: |
| case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR: |
| case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0: |
| error_count = gaudi2_handle_mmu_spi_sei_err(hdev, event_type, &event_mask); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_HIF0_FATAL ... GAUDI2_EVENT_HIF12_FATAL: |
| error_count = gaudi2_handle_hif_fatal(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PMMU_FATAL_0: |
| error_count = gaudi2_handle_pif_fatal(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PSOC63_RAZWI_OR_PID_MIN_MAX_INTERRUPT: |
| error_count = gaudi2_ack_psoc_razwi_event_handler(hdev, &event_mask); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE ... GAUDI2_EVENT_HBM5_MC1_SEI_NON_SEVERE: |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| if (gaudi2_handle_hbm_mc_sei_err(hdev, event_type, &eq_entry->sei_data)) { |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| reset_required = true; |
| is_critical = eq_entry->sei_data.hdr.is_critical; |
| } |
| error_count++; |
| break; |
| |
| case GAUDI2_EVENT_HBM_CATTRIP_0 ... GAUDI2_EVENT_HBM_CATTRIP_5: |
| error_count = gaudi2_handle_hbm_cattrip(hdev, event_type, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_HBM0_MC0_SPI ... GAUDI2_EVENT_HBM5_MC1_SPI: |
| error_count = gaudi2_handle_hbm_mc_spi(hdev, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PCIE_DRAIN_COMPLETE: |
| error_count = gaudi2_handle_pcie_drain(hdev, &eq_entry->pcie_drain_ind_data); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| if (hl_fw_version_cmp(hdev, 1, 13, 0) >= 0) |
| is_critical = true; |
| break; |
| |
| case GAUDI2_EVENT_PSOC59_RPM_ERROR_OR_DRAIN: |
| error_count = gaudi2_handle_psoc_drain(hdev, |
| le64_to_cpu(eq_entry->intr_cause.intr_cause_data)); |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_CPU_AXI_ECC: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_CPU_L2_RAM_ECC: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME0_SBTE4_AXI_ERR_RSP: |
| case GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME1_SBTE4_AXI_ERR_RSP: |
| case GAUDI2_EVENT_MME2_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME2_SBTE4_AXI_ERR_RSP: |
| case GAUDI2_EVENT_MME3_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME3_SBTE4_AXI_ERR_RSP: |
| error_count = gaudi2_handle_mme_sbte_err(hdev, event_type); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| case GAUDI2_EVENT_VM0_ALARM_A ... GAUDI2_EVENT_VM3_ALARM_B: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_PSOC_AXI_ERR_RSP: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_PSOC_PRSTN_FALL: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_PCIE_APB_TIMEOUT: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_PCIE_FATAL_ERR: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_TPC0_BMON_SPMU: |
| case GAUDI2_EVENT_TPC1_BMON_SPMU: |
| case GAUDI2_EVENT_TPC2_BMON_SPMU: |
| case GAUDI2_EVENT_TPC3_BMON_SPMU: |
| case GAUDI2_EVENT_TPC4_BMON_SPMU: |
| case GAUDI2_EVENT_TPC5_BMON_SPMU: |
| case GAUDI2_EVENT_TPC6_BMON_SPMU: |
| case GAUDI2_EVENT_TPC7_BMON_SPMU: |
| case GAUDI2_EVENT_TPC8_BMON_SPMU: |
| case GAUDI2_EVENT_TPC9_BMON_SPMU: |
| case GAUDI2_EVENT_TPC10_BMON_SPMU: |
| case GAUDI2_EVENT_TPC11_BMON_SPMU: |
| case GAUDI2_EVENT_TPC12_BMON_SPMU: |
| case GAUDI2_EVENT_TPC13_BMON_SPMU: |
| case GAUDI2_EVENT_TPC14_BMON_SPMU: |
| case GAUDI2_EVENT_TPC15_BMON_SPMU: |
| case GAUDI2_EVENT_TPC16_BMON_SPMU: |
| case GAUDI2_EVENT_TPC17_BMON_SPMU: |
| case GAUDI2_EVENT_TPC18_BMON_SPMU: |
| case GAUDI2_EVENT_TPC19_BMON_SPMU: |
| case GAUDI2_EVENT_TPC20_BMON_SPMU: |
| case GAUDI2_EVENT_TPC21_BMON_SPMU: |
| case GAUDI2_EVENT_TPC22_BMON_SPMU: |
| case GAUDI2_EVENT_TPC23_BMON_SPMU: |
| case GAUDI2_EVENT_TPC24_BMON_SPMU: |
| case GAUDI2_EVENT_MME0_CTRL_BMON_SPMU: |
| case GAUDI2_EVENT_MME0_SBTE_BMON_SPMU: |
| case GAUDI2_EVENT_MME0_WAP_BMON_SPMU: |
| case GAUDI2_EVENT_MME1_CTRL_BMON_SPMU: |
| case GAUDI2_EVENT_MME1_SBTE_BMON_SPMU: |
| case GAUDI2_EVENT_MME1_WAP_BMON_SPMU: |
| case GAUDI2_EVENT_MME2_CTRL_BMON_SPMU: |
| case GAUDI2_EVENT_MME2_SBTE_BMON_SPMU: |
| case GAUDI2_EVENT_MME2_WAP_BMON_SPMU: |
| case GAUDI2_EVENT_MME3_CTRL_BMON_SPMU: |
| case GAUDI2_EVENT_MME3_SBTE_BMON_SPMU: |
| case GAUDI2_EVENT_MME3_WAP_BMON_SPMU: |
| case GAUDI2_EVENT_HDMA2_BM_SPMU ... GAUDI2_EVENT_PDMA1_BM_SPMU: |
| fallthrough; |
| case GAUDI2_EVENT_DEC0_BMON_SPMU: |
| case GAUDI2_EVENT_DEC1_BMON_SPMU: |
| case GAUDI2_EVENT_DEC2_BMON_SPMU: |
| case GAUDI2_EVENT_DEC3_BMON_SPMU: |
| case GAUDI2_EVENT_DEC4_BMON_SPMU: |
| case GAUDI2_EVENT_DEC5_BMON_SPMU: |
| case GAUDI2_EVENT_DEC6_BMON_SPMU: |
| case GAUDI2_EVENT_DEC7_BMON_SPMU: |
| case GAUDI2_EVENT_DEC8_BMON_SPMU: |
| case GAUDI2_EVENT_DEC9_BMON_SPMU: |
| case GAUDI2_EVENT_ROTATOR0_BMON_SPMU ... GAUDI2_EVENT_SM3_BMON_SPMU: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S: |
| case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E: |
| case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S: |
| case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E: |
| gaudi2_print_clk_change_info(hdev, event_type, &event_mask); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| break; |
| |
| case GAUDI2_EVENT_CPU_PKT_QUEUE_OUT_SYNC: |
| gaudi2_print_out_of_sync_info(hdev, event_type, &eq_entry->pkt_sync_err); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PCIE_FLR_REQUESTED: |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| /* Do nothing- FW will handle it */ |
| break; |
| |
| case GAUDI2_EVENT_PCIE_P2P_MSIX: |
| error_count = gaudi2_handle_pcie_p2p_msix(hdev, event_type); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE ... GAUDI2_EVENT_SM3_AXI_ERROR_RESPONSE: |
| index = event_type - GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE; |
| error_count = gaudi2_handle_sm_err(hdev, event_type, index); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_PSOC_MME_PLL_LOCK_ERR ... GAUDI2_EVENT_DCORE2_HBM_PLL_LOCK_ERR: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE: |
| dev_info(hdev->dev, "CPLD shutdown cause, reset reason: 0x%llx\n", |
| le64_to_cpu(eq_entry->data[0])); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_EVENT: |
| dev_err(hdev->dev, "CPLD shutdown event, reset reason: 0x%llx\n", |
| le64_to_cpu(eq_entry->data[0])); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_CPU_PKT_SANITY_FAILED: |
| gaudi2_print_cpu_pkt_failure_info(hdev, event_type, &eq_entry->pkt_sync_err); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| reset_flags |= HL_DRV_RESET_FW_FATAL_ERR; |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| break; |
| |
| case GAUDI2_EVENT_ARC_DCCM_FULL: |
| error_count = hl_arc_event_handle(hdev, event_type, &eq_entry->arc_data); |
| event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; |
| break; |
| |
| case GAUDI2_EVENT_CPU_FP32_NOT_SUPPORTED: |
| case GAUDI2_EVENT_CPU_DEV_RESET_REQ: |
| event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR; |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| is_critical = true; |
| break; |
| |
| case GAUDI2_EVENT_ARC_PWR_BRK_ENTRY: |
| case GAUDI2_EVENT_ARC_PWR_BRK_EXT: |
| case GAUDI2_EVENT_ARC_PWR_RD_MODE0: |
| case GAUDI2_EVENT_ARC_PWR_RD_MODE1: |
| case GAUDI2_EVENT_ARC_PWR_RD_MODE2: |
| case GAUDI2_EVENT_ARC_PWR_RD_MODE3: |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| dev_info_ratelimited(hdev->dev, "%s event received\n", |
| gaudi2_irq_map_table[event_type].name); |
| break; |
| |
| case GAUDI2_EVENT_ARC_EQ_HEARTBEAT: |
| hl_eq_heartbeat_event_handle(hdev); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| break; |
| default: |
| if (gaudi2_irq_map_table[event_type].valid) { |
| dev_err_ratelimited(hdev->dev, "Cannot find handler for event %d\n", |
| event_type); |
| error_count = GAUDI2_NA_EVENT_CAUSE; |
| } |
| } |
| |
| if (event_mask & HL_NOTIFIER_EVENT_USER_ENGINE_ERR) |
| hl_capture_engine_err(hdev, event_id_to_engine_id(hdev, event_type), error_count); |
| |
| /* Make sure to dump an error in case no error cause was printed so far. |
| * Note that although we have counted the errors, we use this number as |
| * a boolean. |
| */ |
| if (error_count == GAUDI2_NA_EVENT_CAUSE && !is_info_event(event_type)) |
| gaudi2_print_event(hdev, event_type, true, "%d", event_type); |
| else if (error_count == 0) |
| gaudi2_print_event(hdev, event_type, true, |
| "No error cause for H/W event %u", event_type); |
| |
| if ((gaudi2_irq_map_table[event_type].reset != EVENT_RESET_TYPE_NONE) || reset_required) { |
| if (reset_required || |
| (gaudi2_irq_map_table[event_type].reset == EVENT_RESET_TYPE_HARD)) |
| reset_flags |= HL_DRV_RESET_HARD; |
| |
| if (hdev->hard_reset_on_fw_events || |
| (hdev->asic_prop.fw_security_enabled && is_critical)) |
| goto reset_device; |
| } |
| |
| /* Send unmask irq only for interrupts not classified as MSG */ |
| if (!gaudi2_irq_map_table[event_type].msg) |
| hl_fw_unmask_irq(hdev, event_type); |
| |
| if (event_mask) |
| hl_notifier_event_send_all(hdev, event_mask); |
| |
| return; |
| |
| reset_device: |
| if (hdev->asic_prop.fw_security_enabled && is_critical) { |
| reset_flags |= HL_DRV_RESET_BYPASS_REQ_TO_FW; |
| event_mask |= HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE; |
| } else { |
| reset_flags |= HL_DRV_RESET_DELAY; |
| } |
| /* escalate general hw errors to critical/fatal error */ |
| if (event_mask & HL_NOTIFIER_EVENT_GENERAL_HW_ERR) |
| hl_handle_critical_hw_err(hdev, event_type, &event_mask); |
| |
| event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; |
| hl_device_cond_reset(hdev, reset_flags, event_mask); |
| } |
| |
| static int gaudi2_memset_memory_chunk_using_edma_qm(struct hl_device *hdev, |
| struct packet_lin_dma *lin_dma_pkt, |
| u64 phys_addr, u32 hw_queue_id, u32 size, u64 addr, u32 val) |
| { |
| u32 ctl, pkt_size; |
| int rc = 0, i; |
| |
| ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA); |
| ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_MEMSET_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_WRCOMP_MASK, 1); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 1); |
| |
| lin_dma_pkt->ctl = cpu_to_le32(ctl); |
| lin_dma_pkt->src_addr = cpu_to_le64(val); |
| lin_dma_pkt->dst_addr = cpu_to_le64(addr); |
| lin_dma_pkt->tsize = cpu_to_le32(size); |
| |
| pkt_size = sizeof(struct packet_lin_dma); |
| |
| for (i = 0; i < 3; i++) { |
| rc = hdev->asic_funcs->access_dev_mem(hdev, PCI_REGION_DRAM, |
| phys_addr + (i * sizeof(u64)), |
| ((u64 *)(lin_dma_pkt)) + i, DEBUGFS_WRITE64); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to copy lin_dma packet to HBM (%#llx)\n", |
| phys_addr); |
| return rc; |
| } |
| } |
| |
| rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, phys_addr); |
| if (rc) |
| dev_err(hdev->dev, "Failed to send lin_dma packet to H/W queue %d\n", |
| hw_queue_id); |
| |
| return rc; |
| } |
| |
| static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val) |
| { |
| u32 edma_queues_id[] = {GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0, |
| GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0}; |
| u32 chunk_size, dcore, edma_idx, sob_offset, sob_addr, comp_val, |
| old_mmubp, mmubp, num_of_pkts, busy, pkt_size, cb_len; |
| u64 comp_addr, cur_addr = addr, end_addr = addr + size; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc = 0, dma_num = 0, i; |
| void *lin_dma_pkts_arr; |
| |
| if (prop->edma_enabled_mask == 0) { |
| dev_info(hdev->dev, "non of the EDMA engines is enabled - skip dram scrubbing\n"); |
| return -EIO; |
| } |
| |
| sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4; |
| sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset; |
| comp_addr = CFG_BASE + sob_addr; |
| comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) | |
| FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1); |
| mmubp = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_MASK, 1) | |
| FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_MASK, 1); |
| |
| /* Calculate how many lin dma pkts we'll need */ |
| num_of_pkts = div64_u64(round_up(size, SZ_2G), SZ_2G); |
| pkt_size = sizeof(struct packet_lin_dma); |
| cb_len = pkt_size * num_of_pkts; |
| |
| /* |
| * if we're not scrubing HMMU or NIC reserved sections in hbm, |
| * then it the scrubing of the user section, as we use the start of the user section |
| * to store the CB of the EDMA QM, so shift the start address of the scrubbing accordingly |
| * and scrub the CB section before leaving this function. |
| */ |
| if ((addr >= prop->dram_user_base_address) && |
| (addr < prop->dram_user_base_address + cb_len)) |
| cur_addr += (prop->dram_user_base_address + cb_len) - addr; |
| |
| lin_dma_pkts_arr = kvcalloc(num_of_pkts, pkt_size, GFP_KERNEL); |
| if (!lin_dma_pkts_arr) |
| return -ENOMEM; |
| |
| /* |
| * set mmu bypass for the scrubbing - all ddmas are configured the same so save |
| * only the first one to restore later |
| * also set the sob addr for all edma cores for completion. |
| * set QM as trusted to allow it to access physical address with MMU bp. |
| */ |
| old_mmubp = RREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP); |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) { |
| u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET; |
| u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx; |
| |
| if (!(prop->edma_enabled_mask & BIT(edma_bit))) |
| continue; |
| |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + |
| edma_offset, mmubp); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset, |
| lower_32_bits(comp_addr)); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset, |
| upper_32_bits(comp_addr)); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset, |
| comp_val); |
| gaudi2_qman_set_test_mode(hdev, |
| edma_queues_id[dcore] + 4 * edma_idx, true); |
| } |
| } |
| |
| WREG32(sob_addr, 0); |
| |
| while (cur_addr < end_addr) { |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) { |
| u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx; |
| |
| if (!(prop->edma_enabled_mask & BIT(edma_bit))) |
| continue; |
| |
| chunk_size = min_t(u64, SZ_2G, end_addr - cur_addr); |
| |
| rc = gaudi2_memset_memory_chunk_using_edma_qm(hdev, |
| (struct packet_lin_dma *)lin_dma_pkts_arr + dma_num, |
| prop->dram_user_base_address + (dma_num * pkt_size), |
| edma_queues_id[dcore] + edma_idx * 4, |
| chunk_size, cur_addr, val); |
| if (rc) |
| goto end; |
| |
| dma_num++; |
| cur_addr += chunk_size; |
| if (cur_addr == end_addr) |
| goto edma_wait; |
| } |
| } |
| } |
| |
| edma_wait: |
| rc = hl_poll_timeout(hdev, sob_addr, busy, (busy == dma_num), 1000, 1000000); |
| if (rc) { |
| dev_err(hdev->dev, "DMA Timeout during HBM scrubbing(sob: 0x%x, dma_num: 0x%x)\n", |
| busy, dma_num); |
| goto end; |
| } |
| end: |
| for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) { |
| for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) { |
| u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET; |
| u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx; |
| |
| if (!(prop->edma_enabled_mask & BIT(edma_bit))) |
| continue; |
| |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + edma_offset, old_mmubp); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset, 0); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset, 0); |
| WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset, 0); |
| gaudi2_qman_set_test_mode(hdev, |
| edma_queues_id[dcore] + 4 * edma_idx, false); |
| } |
| } |
| |
| memset(lin_dma_pkts_arr, 0, sizeof(u64)); |
| |
| /* Zero the HBM area where we copied the CB */ |
| for (i = 0; i < cb_len / sizeof(u64); i += sizeof(u64)) |
| rc = hdev->asic_funcs->access_dev_mem(hdev, PCI_REGION_DRAM, |
| prop->dram_user_base_address + i, |
| (u64 *)(lin_dma_pkts_arr), DEBUGFS_WRITE64); |
| WREG32(sob_addr, 0); |
| |
| kfree(lin_dma_pkts_arr); |
| |
| return rc; |
| } |
| |
| static int gaudi2_scrub_device_dram(struct hl_device *hdev, u64 val) |
| { |
| int rc; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 size = prop->dram_end_address - prop->dram_user_base_address; |
| |
| rc = gaudi2_memset_device_memory(hdev, prop->dram_user_base_address, size, val); |
| |
| if (rc) |
| dev_err(hdev->dev, "Failed to scrub dram, address: 0x%llx size: %llu\n", |
| prop->dram_user_base_address, size); |
| return rc; |
| } |
| |
| static int gaudi2_scrub_device_mem(struct hl_device *hdev) |
| { |
| int rc; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 val = hdev->memory_scrub_val; |
| u64 addr, size; |
| |
| if (!hdev->memory_scrub) |
| return 0; |
| |
| /* scrub SRAM */ |
| addr = prop->sram_user_base_address; |
| size = hdev->pldm ? 0x10000 : (prop->sram_size - SRAM_USER_BASE_OFFSET); |
| dev_dbg(hdev->dev, "Scrubbing SRAM: 0x%09llx - 0x%09llx, val: 0x%llx\n", |
| addr, addr + size, val); |
| rc = gaudi2_memset_device_memory(hdev, addr, size, val); |
| if (rc) { |
| dev_err(hdev->dev, "scrubbing SRAM failed (%d)\n", rc); |
| return rc; |
| } |
| |
| /* scrub DRAM */ |
| rc = gaudi2_scrub_device_dram(hdev, val); |
| if (rc) { |
| dev_err(hdev->dev, "scrubbing DRAM failed (%d)\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static void gaudi2_restore_user_sm_registers(struct hl_device *hdev) |
| { |
| u64 addr, mon_sts_addr, mon_cfg_addr, cq_lbw_l_addr, cq_lbw_h_addr, |
| cq_lbw_data_addr, cq_base_l_addr, cq_base_h_addr, cq_size_addr; |
| u32 val, size, offset; |
| int dcore_id; |
| |
| offset = hdev->asic_prop.first_available_cq[0] * 4; |
| cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset; |
| cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + offset; |
| cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + offset; |
| cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + offset; |
| cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + offset; |
| cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + offset; |
| size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - |
| (mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset); |
| |
| /* memset dcore0 CQ registers */ |
| gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0); |
| |
| cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + DCORE_OFFSET; |
| cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + DCORE_OFFSET; |
| cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + DCORE_OFFSET; |
| cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + DCORE_OFFSET; |
| cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + DCORE_OFFSET; |
| cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + DCORE_OFFSET; |
| size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0; |
| |
| for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { |
| gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0); |
| gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0); |
| |
| cq_lbw_l_addr += DCORE_OFFSET; |
| cq_lbw_h_addr += DCORE_OFFSET; |
| cq_lbw_data_addr += DCORE_OFFSET; |
| cq_base_l_addr += DCORE_OFFSET; |
| cq_base_h_addr += DCORE_OFFSET; |
| cq_size_addr += DCORE_OFFSET; |
| } |
| |
| offset = hdev->asic_prop.first_available_user_mon[0] * 4; |
| addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset; |
| val = 1 << DCORE0_SYNC_MNGR_OBJS_MON_STATUS_PROT_SHIFT; |
| size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - (mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset); |
| |
| /* memset dcore0 monitors */ |
| gaudi2_memset_device_lbw(hdev, addr, size, val); |
| |
| addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + offset; |
| gaudi2_memset_device_lbw(hdev, addr, size, 0); |
| |
| mon_sts_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + DCORE_OFFSET; |
| mon_cfg_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + DCORE_OFFSET; |
| size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0; |
| |
| for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { |
| gaudi2_memset_device_lbw(hdev, mon_sts_addr, size, val); |
| gaudi2_memset_device_lbw(hdev, mon_cfg_addr, size, 0); |
| mon_sts_addr += DCORE_OFFSET; |
| mon_cfg_addr += DCORE_OFFSET; |
| } |
| |
| offset = hdev->asic_prop.first_available_user_sob[0] * 4; |
| addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset; |
| val = 0; |
| size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - |
| (mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset); |
| |
| /* memset dcore0 sobs */ |
| gaudi2_memset_device_lbw(hdev, addr, size, val); |
| |
| addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + DCORE_OFFSET; |
| size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0; |
| |
| for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) { |
| gaudi2_memset_device_lbw(hdev, addr, size, val); |
| addr += DCORE_OFFSET; |
| } |
| |
| /* Flush all WREG to prevent race */ |
| val = RREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset); |
| } |
| |
| static void gaudi2_restore_user_qm_registers(struct hl_device *hdev) |
| { |
| u32 reg_base, hw_queue_id; |
| |
| for (hw_queue_id = GAUDI2_QUEUE_ID_PDMA_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_ROT_1_0; |
| hw_queue_id += NUM_OF_PQ_PER_QMAN) { |
| if (!gaudi2_is_queue_enabled(hdev, hw_queue_id)) |
| continue; |
| |
| gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false); |
| |
| reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; |
| WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0); |
| } |
| |
| /* Flush all WREG to prevent race */ |
| RREG32(mmPDMA0_QM_ARB_CFG_0); |
| } |
| |
| static void gaudi2_restore_nic_qm_registers(struct hl_device *hdev) |
| { |
| u32 reg_base, hw_queue_id; |
| |
| for (hw_queue_id = GAUDI2_QUEUE_ID_NIC_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_NIC_23_3; |
| hw_queue_id += NUM_OF_PQ_PER_QMAN) { |
| if (!gaudi2_is_queue_enabled(hdev, hw_queue_id)) |
| continue; |
| |
| gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false); |
| |
| reg_base = gaudi2_qm_blocks_bases[hw_queue_id]; |
| WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0); |
| } |
| |
| /* Flush all WREG to prevent race */ |
| RREG32(mmPDMA0_QM_ARB_CFG_0); |
| } |
| |
| static int gaudi2_context_switch(struct hl_device *hdev, u32 asid) |
| { |
| return 0; |
| } |
| |
| static void gaudi2_restore_phase_topology(struct hl_device *hdev) |
| { |
| } |
| |
| static void gaudi2_init_block_instances(struct hl_device *hdev, u32 block_idx, |
| struct dup_block_ctx *cfg_ctx) |
| { |
| u64 block_base = cfg_ctx->base + block_idx * cfg_ctx->block_off; |
| u8 seq; |
| int i; |
| |
| for (i = 0 ; i < cfg_ctx->instances ; i++) { |
| seq = block_idx * cfg_ctx->instances + i; |
| |
| /* skip disabled instance */ |
| if (!(cfg_ctx->enabled_mask & BIT_ULL(seq))) |
| continue; |
| |
| cfg_ctx->instance_cfg_fn(hdev, block_base + i * cfg_ctx->instance_off, |
| cfg_ctx->data); |
| } |
| } |
| |
| static void gaudi2_init_blocks_with_mask(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx, |
| u64 mask) |
| { |
| int i; |
| |
| cfg_ctx->enabled_mask = mask; |
| |
| for (i = 0 ; i < cfg_ctx->blocks ; i++) |
| gaudi2_init_block_instances(hdev, i, cfg_ctx); |
| } |
| |
| void gaudi2_init_blocks(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx) |
| { |
| gaudi2_init_blocks_with_mask(hdev, cfg_ctx, U64_MAX); |
| } |
| |
| static int gaudi2_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr) |
| { |
| void *host_mem_virtual_addr; |
| dma_addr_t host_mem_dma_addr; |
| u64 reserved_va_base; |
| u32 pos, size_left, size_to_dma; |
| struct hl_ctx *ctx; |
| int rc = 0; |
| |
| /* Fetch the ctx */ |
| ctx = hl_get_compute_ctx(hdev); |
| if (!ctx) { |
| dev_err(hdev->dev, "No ctx available\n"); |
| return -EINVAL; |
| } |
| |
| /* Allocate buffers for read and for poll */ |
| host_mem_virtual_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &host_mem_dma_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| if (host_mem_virtual_addr == NULL) { |
| dev_err(hdev->dev, "Failed to allocate memory for KDMA read\n"); |
| rc = -ENOMEM; |
| goto put_ctx; |
| } |
| |
| /* Reserve VM region on asic side */ |
| reserved_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, SZ_2M, |
| HL_MMU_VA_ALIGNMENT_NOT_NEEDED); |
| if (!reserved_va_base) { |
| dev_err(hdev->dev, "Failed to reserve vmem on asic\n"); |
| rc = -ENOMEM; |
| goto free_data_buffer; |
| } |
| |
| /* Create mapping on asic side */ |
| mutex_lock(&hdev->mmu_lock); |
| |
| rc = hl_mmu_map_contiguous(ctx, reserved_va_base, host_mem_dma_addr, SZ_2M); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to create mapping on asic mmu\n"); |
| goto unreserve_va; |
| } |
| |
| rc = hl_mmu_invalidate_cache_range(hdev, false, |
| MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV, |
| ctx->asid, reserved_va_base, SZ_2M); |
| if (rc) { |
| hl_mmu_unmap_contiguous(ctx, reserved_va_base, SZ_2M); |
| goto unreserve_va; |
| } |
| |
| mutex_unlock(&hdev->mmu_lock); |
| |
| /* Enable MMU on KDMA */ |
| gaudi2_kdma_set_mmbp_asid(hdev, false, ctx->asid); |
| |
| pos = 0; |
| size_left = size; |
| size_to_dma = SZ_2M; |
| |
| while (size_left > 0) { |
| if (size_left < SZ_2M) |
| size_to_dma = size_left; |
| |
| rc = gaudi2_send_job_to_kdma(hdev, addr, reserved_va_base, size_to_dma, false); |
| if (rc) |
| break; |
| |
| memcpy(blob_addr + pos, host_mem_virtual_addr, size_to_dma); |
| |
| if (size_left <= SZ_2M) |
| break; |
| |
| pos += SZ_2M; |
| addr += SZ_2M; |
| size_left -= SZ_2M; |
| } |
| |
| gaudi2_kdma_set_mmbp_asid(hdev, true, HL_KERNEL_ASID_ID); |
| |
| mutex_lock(&hdev->mmu_lock); |
| |
| rc = hl_mmu_unmap_contiguous(ctx, reserved_va_base, SZ_2M); |
| if (rc) |
| goto unreserve_va; |
| |
| rc = hl_mmu_invalidate_cache_range(hdev, false, MMU_OP_USERPTR, |
| ctx->asid, reserved_va_base, SZ_2M); |
| |
| unreserve_va: |
| mutex_unlock(&hdev->mmu_lock); |
| hl_unreserve_va_block(hdev, ctx, reserved_va_base, SZ_2M); |
| free_data_buffer: |
| hl_asic_dma_free_coherent(hdev, SZ_2M, host_mem_virtual_addr, host_mem_dma_addr); |
| put_ctx: |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static int gaudi2_internal_cb_pool_init(struct hl_device *hdev, struct hl_ctx *ctx) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int min_alloc_order, rc; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) |
| return 0; |
| |
| hdev->internal_cb_pool_virt_addr = hl_asic_dma_alloc_coherent(hdev, |
| HOST_SPACE_INTERNAL_CB_SZ, |
| &hdev->internal_cb_pool_dma_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| |
| if (!hdev->internal_cb_pool_virt_addr) |
| return -ENOMEM; |
| |
| min_alloc_order = ilog2(min(gaudi2_get_signal_cb_size(hdev), |
| gaudi2_get_wait_cb_size(hdev))); |
| |
| hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1); |
| if (!hdev->internal_cb_pool) { |
| dev_err(hdev->dev, "Failed to create internal CB pool\n"); |
| rc = -ENOMEM; |
| goto free_internal_cb_pool; |
| } |
| |
| rc = gen_pool_add(hdev->internal_cb_pool, (uintptr_t) hdev->internal_cb_pool_virt_addr, |
| HOST_SPACE_INTERNAL_CB_SZ, -1); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to add memory to internal CB pool\n"); |
| rc = -EFAULT; |
| goto destroy_internal_cb_pool; |
| } |
| |
| hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, |
| HOST_SPACE_INTERNAL_CB_SZ, HL_MMU_VA_ALIGNMENT_NOT_NEEDED); |
| |
| if (!hdev->internal_cb_va_base) { |
| rc = -ENOMEM; |
| goto destroy_internal_cb_pool; |
| } |
| |
| mutex_lock(&hdev->mmu_lock); |
| |
| rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base, hdev->internal_cb_pool_dma_addr, |
| HOST_SPACE_INTERNAL_CB_SZ); |
| if (rc) |
| goto unreserve_internal_cb_pool; |
| |
| rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR); |
| if (rc) |
| goto unmap_internal_cb_pool; |
| |
| mutex_unlock(&hdev->mmu_lock); |
| |
| return 0; |
| |
| unmap_internal_cb_pool: |
| hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); |
| unreserve_internal_cb_pool: |
| mutex_unlock(&hdev->mmu_lock); |
| hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); |
| destroy_internal_cb_pool: |
| gen_pool_destroy(hdev->internal_cb_pool); |
| free_internal_cb_pool: |
| hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr, |
| hdev->internal_cb_pool_dma_addr); |
| |
| return rc; |
| } |
| |
| static void gaudi2_internal_cb_pool_fini(struct hl_device *hdev, struct hl_ctx *ctx) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) |
| return; |
| |
| mutex_lock(&hdev->mmu_lock); |
| hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); |
| hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ); |
| hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); |
| mutex_unlock(&hdev->mmu_lock); |
| |
| gen_pool_destroy(hdev->internal_cb_pool); |
| |
| hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr, |
| hdev->internal_cb_pool_dma_addr); |
| } |
| |
| static void gaudi2_restore_user_registers(struct hl_device *hdev) |
| { |
| gaudi2_restore_user_sm_registers(hdev); |
| gaudi2_restore_user_qm_registers(hdev); |
| } |
| |
| static int gaudi2_map_virtual_msix_doorbell_memory(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int rc; |
| |
| rc = hl_mmu_map_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START, |
| gaudi2->virt_msix_db_dma_addr, prop->pmmu.page_size, true); |
| if (rc) |
| dev_err(hdev->dev, "Failed to map VA %#llx for virtual MSI-X doorbell memory\n", |
| RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START); |
| |
| return rc; |
| } |
| |
| static void gaudi2_unmap_virtual_msix_doorbell_memory(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| rc = hl_mmu_unmap_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START, |
| prop->pmmu.page_size, true); |
| if (rc) |
| dev_err(hdev->dev, "Failed to unmap VA %#llx of virtual MSI-X doorbell memory\n", |
| RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START); |
| } |
| |
| static int gaudi2_ctx_init(struct hl_ctx *ctx) |
| { |
| int rc; |
| |
| if (ctx->asid == HL_KERNEL_ASID_ID) |
| return 0; |
| |
| rc = gaudi2_mmu_prepare(ctx->hdev, ctx->asid); |
| if (rc) |
| return rc; |
| |
| /* No need to clear user registers if the device has just |
| * performed reset, we restore only nic qm registers |
| */ |
| if (ctx->hdev->reset_upon_device_release) |
| gaudi2_restore_nic_qm_registers(ctx->hdev); |
| else |
| gaudi2_restore_user_registers(ctx->hdev); |
| |
| rc = gaudi2_internal_cb_pool_init(ctx->hdev, ctx); |
| if (rc) |
| return rc; |
| |
| rc = gaudi2_map_virtual_msix_doorbell_memory(ctx); |
| if (rc) |
| gaudi2_internal_cb_pool_fini(ctx->hdev, ctx); |
| |
| return rc; |
| } |
| |
| static void gaudi2_ctx_fini(struct hl_ctx *ctx) |
| { |
| if (ctx->asid == HL_KERNEL_ASID_ID) |
| return; |
| |
| gaudi2_internal_cb_pool_fini(ctx->hdev, ctx); |
| |
| gaudi2_unmap_virtual_msix_doorbell_memory(ctx); |
| } |
| |
| static int gaudi2_pre_schedule_cs(struct hl_cs *cs) |
| { |
| struct hl_device *hdev = cs->ctx->hdev; |
| int index = cs->sequence & (hdev->asic_prop.max_pending_cs - 1); |
| u32 mon_payload, sob_id, mon_id; |
| |
| if (!cs_needs_completion(cs)) |
| return 0; |
| |
| /* |
| * First 64 SOB/MON are reserved for driver for QMAN auto completion |
| * mechanism. Each SOB/MON pair are used for a pending CS with the same |
| * cyclic index. The SOB value is increased when each of the CS jobs is |
| * completed. When the SOB reaches the number of CS jobs, the monitor |
| * generates MSI-X interrupt. |
| */ |
| |
| sob_id = mon_id = index; |
| mon_payload = (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) | |
| (1 << CQ_ENTRY_READY_SHIFT) | index; |
| |
| gaudi2_arm_cq_monitor(hdev, sob_id, mon_id, GAUDI2_RESERVED_CQ_CS_COMPLETION, mon_payload, |
| cs->jobs_cnt); |
| |
| return 0; |
| } |
| |
| static u32 gaudi2_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx) |
| { |
| return HL_INVALID_QUEUE; |
| } |
| |
| static u32 gaudi2_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb) |
| { |
| struct hl_cb *cb = data; |
| struct packet_msg_short *pkt; |
| u32 value, ctl, pkt_size = sizeof(*pkt); |
| |
| pkt = (struct packet_msg_short *) (uintptr_t) (cb->kernel_address + size); |
| memset(pkt, 0, pkt_size); |
| |
| /* Inc by 1, Mode ADD */ |
| value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1); |
| value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_MOD_MASK, 1); |
| |
| ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4); |
| ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 1); /* SOB base */ |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, eb); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1); |
| |
| pkt->value = cpu_to_le32(value); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return size + pkt_size; |
| } |
| |
| static u32 gaudi2_add_mon_msg_short(struct packet_msg_short *pkt, u32 value, u16 addr) |
| { |
| u32 ctl, pkt_size = sizeof(*pkt); |
| |
| memset(pkt, 0, pkt_size); |
| |
| ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr); |
| ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */ |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 0); |
| |
| pkt->value = cpu_to_le32(value); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return pkt_size; |
| } |
| |
| static u32 gaudi2_add_arm_monitor_pkt(struct hl_device *hdev, struct packet_msg_short *pkt, |
| u16 sob_base, u8 sob_mask, u16 sob_val, u16 addr) |
| { |
| u32 ctl, value, pkt_size = sizeof(*pkt); |
| u8 mask; |
| |
| if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) { |
| dev_err(hdev->dev, "sob_base %u (mask %#x) is not valid\n", sob_base, sob_mask); |
| return 0; |
| } |
| |
| memset(pkt, 0, pkt_size); |
| |
| value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8); |
| value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val); |
| value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MODE_MASK, 0); /* GREATER OR EQUAL*/ |
| value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MASK_MASK, mask); |
| |
| ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr); |
| ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */ |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1); |
| |
| pkt->value = cpu_to_le32(value); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return pkt_size; |
| } |
| |
| static u32 gaudi2_add_fence_pkt(struct packet_fence *pkt) |
| { |
| u32 ctl, cfg, pkt_size = sizeof(*pkt); |
| |
| memset(pkt, 0, pkt_size); |
| |
| cfg = FIELD_PREP(GAUDI2_PKT_FENCE_CFG_DEC_VAL_MASK, 1); |
| cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_TARGET_VAL_MASK, 1); |
| cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_ID_MASK, 2); |
| |
| ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_FENCE); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0); |
| ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1); |
| |
| pkt->cfg = cpu_to_le32(cfg); |
| pkt->ctl = cpu_to_le32(ctl); |
| |
| return pkt_size; |
| } |
| |
| static u32 gaudi2_gen_wait_cb(struct hl_device *hdev, struct hl_gen_wait_properties *prop) |
| { |
| struct hl_cb *cb = prop->data; |
| void *buf = (void *) (uintptr_t) (cb->kernel_address); |
| |
| u64 monitor_base, fence_addr = 0; |
| u32 stream_index, size = prop->size; |
| u16 msg_addr_offset; |
| |
| stream_index = prop->q_idx % 4; |
| fence_addr = CFG_BASE + gaudi2_qm_blocks_bases[prop->q_idx] + |
| QM_FENCE2_OFFSET + stream_index * 4; |
| |
| /* |
| * monitor_base should be the content of the base0 address registers, |
| * so it will be added to the msg short offsets |
| */ |
| monitor_base = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0; |
| |
| /* First monitor config packet: low address of the sync */ |
| msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + prop->mon_id * 4) - |
| monitor_base; |
| |
| size += gaudi2_add_mon_msg_short(buf + size, (u32) fence_addr, msg_addr_offset); |
| |
| /* Second monitor config packet: high address of the sync */ |
| msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + prop->mon_id * 4) - |
| monitor_base; |
| |
| size += gaudi2_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32), msg_addr_offset); |
| |
| /* |
| * Third monitor config packet: the payload, i.e. what to write when the |
| * sync triggers |
| */ |
| msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + prop->mon_id * 4) - |
| monitor_base; |
| |
| size += gaudi2_add_mon_msg_short(buf + size, 1, msg_addr_offset); |
| |
| /* Fourth monitor config packet: bind the monitor to a sync object */ |
| msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + prop->mon_id * 4) - monitor_base; |
| |
| size += gaudi2_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base, prop->sob_mask, |
| prop->sob_val, msg_addr_offset); |
| |
| /* Fence packet */ |
| size += gaudi2_add_fence_pkt(buf + size); |
| |
| return size; |
| } |
| |
| static void gaudi2_reset_sob(struct hl_device *hdev, void *data) |
| { |
| struct hl_hw_sob *hw_sob = data; |
| |
| dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, hw_sob->sob_id); |
| |
| WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + hw_sob->sob_id * 4, 0); |
| |
| kref_init(&hw_sob->kref); |
| } |
| |
| static void gaudi2_reset_sob_group(struct hl_device *hdev, u16 sob_group) |
| { |
| } |
| |
| static u64 gaudi2_get_device_time(struct hl_device *hdev) |
| { |
| u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32; |
| |
| return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL); |
| } |
| |
| static int gaudi2_collective_wait_init_cs(struct hl_cs *cs) |
| { |
| return 0; |
| } |
| |
| static int gaudi2_collective_wait_create_jobs(struct hl_device *hdev, struct hl_ctx *ctx, |
| struct hl_cs *cs, u32 wait_queue_id, |
| u32 collective_engine_id, u32 encaps_signal_offset) |
| { |
| return -EINVAL; |
| } |
| |
| /* |
| * hl_mmu_scramble - converts a dram (non power of 2) page-size aligned address |
| * to DMMU page-size address (64MB) before mapping it in |
| * the MMU. |
| * The operation is performed on both the virtual and physical addresses. |
| * for device with 6 HBMs the scramble is: |
| * (addr[47:0] / 48M) * 64M + addr % 48M + addr[63:48] |
| * |
| * Example: |
| * ============================================================================= |
| * Allocated DRAM Reserved VA scrambled VA for MMU mapping Scrambled PA |
| * Phys address in MMU last |
| * HOP |
| * ============================================================================= |
| * PA1 0x3000000 VA1 0x9C000000 SVA1= (VA1/48M)*64M 0xD0000000 <- PA1/48M 0x1 |
| * PA2 0x9000000 VA2 0x9F000000 SVA2= (VA2/48M)*64M 0xD4000000 <- PA2/48M 0x3 |
| * ============================================================================= |
| */ |
| static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 divisor, mod_va; |
| u64 div_va; |
| |
| /* accept any address in the DRAM address space */ |
| if (hl_mem_area_inside_range(raw_addr, sizeof(raw_addr), DRAM_PHYS_BASE, |
| VA_HBM_SPACE_END)) { |
| |
| divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE; |
| div_va = div_u64_rem(raw_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, divisor, &mod_va); |
| return (raw_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) | |
| (div_va << GAUDI2_HBM_MMU_SCRM_DIV_SHIFT) | |
| (mod_va << GAUDI2_HBM_MMU_SCRM_MOD_SHIFT); |
| } |
| |
| return raw_addr; |
| } |
| |
| static u64 gaudi2_mmu_descramble_addr(struct hl_device *hdev, u64 scrambled_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 divisor, mod_va; |
| u64 div_va; |
| |
| /* accept any address in the DRAM address space */ |
| if (hl_mem_area_inside_range(scrambled_addr, sizeof(scrambled_addr), DRAM_PHYS_BASE, |
| VA_HBM_SPACE_END)) { |
| |
| divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE; |
| div_va = div_u64_rem(scrambled_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, |
| PAGE_SIZE_64MB, &mod_va); |
| |
| return ((scrambled_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) + |
| (div_va * divisor + mod_va)); |
| } |
| |
| return scrambled_addr; |
| } |
| |
| static u32 gaudi2_get_dec_base_addr(struct hl_device *hdev, u32 core_id) |
| { |
| u32 base = 0, dcore_id, dec_id; |
| |
| if (core_id >= NUMBER_OF_DEC) { |
| dev_err(hdev->dev, "Unexpected core number %d for DEC\n", core_id); |
| goto out; |
| } |
| |
| if (core_id < 8) { |
| dcore_id = core_id / NUM_OF_DEC_PER_DCORE; |
| dec_id = core_id % NUM_OF_DEC_PER_DCORE; |
| |
| base = mmDCORE0_DEC0_CMD_BASE + dcore_id * DCORE_OFFSET + |
| dec_id * DCORE_VDEC_OFFSET; |
| } else { |
| /* PCIe Shared Decoder */ |
| base = mmPCIE_DEC0_CMD_BASE + ((core_id % 8) * PCIE_VDEC_OFFSET); |
| } |
| out: |
| return base; |
| } |
| |
| static int gaudi2_get_hw_block_id(struct hl_device *hdev, u64 block_addr, |
| u32 *block_size, u32 *block_id) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| int i; |
| |
| for (i = 0 ; i < NUM_USER_MAPPED_BLOCKS ; i++) { |
| if (block_addr == CFG_BASE + gaudi2->mapped_blocks[i].address) { |
| *block_id = i; |
| if (block_size) |
| *block_size = gaudi2->mapped_blocks[i].size; |
| return 0; |
| } |
| } |
| |
| dev_err(hdev->dev, "Invalid block address %#llx", block_addr); |
| |
| return -EINVAL; |
| } |
| |
| static int gaudi2_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma, |
| u32 block_id, u32 block_size) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 offset_in_bar; |
| u64 address; |
| int rc; |
| |
| if (block_id >= NUM_USER_MAPPED_BLOCKS) { |
| dev_err(hdev->dev, "Invalid block id %u", block_id); |
| return -EINVAL; |
| } |
| |
| /* we allow mapping only an entire block */ |
| if (block_size != gaudi2->mapped_blocks[block_id].size) { |
| dev_err(hdev->dev, "Invalid block size %u", block_size); |
| return -EINVAL; |
| } |
| |
| offset_in_bar = CFG_BASE + gaudi2->mapped_blocks[block_id].address - STM_FLASH_BASE_ADDR; |
| |
| address = pci_resource_start(hdev->pdev, SRAM_CFG_BAR_ID) + offset_in_bar; |
| |
| vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | |
| VM_DONTCOPY | VM_NORESERVE); |
| |
| rc = remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT, |
| block_size, vma->vm_page_prot); |
| if (rc) |
| dev_err(hdev->dev, "remap_pfn_range error %d", rc); |
| |
| return rc; |
| } |
| |
| static void gaudi2_enable_events_from_fw(struct hl_device *hdev) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| u32 irq_handler_offset = le32_to_cpu(dyn_regs->gic_host_ints_irq); |
| |
| if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q) |
| WREG32(irq_handler_offset, |
| gaudi2_irq_map_table[GAUDI2_EVENT_CPU_INTS_REGISTER].cpu_id); |
| } |
| |
| static int gaudi2_get_mmu_base(struct hl_device *hdev, u64 mmu_id, u32 *mmu_base) |
| { |
| switch (mmu_id) { |
| case HW_CAP_DCORE0_DMMU0: |
| *mmu_base = mmDCORE0_HMMU0_MMU_BASE; |
| break; |
| case HW_CAP_DCORE0_DMMU1: |
| *mmu_base = mmDCORE0_HMMU1_MMU_BASE; |
| break; |
| case HW_CAP_DCORE0_DMMU2: |
| *mmu_base = mmDCORE0_HMMU2_MMU_BASE; |
| break; |
| case HW_CAP_DCORE0_DMMU3: |
| *mmu_base = mmDCORE0_HMMU3_MMU_BASE; |
| break; |
| case HW_CAP_DCORE1_DMMU0: |
| *mmu_base = mmDCORE1_HMMU0_MMU_BASE; |
| break; |
| case HW_CAP_DCORE1_DMMU1: |
| *mmu_base = mmDCORE1_HMMU1_MMU_BASE; |
| break; |
| case HW_CAP_DCORE1_DMMU2: |
| *mmu_base = mmDCORE1_HMMU2_MMU_BASE; |
| break; |
| case HW_CAP_DCORE1_DMMU3: |
| *mmu_base = mmDCORE1_HMMU3_MMU_BASE; |
| break; |
| case HW_CAP_DCORE2_DMMU0: |
| *mmu_base = mmDCORE2_HMMU0_MMU_BASE; |
| break; |
| case HW_CAP_DCORE2_DMMU1: |
| *mmu_base = mmDCORE2_HMMU1_MMU_BASE; |
| break; |
| case HW_CAP_DCORE2_DMMU2: |
| *mmu_base = mmDCORE2_HMMU2_MMU_BASE; |
| break; |
| case HW_CAP_DCORE2_DMMU3: |
| *mmu_base = mmDCORE2_HMMU3_MMU_BASE; |
| break; |
| case HW_CAP_DCORE3_DMMU0: |
| *mmu_base = mmDCORE3_HMMU0_MMU_BASE; |
| break; |
| case HW_CAP_DCORE3_DMMU1: |
| *mmu_base = mmDCORE3_HMMU1_MMU_BASE; |
| break; |
| case HW_CAP_DCORE3_DMMU2: |
| *mmu_base = mmDCORE3_HMMU2_MMU_BASE; |
| break; |
| case HW_CAP_DCORE3_DMMU3: |
| *mmu_base = mmDCORE3_HMMU3_MMU_BASE; |
| break; |
| case HW_CAP_PMMU: |
| *mmu_base = mmPMMU_HBW_MMU_BASE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void gaudi2_ack_mmu_error(struct hl_device *hdev, u64 mmu_id) |
| { |
| bool is_pmmu = (mmu_id == HW_CAP_PMMU); |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u32 mmu_base; |
| |
| if (!(gaudi2->hw_cap_initialized & mmu_id)) |
| return; |
| |
| if (gaudi2_get_mmu_base(hdev, mmu_id, &mmu_base)) |
| return; |
| |
| gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, NULL); |
| gaudi2_handle_access_error(hdev, mmu_base, is_pmmu); |
| } |
| |
| static int gaudi2_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask) |
| { |
| u32 i, mmu_id, num_of_hmmus = NUM_OF_HMMU_PER_DCORE * NUM_OF_DCORES; |
| |
| /* check all HMMUs */ |
| for (i = 0 ; i < num_of_hmmus ; i++) { |
| mmu_id = HW_CAP_DCORE0_DMMU0 << i; |
| |
| if (mmu_cap_mask & mmu_id) |
| gaudi2_ack_mmu_error(hdev, mmu_id); |
| } |
| |
| /* check PMMU */ |
| if (mmu_cap_mask & HW_CAP_PMMU) |
| gaudi2_ack_mmu_error(hdev, HW_CAP_PMMU); |
| |
| return 0; |
| } |
| |
| static void gaudi2_get_msi_info(__le32 *table) |
| { |
| table[CPUCP_EVENT_QUEUE_MSI_TYPE] = cpu_to_le32(GAUDI2_EVENT_QUEUE_MSIX_IDX); |
| table[CPUCP_EVENT_QUEUE_ERR_MSI_TYPE] = cpu_to_le32(GAUDI2_IRQ_NUM_EQ_ERROR); |
| } |
| |
| static int gaudi2_map_pll_idx_to_fw_idx(u32 pll_idx) |
| { |
| switch (pll_idx) { |
| case HL_GAUDI2_CPU_PLL: return CPU_PLL; |
| case HL_GAUDI2_PCI_PLL: return PCI_PLL; |
| case HL_GAUDI2_NIC_PLL: return NIC_PLL; |
| case HL_GAUDI2_DMA_PLL: return DMA_PLL; |
| case HL_GAUDI2_MESH_PLL: return MESH_PLL; |
| case HL_GAUDI2_MME_PLL: return MME_PLL; |
| case HL_GAUDI2_TPC_PLL: return TPC_PLL; |
| case HL_GAUDI2_IF_PLL: return IF_PLL; |
| case HL_GAUDI2_SRAM_PLL: return SRAM_PLL; |
| case HL_GAUDI2_HBM_PLL: return HBM_PLL; |
| case HL_GAUDI2_VID_PLL: return VID_PLL; |
| case HL_GAUDI2_MSS_PLL: return MSS_PLL; |
| default: return -EINVAL; |
| } |
| } |
| |
| static int gaudi2_gen_sync_to_engine_map(struct hl_device *hdev, struct hl_sync_to_engine_map *map) |
| { |
| /* Not implemented */ |
| return 0; |
| } |
| |
| static int gaudi2_monitor_valid(struct hl_mon_state_dump *mon) |
| { |
| /* Not implemented */ |
| return 0; |
| } |
| |
| static int gaudi2_print_single_monitor(char **buf, size_t *size, size_t *offset, |
| struct hl_device *hdev, struct hl_mon_state_dump *mon) |
| { |
| /* Not implemented */ |
| return 0; |
| } |
| |
| |
| static int gaudi2_print_fences_single_engine(struct hl_device *hdev, u64 base_offset, |
| u64 status_base_offset, enum hl_sync_engine_type engine_type, |
| u32 engine_id, char **buf, size_t *size, size_t *offset) |
| { |
| /* Not implemented */ |
| return 0; |
| } |
| |
| |
| static struct hl_state_dump_specs_funcs gaudi2_state_dump_funcs = { |
| .monitor_valid = gaudi2_monitor_valid, |
| .print_single_monitor = gaudi2_print_single_monitor, |
| .gen_sync_to_engine_map = gaudi2_gen_sync_to_engine_map, |
| .print_fences_single_engine = gaudi2_print_fences_single_engine, |
| }; |
| |
| static void gaudi2_state_dump_init(struct hl_device *hdev) |
| { |
| /* Not implemented */ |
| hdev->state_dump_specs.props = gaudi2_state_dump_specs_props; |
| hdev->state_dump_specs.funcs = gaudi2_state_dump_funcs; |
| } |
| |
| static u32 gaudi2_get_sob_addr(struct hl_device *hdev, u32 sob_id) |
| { |
| return 0; |
| } |
| |
| static u32 *gaudi2_get_stream_master_qid_arr(void) |
| { |
| return NULL; |
| } |
| |
| static void gaudi2_add_device_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, |
| struct attribute_group *dev_vrm_attr_grp) |
| { |
| hl_sysfs_add_dev_clk_attr(hdev, dev_clk_attr_grp); |
| hl_sysfs_add_dev_vrm_attr(hdev, dev_vrm_attr_grp); |
| } |
| |
| static int gaudi2_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, |
| u32 page_size, u32 *real_page_size, bool is_dram_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| /* for host pages the page size must be */ |
| if (!is_dram_addr) { |
| if (page_size % mmu_prop->page_size) |
| goto page_size_err; |
| |
| *real_page_size = mmu_prop->page_size; |
| return 0; |
| } |
| |
| if ((page_size % prop->dram_page_size) || (prop->dram_page_size > mmu_prop->page_size)) |
| goto page_size_err; |
| |
| /* |
| * MMU page size is different from DRAM page size (more precisely, DMMU page is greater |
| * than DRAM page size). |
| * for this reason work with the DRAM page size and let the MMU scrambling routine handle |
| * this mismatch when calculating the address to place in the MMU page table. |
| * (in that case also make sure that the dram_page_size is not greater than the |
| * mmu page size) |
| */ |
| *real_page_size = prop->dram_page_size; |
| |
| return 0; |
| |
| page_size_err: |
| dev_err(hdev->dev, "page size of 0x%X is not 0x%X aligned, can't map\n", |
| page_size, mmu_prop->page_size >> 10); |
| return -EFAULT; |
| } |
| |
| static int gaudi2_get_monitor_dump(struct hl_device *hdev, void *data) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| int gaudi2_send_device_activity(struct hl_device *hdev, bool open) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) |
| return 0; |
| |
| return hl_fw_send_device_activity(hdev, open); |
| } |
| |
| static u64 gaudi2_read_pte(struct hl_device *hdev, u64 addr) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| u64 val; |
| |
| if (hdev->reset_info.hard_reset_pending) |
| return U64_MAX; |
| |
| val = readq(hdev->pcie_bar[DRAM_BAR_ID] + (addr - gaudi2->dram_bar_cur_addr)); |
| |
| return val; |
| } |
| |
| static void gaudi2_write_pte(struct hl_device *hdev, u64 addr, u64 val) |
| { |
| struct gaudi2_device *gaudi2 = hdev->asic_specific; |
| |
| if (hdev->reset_info.hard_reset_pending) |
| return; |
| |
| writeq(val, hdev->pcie_bar[DRAM_BAR_ID] + (addr - gaudi2->dram_bar_cur_addr)); |
| } |
| |
| static const struct hl_asic_funcs gaudi2_funcs = { |
| .early_init = gaudi2_early_init, |
| .early_fini = gaudi2_early_fini, |
| .late_init = gaudi2_late_init, |
| .late_fini = gaudi2_late_fini, |
| .sw_init = gaudi2_sw_init, |
| .sw_fini = gaudi2_sw_fini, |
| .hw_init = gaudi2_hw_init, |
| .hw_fini = gaudi2_hw_fini, |
| .halt_engines = gaudi2_halt_engines, |
| .suspend = gaudi2_suspend, |
| .resume = gaudi2_resume, |
| .mmap = gaudi2_mmap, |
| .ring_doorbell = gaudi2_ring_doorbell, |
| .pqe_write = gaudi2_pqe_write, |
| .asic_dma_alloc_coherent = gaudi2_dma_alloc_coherent, |
| .asic_dma_free_coherent = gaudi2_dma_free_coherent, |
| .scrub_device_mem = gaudi2_scrub_device_mem, |
| .scrub_device_dram = gaudi2_scrub_device_dram, |
| .get_int_queue_base = NULL, |
| .test_queues = gaudi2_test_queues, |
| .asic_dma_pool_zalloc = gaudi2_dma_pool_zalloc, |
| .asic_dma_pool_free = gaudi2_dma_pool_free, |
| .cpu_accessible_dma_pool_alloc = gaudi2_cpu_accessible_dma_pool_alloc, |
| .cpu_accessible_dma_pool_free = gaudi2_cpu_accessible_dma_pool_free, |
| .dma_unmap_sgtable = hl_asic_dma_unmap_sgtable, |
| .cs_parser = gaudi2_cs_parser, |
| .dma_map_sgtable = hl_asic_dma_map_sgtable, |
| .add_end_of_cb_packets = NULL, |
| .update_eq_ci = gaudi2_update_eq_ci, |
| .context_switch = gaudi2_context_switch, |
| .restore_phase_topology = gaudi2_restore_phase_topology, |
| .debugfs_read_dma = gaudi2_debugfs_read_dma, |
| .add_device_attr = gaudi2_add_device_attr, |
| .handle_eqe = gaudi2_handle_eqe, |
| .get_events_stat = gaudi2_get_events_stat, |
| .read_pte = gaudi2_read_pte, |
| .write_pte = gaudi2_write_pte, |
| .mmu_invalidate_cache = gaudi2_mmu_invalidate_cache, |
| .mmu_invalidate_cache_range = gaudi2_mmu_invalidate_cache_range, |
| .mmu_prefetch_cache_range = NULL, |
| .send_heartbeat = gaudi2_send_heartbeat, |
| .debug_coresight = gaudi2_debug_coresight, |
| .is_device_idle = gaudi2_is_device_idle, |
| .compute_reset_late_init = gaudi2_compute_reset_late_init, |
| .hw_queues_lock = gaudi2_hw_queues_lock, |
| .hw_queues_unlock = gaudi2_hw_queues_unlock, |
| .get_pci_id = gaudi2_get_pci_id, |
| .get_eeprom_data = gaudi2_get_eeprom_data, |
| .get_monitor_dump = gaudi2_get_monitor_dump, |
| .send_cpu_message = gaudi2_send_cpu_message, |
| .pci_bars_map = gaudi2_pci_bars_map, |
| .init_iatu = gaudi2_init_iatu, |
| .rreg = hl_rreg, |
| .wreg = hl_wreg, |
| .halt_coresight = gaudi2_halt_coresight, |
| .ctx_init = gaudi2_ctx_init, |
| .ctx_fini = gaudi2_ctx_fini, |
| .pre_schedule_cs = gaudi2_pre_schedule_cs, |
| .get_queue_id_for_cq = gaudi2_get_queue_id_for_cq, |
| .load_firmware_to_device = NULL, |
| .load_boot_fit_to_device = NULL, |
| .get_signal_cb_size = gaudi2_get_signal_cb_size, |
| .get_wait_cb_size = gaudi2_get_wait_cb_size, |
| .gen_signal_cb = gaudi2_gen_signal_cb, |
| .gen_wait_cb = gaudi2_gen_wait_cb, |
| .reset_sob = gaudi2_reset_sob, |
| .reset_sob_group = gaudi2_reset_sob_group, |
| .get_device_time = gaudi2_get_device_time, |
| .pb_print_security_errors = gaudi2_pb_print_security_errors, |
| .collective_wait_init_cs = gaudi2_collective_wait_init_cs, |
| .collective_wait_create_jobs = gaudi2_collective_wait_create_jobs, |
| .get_dec_base_addr = gaudi2_get_dec_base_addr, |
| .scramble_addr = gaudi2_mmu_scramble_addr, |
| .descramble_addr = gaudi2_mmu_descramble_addr, |
| .ack_protection_bits_errors = gaudi2_ack_protection_bits_errors, |
| .get_hw_block_id = gaudi2_get_hw_block_id, |
| .hw_block_mmap = gaudi2_block_mmap, |
| .enable_events_from_fw = gaudi2_enable_events_from_fw, |
| .ack_mmu_errors = gaudi2_ack_mmu_page_fault_or_access_error, |
| .get_msi_info = gaudi2_get_msi_info, |
| .map_pll_idx_to_fw_idx = gaudi2_map_pll_idx_to_fw_idx, |
| .init_firmware_preload_params = gaudi2_init_firmware_preload_params, |
| .init_firmware_loader = gaudi2_init_firmware_loader, |
| .init_cpu_scrambler_dram = gaudi2_init_scrambler_hbm, |
| .state_dump_init = gaudi2_state_dump_init, |
| .get_sob_addr = &gaudi2_get_sob_addr, |
| .set_pci_memory_regions = gaudi2_set_pci_memory_regions, |
| .get_stream_master_qid_arr = gaudi2_get_stream_master_qid_arr, |
| .check_if_razwi_happened = gaudi2_check_if_razwi_happened, |
| .mmu_get_real_page_size = gaudi2_mmu_get_real_page_size, |
| .access_dev_mem = hl_access_dev_mem, |
| .set_dram_bar_base = gaudi2_set_hbm_bar_base, |
| .set_engine_cores = gaudi2_set_engine_cores, |
| .set_engines = gaudi2_set_engines, |
| .send_device_activity = gaudi2_send_device_activity, |
| .set_dram_properties = gaudi2_set_dram_properties, |
| .set_binning_masks = gaudi2_set_binning_masks, |
| }; |
| |
| void gaudi2_set_asic_funcs(struct hl_device *hdev) |
| { |
| hdev->asic_funcs = &gaudi2_funcs; |
| } |